JPH08278203A - Infrared ray radiation thermometer - Google Patents

Infrared ray radiation thermometer

Info

Publication number
JPH08278203A
JPH08278203A JP7082584A JP8258495A JPH08278203A JP H08278203 A JPH08278203 A JP H08278203A JP 7082584 A JP7082584 A JP 7082584A JP 8258495 A JP8258495 A JP 8258495A JP H08278203 A JPH08278203 A JP H08278203A
Authority
JP
Japan
Prior art keywords
temperature
sensor
lens
infrared
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082584A
Other languages
Japanese (ja)
Inventor
Eiji Sato
栄治 佐藤
Takashi Fujishiro
隆 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Meter Co Ltd
Original Assignee
Anritsu Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Meter Co Ltd filed Critical Anritsu Meter Co Ltd
Priority to JP7082584A priority Critical patent/JPH08278203A/en
Publication of JPH08278203A publication Critical patent/JPH08278203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To correct a measuring error caused by giving and receiving of radiation energy between a lens and a sensor, and provide an infrared ray radiation thermometer wherein accurate temperature measuring can be always performed. CONSTITUTION: A lens 12 for collecting an infrared ray emitted from an object 11 of which temperature is measured, an infrared ray sensor 13 for converting the infrared ray into an electrical signal, and an operation means 14 for converting the electrical signal into a temperature unit are provided. Furthermore, a lens temperature measuring means 15 for measuring the temperature of the lens 12, a sensor temperature-measuring means 16 for measuring the temperature of the infrared ray sensor 13, a correction means 17 for making a correction signal according to both the temperature-measuring means 15, 16, a conversion means 18 for converting into a temperature signal by using the signals of the operation means 14 and the correction means 17, and an output means 19 for outputting and showing the temperature signal are equipped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外線を用い、非接触で
温度測定を行う赤外線放射温度計に係わり、特に温度計
測時の精度、安定度を向上させた赤外線放射温度計に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared radiation thermometer which uses infrared rays to measure temperature in a non-contact manner, and more particularly to an infrared radiation thermometer having improved accuracy and stability during temperature measurement.

【0002】[0002]

【従来の技術】温度計測の分野では、非接触で計測でき
る赤外線放射温度計が広く用いられているが、計測を行
う条件次第で、かなり大きな誤差が生じることが判明し
ている。この誤差は、特に携帯用の赤外線放射温度計
を、雰囲気温度と測温対象物の温度差が大きい場合や、
雰囲気温度の変化が著しい条件で使用した時などに顕著
に現れる。
2. Description of the Related Art In the field of temperature measurement, an infrared radiation thermometer capable of making non-contact measurement is widely used, but it has been found that a considerably large error occurs depending on the measurement conditions. This error is caused by a portable infrared radiation thermometer, especially when the temperature difference between the ambient temperature and the temperature measurement object is large,
It appears remarkably when it is used under the condition that the ambient temperature changes significantly.

【0003】図9に基づいて説明すると、例えば、赤外
線放射温度計をある一定の周囲温度の場所に長時間置い
ておき、その温度に赤外線放射温度計を馴染ませた状態
で、周囲温度よりも遙に高温の測温対象物1の温度を測
定しようとすると、レンズ2の温度TL とセンサ3の温
度TS に温度差が無い最初期の状態では、TL =TS
あり、レンズ2自体からセンサ3への放射は無く、セン
サ3に入射するエネルギーは、測温対象物1から放射さ
れるET のみである。
Explaining with reference to FIG. 9, for example, an infrared radiation thermometer is left in a place of a certain ambient temperature for a long time, and the infrared radiation thermometer is made to adapt to the temperature, and the temperature is higher than the ambient temperature. When trying to measure the temperature of the temperature measuring object 1 having a much higher temperature, T L = T S in the initial state where there is no temperature difference between the temperature T L of the lens 2 and the temperature T S of the sensor 3, There is no radiation from 2 itself to the sensor 3, and the energy incident on the sensor 3 is only E T radiated from the temperature measurement target 1.

【0004】しかし、レンズ2を測温対象物1の方向に
向けておくと、時間の経過と共に、測温対象物1からの
放射熱の影響で、先ず測温対象物1に近いレンズ2が加
熱され、TL >TS となり、その結果、温度の高くなっ
たレンズ2から温度の低いセンサ3に向かってエネルギ
ーEL が放射され、センサ3に入射するエネルギーは、
T +EL となり、EL が誤差の要因となる。
However, when the lens 2 is directed toward the temperature measurement target 1, the lens 2 close to the temperature measurement target 1 is first affected by the radiant heat from the temperature measurement target 1 over time. When heated, T L > T S , and as a result, the energy E L is emitted from the lens 2 having a high temperature toward the sensor 3 having a low temperature, and the energy incident on the sensor 3 is
It becomes E T + E L , and E L becomes a factor of error.

【0005】その後、時間の経過と共に、矢印Hで示す
ようにレンズ2の熱がケース4を伝ってセンサ3に伝導
し、再びTL =TS になると、レンズ2からの放射エネ
ルギーが無くなるので、センサ3に入射するエネルギー
は、測温対象物1からのETだけとなる。また、例えば
室温が40℃の場所から25℃の場所に移動して温度測定を
行った場合には、レンズ2の温度変化とセンサ3の温度
変化の時間的なズレによって、図10に示すような大きな
測定誤差が生じることが、本発明の実験によって確認さ
れた。
After that, with the passage of time, the heat of the lens 2 is conducted through the case 4 to the sensor 3 as indicated by an arrow H, and when T L = T S again, the radiant energy from the lens 2 disappears. The energy incident on the sensor 3 is only E T from the temperature measurement target 1. Further, for example, when the temperature is measured by moving from a place where the room temperature is 40 ° C. to a place where the temperature is 25 ° C., as shown in FIG. It was confirmed by the experiment of the present invention that a large measurement error occurs.

【0006】このように、雰囲気温度や測温対象物の温
度、赤外線放射温度計の部分的な温度差、更に時間の経
過など、様々な要因によって、計測条件に変化がある
と、上述したような測定誤差が生じて、正確な温度計測
ができなくなるのである。
As described above, the measurement conditions change due to various factors such as the ambient temperature, the temperature of the temperature measurement object, the partial temperature difference of the infrared radiation thermometer, and the passage of time. Therefore, accurate measurement of temperature cannot be performed due to various measurement errors.

【0007】[0007]

【発明が解決しようとする課題】そこで、このようなレ
ンズの温度変化による誤差を補正する赤外線検知装置が
特開平 2−196933号公報に提案されている。しかしなが
ら、この装置では、フレネルレンズ単体の温度を絶対温
度計測して補正を行っているため、センサとの間の相対
温度が特定できず、特に周囲温度の変化が激しい計測環
境では、レンズからの放射エネルギーによる誤差を補正
することができず、正確な温度計測ができないという問
題があった。
Therefore, an infrared detecting device for correcting the error due to the temperature change of such a lens is proposed in Japanese Patent Laid-Open No. 2-196933. However, in this device, since the absolute temperature of the Fresnel lens is measured and corrected, the relative temperature between the sensor and the sensor cannot be specified, and especially in a measurement environment where the ambient temperature changes drastically, There was a problem that an error due to radiant energy could not be corrected and accurate temperature measurement could not be performed.

【0008】本発明は以上の問題点に鑑みて、レンズと
センサとの間の放射エネルギーの授受に起因する測定誤
差を補正し、常に正確な温度測定ができる赤外線放射温
度計を提供することを目的とするものである。
In view of the above problems, the present invention provides an infrared radiation thermometer capable of correcting a measurement error caused by the transfer of radiant energy between a lens and a sensor and always performing accurate temperature measurement. It is intended.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
の本発明の赤外線放射温度計は、測温対象から放射され
る赤外線を集光するレンズと、この赤外線を電気信号に
変換する赤外線センサと、この電気信号を温度の単位に
変換する演算手段と、前記レンズの温度を測温するレン
ズ測温手段と、前記赤外線センサの温度を測温するセン
サ測温手段と、これらの測温手段によって補正信号を作
る補正手段と、前記演算手段と補正手段の信号を使って
温度信号に変換する変換手段と、この温度信号を出力・
表示する出力手段を備えたものである。
The infrared radiation thermometer of the present invention for achieving the above object comprises a lens for condensing infrared rays emitted from a temperature measuring object and an infrared sensor for converting the infrared rays into an electric signal. And a calculating means for converting the electric signal into a unit of temperature, a lens temperature measuring means for measuring the temperature of the lens, a sensor temperature measuring means for measuring the temperature of the infrared sensor, and these temperature measuring means. Correction means for producing a correction signal by means of the above, conversion means for converting into a temperature signal using the signals of the calculation means and the correction means, and outputting this temperature signal
The output means for displaying is provided.

【0010】また、前記赤外線センサにサーモパイルを
用い、前記レンズに光学凸レンズを用い、前記レンズ測
温手段とセンサ測温手段に熱電対を用いると、より正確
な温度測定を行う上で好ましく、その場合には、前記サ
ーモパイルに冷接点センサを設けると共に、この冷接点
センサの出力信号に基づいて補償を行う冷接点補償手段
を設けると更に好ましい。そして、前記サーモパイルと
レンズ測温手段とセンサ測温手段と冷接点センサの信号
を入力切り換え手段により切り換え、変換処理と補正処
理をマイクロコンピュータのソフトウェアによって行う
ことも可能である。
Further, it is preferable to use a thermopile for the infrared sensor, an optical convex lens for the lens, and a thermocouple for the lens temperature measuring means and the sensor temperature measuring means for more accurate temperature measurement. In this case, it is more preferable to provide a cold junction sensor on the thermopile and a cold junction compensating means for performing compensation based on the output signal of the cold junction sensor. It is also possible to switch the signals of the thermopile, the lens temperature measuring means, the sensor temperature measuring means, and the cold junction sensor by the input switching means, and perform the conversion processing and the correction processing by the software of the microcomputer.

【0011】[0011]

【作 用】本発明の赤外線放射温度計は以上の構成を有
しているため、レンズ測温手段によって検出されるレン
ズの温度と、センサ測温手段によって検出されるセンサ
の温度との間の温度差から、レンズとセンサとの間の放
射エネルギーの授受が分かるので、測温対象物からセン
サに入射する放射エネルギーだけを割り出すことがで
き、周囲温度が大きく変化するような測温環境でも、常
に正確な温度計測ができる。
[Operation] Since the infrared radiation thermometer of the present invention has the above-mentioned configuration, the infrared radiation thermometer between the temperature of the lens detected by the lens temperature measuring means and the temperature of the sensor detected by the sensor temperature measuring means is From the temperature difference, the transfer of radiant energy between the lens and the sensor can be known, so it is possible to determine only the radiant energy that is incident on the sensor from the temperature measurement target, and even in a temperature measurement environment where the ambient temperature changes significantly Accurate temperature measurement is always possible.

【0012】また、前記赤外線センサにサーモパイルを
用い、前記レンズに光学凸レンズを用い、前記レンズ測
温手段とセンサ測温手段に熱電対を用いた場合には、レ
ンズの光学視野特性が良好で、センサの温度測定範囲も
広く、耐久性にも優れる。また、前記サーモパイルに冷
接点センサを設けると共に、この冷接点センサの出力信
号に基づいて補償を行う冷接点補償手段を設けた場合に
は、冷接点温度による校正ができ、より正確な温度測定
ができる。
When a thermopile is used for the infrared sensor, an optical convex lens is used for the lens, and a thermocouple is used for the lens temperature measuring means and the sensor temperature measuring means, the optical field characteristic of the lens is good, The temperature measurement range of the sensor is wide and it has excellent durability. Further, when a cold junction sensor is provided in the thermopile and a cold junction compensating means for compensating based on the output signal of the cold junction sensor is provided, the cold junction temperature can be calibrated and a more accurate temperature measurement can be performed. it can.

【0013】また、前記サーモパイルとレンズ測温手段
とセンサ測温手段と冷接点センサの信号を入力切り換え
手段により切り換え、変換処理と補正処理をマイクロコ
ンピュータのソフトウェアによって行う場合には、変換
手段や補正手段を簡略化することができ、装置の小型化
に対応できる。
Further, when the signals of the thermopile, the lens temperature measuring means, the sensor temperature measuring means and the cold junction sensor are switched by the input switching means, and the conversion processing and the correction processing are performed by the software of the microcomputer, the conversion means and the correction are performed. The means can be simplified, and the device can be downsized.

【0014】[0014]

【実施例】次に図面を参照して本発明の実施例を説明す
る。本発明の実施例1は、図1に示すような概略構造と
なっており、測温対象11から放射される赤外線を集光す
るレンズ12と、集光した赤外線を光電変換する赤外線セ
ンサ13と、この赤外線センサ13から出力される電圧に応
じて、温度の単位に変換する演算手段14の他に、レンズ
12の温度を検出するレンズ測温手段15と赤外線センサ13
の温度を検出するセンサ測温手段16と、これらレンズ測
温手段15とセンサ測温手段16から出力される信号に基づ
いて、レンズ12と赤外線センサ13の温度差に応じた電気
信号を発生させる補正手段17とを有している。そして、
上記演算手段14と補正手段17の出力信号に基づいて、誤
差補正された温度測定値が変換手段18によって、温度信
号として出力され、出力手段19によって視覚的又は聴覚
的に認識できるように、出力・表示される。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 of the present invention has a schematic structure as shown in FIG. 1, and includes a lens 12 that collects infrared rays emitted from the temperature measurement target 11, and an infrared sensor 13 that photoelectrically converts the collected infrared rays. According to the voltage output from the infrared sensor 13, in addition to the calculating means 14 for converting into a unit of temperature, a lens
Lens temperature measuring means 15 for detecting the temperature of 12 and infrared sensor 13
A sensor temperature measuring means 16 for detecting the temperature of the lens 12 and an electric signal corresponding to a temperature difference between the lens 12 and the infrared sensor 13 are generated based on signals output from the lens temperature measuring means 15 and the sensor temperature measuring means 16. The correction means 17 is included. And
Based on the output signals of the calculation means 14 and the correction means 17, the error-corrected temperature measurement value is output by the conversion means 18 as a temperature signal, and output by the output means 19 so that it can be visually or auditorily recognized. ·Is displayed.

【0015】このように、レンズ12の温度と赤外線セン
サ13の温度の差によって、レンズ12と赤外線センサ13と
の間に生じるエネルギーの放射を誤差として補償し、レ
ンズ12を通して赤外線センサ13によって計測された温度
を修正することができるので、いかなる条件でも極めて
正確に温度測定を行うことができるのである。次に図2
及び図3に概略構造を示す本発明の実施例2は、測定範
囲が−50℃〜+ 500℃で、 0.1℃分解能で絶対温度を計
測する携帯用の赤外線放射温度計に適用したものであ
る。本体ケース20の内側には、耐久性が高く、光学視野
特性も良好な光学Ge凸レンズ12と赤外線センサ(本実
施例ではサーモパイル)13を取り付けた内側ケース21が
収容されており、更に、このサーモパイル13の冷接点温
度を検出する冷接点センサ22と、レンズ12の温度を検出
するレンズ測温手段(第1の熱電対)15と、サーモパイ
ル13の温度を検出するセンサ測温手段(第2の熱電対)
16とを、回路基板23に接続している。
As described above, the radiation of energy generated between the lens 12 and the infrared sensor 13 is compensated as an error due to the difference between the temperature of the lens 12 and the temperature of the infrared sensor 13, and the infrared sensor 13 measures through the lens 12. Since the temperature can be corrected, the temperature can be measured extremely accurately under any condition. Next, FIG.
And Example 2 of the present invention whose schematic structure is shown in FIG. 3 is applied to a portable infrared radiation thermometer which measures an absolute temperature with a resolution of 0.1 ° C. in a measurement range of −50 ° C. to + 500 ° C. . Inside the main body case 20, an inner case 21 having an optical Ge convex lens 12 and an infrared sensor (thermopile in this embodiment) 13 having high durability and good optical field characteristic is attached, and further, this thermopile is mounted. A cold junction sensor 22 for detecting the cold junction temperature of 13, a lens temperature measuring means (first thermocouple) 15 for detecting the temperature of the lens 12, and a sensor temperature measuring means (second for the thermopile 13). thermocouple)
16 and 16 are connected to the circuit board 23.

【0016】この回路基板23には、図2に示す冷接点補
償手段24と、演算手段14と、変換手段18と、補正手段17
とが実装されており、本体ケース20の外部に露出する表
示部25も一体的に取り付けられている。また、本体ケー
ス20のグリップ部20aには、バッテリ26が収容されてお
り、前記回路基板23に給電するようになっている。本実
施例では、図4に示すように第1の熱電対15はレンズ12
の裏側に取り付けられており、内側ケース21の内部に位
置している。そして、内側ケース21の側面に開口した配
線穴27から熱電対素線28を取り出して、回路基板23まで
配線している。また、第2の熱電対16はサーモパイル13
の温度を測定するために、サーモパイル13と略同等の温
度になる内側ケース21の閉塞端21aの裏側に取り付けて
いる。尚、これら第1の熱電対15と第2の熱電対16は、
共に図5に示すような構造となっており、縦横 1.5mm角
で厚さ0.05mmの接触板29の中央部の表面に、測温接点と
なる両熱電対素線28の端部が接するようにして固着され
ている。
On this circuit board 23, the cold junction compensating means 24, the calculating means 14, the converting means 18, and the correcting means 17 shown in FIG.
Are mounted, and the display unit 25 exposed to the outside of the main body case 20 is also integrally mounted. A battery 26 is housed in the grip portion 20a of the main body case 20, and power is supplied to the circuit board 23. In the present embodiment, as shown in FIG.
It is attached to the inner side of the inner case 21. Then, the thermocouple wire 28 is taken out from the wiring hole 27 opened on the side surface of the inner case 21 and wired to the circuit board 23. In addition, the second thermocouple 16 is a thermopile 13
In order to measure the temperature of the thermopile 13, it is attached to the back side of the closed end 21a of the inner case 21 where the temperature becomes substantially the same as that of the thermopile 13. The first thermocouple 15 and the second thermocouple 16 are
Both have the structure shown in FIG. 5, and the ends of both thermocouple wires 28, which are the temperature-measuring contacts, are in contact with the surface of the center of the contact plate 29, which is 1.5 mm square by 0.05 mm thick. It has been fixed.

【0017】尚、これらの熱電対としては、クロメル−
アルメル、クロメル−コンスタンタン、鉄−コンスタン
タン、銅−コンスタンタン、白金ロジウム−白金などを
適宜選択して使用することができる。本実施例による
と、サーモパイル13で光電変換された信号は、冷接点セ
ンサ22と冷接点補償手段24とによって補償され、また、
第1の熱電対15と第2の熱電対16によって、レンズ12と
サーモパイル13の温度差による誤差修正が行われるの
で、図6に示すように、測定誤差が極めて小さくなり、
図10に示す従来例に比して大幅な改善を見たことが判
る。
As these thermocouples, chromel-
Alumel, chromel-constantan, iron-constantan, copper-constantan, platinum rhodium-platinum and the like can be appropriately selected and used. According to this embodiment, the signal photoelectrically converted by the thermopile 13 is compensated by the cold junction sensor 22 and the cold junction compensating means 24, and
Since the error correction due to the temperature difference between the lens 12 and the thermopile 13 is performed by the first thermocouple 15 and the second thermocouple 16, the measurement error becomes extremely small as shown in FIG.
It can be seen that a significant improvement was seen compared to the conventional example shown in FIG.

【0018】次に、図7に示す実施例3は、上記実施例
2の変形例であり、図2の冷接点補償手段24、演算手段
14、補正手段17、変換手段18に代えて、入力切り替え手
段30、A/D変換手段31、マイクロコンピュータ32を使
用して、装置の簡略化を図っている。また、図8に示す
ように、レンズ12の温度を測定するための第1の熱電対
15は、レンズ12の表側、即ち、測温対象11に近い側に配
置しており、サーモパイル13の温度を測定するための第
2の熱電対16と冷接点センサ22は、サーモパイル13に一
体的に固定している。
Next, a third embodiment shown in FIG. 7 is a modification of the above-mentioned second embodiment, in which the cold junction compensating means 24 and the computing means of FIG.
Instead of 14, correction means 17 and conversion means 18, input switching means 30, A / D conversion means 31, and microcomputer 32 are used to simplify the apparatus. In addition, as shown in FIG. 8, a first thermocouple for measuring the temperature of the lens 12 is used.
15 is disposed on the front side of the lens 12, that is, on the side close to the temperature measurement target 11, and the second thermocouple 16 and the cold junction sensor 22 for measuring the temperature of the thermopile 13 are integrated with the thermopile 13. It is fixed to.

【0019】この実施例の場合には、マイクロコンピュ
ータ32の指令により入力切り替え手段30を操作して、任
意のタイミングに、サーモパイル13、冷接点センサ22、
レンズ測温手段(第1の熱電対)15、センサ測温手段
(第2の熱電対)16からのデータ取り込みを行い、A/
D変換手段31によって、測定温度に対応するディジタル
信号に変換して、マイクロコンピュータ32によってデー
タ処理を行い、ディスプレーやスピーカなどの出力手段
19を通じて、計測者に測定温度を知らせる。
In the case of this embodiment, the input switching means 30 is operated by a command from the microcomputer 32, and the thermopile 13, the cold junction sensor 22, and the
Data is taken from the lens temperature measuring means (first thermocouple) 15 and the sensor temperature measuring means (second thermocouple) 16, and A /
The D conversion means 31 converts it into a digital signal corresponding to the measured temperature, the microcomputer 32 performs data processing, and an output means such as a display or a speaker.
Notify the measurer of the measured temperature through 19.

【0020】この実施例の場合にも、レンズ12の温度と
赤外線センサ(サーモパイル)13の相対温度に基づく補
正を行うことができるので、測定する環境に影響され
ず、常に正確な測温が可能となる。
Also in the case of this embodiment, since the correction can be performed based on the temperature of the lens 12 and the relative temperature of the infrared sensor (thermopile) 13, accurate temperature measurement is always possible without being influenced by the environment to be measured. Becomes

【0021】[0021]

【発明の効果】本発明の赤外線放射温度計は、測温対象
から放射される赤外線を集光するレンズと、この赤外線
を電気信号に変換する赤外線センサと、この電気信号を
温度の単位に変換する演算手段と、前記レンズの温度を
測温するレンズ測温手段と、前記赤外線センサの温度を
測温するセンサ測温手段と、これらの測温手段によって
補正信号を作る補正手段と、前記演算手段と補正手段の
信号を使って温度信号に変換する変換手段と、この温度
信号を出力・表示する出力手段を備えているので、レン
ズ測温手段によって検出されるレンズの温度と、センサ
測温手段によって検出されるセンサの温度との間の温度
差から、レンズとセンサとの間の放射エネルギーの授受
が分かり、測温対象物からセンサに入射する放射エネル
ギーだけを割り出すことができ、周囲温度が大きく変化
するような測温環境でも、常に正確な温度計測ができ
る。
The infrared radiation thermometer of the present invention has a lens for condensing infrared rays radiated from an object to be measured, an infrared sensor for converting the infrared rays into an electric signal, and the electric signal for converting into a unit of temperature. Calculating means, lens temperature measuring means for measuring the temperature of the lens, sensor temperature measuring means for measuring the temperature of the infrared sensor, correction means for generating a correction signal by these temperature measuring means, and the calculation Since the conversion means for converting the temperature signal using the signals of the measuring means and the correcting means and the output means for outputting and displaying the temperature signal are provided, the temperature of the lens detected by the lens temperature measuring means and the sensor temperature measuring From the temperature difference between the temperature of the sensor and the temperature of the sensor detected by the means, the transfer of radiant energy between the lens and the sensor can be known, and only the radiant energy that is incident on the sensor from the temperature measurement object can be determined. It can be, even in the temperature measuring environment, such as ambient temperature changes significantly, it is always accurate temperature measurement.

【0022】また、前記赤外線センサにサーモパイルを
用い、前記レンズに光学凸レンズを用い、前記レンズ測
温手段とセンサ測温手段に熱電対を用いた場合には、レ
ンズの光学視野特性が良好で、センサの温度測定範囲も
広く、耐久性にも優れた赤外線放射温度計を提供するこ
とができる。更に、前記サーモパイルに冷接点センサを
設けると共に、この冷接点センサの出力信号に基づいて
補償を行う冷接点補償手段を設けた場合には、冷接点温
度による校正ができ、より正確な温度測定ができる。
When a thermopile is used for the infrared sensor, an optical convex lens is used for the lens, and a thermocouple is used for the lens temperature measuring means and the sensor temperature measuring means, the optical field characteristic of the lens is good, It is possible to provide an infrared radiation thermometer having a wide temperature measurement range of the sensor and excellent durability. Further, when a cold junction sensor is provided in the thermopile and a cold junction compensating means for compensating based on the output signal of the cold junction sensor is provided, calibration by the cold junction temperature can be performed, and more accurate temperature measurement can be performed. it can.

【0023】また、前記サーモパイルとレンズ測温手段
とセンサ測温手段と冷接点センサの信号を入力切り換え
手段により切り換え、変換処理と補正処理をマイクロコ
ンピュータのソフトウェアによって行う場合には、変換
手段や補正手段を簡略化することができ、装置の小型化
に対応できる。
Further, when the signals of the thermopile, the lens temperature measuring means, the sensor temperature measuring means, and the cold junction sensor are switched by the input switching means and the conversion processing and the correction processing are performed by the software of the microcomputer, the conversion means and the correction are performed. The means can be simplified, and the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の赤外線放射温度計のブロッ
ク図である。
FIG. 1 is a block diagram of an infrared radiation thermometer according to a first embodiment of the present invention.

【図2】本発明の実施例2の赤外線放射温度計のブロッ
ク図である。
FIG. 2 is a block diagram of an infrared radiation thermometer according to a second embodiment of the present invention.

【図3】図2の赤外線放射温度計の概略断面図である。FIG. 3 is a schematic sectional view of the infrared radiation thermometer of FIG.

【図4】図3の赤外線放射温度計のセンサ部分の拡大断
面図である。
FIG. 4 is an enlarged sectional view of a sensor portion of the infrared radiation thermometer of FIG.

【図5】図4のレンズと赤外線センサの温度を測定する
熱電対の斜視図である。
FIG. 5 is a perspective view of a thermocouple for measuring the temperature of the lens and the infrared sensor of FIG.

【図6】図2の赤外線放射温度計による測定誤差を示す
特性図である。
FIG. 6 is a characteristic diagram showing a measurement error by the infrared radiation thermometer of FIG.

【図7】本発明の実施例3の赤外線放射温度計のブロッ
ク図である。
FIG. 7 is a block diagram of an infrared radiation thermometer according to a third embodiment of the present invention.

【図8】図7の赤外線放射温度計のセンサ部分の拡大断
面図である。
8 is an enlarged sectional view of a sensor portion of the infrared radiation thermometer of FIG.

【図9】従来の赤外線放射温度計のセンサ部分の拡大断
面図である。
FIG. 9 is an enlarged sectional view of a sensor portion of a conventional infrared radiation thermometer.

【図10】図9の赤外線放射温度計による測定誤差を示す
特性図である。
10 is a characteristic diagram showing a measurement error by the infrared radiation thermometer of FIG. 9.

【符号の説明】[Explanation of symbols]

11 測温対象 12 レンズ 13 赤外線センサ(サーモパイル) 14 演算手段 15 レンズ測温手段(第1の熱電対) 16 センサ測温手段(第2の熱電対) 17 補正手段 18 変換手段 19 出力手段 22 冷接点センサ 24 冷接点補償手段 30 入力切り換え手段 32 マイクロコンピュータ 11 Temperature measurement target 12 Lens 13 Infrared sensor (thermopile) 14 Calculation means 15 Lens temperature measurement means (first thermocouple) 16 Sensor temperature measurement means (second thermocouple) 17 Correction means 18 Conversion means 19 Output means 22 Cold Contact sensor 24 Cold junction compensation means 30 Input switching means 32 Microcomputer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測温対象から放射される赤外線を集光す
るレンズと、この赤外線を電気信号に変換する赤外線セ
ンサと、この電気信号を温度の単位に変換する演算手段
と、前記レンズの温度を測温するレンズ測温手段と、前
記赤外線センサの温度を測温するセンサ測温手段と、こ
れらの測温手段によって補正信号を作る補正手段と、前
記演算手段と補正手段の信号を使って温度信号に変換す
る変換手段と、この温度信号を出力・表示する出力手段
を備えた赤外線放射温度計。
1. A lens for condensing infrared rays emitted from a temperature measuring object, an infrared sensor for converting the infrared rays into an electric signal, a calculation means for converting the electric signal into a unit of temperature, and a temperature of the lens. A lens temperature measuring means for measuring the temperature of the infrared sensor, a sensor temperature measuring means for measuring the temperature of the infrared sensor, a correcting means for generating a correction signal by these temperature measuring means, and a signal of the calculating means and the correcting means. An infrared radiation thermometer equipped with a conversion means for converting the temperature signal and an output means for outputting and displaying the temperature signal.
【請求項2】 前記赤外線センサにサーモパイルを用
い、前記レンズに光学凸レンズを用い、前記レンズ測温
手段とセンサ測温手段に熱電対を用いたことを特徴とす
る請求項1に記載の赤外線放射温度計。
2. The infrared radiation according to claim 1, wherein a thermopile is used for the infrared sensor, an optical convex lens is used for the lens, and a thermocouple is used for the lens temperature measuring means and the sensor temperature measuring means. thermometer.
【請求項3】 前記サーモパイルに冷接点センサを設け
ると共に、この冷接点センサの出力信号に基づいて補償
を行う冷接点補償手段を設けたことを特徴とする請求項
2に記載の赤外線放射温度計。
3. The infrared radiation thermometer according to claim 2, wherein the thermopile is provided with a cold junction sensor, and cold junction compensation means for compensating based on an output signal of the cold junction sensor is provided. .
【請求項4】 前記サーモパイルとレンズ測温手段とセ
ンサ測温手段と冷接点センサの信号を入力切り換え手段
により切り換え、変換処理と補正処理をマイクロコンピ
ュータのソフトウェアによって行うことを特徴とする請
求項3に記載の赤外線放射温度計。
4. The thermopile, lens temperature measuring means, sensor temperature measuring means, and cold junction sensor signals are switched by an input switching means, and conversion processing and correction processing are performed by software of a microcomputer. Infrared radiation thermometer described in.
JP7082584A 1995-04-07 1995-04-07 Infrared ray radiation thermometer Pending JPH08278203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082584A JPH08278203A (en) 1995-04-07 1995-04-07 Infrared ray radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082584A JPH08278203A (en) 1995-04-07 1995-04-07 Infrared ray radiation thermometer

Publications (1)

Publication Number Publication Date
JPH08278203A true JPH08278203A (en) 1996-10-22

Family

ID=13778535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082584A Pending JPH08278203A (en) 1995-04-07 1995-04-07 Infrared ray radiation thermometer

Country Status (1)

Country Link
JP (1) JPH08278203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139660A (en) * 2005-11-21 2007-06-07 Nippon Ceramic Co Ltd Multi-element thermopile module
JP2017067839A (en) * 2015-09-28 2017-04-06 京セラドキュメントソリューションズ株式会社 Fixation device and image formation device
JP2019039952A (en) * 2017-08-22 2019-03-14 京セラドキュメントソリューションズ株式会社 Fixing device and image forming apparatus
JP2019039951A (en) * 2017-08-22 2019-03-14 京セラドキュメントソリューションズ株式会社 Fixing device and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139660A (en) * 2005-11-21 2007-06-07 Nippon Ceramic Co Ltd Multi-element thermopile module
JP2017067839A (en) * 2015-09-28 2017-04-06 京セラドキュメントソリューションズ株式会社 Fixation device and image formation device
CN106842862A (en) * 2015-09-28 2017-06-13 京瓷办公信息系统株式会社 Fixing device and image processing system
JP2019039952A (en) * 2017-08-22 2019-03-14 京セラドキュメントソリューションズ株式会社 Fixing device and image forming apparatus
JP2019039951A (en) * 2017-08-22 2019-03-14 京セラドキュメントソリューションズ株式会社 Fixing device and image forming apparatus

Similar Documents

Publication Publication Date Title
EP0593415B1 (en) Radiation clinical thermometer
USRE34507E (en) Radiation clinical thermometer
US6751497B2 (en) Infrared thermometer
US7036978B2 (en) Pyrometer
US6155712A (en) Radiation clinical thermometer
US20040057494A1 (en) Ear thermometer with improved temperature coefficient and method of calibration thereof
JPH08278203A (en) Infrared ray radiation thermometer
JP2828258B2 (en) Radiation thermometer
JPH06142063A (en) Radiation clinical thermometer
JPS63286729A (en) Thermopile detector
JPH04299225A (en) Clinical thermometer
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
KR20110085039A (en) Apparatus and method for detecting surface temperature in infrared rays thermometer
JP3733846B2 (en) Correction system control method, thermometer and correction device
JP2813331B2 (en) Radiation thermometer
JP2861070B2 (en) Infrared imaging device
JPH02196933A (en) Infrared-ray detection device
KR100202694B1 (en) Temperature measuring apparatus
JPH10290790A (en) Radiation thermometer
JPH0375531A (en) Clinical thermometer using infared-ray sensor
JPH03296628A (en) Method and apparatus for measuring radiation temperature
JPH11281489A (en) Thermometer and temperature measuring method
JPH09264791A (en) Noncontact type thermometer
JPH08254466A (en) Radiation thermometer
JPH11128179A (en) Radiation thermometer