JPH0375531A - Clinical thermometer using infared-ray sensor - Google Patents

Clinical thermometer using infared-ray sensor

Info

Publication number
JPH0375531A
JPH0375531A JP1212461A JP21246189A JPH0375531A JP H0375531 A JPH0375531 A JP H0375531A JP 1212461 A JP1212461 A JP 1212461A JP 21246189 A JP21246189 A JP 21246189A JP H0375531 A JPH0375531 A JP H0375531A
Authority
JP
Japan
Prior art keywords
temperature
sensor
measured
infrared sensor
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1212461A
Other languages
Japanese (ja)
Other versions
JPH0536056B2 (en
Inventor
Hirokatsu Yashiro
弘克 矢代
Yoichi Nagatake
長竹 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1212461A priority Critical patent/JPH0375531A/en
Publication of JPH0375531A publication Critical patent/JPH0375531A/en
Publication of JPH0536056B2 publication Critical patent/JPH0536056B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure body temperature quickly and accurately by constituting a thermometer with an operating part for correcting the time delay in displayed temperature of a temperature sensor and a display part for displaying the output. CONSTITUTION:When body temperature is measured with a temperature sensor 2, there is the temperature difference between the temperature sensor 2 and a human body which is an object to be measured at the normal time. Therefore, a time delay of several minutes or longer occurs. An infared ray sensor 1 can measure only the temperature difference between the sensor and the object to be measured, but its response is very quick. Therefore, the temperature difference between the temperature sensor 2 and the object to be measured which is measured with the infrared sensor 1 is added to the temperature value indicated by the temperature sensor 2. Thus, the temperature of the object to be measured can be measured quickly. Then, the outputs of the temperature sensor 2a and the infrared ray sensor 1 are amplified in a signal processing part 7. Thereafter, the outputs are converted into the temperature of the temperature sensor 2 and the temperature difference between the temperature sensor 2 and the object to be measured. Both values are added, and the temperature of the object to be measured is obtained and displayed on a display part 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線センサを用いた体温計に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermometer using an infrared sensor.

〔従来の技術〕[Conventional technology]

従来より体温計は、水銀温度計が広く使用されているが
、最近では、デジタル電子体温計の普及が進んで来てい
る。
Conventionally, mercury thermometers have been widely used as thermometers, but digital electronic thermometers have recently become more popular.

これらデジタル電子体温計は、通常センサにサーミスタ
を用い、温度算出用の演算回路及びデジタル表示器を備
えたものが多い、しかしながら、測温に要する時間は2
〜3分で、水銀体温計とほぼ同じである。これに対して
、最初の1身程度の間の温度の上昇経過から最終値を予
測する方式の電子体温計が市販されているが、その予測
値は実際の体温と必ずしも一致しないという問題点があ
る。
These digital electronic thermometers usually use a thermistor as a sensor, and are often equipped with an arithmetic circuit for temperature calculation and a digital display. However, the time required to measure temperature is 2.
~3 minutes, about the same as a mercury thermometer. On the other hand, there are electronic thermometers on the market that predict the final value based on the temperature rise during the first body temperature, but the problem is that the predicted value does not necessarily match the actual body temperature. .

測温時間に長時間要する因子としては、センサ部の熱容
量が挙げられる。水銀体温計の場合、ガラス壁を通して
水銀溜めを体温で暖め、水銀の膨張を読み取るという経
過をたどるから、加熱対象の熱容量がかなりおおきく、
そのため2〜3分の測定時間を必要とする。電子体温計
も、金属などで、覆った検出端を体温で暖め、間接的に
熱せられたサーミスタの抵抗値を読み取るという経過を
経るため、やはり、測定部の熱容量の大きいことが問題
となる。
The heat capacity of the sensor section can be cited as a factor that requires a long time for temperature measurement. In the case of a mercury thermometer, the mercury reservoir is warmed by body temperature through a glass wall, and the expansion of the mercury is read, so the heat capacity of the heated object is quite large.
Therefore, a measurement time of 2 to 3 minutes is required. Electronic thermometers also have a problem with the large heat capacity of the measuring part, since the sensing end covered with metal or the like is warmed by body temperature and the resistance value of the thermistor is indirectly read.

このような問題点を解決するため、最近では、非接触型
の体温計が開発されている。この種の温度計は、赤外線
センサを用いたものが多い。しかし、これまでに開示さ
れている体温針には、以下のような問題点がある。即ち
、特開昭58−88627号公報、実開昭63−157
626号公報、実開昭63−157627号公報、実開
昭63−15728号公報等は赤外線をセンサに当てる
ためにレンズ、ミラー等の光学系の部品を必要とし、構
造が複雑となる。また、特開昭61−117422号公
報は耳に挿入する方式のもので、赤外線センサとしてサ
ーモパイルを用い、センサ部を一定の温度に保つため装
置内に基準温度源をもっているリファレンス方式で体温
を測定している。これは、技術的には、優れた方法であ
るが、センサ部の温度を一定に保つことや、基準温度源
を持っているため、構造が複雑であるとともに製品コス
トが高くなるといった問題点がある。
In order to solve these problems, non-contact thermometers have recently been developed. Many thermometers of this type use infrared sensors. However, the body temperature needles disclosed so far have the following problems. Namely, Japanese Patent Application Laid-open No. 58-88627, Utility Model Application No. 63-157
No. 626, Japanese Utility Model Application No. 63-157627, Japanese Utility Model Application No. 63-15728, etc. require optical system components such as lenses and mirrors in order to apply infrared rays to the sensor, resulting in complicated structures. In addition, JP-A-61-117422 discloses a method that is inserted into the ear, uses a thermopile as an infrared sensor, and measures body temperature using a reference method that has a reference temperature source inside the device to keep the sensor part at a constant temperature. are doing. Although this is technically an excellent method, it has problems such as keeping the temperature of the sensor part constant and having a reference temperature source, which makes the structure complex and increases the product cost. be.

特開昭61−138130号公報は耳孔内からの赤外線
を光ファイバで焦電センサに導く方式であるが、体温測
定用の赤外線ファイバは開発されていない0体温から放
射される赤外線の放射エネルギーの波長帯は8〜13μ
mであり、この波長帯の赤外線を効率よく透過させるフ
ァイバは開発されておらず、また、常温付近では、この
ファイバ自体からの放射が無視できないため、精度的に
光ファイバを使った体温計を実現することは困難であり
、実現したとしても非常に高価となる。
Japanese Patent Application Laid-open No. 138130/1983 describes a method of guiding infrared rays from the ear canal to a pyroelectric sensor using an optical fiber, but an infrared fiber for measuring body temperature has not been developed, and the radiant energy of infrared rays emitted from zero body temperature cannot be used. Wavelength band is 8-13μ
m, and a fiber that efficiently transmits infrared rays in this wavelength band has not been developed, and the radiation from the fiber itself cannot be ignored at around room temperature, so a thermometer using optical fiber has been realized with high precision. It is difficult to do so, and even if it were realized, it would be very expensive.

また、特開昭56−46440号公報に示されるように
、検温時のセンサの温度変化から最終温度を予測するこ
とにより、数十秒で検温を終了させるプログラムを内蔵
した体温計が実用化されている。しかし、温度上昇パタ
ーンが人によって異なるため測定精度に問題がある。
Furthermore, as shown in Japanese Patent Application Laid-Open No. 56-46440, a thermometer with a built-in program that can complete temperature measurement in several tens of seconds by predicting the final temperature from the temperature change of the sensor during temperature measurement has been put into practical use. There is. However, there is a problem with measurement accuracy because the temperature rise pattern differs from person to person.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記問題点を解決し、構造が簡単でかつ安価
に製造が可能な体温計を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a thermometer that has a simple structure and can be manufactured at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、容器の先端部に設置した赤外&iiS過窓と
、前記赤外&l透過窓の後方に設置した赤外線センサと
、前記赤外線センサと隣接して設置してある温度センサ
とからなる体温計であって、前記温度センサの測定温度
に前記赤外線センサの測定値を加算して前記温度センサ
と測定対象物の間に温度差があるために生ずる前記温度
センサの表示温度の時間的遅れを補正する演算部と、前
記演算部からの出力を表示する表示部とからなることを
特徴とする赤外線センサを用いた体温計であり、容器の
先端部に設置した赤外線透過窓と、前記赤外線透過窓の
後方に設置した赤外線センサからなる体温計であって、
測定時の前記赤外線センサのインピーダンスから求める
測定温度に前記赤外線センサの起電力から求める前記赤
外線センサと測定対象物の温度差を加算して、前記赤外
線センサ本体と測定対象物の間に温度差があるために生
ずる前記インピーダンスから求める測定温度の時間的遅
れを前記赤外線センサの起電力から求める温度を加算し
て補正する演算部と、前記インピーダンスを求めるため
の電流印加回路と電圧読取回路および前記起電力と前記
インピーダンスを交互に読み取るための切り換え機構と
、前記演算部からの出力を表示する表示部からなること
を特徴とする赤外線センサを用いた体温計である。
The present invention provides a thermometer comprising an infrared & IIS transmission window installed at the tip of a container, an infrared sensor installed behind the infrared & IS transmission window, and a temperature sensor installed adjacent to the infrared sensor. The temperature measured by the infrared sensor is added to the temperature measured by the temperature sensor to correct a time delay in the temperature displayed by the temperature sensor that occurs due to a temperature difference between the temperature sensor and the object to be measured. This is a thermometer using an infrared sensor, characterized in that it consists of a calculation section that displays the output from the calculation section, and a display section that displays the output from the calculation section. A thermometer consisting of an infrared sensor installed at the rear,
The temperature difference between the infrared sensor and the object to be measured, which is determined from the electromotive force of the infrared sensor, is added to the measured temperature determined from the impedance of the infrared sensor at the time of measurement, and the temperature difference between the infrared sensor body and the object to be measured is determined. an arithmetic unit that corrects a time delay in the measured temperature obtained from the impedance caused by the temperature difference by adding the temperature obtained from the electromotive force of the infrared sensor; a current application circuit and a voltage reading circuit for obtaining the impedance; A thermometer using an infrared sensor characterized by comprising a switching mechanism for alternately reading the electric power and the impedance, and a display section for displaying the output from the calculation section.

また、赤外線センサとしてサーモパイルを用いることを
特徴とし、温度センサが直接温度を測定するサーミスタ
、ダイオード、トランジスタであることを特徴とする。
It is also characterized in that a thermopile is used as the infrared sensor, and the temperature sensor is a thermistor, diode, or transistor that directly measures temperature.

〔作用〕[Effect]

本発明は、通常のサーミスタ等を利用した体温を直接測
定している電子体温計の応答性の遅さを応答性の速い赤
外線センサの出力で補正することにより、短時間に体温
が測定できるようにしたものである。
The present invention makes it possible to measure body temperature in a short time by correcting the slow response of electronic thermometers, which directly measure body temperature using ordinary thermistors, etc., with the output of a fast-responsive infrared sensor. This is what I did.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の実施態様の一例を示したもので、1
は赤外線センサ(サーモパイル)である。
FIG. 1 shows an example of an embodiment of the present invention.
is an infrared sensor (thermopile).

サーモパイル1には温度センサ2が付設されている。3
は赤外線を透過する赤外線透過窓、4は体温計を耳孔又
は口腔や直腸に挿入するための容器であり外側が濡れて
も測定に支障がないように密閉してある。5・6は赤外
線センサ及び温度センサからの出力を取り出すためのリ
ード線で外側は絶縁してあり、7は信号処理部、8ば表
示部である。
A temperature sensor 2 is attached to the thermopile 1. 3
4 is an infrared transmitting window that transmits infrared rays, and 4 is a container for inserting the thermometer into the ear canal, oral cavity, or rectum, and is sealed so that measurement will not be affected even if the outside gets wet. 5 and 6 are lead wires for taking out the output from the infrared sensor and the temperature sensor, and are insulated on the outside, 7 is a signal processing section, and 8 is a display section.

熱電型の赤外線センサはサーモパイル、焦電素子、ボロ
メータ等があるが、サーモパイルが使用簡便性、コンパ
クト性等から望ましい、また温度センサ2としては、サ
ーモパイル等のように冷接点と温接点の温度差によって
生じる起電力から被測定物の温度を間接的にもとめるセ
ンサではなく、通常の電子体温計のように直接温度を求
めるセンサ即ちサーミスタ、ダイオード、1−ランジス
タ等のセンサを用いる。ポジスタやダイオード等は温度
が上昇すると抵抗値や拡散電位が直線的に変化する事は
公知である。その−例としてダイオードの拡散電位の塩
度特性を第3図に示す、縦軸に拡散電位、横軸に温度を
とったもので、温度の上昇と共に拡散電位が下降する事
が明らかである。
Thermoelectric infrared sensors include thermopiles, pyroelectric elements, bolometers, etc., but thermopiles are preferable due to their ease of use and compactness, and as the temperature sensor 2, thermopiles etc. that detect the temperature difference between cold and hot junctions are preferable. Instead of a sensor that indirectly determines the temperature of the object to be measured from the electromotive force generated by the electromotive force, a sensor that directly determines the temperature like a normal electronic thermometer, such as a thermistor, diode, or transistor, is used. It is well known that the resistance value and diffusion potential of POSISTORs, diodes, etc. change linearly as the temperature rises. As an example, the salinity characteristic of the diffusion potential of a diode is shown in FIG. 3, where the vertical axis represents the diffusion potential and the horizontal axis represents the temperature. It is clear that the diffusion potential decreases as the temperature rises.

温度センサ2によって体温を測定する際には、人体から
温度センサ2に熱が伝わり温度センサ2の温度が体温に
一致する必要がある0通常は、温度センサ2と被測定物
である人体の間に温度差があるために、数分以上の時間
遅れが発生する。一方、赤外線センサ1は、センサと被
測定物の温度差しか測れないが、非常に応答性が速いと
いう特徴を持っている。
When measuring body temperature with the temperature sensor 2, heat is transferred from the human body to the temperature sensor 2, and the temperature of the temperature sensor 2 must match the body temperature.Normally, there is a gap between the temperature sensor 2 and the human body as the object to be measured. Due to the temperature difference between the two, a time delay of several minutes or more occurs. On the other hand, the infrared sensor 1 can only measure the temperature difference between the sensor and the object to be measured, but it has a feature of extremely fast response.

本発明では、この温度センサ2と人体の間に温度差があ
るために生ずる温度センサ2の応答の時間遅れを応答速
度の速い赤外線センサ1の出力で補正をおこなう。
In the present invention, the time delay in the response of the temperature sensor 2, which occurs due to the temperature difference between the temperature sensor 2 and the human body, is corrected by the output of the infrared sensor 1, which has a fast response speed.

補正の方法としては、赤外線センサ1が検出する温度セ
ンサ2と被測定物の間の温度差を温度センサ2が示す温
度値に加える事により、被測定物の温度が迅速に計測で
きる。第1図の信号処理部7では、温度センサ2と赤外
線センサ1の出力を増幅した後、それぞれ温度センサ2
の温度と温度センサ2・被測定物間の温度差に変換して
加え合わせて被測定物の温度を求める。温度センサ2と
赤外線センサ1の感度は個々のセンサによって異なるの
で、予め例えば、第3図や第5図のようなデータを用い
て校正しておく。
As a correction method, the temperature of the object to be measured can be quickly measured by adding the temperature difference between the temperature sensor 2 detected by the infrared sensor 1 and the object to be measured to the temperature value indicated by the temperature sensor 2. In the signal processing unit 7 in FIG. 1, after amplifying the outputs of the temperature sensor 2 and the infrared sensor 1,
The temperature of the temperature sensor 2 and the temperature difference between the temperature sensor 2 and the object to be measured are converted and added to obtain the temperature of the object to be measured. Since the sensitivities of the temperature sensor 2 and the infrared sensor 1 differ depending on the individual sensors, they are calibrated in advance using data such as those shown in FIGS. 3 and 5, for example.

次に、赤外線センサのインピーダンスを測定して体温を
求める場合について説明する。第2図にその実施態様の
例を示す、10はサーモパイル、3は赤外線透過窓、4
は体温計を耳孔または口腔や直腸に挿入するための容器
で密閉してある。5はサーモパイルの出力を取り出すた
めのリード線で外側は絶縁してあり、17は信号処理部
、8は表示部である。
Next, a case will be described in which body temperature is determined by measuring the impedance of an infrared sensor. An example of the embodiment is shown in FIG. 2, where 10 is a thermopile, 3 is an infrared transmitting window, and 4
The thermometer is sealed in a container that allows the thermometer to be inserted into the ear canal or into the oral cavity or rectum. 5 is a lead wire for taking out the output of the thermopile and is insulated on the outside, 17 is a signal processing section, and 8 is a display section.

被測定物の温度は第4図に示した関係から赤外線センサ
lのインピーダンスの変化により測定する。この場合、
被測定物と赤外線センサ1の温度差によりインピーダン
スの変化に応答遅れのあることは温度センサ2を用いた
場合と同様である。
The temperature of the object to be measured is measured by the change in impedance of the infrared sensor 1 based on the relationship shown in FIG. in this case,
Similar to the case where the temperature sensor 2 is used, there is a delay in response to a change in impedance due to the temperature difference between the object to be measured and the infrared sensor 1.

塩度センサ2を用いた場合と異なる点として、第2図で
は、赤外線センサのインピーダンスを測定するために赤
外線センサに電流を印加する機構が必要となる。この電
流印加機構は特殊な回路は必要とせず、ごく普通の定電
流回路で良い、またサーモパイルのインピーダンスの測
定と、赤外線が照射されたことによるサーモパイル自身
の赤外線センサとしての起電力を交互に測定する必要が
ある。この機能は切り換え機構付き定電流回路9にまり
達成される。このようにして得られたサーモパイルのイ
ンピーダンスと起電力は信号処理部17によって、補正
加算され、温度表示部8で表示される。
The difference from the case where the salinity sensor 2 is used is that in FIG. 2, a mechanism for applying current to the infrared sensor is required to measure the impedance of the infrared sensor. This current application mechanism does not require a special circuit, and can be used with a very ordinary constant current circuit, and can alternately measure the impedance of the thermopile and the electromotive force of the thermopile itself as an infrared sensor when irradiated with infrared rays. There is a need to. This function is achieved by the constant current circuit 9 with a switching mechanism. The impedance and electromotive force of the thermopile thus obtained are corrected and added by the signal processing section 17 and displayed on the temperature display section 8.

補正の方法としては、赤外線センサ1のインピーダンス
から得られる赤外線センサ1自身の温度に赤外線センサ
lの起電力として表れる赤外線センサ1と被測定物の間
の温度差を加える事により被測定物の温度が迅速に計測
できる。第2図の信号処理部17では、先ず定電流を印
加した時の赤外線センサ1の出力と定電流を印加しない
時の赤外線センサ1の出力の差から赤外線センサ1のイ
ンピーダンスを求めて赤外線センサ1の温度をもとめる
0本方法によってもとめた赤外線センサ1の温度は、サ
ーモパイルの温接点と冷接点の中間の温度であるが、体
温測定の場合温接点と冷接点の温度差はo、oi’c以
下であるから大きな誤差は生じない、赤外線センサ1の
インピーダンス変化は個々のセンサによって異なるので
、予め例えば第4図のようなデータを用いて校正してお
く。
The correction method is to calculate the temperature of the object to be measured by adding the temperature difference between the infrared sensor 1 and the object to be measured, which appears as the electromotive force of the infrared sensor 1, to the temperature of the infrared sensor 1 itself obtained from the impedance of the infrared sensor 1. can be measured quickly. The signal processing unit 17 in FIG. 2 first calculates the impedance of the infrared sensor 1 from the difference between the output of the infrared sensor 1 when a constant current is applied and the output of the infrared sensor 1 when no constant current is applied. The temperature of the infrared sensor 1 determined by the 0 line method is between the hot and cold junctions of the thermopile, but in the case of body temperature measurement, the temperature difference between the hot and cold junctions is o, oi'c. Since the impedance change of the infrared sensor 1 differs depending on the individual sensor, it is calibrated in advance using data as shown in FIG. 4, for example.

このインピーダンスの個々のセンサによる差は素線の材
質・太さ等によるもので、同じ材質でも線の幅が太く、
厚みが厚くなれば、インピーダンスは小さくなる。赤外
線センサlの起電力から求められる赤外線センサト被測
定物間の温度差を赤外線センサ1の温度に加えて被測定
物の温度を求める。
This difference in impedance between individual sensors is due to the material and thickness of the wire, and even if the material is the same, the wire width is thicker,
As the thickness increases, the impedance decreases. The temperature difference between the infrared sensor and the measured object determined from the electromotive force of the infrared sensor 1 is added to the temperature of the infrared sensor 1 to obtain the temperature of the measured object.

耳孔等に挿入される容器は円筒形のものがもちいられる
が、必ずしも円筒形である必要はなく、四角形、多角形
、カプセルタイプ等どのような形でもよい、また、赤外
線透過窓には、Si、BaF z 、Ca F z 、
K r F等が用いられる。また窓そのものを省略でき
る場合は省略してもよい。
A cylindrical container is used for the container inserted into the ear canal, but it is not necessarily cylindrical and may be of any shape such as a square, polygon, capsule type, etc. Also, the infrared transmitting window is made of silicon , BaFz, CaFz,
K r F etc. are used. Furthermore, if the window itself can be omitted, it may be omitted.

以下、実施例により具体的に説明する。Hereinafter, this will be explained in detail using examples.

〔実施例〕〔Example〕

第6図、第1図の体温計で舌下の温度を測定した際に得
られるデータである。(a)は温度センサ2の出力であ
り、測定開始より2分過ぎても指示値は上昇し続ける。
FIG. 6 is data obtained when sublingual temperature is measured with the thermometer shown in FIG. (a) is the output of the temperature sensor 2, and the indicated value continues to rise even after 2 minutes have passed from the start of measurement.

一方、(b)のサーモパイルの温度差出力は、測定開始
後すぐに応答し、温度センサ2の温度が上昇するにつれ
てサーモパイルの温度も上昇するためサーモパイルの起
電力は小さくなる。そこで、(a)の温度指示値に(b
〉の温度差出力を加えると体温(c)が迅速に得られる
On the other hand, the temperature difference output of the thermopile in (b) responds immediately after the start of measurement, and as the temperature of the temperature sensor 2 rises, the temperature of the thermopile also rises, so the electromotive force of the thermopile becomes smaller. Therefore, the temperature instruction value of (a) is changed to (b)
> temperature difference output, the body temperature (c) can be quickly obtained.

第7図は第1図の体温計で耳腔内の温度を測定した例で
ある。容器4と耳腔との接触は舌下の場合はど密ではな
いので、温度センサ2(a)の出力は第6図よりさらに
応答が遅い、しかし、サーモパイルの温度差出力(b)
がその分を補うため、最終的な体温の測定(C)は第6
図同様瞬時に行える。
FIG. 7 is an example of measuring the temperature inside the ear cavity using the thermometer shown in FIG. Since the contact between the container 4 and the ear cavity is not very tight when it is under the tongue, the output of the temperature sensor 2 (a) has a slower response than that in Fig. 6, but the temperature difference output of the thermopile (b)
To compensate for this, the final body temperature measurement (C) was performed at the 6th point.
As shown in the figure, it can be done instantly.

第8図は、第2図の体温計で舌下の温度を測定した際に
得られたデータである。サーモパイルのインピーダンス
変化でサーモパイルの温度を測定している点と室温が高
い点が第6図・第7図と異なるが、最終的な体温の測定
結果(c)は、第6図・第7図と同等である。
FIG. 8 shows data obtained when sublingual temperature was measured with the thermometer shown in FIG. 2. The difference from Figures 6 and 7 is that the temperature of the thermopile is measured by changes in the impedance of the thermopile and that the room temperature is higher, but the final body temperature measurement result (c) is as shown in Figures 6 and 7. is equivalent to

(発明の効果) 本発明は、通常の電子体温計に対し、サーミスタ、ダイ
オード、トランジスタ等直接温度を測定する値の昇温の
時間遅れを、赤外線センサの出力で補正する機能を付加
したことにより、迅速かつ正確に体温の測定が可能にな
り、その実用価値をさらに高めることができる。
(Effects of the Invention) The present invention adds a function to a normal electronic thermometer to correct the time delay in temperature rise of values that directly measure temperature such as thermistors, diodes, transistors, etc. by using the output of an infrared sensor. It becomes possible to measure body temperature quickly and accurately, further increasing its practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の1例を示したもので、第2
図は実施態様の別の例を示したもので、第3図はダイオ
ード温度センサの拡散電位と温度の関係を示す一例であ
り、第4図は、サーモパイルのインピーダンスと温度の
関係を示す一例であり、第5図は人体・サーモパイル間
の温度差とサーモパイルの起電力の関係を示すデータ例
、第6図は、第1図の体温計で舌下温を測定したデータ
例、第7図は第1図の体温計で耳腔内温を測定したデー
タ例、第8図は第2図の体温計で舌下点を測定したデー
タ例である。 ■・・・赤外線センサ、2・・・温度センサ、3・、・
赤外線透過窓、4・・・容器・5・6・・・リード線、
7・17・・・信号処理部、8・・・表示部、10・・
・サーモパイル。
FIG. 1 shows one example of the embodiment of the present invention.
The figures show another example of the embodiment, FIG. 3 is an example showing the relationship between the diffusion potential of a diode temperature sensor and temperature, and FIG. 4 is an example showing the relationship between the impedance of a thermopile and temperature. Yes, Fig. 5 is an example of data showing the relationship between the temperature difference between the human body and the thermopile and the electromotive force of the thermopile, Fig. 6 is an example of data obtained by measuring sublingual temperature with the thermometer shown in Fig. 1, and Fig. 7 is an example of data showing the relationship between the temperature difference between the human body and the thermopile and the electromotive force of the thermopile. FIG. 1 shows an example of data obtained by measuring the temperature inside the ear cavity with the thermometer, and FIG. 8 shows an example of data obtained by measuring the sublingual point with the thermometer shown in FIG. ■...Infrared sensor, 2...Temperature sensor, 3...
Infrared transmission window, 4... Container, 5, 6... Lead wire,
7/17...Signal processing unit, 8...Display unit, 10...
・Thermopile.

Claims (4)

【特許請求の範囲】[Claims] (1)容器の先端部に設置した赤外線透過窓と、前記赤
外線透過窓の後方に設置した赤外線センサと、前記赤外
線センサと隣接して設置してある温度センサとからなる
体温計であって、 前記温度センサの測定温度に前記赤外線センサの測定値
を加算して前記温度センサと測定対象物の間に温度差が
あるために生ずる前記温度センサの表示温度の時間的遅
れを補正する演算部と、前記演算部からの出力を表示す
る表示部とからなることを特徴とする赤外線センサを用
いた体温計。
(1) A thermometer comprising an infrared transmitting window installed at the tip of a container, an infrared sensor installed behind the infrared transmitting window, and a temperature sensor installed adjacent to the infrared sensor, a calculation unit that adds the measured value of the infrared sensor to the measured temperature of the temperature sensor to correct a time delay in the displayed temperature of the temperature sensor that occurs due to a temperature difference between the temperature sensor and the object to be measured; A thermometer using an infrared sensor, comprising a display section that displays an output from the arithmetic section.
(2)容器の先端部に設置した赤外線透過窓と、前記赤
外線透過窓の後方に設置した赤外線センサからなる体温
計であって、 測定時の前記赤外線センサのインピーダンスから求める
測定温度に、前記赤外線センサの起電力から求める前記
赤外線センサと測定対象物の温度差を加算して前記赤外
線センサ本体の温度と測定対象物の間に温度差があるた
めに生ずる前記インピーダンスから求めた測定温度の時
間的遅れを補正する演算部と、 前記インピーダンスを交互に読み取るための切り換え機
構と、 前記演算部からの出力を表示する表示部からなることを
特徴とする赤外線センサを用いた体温計。
(2) A thermometer consisting of an infrared transmitting window installed at the tip of a container and an infrared sensor installed behind the infrared transmitting window, wherein the infrared sensor Add the temperature difference between the infrared sensor and the object to be measured, which is determined from the electromotive force of A thermometer using an infrared sensor, comprising: a calculation section for correcting impedance; a switching mechanism for alternately reading the impedance; and a display section for displaying the output from the calculation section.
(3)赤外線センサとしてサーモパイルを用いることを
特徴とする請求項1又は2記載の体温計。
(3) The thermometer according to claim 1 or 2, characterized in that a thermopile is used as the infrared sensor.
(4)温度センサが直接温度を測定するサーミスタ、ダ
イオード、トランジスタであることを特徴とする請求項
1記載の体温計。
(4) The thermometer according to claim 1, wherein the temperature sensor is a thermistor, diode, or transistor that directly measures temperature.
JP1212461A 1989-08-18 1989-08-18 Clinical thermometer using infared-ray sensor Granted JPH0375531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212461A JPH0375531A (en) 1989-08-18 1989-08-18 Clinical thermometer using infared-ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212461A JPH0375531A (en) 1989-08-18 1989-08-18 Clinical thermometer using infared-ray sensor

Publications (2)

Publication Number Publication Date
JPH0375531A true JPH0375531A (en) 1991-03-29
JPH0536056B2 JPH0536056B2 (en) 1993-05-28

Family

ID=16623020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212461A Granted JPH0375531A (en) 1989-08-18 1989-08-18 Clinical thermometer using infared-ray sensor

Country Status (1)

Country Link
JP (1) JPH0375531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105471A1 (en) * 2016-12-05 2018-06-14 シャープ株式会社 Body surface temperature measurement device
WO2022153764A1 (en) * 2021-01-18 2022-07-21 ソニーグループ株式会社 Biological information processing device, biological information processing system, and biological information processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310467A (en) * 1976-07-16 1978-01-30 Citizen Watch Co Ltd Electronic timepiece with multiple alarms
JPS6017711U (en) * 1975-03-15 1985-02-06 ハインツ・マック Dental articulator resin model mounting plate
JPS63157628U (en) * 1987-04-03 1988-10-17
US4784149A (en) * 1986-01-13 1988-11-15 Optical Sensors, Inc. Infrared thermometer with automatic calibration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017711U (en) * 1975-03-15 1985-02-06 ハインツ・マック Dental articulator resin model mounting plate
JPS5310467A (en) * 1976-07-16 1978-01-30 Citizen Watch Co Ltd Electronic timepiece with multiple alarms
US4784149A (en) * 1986-01-13 1988-11-15 Optical Sensors, Inc. Infrared thermometer with automatic calibration
JPS63157628U (en) * 1987-04-03 1988-10-17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105471A1 (en) * 2016-12-05 2018-06-14 シャープ株式会社 Body surface temperature measurement device
JPWO2018105471A1 (en) * 2016-12-05 2019-10-24 シャープ株式会社 Body surface temperature measuring device
WO2022153764A1 (en) * 2021-01-18 2022-07-21 ソニーグループ株式会社 Biological information processing device, biological information processing system, and biological information processing method

Also Published As

Publication number Publication date
JPH0536056B2 (en) 1993-05-28

Similar Documents

Publication Publication Date Title
JP2826337B2 (en) Radiation thermometer
US7434992B2 (en) Radiation thermometer
EP0391128B1 (en) Infrared thermometry system and method
RU2118116C1 (en) Thermometer for measuring the temperature of body and method of measuring the patient's body temperature (variants)
JP4214124B2 (en) Ear thermometer
US6152595A (en) Measuring tip for a radiation thermometer
JPH0741026B2 (en) Thermometer
JPH08327458A (en) Temperature measuring instrument
JPH09257587A (en) Non-contact type temperature meter
JP2603004B2 (en) Temperature measuring device and method for providing temperature signal
US20040057494A1 (en) Ear thermometer with improved temperature coefficient and method of calibration thereof
JPH0666639A (en) Infrared thermometer
JP3040444B2 (en) Thermometer
JP2828258B2 (en) Radiation thermometer
JPH0375531A (en) Clinical thermometer using infared-ray sensor
JPH03273121A (en) Radiation thermometer
JPS63286729A (en) Thermopile detector
KR100458154B1 (en) forehead fitted type infrared thermometer and control method thereof
JP2813331B2 (en) Radiation thermometer
JP3733846B2 (en) Correction system control method, thermometer and correction device
JPH10290790A (en) Radiation thermometer
JPH0271124A (en) Optical thermometer
JPH08278203A (en) Infrared ray radiation thermometer
JP3175775B2 (en) Temperature measurement method of radiation thermometer and radiation thermometer
JPH03249527A (en) Bodily temperature measuring instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees