JPH0634637A - Formation of calibration curve in gas analyzer - Google Patents

Formation of calibration curve in gas analyzer

Info

Publication number
JPH0634637A
JPH0634637A JP21372792A JP21372792A JPH0634637A JP H0634637 A JPH0634637 A JP H0634637A JP 21372792 A JP21372792 A JP 21372792A JP 21372792 A JP21372792 A JP 21372792A JP H0634637 A JPH0634637 A JP H0634637A
Authority
JP
Japan
Prior art keywords
calibration curve
gas
concentration
error
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21372792A
Other languages
Japanese (ja)
Other versions
JP2764715B2 (en
Inventor
Takashi Nagano
隆史 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP21372792A priority Critical patent/JP2764715B2/en
Publication of JPH0634637A publication Critical patent/JPH0634637A/en
Application granted granted Critical
Publication of JP2764715B2 publication Critical patent/JP2764715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily and exactly obtain a calibration curve and prove justifiability of the obtained calibration curve by approximating the calibration curve on the of an output value corresponding to gas concentration to a polynomial expression and finding an error of its primary differential. CONSTITUTION:Gas for calibration different in concentration is supplied to a gas analyzer 3 through a gas separator 2 and at the time 4 on move values of output corresponding to gas concentration are taken. A calibration curve is approximated to a fourth order or less polynomial expression f (x) (x indicates analyzer output for showing concentration) by means of the least square method based on the value of 4 or more. A primary differential f' (x) of an approximate expression f (x) is checked within 1.05 times as large as the concentration of zero to a full scale. And, when f' (x) >=0 is indicated, a full scale error and a leading point error are found and the approximate expression f (x) is accepted as a calibration curve if these is within a range of an allowable error determined in a specific standard. Beyond the allowable range these are returned to the start, the approximate expression is found in the next order (for instance, a tertiary expression is used when a first fourth- order expression is approximated).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス分析計における校
正曲線の作成方法(以下、単に校正曲線の作成方法と云
う)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for creating a calibration curve in a gas analyzer (hereinafter simply referred to as a method for creating a calibration curve).

【0002】[0002]

【従来の技術】前記校正曲線を作成は、例えば図1に示
すように、校正用ガスボンベ1から校正用ガスGをガス
ディバイダー2に供給し、適宜の濃度に調整された校正
用ガスDGをガス分析計3に供給して、ガス分析計3の
出力信号xを得る。そして、従来においては、測定ポイ
ントとして4つ以上の測定値を得て、これらの測定値を
基にして、最小二乗法を用いて、 f(x)=a1 x+a2 2 +a3 3 +a4 4 (a1 〜a4 は係数、xは濃度を表す分析計出力)で表
される4次式で近似し、それを校正曲線として使用して
いた。
2. Description of the Related Art For example, as shown in FIG. 1, the calibration curve is prepared by supplying a calibration gas G from a calibration gas cylinder 1 to a gas divider 2 and using a calibration gas DG adjusted to an appropriate concentration. It is supplied to the analyzer 3 and the output signal x of the gas analyzer 3 is obtained. Then, conventionally, four or more measurement values are obtained as measurement points, and based on these measurement values, f (x) = a 1 x + a 2 x 2 + a 3 x 3 + A 4 x 4 (a 1 to a 4 are coefficients, and x is an analyzer output representing concentration) is approximated by a quartic equation, which is used as a calibration curve.

【0003】図4は、横軸に濃度、縦軸に出力をとった
座標上に4つの測定点p1 〜p4 とそのときの校正曲線
f(x)とを示したものである。
[0003] Figure 4 is a graph showing the concentration, the on coordinates taking the output on the vertical axis 4 and the measurement point p 1 ~p 4 and the calibration curve f (x) at that time on the horizontal axis.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、最小二
乗法を用いて前記4次式の係数a1 〜a4 を決定するの
は、かなり職人芸的な技術を要し、また、求められた校
正曲線の正当性を証明する手続きを欠くものであった。
However, determining the coefficients a 1 to a 4 of the quartic equation by using the least squares method requires a considerably skilled artisan technique, and the obtained calibration is necessary. It lacked a procedure to justify the curve.

【0005】本発明は、上述の事柄に留意してなされた
もので、その目的とするところは、従来の手法に比べて
より効率よく、より正確に校正曲線を得る方法を提供す
ることにある。
The present invention has been made in view of the above matters, and an object thereof is to provide a method for obtaining a calibration curve more efficiently and more accurately than the conventional method. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る校正曲線の作成方法は、 ガス分析計に濃度が異なる校正用ガスを供給して、
そのときのガス濃度に対応する出力を4以上採取する、 前記4以上の測定値を基にして最小二乗法を用い
て、校正曲線を4次以下の多項式f(x)で近似する
(xは濃度を表す分析計出力)、 前記近似式f(x)の一次微分f’(x)を、濃度
ゼロ〜フルスケールの1.05倍の範囲内においてチェ
ックする、 f’(x)≧0のとき、フルスケール誤差およびリ
ーディングポイント誤差をそれぞれ求め、これらが共に
特定の規格で定められている許容範囲にあるか否かを判
定する、と云う手順からなる。
In order to achieve the above object, a method for creating a calibration curve according to the present invention is such that a calibration gas having different concentrations is supplied to a gas analyzer,
At least four outputs corresponding to the gas concentration at that time are sampled. The calibration curve is approximated by a polynomial equation f (x) of fourth order or less using the least squares method based on the measured values of four or more (where x is (Analyzer output representing concentration), checking the first-order derivative f ′ (x) of the approximate expression f (x) within a range of concentration zero to 1.05 times full scale, f ′ (x) ≧ 0 At this time, a full scale error and a leading point error are respectively obtained, and it is determined whether or not both are within an allowable range defined by a specific standard.

【0007】[0007]

【作用】上記校正曲線の作成方法によれば、誰にでも簡
単に校正曲線を得ることができると共に、求められた校
正曲線の正当性を証明することができ、校正曲線を正確
に得ることができる。
According to the above-described method for creating a calibration curve, anyone can easily obtain the calibration curve and at the same time prove the correctness of the obtained calibration curve, and obtain the calibration curve accurately. it can.

【0008】[0008]

【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。本発明に係る校正曲線の作成方法において
用いる装置は、従来の作成方法に用いる装置と変わると
ころがなく、例えば図1に示した構成の装置が用いられ
る。
Embodiments of the present invention will be described below with reference to the drawings. The apparatus used in the method for creating the calibration curve according to the present invention is no different from the apparatus used in the conventional method, and for example, the apparatus having the configuration shown in FIG. 1 is used.

【0009】 図1に示したガス分析計3に濃度が異
なる校正用ガスDGを供給して、そのときのガス濃度に
対応する出力を4以上採取し、これら4以上の測定値を
基に最小二乗法を用いて、下記のN次式(Nは4以下)
で近似する。
The calibration gas DG having different concentrations is supplied to the gas analyzer 3 shown in FIG. 1, and 4 or more outputs corresponding to the gas concentration at that time are sampled, and based on the measured values of 4 or more, the minimum is obtained. Using the square method, the following N-order formula (N is 4 or less)
Is approximated by.

【0010】[0010]

【数1】 [Equation 1]

【0011】 前記ステップで求められた近似式f
(x)の一次微分f’(x)を、x=0〜フルスケール
の1.05倍の範囲でチェックし、f(x)が増加関数
であるか否かを調べる。 (A)f’(x)<0であるとき、すなわち、f(x)
が例えば図2(A)に示すように、その一部において減
少する部分があるようなときは、前記ステップに戻
り、次の次数で近似式を求める。例えば、最初、f
(x)を4次式で近似したときは、3次式を求めるので
ある。 (B)f’(x)>0であるとき、すなわち、f(x)
が同図(A)に示すように、その一部において減少する
部分がないときは、次のステップに進む。
The approximate expression f obtained in the above step
The first derivative f ′ (x) of (x) is checked in the range of x = 0 to 1.05 times full scale, and it is checked whether f (x) is an increasing function. (A) When f ′ (x) <0, that is, f (x)
If, for example, as shown in FIG. 2 (A), there is a part that decreases, a return is made to the above step, and an approximate expression is calculated by the following order. For example, first f
When (x) is approximated by a quartic equation, a cubic equation is obtained. (B) When f ′ (x)> 0, that is, f (x)
As shown in (A) of the same figure, when there is no part that decreases, the process proceeds to the next step.

【0012】ところで、わが国においては、排気ガスを
分析するためのガス分析計の品質管理などの規定は、米
国のCFR(Code of Federal Regulations)で規定
されている管理項目に準拠している。このCFRには、
ガス分析計の誤差範囲は、「フルスケール誤差が1%ま
たはリーディングポイント誤差が2%のいずれか小さい
方を満足していること」と規定されている。
By the way, in Japan, regulations such as quality control of a gas analyzer for analyzing exhaust gas comply with the control items stipulated by CFR (Code of Federal Regulations) in the United States. In this CFR,
The error range of the gas analyzer is defined as "a full-scale error is 1% or a reading point error is 2%, whichever is smaller."

【0013】ここで、フルスケール誤差およびリーディ
ングポイント誤差は、それぞれ次のような式で定義され
る。 フルスケール誤差(%)=〔(算出濃度−発生濃度)/
フルスケール濃度〕×100 リーディングポイント誤差(%)=〔(算出濃度−発生
濃度)/発生濃度〕×100 前記算出濃度とは、得られる校正曲線上における濃度の
ことを云い、発生濃度とは、ガス分割器2において発生
し、ガス分析計3に供給される校正用ガスDGの濃度の
こと云う。
Here, the full-scale error and the reading point error are defined by the following equations, respectively. Full scale error (%) = [(calculated concentration-generated concentration) /
Full scale concentration] × 100 Reading point error (%) = [(calculated concentration−generated concentration) / generated concentration] × 100 The calculated concentration refers to the concentration on the obtained calibration curve, and the generated concentration is It is the concentration of the calibration gas DG generated in the gas divider 2 and supplied to the gas analyzer 3.

【0014】そして、前記規定を言い換えると次のよう
になる。すなわち、フルスケール50%未満では、リー
ディングポイント誤差が2%以内、フルスケール50%
以上では、フルスケール誤差が1%以内を満足しなけれ
ばならない。図3は、このことを表したもので、斜線で
示す部分が誤差許容範囲である。
Then, in other words, the above rules are as follows. That is, if the full scale is less than 50%, the reading point error is within 2% and the full scale is 50%.
In the above, the full-scale error must be within 1%. FIG. 3 shows this, and the shaded area is the allowable error range.

【0015】 前記近似式f(x)におけるフルスケ
ール誤差およびリーディングポイント誤差が前記図3に
示される誤差許容範囲内にあるとき、この近似式f
(x)を校正曲線として採用するのである。一方、前記
f(x)が前記誤差許容範囲を外れているときは、前記
ステップに戻り、次の次数で近似を行う。
When the full-scale error and the leading point error in the approximate expression f (x) are within the error allowable range shown in FIG. 3, the approximate expression f
(X) is adopted as the calibration curve. On the other hand, when the f (x) is out of the allowable error range, the process returns to the step and the approximation is performed with the next order.

【0016】 そして、1次〜4次のどの近似式も前
記ステップ,のcriterion (規準)をパスできない
場合は、再度、ガス分析計3に濃度が異なる校正用ガス
DGを供給して、そのときのガス濃度に対応する出力を
4以上採取し、校正をやり直すのである。
If none of the approximation formulas of the first to fourth orders can pass the criterion of the step, the calibration gas DG having different concentrations is supplied again to the gas analyzer 3 at that time. That is, four or more outputs corresponding to the gas concentration of are collected, and the calibration is performed again.

【0017】前記〜に至るステップの処理は、図1
に示したCPU4においてプログラムに基づいて行われ
る。
The processes of the steps up to the above are shown in FIG.
It is performed based on a program in the CPU 4 shown in FIG.

【0018】上述の実施例においては、ステップにお
いて、最初に4次式を近似式として作成しているが、こ
れに代えて、最初に1次または2次の近似式を作成する
ようにしてもよい。
In the above-described embodiment, in the step, the quartic equation is first created as an approximate expression, but instead of this, a first-order or quadratic approximate expression may be created first. Good.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
特定の基準によって要求される精度内の校正曲線を、従
来の方法に比べて正確かつ効率よく作成することができ
るようになった。
As described above, according to the present invention,
It has become possible to create a calibration curve within the accuracy required by a specific standard more accurately and efficiently than the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】校正曲線の作成に用いる装置の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of an apparatus used to create a calibration curve.

【図2】(A),(B)はそれぞれ、校正曲線の一例を
示す図である。
2A and 2B are diagrams each showing an example of a calibration curve.

【図3】誤差許容範囲の一例を示す図である。FIG. 3 is a diagram showing an example of an allowable error range.

【図4】従来方法を説明するための図である。FIG. 4 is a diagram for explaining a conventional method.

【符号の説明】[Explanation of symbols]

3…ガス分析計、DG…校正用ガス、x…出力。 3 ... Gas analyzer, DG ... Calibration gas, x ... Output.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス分析計に濃度が異なる校正用ガス
を供給して、そのときのガス濃度に対応する出力を4以
上採取する、 前記4以上の測定値を基にして最小二乗法を用い
て、校正曲線を4次以下の多項式f(x)で近似する
(xは濃度を表す分析計出力)、 前記近似式f(x)の一次微分f’(x)を、濃度
ゼロ〜フルスケールの1.05倍の範囲内においてチェ
ックする、 f’(x)≧0のとき、フルスケール誤差およびリ
ーディングポイント誤差をそれぞれ求め、これらが共に
特定の規格で定められている許容範囲にあるか否かを判
定する、と云う手順からなることを特徴とするガス分析
計における校正曲線の作成方法。
1. A calibration gas having different concentrations is supplied to a gas analyzer, and four or more outputs corresponding to the gas concentrations at that time are sampled. The least squares method is used based on the four or more measured values. Then, the calibration curve is approximated by a polynomial f (x) of 4th order or less (x is an analyzer output representing concentration), and the first-order derivative f ′ (x) of the approximate expression f (x) is zero concentration to full scale. Check within the range of 1.05 times, when f '(x) ≥ 0, determine the full-scale error and the reading point error respectively, and determine whether they are both within the allowable range specified by a specific standard. A method of creating a calibration curve in a gas analyzer, characterized by comprising a procedure of determining whether or not.
JP21372792A 1992-07-18 1992-07-18 How to create a calibration curve for a gas analyzer Expired - Fee Related JP2764715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21372792A JP2764715B2 (en) 1992-07-18 1992-07-18 How to create a calibration curve for a gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21372792A JP2764715B2 (en) 1992-07-18 1992-07-18 How to create a calibration curve for a gas analyzer

Publications (2)

Publication Number Publication Date
JPH0634637A true JPH0634637A (en) 1994-02-10
JP2764715B2 JP2764715B2 (en) 1998-06-11

Family

ID=16644003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21372792A Expired - Fee Related JP2764715B2 (en) 1992-07-18 1992-07-18 How to create a calibration curve for a gas analyzer

Country Status (1)

Country Link
JP (1) JP2764715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111188A (en) * 1996-10-08 1998-04-28 Shimazu Kinzoku Kk Automatic thermocouple calibration device
JP2006284508A (en) * 2005-04-04 2006-10-19 Horiba Ltd On-vehicle exhaust gas analyzer
JP2020153888A (en) * 2019-03-22 2020-09-24 株式会社島津製作所 Method for calibrating gas concentration measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111188A (en) * 1996-10-08 1998-04-28 Shimazu Kinzoku Kk Automatic thermocouple calibration device
JP2006284508A (en) * 2005-04-04 2006-10-19 Horiba Ltd On-vehicle exhaust gas analyzer
JP4550645B2 (en) * 2005-04-04 2010-09-22 株式会社堀場製作所 Vehicle-mounted exhaust gas analyzer
JP2020153888A (en) * 2019-03-22 2020-09-24 株式会社島津製作所 Method for calibrating gas concentration measuring device
CN111721736A (en) * 2019-03-22 2020-09-29 株式会社岛津制作所 Calibration method for gas concentration measuring device
CN111721736B (en) * 2019-03-22 2023-08-08 株式会社岛津制作所 Correction method for gas concentration measuring device

Also Published As

Publication number Publication date
JP2764715B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
Schwenke et al. Assessment of uncertainties in dimensional metrology by Monte Carlo simulation: proposal of a modular and visual software
US5648605A (en) Flowmeter calibration method
CN115600919B (en) Method for real-time unorganized emission location and total amount of campus emissions calculation
JP2516468B2 (en) C and S simultaneous analyzer
JPH0746074B2 (en) Vacuum gauge
JPH0634637A (en) Formation of calibration curve in gas analyzer
JP2841258B2 (en) X-ray fluorescence qualitative analysis method
US5065613A (en) Method for the direct presentation of a differential measured quantity in terms of its correct physical unit
JPS6116019B2 (en)
Saxton The 21 Ne/20 Ne ratio of atmospheric neon
JP3461284B2 (en) How to make a calibration curve for an infrared gas analyzer
JP2008157669A (en) Method, program and instrument for measuring degree of subcriticality
JPH06331630A (en) Method for judging calibration result and method for dealing with calibration result
JP4233423B2 (en) Quantitative method and spectrum measuring apparatus
Chang et al. Determination of abundances of gases from solar spectra
JP3210942B2 (en) Gas concentration detection method
CN111505703A (en) Method, apparatus, device and medium for measuring plutonium quality of plutonium substance
JP3205603B2 (en) Mass calibration method for magnetic field type mass spectrometer
JPH09196846A (en) Gas concentration detecting method
JPH04169849A (en) Threshold setting method for discriminating data
JP3110186B2 (en) Device for determining remaining amount of liquid in tank
Bergmann et al. Variance and bias computation for enhanced system identification
CN116500653A (en) Method for determining original observed quantity precision of satellite-borne GNSS receiver
JP3035330B2 (en) Inspection method and inspection device for instrumental difference of flow meter
US6686578B2 (en) Apparatus for sweep synchronization measurement of optical wavelength sensitivity characteristics and method of correcting optical wavelength sensitivity thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees