JPH10106820A - Manufacturing method of rare earth-iron-nitrogen magnetic material - Google Patents

Manufacturing method of rare earth-iron-nitrogen magnetic material

Info

Publication number
JPH10106820A
JPH10106820A JP8256127A JP25612796A JPH10106820A JP H10106820 A JPH10106820 A JP H10106820A JP 8256127 A JP8256127 A JP 8256127A JP 25612796 A JP25612796 A JP 25612796A JP H10106820 A JPH10106820 A JP H10106820A
Authority
JP
Japan
Prior art keywords
rare earth
iron
magnetic material
pulverization
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8256127A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
岳史 高橋
Seiji Kojima
清司 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8256127A priority Critical patent/JPH10106820A/en
Publication of JPH10106820A publication Critical patent/JPH10106820A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To relax the shock acting on magnetic powder at the time of collision of the powder and restrain the stress acting on a crystal structure at the time of pulverization, by adding and mixing a lubricant to a magnetic material and then pulverizing the mixture. SOLUTION: Magnetic powder of a magnetic material expressed by a formula RaFe(100-a-b-c)MbNc is prepared (with R contains at least one type of rare earth element including Y and Sm as an essential element at approximately 50at% or more, and M is at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, while a, b and c represent atomic percentages having the relations of 5<=a<=20, 0<=b<=5 and 3<=c<=30, with the remaining portion being Fe). Then, fatty acid as a lubricant is added to and mixed with the magnetic powder. The mixture is then pulverized by using a jet mill, more preferably, an airstream jet mill. Thus, the fatty acid film is caused to exist between colliding substances at the time of collision, thereby providing good lubricity. Thus, the shock acting on the magnetic powder at the time of collision is relaxed, thereby reducing the quantity of defects introduced by pulverization and exhibiting excellent magnetic property.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボンド磁石等に適
用できる希土類−鉄−窒素系磁性材料の製造方法に関す
るものである。
The present invention relates to a method for producing a rare earth-iron-nitrogen based magnetic material applicable to bonded magnets and the like.

【0002】[0002]

【従来の技術】近年、新しい磁性材料として、希土類と
鉄からなる合金に窒素を侵入型に固溶させることにより
作成した希土類−鉄−窒素系合金において優れた磁気特
性が発現することが見出された。この希土類−鉄−窒素
系合金は、希土類としてSmを選択した場合に一軸磁気
異方性を発現し、Sm2 Fe17N2.1 の組成において、
キュリ−温度470℃、飽和磁化15.4kG、異方性
磁界>60kOeの高い磁気特性を示すことが報告され
ている(ジェイ.エム.ディー.コーイ アンドエッ
チ.サン,ジャーナル オブ マグネティズム アンド マ
グネティック マテリアル 87巻(1990年)第25
1頁(J.M.D.Coye and H.Sun,J.M.M.M.87(1990)L251)
参照)。
2. Description of the Related Art In recent years, it has been found that a rare-earth-iron-nitrogen-based alloy produced by dissolving nitrogen in an alloy of a rare earth and iron in an interstitial form as a new magnetic material exhibits excellent magnetic properties. Was done. This rare earth-iron-nitrogen based alloy exhibits uniaxial magnetic anisotropy when Sm is selected as the rare earth, and has a composition of Sm2 Fe17 N2.1,
It has been reported to exhibit high magnetic properties with a Curie temperature of 470 ° C., a saturation magnetization of 15.4 kG, and an anisotropic magnetic field of> 60 kOe (J.M.D. Volume 87 (1990) Chapter 25
1 page (JMDCoye and H.Sun, JMMM87 (1990) L251)
reference).

【0003】上記、希土類−鉄−窒素系磁性材料の製造
方法としては、以下の工程が挙げられる。
[0003] As a method for producing the above-mentioned rare earth-iron-nitrogen based magnetic material, the following steps can be mentioned.

【0004】1)母合金作成 2)粗粉砕 3)窒化 4)微粉砕(単磁区粒子化) 希土類−鉄−窒素系磁性材料は母合金中に窒素を侵入型
に導入することにより強い一軸磁気異方性を示すととも
にキュリ−温度、飽和磁化が向上することが知られてい
る。窒化処理は希土類−鉄系材料粉末を窒素ガス、アン
モニアガス、水素−窒素混合ガス、水素−アンモニア混
合ガス等の雰囲気ガス中での熱処理によって行われてい
る。又、希土類−鉄−窒素系合金の保磁力発現機構はニ
ュ−クリエ−ションタイプであり、高保磁力化を図るに
は単磁区粒子径の3μm以下に微粉砕することが必要で
ある。微粉砕の方法としては、回転ボ−ルミル、振動ボ
−ルミル、アトライタ−等各種ボ−ルミルまたは、ジェ
ットミルが用いられている。
[0004] 1) Preparation of master alloy 2) Coarse pulverization 3) Nitriding 4) Fine pulverization (single magnetic domain particle formation) Rare earth-iron-nitrogen based magnetic material is a strong uniaxial magnet by introducing nitrogen into the mother alloy in an interstitial manner. It is known that Curie temperature and saturation magnetization are improved while exhibiting anisotropy. Nitriding is performed by heat treatment of the rare-earth-iron-based material powder in an atmosphere gas such as a nitrogen gas, an ammonia gas, a hydrogen-nitrogen mixed gas, or a hydrogen-ammonia mixed gas. The coercive force manifesting mechanism of the rare earth-iron-nitrogen based alloy is a nucleation type, and it is necessary to pulverize the rare earth-iron-nitrogen alloy to a single magnetic domain particle diameter of 3 μm or less in order to increase the coercive force. Various ball mills such as a rotary ball mill, a vibrating ball mill, and an attritor, or a jet mill are used as a method of pulverization.

【0005】[0005]

【発明が解決しようとする課題】上記希土類−鉄−窒素
系磁性材料において、高磁気特性を有する磁性粉末を作
成するためには、微粉砕時に導入される加工歪等の欠陥
を極力低減することが重要である。微粉砕時導入される
欠陥量が大であると、大きく飽和磁化の低下を引き起こ
すとともに、角形比の低下を引き起こす。ここでいう角
形比とは、磁気ヒステリシスル−プの第2象限における
磁束密度が残留磁束密度の90%になるときの外部磁界
強度Hkを保磁力iHcで割った値を意味している。こ
の値が1.0に近いほど優れた角形比を有しているとい
える。この角形比は最大エネルギ−積(BH)maxと
密接な関係があり、角形比が低いと高い最大エネルギ−
積(BH)maxが得られない。したがって、上記希土
類−鉄−窒素系磁性材料においては、高磁気特性を有す
る磁性粉末を作成するには微粉砕時に導入される欠陥量
を抑制し微粉末化することが重要なポイントとなる。
In the rare earth-iron-nitrogen based magnetic material, in order to produce a magnetic powder having high magnetic properties, it is necessary to minimize defects such as processing strain introduced during pulverization. is important. If the amount of defects introduced at the time of pulverization is large, the saturation magnetization is greatly reduced and the squareness ratio is reduced. The squareness here means a value obtained by dividing the external magnetic field strength Hk when the magnetic flux density in the second quadrant of the magnetic hysteresis loop becomes 90% of the residual magnetic flux density by the coercive force iHc. The closer this value is to 1.0, the better the squareness ratio. This squareness ratio is closely related to the maximum energy product (BH) max, and the lower the squareness ratio, the higher the maximum energy product.
The product (BH) max cannot be obtained. Therefore, in the rare earth-iron-nitrogen based magnetic material, it is important to reduce the amount of defects introduced during pulverization and to make the powder into fine powder in order to produce a magnetic powder having high magnetic properties.

【0006】しかしながら、上記従来の技術において、
回転ボ−ルミル、振動ボ−ルミル、アトライタ−等各種
ボ−ルミルを用いた場合容易に微粉末化されるものの結
晶構造に大きなストレスを与えるため導入される欠陥量
が大であり飽和磁化の低下が著しい。結晶構造に大きな
ストレスを与えず粉砕する方法としては、ジェットミル
による粉砕が有効である。ジェットミルはその粉砕機構
から衝突式と気流式に大別される。両方式とも高圧の粉
砕ガスにより試料粉末を高速運動させ、衝突式において
はタ−ゲットに衝突させることにより、又気流式におい
ては主に試料粉末同士の相互衝突によって微粉砕する。
粉砕能力の点に関しては衝突式のほうが有効でありより
微粉砕することが可能である。しかし、結晶構造に与え
るストレスを抑制する点に関しては気流式ジェットミル
による粉砕がより効果的であり、上記希土類−鉄−窒素
系磁性材料の微粉砕方法としては、気流式ジェットミル
が最適な微粉砕方法である。しかしながら、気流式ジェ
ットミルにより微粉砕した場合においても完全に微粉砕
時に導入される欠陥をなくすことは困難である。微粉砕
時に導入される歪量を低減する製造方法として、非水系
溶媒中で湿式粉砕にて長時間かけて微粉砕する製造方法
が提案されている(特開平6−96920号公報)。し
かし、湿式粉砕はバッチ処理であるため生産性が低い。
また、非水系溶媒を使用するため作業環境保全の点から
局所排気設備の設置等が必要でありコストが高くなる。
However, in the above prior art,
When various ball mills such as a rotary ball mill, a vibrating ball mill and an attritor are used, they are easily pulverized, but give a large stress to the crystal structure, so that a large amount of defects are introduced and the saturation magnetization is reduced. Is remarkable. As a method of pulverizing without giving a large stress to the crystal structure, pulverization by a jet mill is effective. Jet mills are roughly classified into collision type and air flow type based on their pulverizing mechanism. In both methods, the sample powder is moved at a high speed by a high-pressure pulverizing gas and crushed by colliding with a target in the collision type, and finely pulverized by the mutual collision of the sample powders mainly in the air flow type.
With respect to the crushing ability, the collision type is more effective and can be finely crushed. However, in terms of suppressing the stress applied to the crystal structure, pulverization by an air jet mill is more effective, and an air jet jet mill is the most suitable pulverization method for the rare earth-iron-nitrogen based magnetic material. It is a grinding method. However, even when finely pulverized by an air jet mill, it is difficult to completely eliminate defects introduced during fine pulverization. As a production method for reducing the amount of strain introduced during the fine pulverization, a production method in which the fine pulverization is performed in a non-aqueous solvent by wet pulverization over a long period of time has been proposed (JP-A-6-96920). However, wet pulverization is a batch process and therefore has low productivity.
In addition, since a non-aqueous solvent is used, it is necessary to install a local exhaust system from the viewpoint of preserving the working environment, which increases the cost.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、一般式RaFe(100 −a−b−c)M
bNcで表され、RはYを含む希土類元素の少なくとも
1種で、且つSmを必須元素として50at%以上含
み、MはTi,Zr,Hf,V,Nb,Ta,Cr,M
o,Wの少なくとも1種であり、a、b、cは原子百分
率であり、 5≦a≦20 0≦b≦5 3≦c≦30 で残部がFeからなることを特徴とする磁性材料の製造
方法において、磁性材料に滑剤を添加混合後ジェットミ
ル粉砕で微粉砕することを特徴とする希土類−鉄−窒素
系磁性材料の製造方法を提案するものである。
In order to solve the above-mentioned problems, the present invention provides a compound of the general formula RaFe (100-abc) M
R is at least one kind of rare earth element including Y, and contains Sm as an essential element in an amount of 50 at% or more, and M is Ti, Zr, Hf, V, Nb, Ta, Cr, M
at least one of o and W, wherein a, b and c are atomic percentages, and 5 ≦ a ≦ 200 ≦ b ≦ 53 ≦ c ≦ 30, and the balance is Fe. The present invention proposes a method for producing a rare earth-iron-nitrogen based magnetic material, characterized in that a lubricant is added to a magnetic material, mixed and then finely pulverized by jet mill pulverization.

【0008】また、本発明は、一般式RaFe(100 −
a−b−c)MbNcで表され、RはYを含む希土類元
素の少なくとも1種で、且つSmを必須元素として50
at%以上含み、MはTi,Zr,Hf,V,Nb,T
a,Cr,Mo,Wの少なくとも1種であり、a、b、
cは原子百分率であり、 5≦a≦20 0≦b≦5 3≦c≦30 で残部がFeからなることを特徴とする磁性材料の製造
方法において、粉砕室内壁に滑剤からなる被服層を設け
たジェットミルを用いて微粉砕することを特徴とする希
土類−鉄−窒素系磁性材料の製造方法を提案するもので
ある。
Further, the present invention relates to a compound represented by the general formula:
abc) MbNc, R is at least one of rare earth elements including Y, and 50
at% or more, M is Ti, Zr, Hf, V, Nb, T
a, Cr, Mo, W, at least one of a, b,
c is an atomic percentage, 5 ≦ a ≦ 200 ≦ b ≦ 53 ≦ c ≦ 30, and the balance is made of Fe. In the method for producing a magnetic material, a coating layer made of a lubricant is provided on the inner wall of the grinding chamber. The present invention proposes a method for producing a rare earth-iron-nitrogen based magnetic material, which comprises pulverizing using a provided jet mill.

【0009】また、上記希土類−鉄−窒素系磁性材料の
製造方法において、滑剤が脂肪酸から選ばれる少なくと
も1種であることを特徴とする希土類−鉄−窒素系磁性
材料の製造方法である。
Further, in the above method for producing a rare earth-iron-nitrogen based magnetic material, the lubricant is at least one kind selected from fatty acids, wherein the lubricant is at least one kind selected from fatty acids.

【0010】なお、前記した本発明における希土類−鉄
−窒素系磁性材料の組成限定の理由は下記のとおりであ
る。
The reasons for limiting the composition of the rare earth-iron-nitrogen based magnetic material in the present invention are as follows.

【0011】Rは磁気異方性を発現させ保磁力を発生さ
せる上で本質的な役割を果たす元素である。RはSmを
必須元素とし原子百分率で50%以上含み、Yを含む希
土類元素から選ばれた1種または2種以上の元素の組合
せとして用いれば良い。Rは原子百分率で5〜20%の
範囲にあることが必要である。R<5%では合金中に軟
磁性相であるαFeが多く存在し保磁力が得にくく、R
>20%では磁性相の体積が減少し飽和磁化が低下する
ため好ましくない。
R is an element that plays an essential role in expressing magnetic anisotropy and generating coercive force. R contains Sm as an essential element, contains 50% or more in atomic percentage, and may be used as one or a combination of two or more elements selected from rare earth elements containing Y. R needs to be in the range of 5 to 20% in atomic percentage. When R <5%, a large amount of soft magnetic phase αFe is present in the alloy, making it difficult to obtain a coercive force.
If it is> 20%, the volume of the magnetic phase decreases and the saturation magnetization decreases, which is not preferable.

【0012】本発明においてMは含まなくてもよいが、
Mを添加することによりより高磁気特性化が図れる。M
は希土類−鉄−窒素系磁性材料の材質を改善するもので
あり、脆性を向上させる効果がある。この結果被粉砕性
が向上し微粉砕時に導入される欠陥量の低減化が図れよ
り磁気特性の向上が可能となる。MはTi,Zr,H
f,V,Nb,Ta,Cr,Mo,Wから選ばれた1種
または2種以上の元素の組合せとして用いれば良い。M
を添加する場合上記効果を発揮させるには、Mは原子百
分率で0.05〜5%の範囲にあれば良い。M<0.0
5%では脆性の向上は図れず、M>5%ではM濃度の高
い化合物相が析出し脆性の向上が図れない。
In the present invention, M may not be contained,
By adding M, higher magnetic characteristics can be achieved. M
Is to improve the material of the rare earth-iron-nitrogen based magnetic material and has the effect of improving brittleness. As a result, the grindability is improved, and the amount of defects introduced at the time of fine pulverization can be reduced, so that the magnetic properties can be improved. M is Ti, Zr, H
It may be used as one or a combination of two or more elements selected from f, V, Nb, Ta, Cr, Mo, and W. M
When M is added, M may be in the range of 0.05 to 5% in atomic percentage in order to exert the above effect. M <0.0
At 5%, brittleness cannot be improved, and at M> 5%, a compound phase having a high M concentration precipitates and brittleness cannot be improved.

【0013】Nは希土類−鉄−窒素系磁性材料におい
て、磁気特性を改善する重要な元素である。Nを母合金
中に侵入型に導入させることにより、強い一軸磁気異方
性を発現させるとともに、飽和磁化、キュリ−温度を上
昇させる。上記効果を発揮させるには、Nは原子百分率
で3〜30%の範囲にあることが必要である。N<3%
では窒化による磁気特性の向上に乏しく、N>30%で
は磁性相の結晶構造が不安定となるため好ましくない。
N is an important element in a rare earth-iron-nitrogen based magnetic material for improving magnetic properties. By introducing N into the mother alloy in an interstitial manner, strong uniaxial magnetic anisotropy is exhibited, and the saturation magnetization and Curie temperature are increased. To exert the above effect, N needs to be in the range of 3 to 30% in atomic percentage. N <3%
In this case, the improvement of the magnetic properties by nitriding is poor, and when N> 30%, the crystal structure of the magnetic phase becomes unstable, which is not preferable.

【0014】[0014]

【発明の実施の形態】以下、本発明の希土類−鉄−窒素
系磁性材料の製造方法について詳細に説明する。本発明
における希土類−鉄−窒素系磁性材料は、 1)母合金作成 2)粗粉砕 3)窒化処理 4)微粉砕 の工程により作成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a rare earth-iron-nitrogen based magnetic material of the present invention will be described in detail. The rare earth-iron-nitrogen based magnetic material in the present invention is prepared by the steps of 1) preparation of a master alloy, 2) coarse pulverization, 3) nitriding, and 4) fine pulverization.

【0015】1)母合金作成 母合金の作成方法は特に限定されるものではない。例え
ば、R金属、M金属、および鉄を所定比率で配合し、高
周波誘導加熱溶解炉またはア−ク溶解炉を用いて母合金
インゴットを作成する溶解法、または、R金属、M金
属、鉄を所定比率で配合し、もしくは上記溶解法で作成
した母合金を用い、溶解し、高速回転する銅製ロ−ルに
溶湯を吹きつけ合金を作成する超急冷法や、各種アトマ
イズ法を用いて作成することが可能である。各種アトマ
イズ法で作成した場合粒径を制御することにより次工程
の粗粉砕工程を省略することも可能である。また、上記
手段により作成した合金において、組織の不均一や結晶
性が悪い場合は、次工程として熱処理工程を設け、均一
な結晶性の高い合金を作成する。
1) Preparation of Master Alloy The preparation method of the mother alloy is not particularly limited. For example, R metal, M metal, and iron are blended at a predetermined ratio, and a melting method of preparing a master alloy ingot using a high-frequency induction heating melting furnace or an arc melting furnace, or R metal, M metal, and iron are used. It is prepared by using a master alloy prepared by the above-mentioned melting method by blending at a predetermined ratio or melting and spraying a molten metal onto a copper roll rotating at a high speed to form an alloy, or by using various atomizing methods. It is possible. When prepared by various atomizing methods, it is possible to omit the subsequent coarse grinding step by controlling the particle size. If the alloy prepared by the above means has a non-uniform structure or poor crystallinity, a heat treatment step is provided as a next step to prepare an alloy having uniform and high crystallinity.

【0016】2)粗粉砕 粗粉砕方法は特に限定されるものではない。例えば、ジ
ョ−クッラシャ−やスタンプミル等各種粉砕機を用いて
粉砕することができる。また、本希土類−鉄母合金は水
素中で100〜300℃の範囲で熱処理を行なうことに
より、水素を吸蔵し崩壊する。この水素吸蔵−粉砕は水
素気流下でも起こるが、短時間化を図るには加圧下で行
なう方が好ましい。水素圧は高圧であるほど良いが、容
器等の材質上の安全性の面から80kgf/cm2 以下
とする方が好ましい。水素吸蔵−粉砕後粉末中の水素は
そのままでもよいし、脱水素処理により水素を放出させ
てもよい。水素を放出させる場合は減圧雰囲気で350
〜550℃の温度範囲で熱処理を行なえばよい。粉砕粒
径は、窒化処理時に窒素を均一に侵入させうる粒径とす
るのが好ましく、1000μm以下、さらに好ましくは
200μm以下とすることが好ましい。
2) Coarse pulverization The coarse pulverization method is not particularly limited. For example, it can be pulverized using various types of pulverizers such as a jok crusher and a stamp mill. The rare earth-iron master alloy absorbs hydrogen and decomposes by performing a heat treatment in a range of 100 to 300 ° C. in hydrogen. Although this hydrogen absorption / pulverization occurs even in a hydrogen gas flow, it is preferable to perform it under pressure in order to shorten the time. The higher the hydrogen pressure, the better, but from the viewpoint of the safety of the material of the container and the like, the hydrogen pressure is preferably 80 kgf / cm2 or less. Hydrogen in the powder after hydrogen absorption and pulverization may be used as it is, or hydrogen may be released by a dehydrogenation treatment. In the case of releasing hydrogen, the pressure is reduced to 350
The heat treatment may be performed in a temperature range of up to 550 ° C. The pulverized particle size is preferably a particle size that allows nitrogen to uniformly penetrate during the nitriding treatment, and is preferably 1000 μm or less, more preferably 200 μm or less.

【0017】3)窒化処理 窒化方法は特に限定されるものではなく、例えば、窒化
ガス雰囲気での熱処理により窒化を行うことができる。
窒化ガスとしては、例えば、窒素ガス、窒素−水素混合
ガス、アンモニアガス、アンモニア−水素混合ガス等が
あげられる。処理温度としては、400〜600℃の範
囲で行うのが好ましい。前記温度範囲より低温では窒化
速度が遅く好ましくない。また、本希土類−鉄−窒素系
磁性材料は650℃以上で希土類窒化物と鉄に分解する
ため、前記温度範囲より高温で熱処理を行うことは好ま
しくない。また、窒化ガス気流下でも十分窒化可能であ
るが、加圧雰囲気下とすることにより、窒化速度を促進
させることができる。
3) Nitriding treatment The nitriding method is not particularly limited. For example, nitriding can be performed by heat treatment in a nitriding gas atmosphere.
Examples of the nitriding gas include a nitrogen gas, a nitrogen-hydrogen mixed gas, an ammonia gas, and an ammonia-hydrogen mixed gas. The processing temperature is preferably in the range of 400 to 600 ° C. If the temperature is lower than the above-mentioned temperature range, the nitriding speed is unfavorably low. Further, since the rare earth-iron-nitrogen based magnetic material is decomposed into rare earth nitride and iron at 650 ° C. or higher, it is not preferable to perform the heat treatment at a temperature higher than the above temperature range. In addition, although nitriding can be performed sufficiently even in a nitriding gas stream, the nitriding speed can be increased by setting the atmosphere in a pressurized atmosphere.

【0018】4)微粉砕 微粉砕は、ジェットミル、好ましくは気流式ジェットミ
ルを用い行うことが望ましい。また、ジェットミル粉砕
における粉砕ガスとしては、希土類−鉄−窒素系磁性材
料は酸化により磁気特性が低下するため、不活性ガスを
用いたほうがよく、好ましくは安価な窒素ガスを用いる
のが望ましい。微粉砕にジェットミル、特に気流式ジェ
ットミルを使用した場合、微粉砕時に結晶構造がうける
ストレスが抑制され、導入される加工歪等の欠陥の導入
量が低減される。しかし、完全になくすことは困難であ
る。より優れた磁気特性を発現させるには、この欠陥量
をできるだけ低減することが重要な課題である。本発明
はこの課題を解消するものであり、微粉砕時に導入され
る欠陥量をさらに低減し、より優れた磁気特性の発現を
実現するものである。
4) Fine pulverization The fine pulverization is desirably performed using a jet mill, preferably an air jet mill. Further, as a pulverizing gas in the jet mill pulverization, an inert gas is preferably used, and preferably an inexpensive nitrogen gas is used because rare-earth-iron-nitrogen-based magnetic materials deteriorate magnetic properties due to oxidation. When a jet mill, particularly an air jet mill, is used for the fine pulverization, the stress applied to the crystal structure during the fine pulverization is suppressed, and the amount of defects such as processing strain introduced is reduced. However, it is difficult to completely eliminate them. It is important to reduce the number of defects as much as possible in order to develop more excellent magnetic properties. The present invention solves this problem, and further reduces the amount of defects introduced at the time of pulverization, thereby realizing more excellent magnetic characteristics.

【0019】本発明における微粉砕方法は、上記工程に
より作成した磁性粉末に滑剤として脂肪酸を添加混合後
ジェットミル、好ましくは気流式ジェットミルを用いて
微粉砕するものである。ジェットミル粉砕は、衝突式に
おいては粉末のタ−ゲットへの衝突、気流式においては
粉末同士の相互衝突による粉砕が主であるが、粉砕室内
壁への衝突による粉砕も生じる。本発明においては滑剤
として脂肪酸を添加することにより、これらの衝突時に
おいて衝突物間に脂肪酸被膜が存在し滑性が良好となる
ため、これらの衝突時に粉末が受ける衝撃力が緩和され
る。このため、微粉砕時に結晶構造が受けるストレスが
より抑制され、微粉砕に導入される欠陥量がさらに低減
されるため、より優れた磁気特性を発現させることが可
能となる。
The fine pulverization method of the present invention is a method in which a fatty acid is added as a lubricant to the magnetic powder prepared in the above step, and the mixture is pulverized using a jet mill, preferably a gas jet mill. Jet mill pulverization mainly involves pulverization by powder collision with a target in the collision type, and pulverization by mutual collision of powders in the air flow type, but also pulverization by collision with the inner wall of the pulverization chamber. In the present invention, by adding a fatty acid as a lubricant, a fatty acid film is present between the colliding objects at the time of these collisions, and the lubricity is improved, so that the impact force applied to the powder at the time of these collisions is reduced. For this reason, stress applied to the crystal structure during pulverization is further suppressed, and the amount of defects introduced into pulverization is further reduced, so that more excellent magnetic properties can be exhibited.

【0020】本発明で用いられる脂肪酸としては特に制
限はされないが、好ましくは一般式 RCOOH で示され、 R=Cn H2n+1 である飽和脂肪酸、 R=Cn H2n-1 R=Cn H2n-3 R=Cn H2n-5 である不飽和脂肪酸である。
The fatty acid used in the present invention is not particularly limited, but is preferably a saturated fatty acid represented by the general formula RCOOH and R = Cn H2n + 1, R = Cn H2n-1 R = Cn H2n-3 R = Cn H2n-5 is an unsaturated fatty acid.

【0021】添加量は液状脂肪酸を用いる場合は磁性粉
末100重量部に対して0.1〜20重量部の範囲であ
ることが望ましい。添加量が0.1重量部より少ないと
粉末全体を被覆させることが難しく上記効果が乏しい。
添加量が20重量部を越えるとジェットミル粉砕室内壁
への粉末の付着が大となり連続粉砕が困難となる。固形
脂肪酸を用いる場合は添加量が0.1〜40重量部の範
囲であることが望ましい。添加量が0.1重量部より少
ないと粉末全体を被覆させることが難しく上記効果が乏
しい。固形脂肪酸を用いた場合粉砕室内壁への付着は生
じないが、添加量が40重量部を越えると粉末同士の相
互衝突確率、粉末のタ−ゲットや粉砕室内壁への衝突確
率が低くなり粉砕効率を低下させる。
When a liquid fatty acid is used, the amount of addition is preferably in the range of 0.1 to 20 parts by weight based on 100 parts by weight of the magnetic powder. If the amount is less than 0.1 part by weight, it is difficult to coat the whole powder, and the above effect is poor.
If the added amount exceeds 20 parts by weight, the powder adheres to the inner wall of the jet mill pulverizing chamber, and continuous pulverization becomes difficult. When a solid fatty acid is used, the amount added is desirably in the range of 0.1 to 40 parts by weight. If the amount is less than 0.1 part by weight, it is difficult to coat the whole powder, and the above effect is poor. When a solid fatty acid is used, it does not adhere to the inner wall of the pulverizing chamber, but if the added amount exceeds 40 parts by weight, the probability of mutual collision between powders, the probability of collision of the powder with the target and the inner wall of the pulverizing chamber decreases, and the pulverizing is performed. Decrease efficiency.

【0022】また、本発明の微粉砕方法は粉砕室内壁
(衝突式においてはタ−ゲットも含む)に滑剤として脂
肪酸からなる被覆層を設けたジェットミルを用いて微粉
砕を行うものである。粉砕室内壁に脂肪酸からなる被覆
層を設けることにより、上記粉末に脂肪酸を添加混合後
微粉砕した場合と同様の効果により、粉末が粉砕室内壁
に衝突する時の衝撃力が緩和される。また、粉砕室内壁
に粉末が衝突したとき、粉末への脂肪酸の吸着が生じ
る。よって、粉末同士の相互衝突においても上記粉末に
脂肪酸を添加混合後微粉砕した場合と同様の効果が得ら
れる。
Further, the pulverization method of the present invention is to perform pulverization using a jet mill provided with a coating layer made of a fatty acid as a lubricant on the inner wall of the pulverization chamber (including the target in the collision type). By providing a coating layer made of a fatty acid on the inner wall of the pulverizing chamber, the impact force when the powder collides with the inner wall of the pulverizing chamber is reduced by the same effect as in the case where the fatty acid is added to the powder and mixed and then finely pulverized. When the powder collides with the inner wall of the crushing chamber, the fatty acid is adsorbed to the powder. Therefore, even in the case of mutual collision between powders, the same effect as when finely pulverized after adding and mixing a fatty acid to the powder can be obtained.

【0023】被覆層に用いられる脂肪酸は特に制限はさ
れないが、前記の飽和脂肪酸、不飽和脂肪酸が好まし
い。
The fatty acid used in the coating layer is not particularly limited, but is preferably the above-mentioned saturated fatty acid and unsaturated fatty acid.

【0024】以下本発明の一実施例について示す。 (実施例1)原料として、純度99.9%のSm、純度
99.99%の電解鉄を用い、高周波溶解炉で溶解し、
鋳型に流し込んでインゴットを作成した。得られたイン
ゴットをAr雰囲気下で1100〜1200℃で10〜
24h均質化処理を行ない母合金を調整した。調整した
母合金を内径1インチのステンレス製高圧容器に入れ、
容器内を水素置換した後内圧を20〜60kgf/cm
2 まで加圧し、その後150〜200℃まで昇温し0.
5〜1h熱処理を行い水素吸蔵粉砕を行って粒径が20
0μm以下の試料粉末を作成した。得られた試料粉末を
ステンレス製高圧容器に入れ、50kgf/cm2 の高
圧窒素雰囲気中で470℃で12h窒化処理を行なっ
た。なお、窒素ガスは純度99.9999%のものを用
いた。窒化処理後試料粉末に滑剤としてオレイン酸を添
加混合し、気流式ジェットミルを用い微粉砕を行なっ
た。微粉砕は酸素濃度が100ppm以下になるまで窒
素置換したグロ−ブボックス中で行なった。粉砕ガスに
は純度99.99%の窒素ガスを用い粉砕ガス圧は6k
gf/cm2 とした。得られた試料をヘキサンで洗浄し
オレイン酸を除去後、試料振動型磁力計(VSM)によ
り磁気特性の測定を行なった。(表1)に測定結果を示
す。なお、作成した試料の組成はSm9.1 Fe77.3N1
3.6であった。
An embodiment of the present invention will be described below. (Example 1) As raw materials, Sm having a purity of 99.9% and electrolytic iron having a purity of 99.99% were melted in a high frequency melting furnace.
An ingot was prepared by pouring into a mold. The obtained ingot is heated at 1100 to 1200 ° C. in an Ar atmosphere for 10 to 10 minutes.
The mother alloy was prepared by performing homogenization treatment for 24 hours. Put the adjusted master alloy in a stainless steel high-pressure vessel with an inner diameter of 1 inch,
After replacing the inside of the container with hydrogen, the internal pressure is increased to 20 to 60 kgf / cm.
2 and then raise the temperature to 150-200 ° C.
Heat treatment for 5 to 1 h and hydrogen absorption and pulverization to obtain a particle size of 20
A sample powder of 0 μm or less was prepared. The obtained sample powder was placed in a stainless steel high-pressure vessel and subjected to nitriding treatment at 470 ° C. for 12 hours in a high-pressure nitrogen atmosphere of 50 kgf / cm 2. The nitrogen gas used had a purity of 99.9999%. After the nitriding treatment, oleic acid was added as a lubricant to the sample powder and mixed, and the mixture was pulverized using an air jet mill. The pulverization was carried out in a glove box which was purged with nitrogen until the oxygen concentration became 100 ppm or less. Nitrogen gas having a purity of 99.99% is used as the pulverizing gas, and the pulverizing gas pressure is 6 k.
gf / cm2. After the obtained sample was washed with hexane to remove oleic acid, the magnetic properties were measured using a sample vibration magnetometer (VSM). Table 1 shows the measurement results. The composition of the prepared sample was Sm9.1 Fe77.3N1
3.6.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2)窒化処理後滑剤としてステア
リン酸を添加することを除いては実施例1と同様にして
試料を作成した。作成した試料の磁気特性を(表1)に
示す。
Example 2 A sample was prepared in the same manner as in Example 1 except that after the nitriding treatment, stearic acid was added as a lubricant. Table 1 shows the magnetic properties of the prepared samples.

【0027】(実施例3)粉砕室内壁にオレイン酸を塗
布し、被覆層を設けたジェットミルを用いることと、窒
化処理後試料粉末にオレイン酸を添加しないことを除い
ては実施例1と同様にして試料を作成した。作成した試
料の磁気特性を(表1)に示す。
Example 3 Example 1 was repeated except that oleic acid was applied to the inner wall of the pulverization chamber and a jet mill provided with a coating layer was used, and that oleic acid was not added to the sample powder after nitriding. A sample was prepared in the same manner. Table 1 shows the magnetic properties of the prepared samples.

【0028】(比較例1)窒化処理後オレイン酸を添加
しないことを除いては実施例1と同様にして試料を作成
した。作成した試料の磁気特性を(表1)に示す。
Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that oleic acid was not added after the nitriding treatment. Table 1 shows the magnetic properties of the prepared samples.

【0029】[0029]

【発明の効果】以上説明したように、希土類−鉄−窒素
系磁性材料の製造工程において、滑剤として脂肪酸を磁
性粉末に添加混合後ジェットミルで微粉砕することによ
って、または粉砕室内壁に滑剤として脂肪酸からなる被
覆層を設けたジェットミルを用いて微粉砕することによ
って、微粉時の磁性粉末同士の相互衝突時、タ−ゲット
または粉砕室内壁への磁性粉末の衝突時において、これ
ら衝突物間に脂肪酸からなる被覆層が存在することによ
り、滑性が良好となり、衝突時における衝撃力が緩和さ
れる。このため、微粉砕時に結晶構造がうけるストレス
が抑制され、微粉砕により導入される欠陥量の低減が図
れ、優れた磁気特性を発現させることを可能とする。
As described above, in the process of producing a rare earth-iron-nitrogen based magnetic material, a fatty acid is added to a magnetic powder as a lubricant and mixed and then finely pulverized by a jet mill, or as a lubricant on the inner wall of the pulverization chamber. By finely pulverizing with a jet mill provided with a coating layer made of a fatty acid, when the magnetic powders collide with each other at the time of the fine powder, or when the magnetic powders collide with the target or the inner wall of the pulverizing chamber, the collision between these colliding substances occurs. The presence of a coating layer made of a fatty acid makes the lubricity good and reduces the impact force at the time of collision. For this reason, the stress applied to the crystal structure during the fine pulverization is suppressed, the amount of defects introduced by the fine pulverization can be reduced, and excellent magnetic characteristics can be exhibited.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式RaFe(100 −a−b−c)Mb
Ncで表される磁性材料であり、 RはYを含む希土類元素の少なくとも1種で、且つSm
を必須元素として50at%以上を含み、 MはTi,Zr,Hf,V,Nb,Ta,Cr,Mo,
Wの少なくとも1種であり、 a、b、cは原子百分率であり、 5≦a≦20 0≦b≦5 3≦c≦30 で残部がFeからなることを特徴とする希土類−鉄−窒
素系磁性材料の製造方法であり、磁性材料に滑材を添加
混合後ジェットミル粉砕で微粉砕することを特徴とする
希土類−鉄−窒素系磁性材料の製造方法。
1. A compound of the general formula: RaFe (100-abc) Mb
A magnetic material represented by Nc, wherein R is at least one rare earth element including Y, and
And M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
At least one of W; a, b, and c are atomic percentages; 5 ≦ a ≦ 200 ≦ b ≦ 53 3 ≦ c ≦ 30, and the balance being Fe, rare earth-iron-nitrogen A method for producing a rare-earth-iron-nitrogen-based magnetic material, comprising adding a lubricant to the magnetic material, mixing the mixture, and pulverizing the mixture with a jet mill.
【請求項2】一般式RaFe(100 −a−b−c)Mb
Ncで表される磁性材料であり、 RはYを含む希土類元素の少なくとも1種で、且つSm
を必須元素として50at%以上を含み、 MはTi,Zr,Hf,V,Nb,Ta,Cr,Mo,
Wの少なくとも1種であり、 a、b、cは原子百分率であり、 5≦a≦20 0≦b≦5 3≦c≦30 で残部がFeからなることを特徴とする希土類−鉄−窒
素系磁性材料の製造方法であり、粉砕室内壁に滑剤から
なる被服層を設けたジェットミルを用いて微粉砕するこ
とを特徴とする希土類−鉄−窒素系磁性材料の製造方
法。
2. The general formula RaFe (100-abc) Mb
A magnetic material represented by Nc, wherein R is at least one rare earth element including Y, and
And M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
At least one of W; a, b, and c are atomic percentages; 5 ≦ a ≦ 200 ≦ b ≦ 53 3 ≦ c ≦ 30, and the balance being Fe, rare earth-iron-nitrogen A method for producing a rare earth-iron-nitrogen based magnetic material, which comprises finely pulverizing with a jet mill provided with a coating layer made of a lubricant on the inner wall of a grinding chamber.
【請求項3】滑剤が脂肪酸から選ばれる少なくとも1種
であることを特徴とする請求項1乃至2記載の希土類−
鉄−窒素系磁性材料の製造方法。
3. The rare earth element according to claim 1, wherein the lubricant is at least one selected from fatty acids.
A method for producing an iron-nitrogen based magnetic material.
JP8256127A 1996-09-27 1996-09-27 Manufacturing method of rare earth-iron-nitrogen magnetic material Pending JPH10106820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8256127A JPH10106820A (en) 1996-09-27 1996-09-27 Manufacturing method of rare earth-iron-nitrogen magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8256127A JPH10106820A (en) 1996-09-27 1996-09-27 Manufacturing method of rare earth-iron-nitrogen magnetic material

Publications (1)

Publication Number Publication Date
JPH10106820A true JPH10106820A (en) 1998-04-24

Family

ID=17288282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8256127A Pending JPH10106820A (en) 1996-09-27 1996-09-27 Manufacturing method of rare earth-iron-nitrogen magnetic material

Country Status (1)

Country Link
JP (1) JPH10106820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018663A3 (en) * 2014-09-09 2016-08-10 Toyota Jidosha Kabushiki Kaisha Magnetic compound and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018663A3 (en) * 2014-09-09 2016-08-10 Toyota Jidosha Kabushiki Kaisha Magnetic compound and method of producing the same

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JP2857476B2 (en) Permanent magnet consisting of single domain particles
JPH10106820A (en) Manufacturing method of rare earth-iron-nitrogen magnetic material
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH06112027A (en) Manufacture of high-quality magnet material
JPS6230846A (en) Production of permanent magnet material
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH04346607A (en) Production of permanent magnet powder
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH06112019A (en) Nitride magnetic material
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPS6347301A (en) Production of permanent magnet powder
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material
JP3222919B2 (en) Method for producing nitride-based magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JPS6117125B2 (en)