JPH10105720A - Optical measurement method for hole position - Google Patents

Optical measurement method for hole position

Info

Publication number
JPH10105720A
JPH10105720A JP8259177A JP25917796A JPH10105720A JP H10105720 A JPH10105720 A JP H10105720A JP 8259177 A JP8259177 A JP 8259177A JP 25917796 A JP25917796 A JP 25917796A JP H10105720 A JPH10105720 A JP H10105720A
Authority
JP
Japan
Prior art keywords
image
light
hole
measurement
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8259177A
Other languages
Japanese (ja)
Inventor
Koji Oda
幸治 小田
Naoji Yamaoka
直次 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8259177A priority Critical patent/JPH10105720A/en
Publication of JPH10105720A publication Critical patent/JPH10105720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To extract a picture part corresponding to a work face, whose position should be measured, of a light-sectioned picture to accurately measure its position with respect to the method which measures the center position in a space coordinate system of a hole of a work in accordance with center coordinates of a hole picture and the position of the light-sectioned picture of the work. SOLUTION: Attribute information RIN and ROUT which indicate a measurement range, where the work face whose position should be measured exists, based on the center of a hole B are stored at the time of teaching (A-1, B-1, C-1). A picked-up image of a light-sectioned picture (s) is subjected to masking processing, where a part other than the measurement range is masked based on said attribute information, based on coordinates of a center (m) of the hole picture (A-3, B-3, C-3). A template TPs is used for the masked image to obtain an approximate position of the light- sectioned picture (s) existing in the measurement range by pattern matching. Plural measurement positions are set based on this approximate position so as to cross the light-sectioned picture existing in the measurement range. The position of the light- sectioned picture existing in the measurement range is obtained in accordance with coordinates of picture points coinciding with individual measurement positions of the light-sectioned picture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワークに設けられ
る孔の位置を光学的に計測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for optically measuring the position of a hole provided in a work.

【0002】[0002]

【従来の技術】従来、この種の方法として、特開平7-26
0428号公報により、ワークに正対させた撮像器によりワ
ークの孔の像を撮像する第1撮像工程と、前記撮像器の
光軸に斜交する面に沿ったスリット光をワークに照射
し、ワークに照射されたスリット光が描くワークの光切
断像を前記撮像器により撮像する第2撮像工程と、第1
撮像工程で得られた撮像画面に現われる孔画像の画面上
の中心座標を計測する第1計測工程と、第2撮像工程で
得られた撮像画面に現われる光切断画像の画面上の位置
を計測する第2計測工程と、光切断画像の画面上の位置
から前記撮像器の光軸方向におけるワークの変位量を求
め、この変位量と前記中心座標とから空間座標系におけ
る孔の中心位置を算定する工程とから成る方法は知られ
ている。
2. Description of the Related Art Conventionally, this type of method has been disclosed in
According to the publication No. 0428, a first imaging step of capturing an image of a hole in a work by an imager directly facing the work, and irradiating the work with slit light along a plane oblique to an optical axis of the imager, A second imaging step of imaging the optical cut image of the work drawn by the slit light applied to the work with the imager;
A first measurement step of measuring the center coordinates on the screen of the hole image appearing on the imaging screen obtained in the imaging step, and a position on the screen of the light-section image appearing on the imaging screen obtained in the second imaging step is measured. Calculating a displacement of the workpiece in the optical axis direction of the imager from the position of the light-section image on the screen in the second measurement step, and calculating a center position of the hole in a spatial coordinate system from the displacement and the center coordinates; The method comprising the steps is known.

【0003】そして、このものでは、第2計測工程にお
いて、光切断画像に交差する計測箇所を孔画像の直径方
向一方と他方とに夫々所定距離離して2つ設定し、光切
断画像の各計測箇所に合致する画像点の座標を検出し
て、これら画像点を結ぶ直線の位置を光切断画像の画面
上の位置としている。
In this method, in the second measurement step, two measurement points intersecting the light-section image are set at a predetermined distance to one and the other in the diameter direction of the hole image, respectively, and each measurement point of the light-section image is set. The coordinates of the image points that match the location are detected, and the position of a straight line connecting these image points is defined as the position of the light-section image on the screen.

【0004】[0004]

【発明が解決しようとする課題】自動車車体といった大
型のワークでは計測すべき孔が複数有り、孔の種類も、
ワークの平面部分に設けられたものや、ワークの段付座
面に設けられたもの等複数種有る。
A large work such as an automobile body has a plurality of holes to be measured.
There are a plurality of types, such as those provided on a plane portion of a work and those provided on a stepped seating surface of the work.

【0005】ここで、ワークの段付座面に設けた孔の計
測に際しては、光切断画像が直線状にならず、計測箇所
を上記の如く設定したのでは、計測箇所が座面外側のワ
ーク一般面に描かれる光切断画像の部分に交差したり、
座面に描かれる光切断画像の部分に交差したりして、計
測箇所が交差する光切断画像の部分が一定せず、計測誤
差の原因となる。
Here, when measuring the holes provided on the stepped seating surface of the work, the light-section image is not linear, and if the measuring places are set as described above, the measuring places will be the work outside the seating surface. Intersect the part of the light section image drawn on the general surface,
The portion of the light-section image where the measurement location intersects, for example, intersects with the portion of the light-section image drawn on the seat surface, causing a measurement error.

【0006】本発明は、以上の点に鑑み、所定のワーク
面に描かれた光切断画像の部分に計測箇所を確実に設定
し得るようにして、孔位置の計測精度を向上できるよう
にした方法を提供することを課題としている。
SUMMARY OF THE INVENTION In view of the above, the present invention makes it possible to reliably set a measurement position in a light-section image portion drawn on a predetermined work surface, thereby improving the measurement accuracy of a hole position. The task is to provide a method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく、
本発明は、ワークに設けられる孔の位置を光学的に計測
する方法であって、ワークに正対させた撮像器によりワ
ークの孔の像を撮像する第1撮像工程と、前記撮像器の
光軸に斜交する面に沿ったスリット光をワークに照射
し、ワークに照射されたスリット光が描くワークの光切
断像を前記撮像器により撮像する第2撮像工程と、第1
撮像工程で得られた撮像画面に現われる孔画像の画面上
の中心座標を計測する第1計測工程と、第2撮像工程で
得られた撮像画面に現われる光切断画像の画面上の位置
を計測する第2計測工程と、光切断画像の画面上の位置
から前記撮像器の光軸方向におけるワークの変位量を求
め、この変位量と前記中心座標とから空間座標系におけ
る孔の中心位置を算定する工程とから成る方法におい
て、前記第2計測工程は、位置を計測すべきワーク面が
存在する計測範囲を孔の中心を基準にして表わす予め記
憶させた属性情報を読み出し、第1計測工程で計測され
た中心座標を基準として第2撮像工程で得られた撮像画
面の前記計測範囲以外の部分を前記属性情報に基づいて
マスキングする工程と、マスキングした画面に対するパ
ターンマッチングにより前記計測範囲に存在する光切断
画像の概略位置を割出す工程と、割出された概略位置に
基づいて前記計測範囲に存在する光切断画像に交差する
ように複数の計測箇所を設定する工程と、光切断画像の
各計測箇所に合致する画像点の座標を検出する工程と、
これら画像点の座標から光切断画像の画面上の位置を求
める工程とから成る、ことを特徴とする。
Means for Solving the Problems In order to solve the above problems,
The present invention is a method for optically measuring the position of a hole provided in a work, comprising: a first image pickup step of picking up an image of a hole in a work by an imager directly facing the work; A second imaging step of irradiating the workpiece with slit light along a surface oblique to the axis and capturing a light cut image of the workpiece drawn by the slit light applied to the workpiece by the imager;
A first measurement step of measuring the center coordinates on the screen of the hole image appearing on the imaging screen obtained in the imaging step, and a position on the screen of the light-section image appearing on the imaging screen obtained in the second imaging step is measured. Calculating a displacement of the workpiece in the optical axis direction of the imager from the position of the light-section image on the screen in the second measurement step, and calculating a center position of the hole in a spatial coordinate system from the displacement and the center coordinates; In the method, the second measuring step reads out attribute information stored in advance, which represents a measuring range in which a work surface whose position is to be measured is present with reference to the center of the hole, and performs the measuring in the first measuring step. Masking a portion other than the measurement range of the imaging screen obtained in the second imaging process based on the center coordinates based on the attribute information; and performing pattern matching on the masked screen. Calculating the approximate position of the light-section image existing in the measurement range, and setting a plurality of measurement locations so as to intersect the light-section image existing in the measurement range based on the determined approximate position. And detecting the coordinates of image points that match each measurement point in the light section image;
Obtaining the position of the light-section image on the screen from the coordinates of these image points.

【0008】本発明によれば、マスキングによって計測
範囲に存在する光切断画像のみが抽出され、この状態で
のパターンマッチングにより割出される光切断画像の概
略位置に基づいて計測箇所を設定することにより、この
計測箇所は計測範囲に存在する光切断画像に確実に交差
する。例えば、ワークの段付座面に設けた孔の計測に際
しては、座面を計測範囲として、孔中心に対する座面の
内径及び外径を表わす属性情報を作成して記憶させてお
くことにより、撮像画面の前記座面に合致しない部分を
マスキングして、座面に描かれた光切断画像のみを抽出
でき、計測箇所を座面に描かれた光切断画像に確実に交
差させることができる。かくて、計測箇所に合致する画
像点の座標から求められる切断画像の位置は座面の位置
を表わすことになり、座面を計測基準面として撮像器の
光軸方向における孔の変位量を正確に計測でき、孔位置
の計測精度が向上する。
According to the present invention, only the light-section image existing in the measurement range is extracted by masking, and the measurement location is set based on the approximate position of the light-section image determined by pattern matching in this state. This measurement location surely intersects the light-section image existing in the measurement range. For example, when measuring a hole provided in a stepped seating surface of a workpiece, image formation is performed by creating and storing attribute information representing the inner diameter and outer diameter of the seating surface with respect to the center of the hole with the seating surface as a measurement range. By masking a portion of the screen that does not match the seat surface, only the light-section image drawn on the seat surface can be extracted, and the measurement location can reliably cross the light-section image drawn on the seat surface. Thus, the position of the cut image obtained from the coordinates of the image point that matches the measurement point represents the position of the seat, and the displacement of the hole in the optical axis direction of the imager can be accurately determined using the seat as the measurement reference plane. Measurement accuracy and the hole position measurement accuracy is improved.

【0009】[0009]

【発明の実施の形態】図1は、自動車車体等のワークA
の計測に用いる光学式測定装置の概要を示しており、該
装置は、ワークAにスリット光を照射するスリットレー
ザ等から成るスリット光源1と、CCDカメラから成る
撮像器2と、撮像器2のレンズ2aの周囲に環状に列設
した発光ダイオード群から成るスポット光源3と、撮像
器2からの画像信号を入力する画像処理回路4とで構成
されている。
FIG. 1 shows a work A such as an automobile body.
1 shows an outline of an optical measuring device used for measurement of the object A. The device includes a slit light source 1 composed of a slit laser or the like for irradiating a workpiece A with a slit light, an imager 2 composed of a CCD camera, and an imager 2 composed of a CCD camera. It comprises a spot light source 3 composed of a group of light emitting diodes arranged in a ring around the lens 2a, and an image processing circuit 4 for inputting an image signal from the image pickup device 2.

【0010】スリット光源1と撮像器2とスポット光源
3はロボット等の移動機構の動作端に取付けられる図外
の測定ヘッドに搭載され、測定ヘッドをワークAの複数
の計測部位に対向する位置に順に移動して、各計測部位
の計測を行う。尚、スリット光源1と撮像器2とは、ス
リット光の光面SPに撮像器2の光軸が所定角度θ(例
えば45°)で斜交するような位置関係で測定ヘッドに
搭載される。
The slit light source 1, the image pickup device 2, and the spot light source 3 are mounted on a measuring head (not shown) attached to the operating end of a moving mechanism such as a robot, and the measuring head is located at a position facing a plurality of measuring parts of the work A. Move in order to measure each measurement site. The slit light source 1 and the image pickup device 2 are mounted on the measuring head in such a positional relationship that the optical axis of the image pickup device 2 obliquely intersects the optical surface SP of the slit light at a predetermined angle θ (for example, 45 °).

【0011】図1はワークAに設けられた孔Bに対向す
る位置に測定ヘッドを移動して、孔計測を行う状態を示
している。孔計測に際しては、撮像器2をワークAに正
対させた状態で、先ずスポット光源3からのスポット光
をワークAに照射し、この状態で撮像器2によりワーク
Aを撮像してその画像データ(濃淡付き)を画像処理回
路4に送信記憶させ、次にスポット光源3を消灯した状
態でスリット光源1からのスリット光をワークAに照射
し、この状態で同じく撮像器2によりワークAを撮像し
てその画像データ(濃淡付き)を画像処理回路4に送信
記憶させる。
FIG. 1 shows a state in which a measuring head is moved to a position facing a hole B provided in a work A to perform hole measurement. At the time of hole measurement, the work A is first irradiated with a spot light from the spot light source 3 in a state where the image pickup device 2 is directly opposed to the work A. (With shading) is transmitted to and stored in the image processing circuit 4, and then the work A is irradiated with the slit light from the slit light source 1 while the spot light source 3 is turned off. Then, the image data (with shading) is transmitted and stored in the image processing circuit 4.

【0012】スポット光の照射時には撮像画面に図3
(A)に示す如く孔画像bが暗部となって現われ、ま
た、スリット光の照射時にはワークAの表面にスリット
光によって描かれるワークAの断面形状に対応した光切
断像Sが撮像されて、撮像画面に図3(B)に示す如く
光切断画像sが明部となって現われる。尚、スリット光
が孔Bを跨ぐように照射されると、光切断画像sは孔B
に対応する部分で分断される。
When the spot light is radiated, the image is displayed on the imaging screen as shown in FIG.
As shown in (A), the hole image b appears as a dark portion, and a light cut image S corresponding to the cross-sectional shape of the work A drawn by the slit light on the surface of the work A at the time of the irradiation of the slit light is captured. As shown in FIG. 3 (B), the light-section image s appears as a bright portion on the imaging screen. Incidentally, when the slit light is applied so as to straddle the hole B, the light cut image s becomes the hole B
Is divided at the part corresponding to.

【0013】ところで、撮像器2の光軸とスリット光面
SPとの交点を原点0、撮像器2の光軸をZ軸、Z軸に
直交するスリット光面SPに平行な座標軸をY軸、Y軸
及びZ軸に直交する座標軸をX軸とする空間座標系を考
え、この空間座標系のX−Y座標面への投影像が撮像器
2で撮像されるとすると、撮像器2の画面上に原点0に
対応する中心点を原点としてX軸に対応する水平のx軸
とY軸に対応する垂直のy軸をとった場合、画面のx軸
座標値とy軸座標値は空間座標系のX−Y座標面上での
原点0からの水平距離と垂直距離を表わすことになる。
そして図2に示す如く、孔画像bの中心mの画面上の
x、y座標mx、myと孔Bの中心Mの空間座標系にお
けるX、Y座標MX、MYとの比は撮像器2から原点0
までの距離Lと撮像器2からワークAまでの距離との比
に等しくなり、従って、ワークAのZ軸方向変位量をd
Zとして、 MX=mx・(L−dZ)/L となり、同じく MY=my・(L−dZ)/L となり、孔Bの中心Mの空間座標系におけるZ座標MZ
は、 MZ=dZ になる。
By the way, the point of intersection of the optical axis of the imaging device 2 and the slit optical surface SP is the origin 0, the optical axis of the imaging device 2 is the Z axis, and the coordinate axis parallel to the slit optical surface SP orthogonal to the Z axis is the Y axis. Consider a spatial coordinate system in which a coordinate axis orthogonal to the Y axis and the Z axis is the X axis. Assuming that a projected image of the spatial coordinate system on the XY coordinate plane is taken by the image pickup device 2, the screen of the image pickup device 2 When the horizontal x-axis corresponding to the X-axis and the vertical y-axis corresponding to the Y-axis are taken with the center point corresponding to the origin 0 as the origin, the x-axis coordinate values and the y-axis coordinate values of the screen are spatial coordinates It represents the horizontal distance and vertical distance from the origin 0 on the XY coordinate plane of the system.
Then, as shown in FIG. 2, the ratio between the x, y coordinates mx, my on the screen of the center m of the hole image b and the X, Y coordinates MX, MY in the spatial coordinate system of the center M of the hole B is obtained from the image pickup device 2. Origin 0
Is equal to the ratio of the distance L from the imager 2 to the work A, and therefore, the displacement amount of the work A in the Z-axis direction is d.
As Z, MX = mx · (L−dZ) / L, and MY = my · (L−dZ) / L, and Z coordinate MZ in the spatial coordinate system of the center M of the hole B
Becomes MZ = dZ.

【0014】ここで、ワークAがZ軸方向に変位する
と、スリット光面SPがY軸に平行で且つZ軸に斜交す
るため、光切断画像sが画面上でx軸方向に変位する。
そして、光切断画像sのx座標sxとワークA上のスリ
ット光の照射部SのX座標SXとの関係は、上記と同様
に、 SX=sx・(L−dZ)/L …(1) となり、また、Z軸に対するスリット光面SPの傾斜角
をθとして、 SX=dZ・tanθ …(2) となり、(1)式と(2)式から、 sx・(L−dZ)/L=dZ・tanθ …(3) となり、(3)式をdZについてまとめると、 dZ=sx・ L/(Ltanθ+sx) …(4) になる。かくて、光切断画像sのx座標sxを計測すれ
ば(4)式からワークAのZ軸変位量dZを算定でき、孔
画像bの画面上の中心座標mx、myとdZとから空間
座標系における孔Bの中心位置MX、MY、MZを求め
られる。
Here, when the work A is displaced in the Z-axis direction, the slit light plane SP is parallel to the Y-axis and obliquely intersects with the Z-axis, so that the light cut image s is displaced in the x-axis direction on the screen.
The relationship between the x coordinate sx of the light section image s and the X coordinate SX of the slit light irradiating section S on the workpiece A is SX = sx · (L−dZ) / L (1) SX = dZ · tan θ (2) where θ is the inclination angle of the slit optical surface SP with respect to the Z axis. From equations (1) and (2), sx · (L−dZ) / L = dZ · tan θ (3). When Equation (3) is summarized for dZ, dZ = sx · L / (Ltan θ + sx) (4) Thus, if the x-coordinate sx of the light-section image s is measured, the Z-axis displacement dZ of the work A can be calculated from the equation (4), and the spatial coordinates from the center coordinates mx, my and dZ of the hole image b on the screen are obtained. The center positions MX, MY, MZ of the holes B in the system can be determined.

【0015】次に、孔画像bの中心座標mx,myの求
め方について説明する。先ず、濃淡の付いた撮像画面の
輝度分布を微分化して、微分化画面を作成する。撮像画
面の輝度分布は孔画像bの孔縁部で急激に変化するか
ら、微分値は孔縁部で大きくなり、微分化画面には、図
4(A)に示す如く、孔縁部に対応するリング状の画像
brが現われる。次に、マスタワークの計測を行うティ
ーチング時に格納した孔径データに基づいてグラフィッ
ク処理により孔画像bの孔縁部の形状を表わすテンプレ
ートTPを作成し、このテンプレートTPを用いて図4
(B)に示す如く微分化画面に対する正規化相関法等に
よるパターンマッチングを行い、孔画像bの概略中心
m′の位置を割り出す。尚、パターンマッチングの処理
時間を短縮するため、微分化画面とテンプレートTPと
を夫々同じ比率(例えば1/4)で縮小してパターンマ
ッチングを行う。ところで、濃淡付きの撮像画面を二値
化し、二値化画面の暗部の面積重心を孔画像bの概略中
心とすることも可能であるが、孔内面からの反射光によ
り二値化画面の暗部の形状が変形してしまうことがあ
る。この場合、暗部の面積重心は孔画像の正規の中心か
ら大きくずれてしまうため、上記の如く微分化画面に対
するパターンマッチングで孔画像bの概略中心m′の位
置を割り出す方が精度が良い。
Next, a method of obtaining the center coordinates mx and my of the hole image b will be described. First, a differentiated screen is created by differentiating the brightness distribution of the imaging screen with shading. Since the luminance distribution of the imaging screen changes sharply at the edge of the hole in the hole image b, the differential value increases at the edge of the hole, and the differentiated screen corresponds to the edge of the hole as shown in FIG. A ring-shaped image br appears. Next, a template TP representing the shape of the hole edge of the hole image b is created by graphic processing based on the hole diameter data stored at the time of teaching for measuring the master work, and FIG.
As shown in (B), pattern matching is performed on the differentiated screen by the normalized correlation method or the like, and the position of the approximate center m 'of the hole image b is determined. In order to reduce the processing time of the pattern matching, the pattern matching is performed by reducing the differentiated screen and the template TP at the same ratio (for example, 1/4). By the way, it is possible to binarize the imaging screen with shading and make the area center of gravity of the dark part of the binarized screen the approximate center of the hole image b. However, the dark area of the binarized screen is reflected by light reflected from the inner surface of the hole. May be deformed. In this case, since the area center of gravity of the dark part is greatly deviated from the normal center of the hole image, it is more accurate to determine the position of the approximate center m 'of the hole image b by pattern matching with the differentiated screen as described above.

【0016】次に、図4(C)に示す如く、濃淡付きの
撮像画面に前記概略中心m′を中心とする複数の放射方
向に沿って計測箇所たる複数の走査線LSCを設定す
る。各走査線LSCは、ティーチング時に格納した孔径
データに基づいて、孔画像bの孔縁部の内外所定範囲に
亘って延在するように設定される。そして、各走査線L
SC上の輝度分布に基づいて、孔画像bの孔縁部の該各
走査線LSCに合致する孔縁点Pbの座標を検出する。
Next, as shown in FIG. 4 (C), a plurality of scanning lines LSC, which are measurement locations along a plurality of radiation directions centered on the approximate center m ', are set on the imaging screen with shading. Each scanning line LSC is set to extend over a predetermined range inside and outside the hole edge of the hole image b based on the hole diameter data stored at the time of teaching. And each scanning line L
Based on the luminance distribution on the SC, the coordinates of the hole edge point Pb that matches each of the scanning lines LSC at the hole edge of the hole image b are detected.

【0017】図5(A)は走査線LSC上の輝度分布曲
線を示しており、孔縁部において輝度が急激に減少して
いる。従って、輝度分布曲線を微分した微分曲線を作成
すると、図5(B)に示すように孔縁部に対応する位置
に山部が現われる。この場合、微分曲線の頂点の位置を
孔縁点Pbの位置としても良いが、頂点を一義的に特定
することは困難でありばらつきが出る。そこで、本実施
形態では、微分曲線の頂点を一応求めると共に、この頂
点に合致するピクセル(画素)の前後各2ピクセルにお
ける微分曲線上の点を求め、頂点とその前後各2点、計
5点から微分曲線の頂点部分に近似する放物線LPの方
程式を回帰処理によって算出し、この放物線の頂点の位
置を孔縁点Pbの位置としている。
FIG. 5A shows a luminance distribution curve on the scanning line LSC, and the luminance sharply decreases at the edge of the hole. Therefore, when a differential curve obtained by differentiating the luminance distribution curve is created, a peak appears at a position corresponding to the edge of the hole as shown in FIG. In this case, the position of the vertex of the differential curve may be set as the position of the hole edge point Pb, but it is difficult to uniquely specify the vertex, and there is variation. Therefore, in the present embodiment, the vertices of the differential curve are determined temporarily, and the points on the differential curve at each of two pixels before and after the pixel (pixel) that matches this vertex are determined. , The equation of the parabola LP approximating the vertex of the differential curve is calculated by regression processing, and the position of the vertex of the parabola is defined as the position of the hole edge point Pb.

【0018】ところで、上記した放射方向の走査線LS
Cに代えて、x軸方向に平行な走査線とy軸方向に平行
な走査線とを、孔画像bの孔縁部に交差するように、孔
画像bの概略中心のy軸方向両側とx軸方向両側とに設
定することも考えられる。然し、この場合には走査線が
孔縁部に斜交することになり、走査線上の輝度分布の変
化が緩やかになって、微分曲線の山部が低くなだらかに
なる。従って上記の如く近似放物線LPを求めても、そ
の頂点の位置がばらつき易く、孔縁点Pbの検出精度を
出しにくくなる。これに対し、本実施形態のように走査
線LSCを放射方向に設定すれば、走査線LSCが孔縁
部にほぼ直交するようになり、走査線LSC上の輝度分
布の変化が急になって、微分曲線の山部が高く急峻にな
り、孔縁部Pbの検出精度が向上する。
Incidentally, the above-described scanning line LS in the radial direction is used.
Instead of C, a scanning line parallel to the x-axis direction and a scanning line parallel to the y-axis direction are formed on both sides in the y-axis direction at the approximate center of the hole image b so as to intersect the hole edge of the hole image b. It is also conceivable to set both sides in the x-axis direction. However, in this case, the scanning line obliquely intersects the edge of the hole, the luminance distribution on the scanning line changes slowly, and the peak of the differential curve becomes low and gentle. Therefore, even when the approximate parabola LP is obtained as described above, the positions of the vertices are apt to fluctuate, and it becomes difficult to obtain the detection accuracy of the hole edge point Pb. On the other hand, if the scanning line LSC is set in the radial direction as in the present embodiment, the scanning line LSC becomes substantially orthogonal to the edge of the hole, and the luminance distribution on the scanning line LSC changes suddenly. The peak of the differential curve is high and steep, and the detection accuracy of the hole edge Pb is improved.

【0019】また、濃淡付きの撮像画像を二値化し、二
値化画面に計測箇所たる放射方向に長手のウインドウを
設定して、ウインドウ内の明暗境界部を孔縁点として検
出することも考えられるが、二値化画面では孔内面から
の反射光による外乱画像部分が明部像として現われるこ
とがあるため、孔縁点の検出精度が悪化する。これに対
し、本実施形態の如く、濃淡付きの撮像画面に計測箇所
たる走査線LSCを設定して、走査線LSC上の輝度分
布を検出すれば、外乱画像部分では輝度変化が緩やかに
なるため、輝度変化、即ち、微分曲線から外乱画像部分
を判別でき、孔縁点Pbの検出精度が向上する。
It is also conceivable to binarize a picked-up image with shading, set a long window in the radial direction as a measurement point on the binarized screen, and detect a light-dark boundary in the window as a hole edge point. However, in the binarized screen, the disturbance image portion due to the reflected light from the inner surface of the hole may appear as a bright portion image, so that the detection accuracy of the hole edge point is deteriorated. On the other hand, as in the present embodiment, if the scanning line LSC, which is a measurement location, is set on the imaging screen with shading and the luminance distribution on the scanning line LSC is detected, the luminance change becomes gentle in the disturbance image portion. The disturbance image portion can be determined from the luminance change, that is, the differential curve, and the detection accuracy of the hole edge point Pb is improved.

【0020】尚、撮像画面の明部や暗部における輝度は
一様ではなく、走査線LSC上の輝度分布曲線を全域に
亘って微分したのでは、微分曲線に複数の頂点が現わ
れ、どの頂点が孔縁部に対応するかの判別が困難になる
ことがある。そこで、本実施形態では、輝度分布曲線が
連続して減少する領域のうち減少前と減少後の輝度差が
最大となる領域について微分曲線を作成して上記の処理
を行い、輝度の不均一性に起因する誤検出を防止できる
ようにしている。尚、この場合にも、ノイズ等で複数の
頂点が現われる可能性があるが、ノイズによる頂点は低
いため、所定のしきい値以下の頂点を処理対象から除外
することにより検出精度を確保できる。
Incidentally, the brightness in the bright and dark portions of the imaging screen is not uniform, and when the brightness distribution curve on the scanning line LSC is differentiated over the entire area, a plurality of vertices appear in the differential curve. In some cases, it may be difficult to determine whether the hole corresponds to the edge of the hole. Therefore, in the present embodiment, a differential curve is created for a region where the luminance difference before and after the decrease is the largest among the regions where the luminance distribution curve continuously decreases, and the above processing is performed. This prevents erroneous detection due to the above. In this case as well, a plurality of vertices may appear due to noise or the like. However, since vertices due to noise are low, the detection accuracy can be ensured by excluding vertices below a predetermined threshold from processing targets.

【0021】以上の如くして各走査線LSC上での孔縁
点Pbの位置を検出すると、各走査線LSCの設定デー
タから各孔縁点Pbの画面上のx,y座標を算出する。
次に、これら孔縁点Pbの座標から孔画像bに近似する
図4(D)に示す如き回帰円Cb(各孔縁点Pbの円に
対するずれ量の総和が最小になるように回帰処理によっ
て求められる円)の方程式を算出し、この回帰円Cbの
中心を孔画像bの中心mとして中心座標mx,myを求
める。尚、回帰円Cbを求める際は、回帰処理によって
算出した円に対する各孔縁点Pbのずれ量を求め、何れ
かの孔縁点Pbのずれ量が所定値以上のときはその孔縁
点Pbを除外して再度回帰処理を行うことを、全ての孔
縁点Pbのずれ量が所定値以下になるまで繰返す。
When the position of the hole edge point Pb on each scanning line LSC is detected as described above, the x and y coordinates on the screen of each hole edge point Pb are calculated from the setting data of each scanning line LSC.
Next, a regression circle Cb (see FIG. 4D) that approximates the hole image b from the coordinates of the hole edge points Pb (regression processing is performed so that the total amount of deviation of each hole edge point Pb from the circle is minimized). Then, the center coordinates mx and my are obtained by using the center of the regression circle Cb as the center m of the hole image b. When obtaining the regression circle Cb, the shift amount of each hole edge point Pb with respect to the circle calculated by the regression processing is obtained, and when the shift amount of any of the hole edge points Pb is equal to or more than a predetermined value, the hole edge point Pb is determined. Is repeated and the regression processing is performed again until the deviation amounts of all the hole edge points Pb become equal to or less than a predetermined value.

【0022】以上で孔画像bの中心座標mx,myの検
出方法についての説明を終了し、次に、光切断画像sの
x座標sxの検出方法について説明する。先ず、光切断
画像sの断片形状を表わすテンプレートTPsをティー
チングデータからグラフィック処理により作成し、光切
断像Sを撮像した濃淡付きの撮像画面に対し、図4
(E)に示す如く上記テンプレートTPsを用いて正規
化相関法等によるパターンマッチングを行い、光切断画
像sの概略のx座標sx′を割出す。尚、パターンマッ
チングの処理時間を短縮するため、撮像画面とテンプレ
ートTPsとを夫々同じ比率(例えば1/4)に縮小し
てパターンマッチングを行うことが望ましい。
The method of detecting the center coordinates mx and my of the hole image b has been described above. Next, the method of detecting the x coordinate sx of the light-section image s will be described. First, a template TPs representing the fragment shape of the light-section image s is created from the teaching data by graphic processing, and a shaded imaging screen of the light-section image S shown in FIG.
As shown in (E), pattern matching is performed by the normalized correlation method or the like using the template TPs, and the approximate x coordinate sx ′ of the light section image s is determined. Note that, in order to reduce the processing time of the pattern matching, it is desirable to perform the pattern matching by reducing the imaging screen and the template TPs to the same ratio (for example, 1/4).

【0023】次に、図4(F)に示す如く、割出された
x座標sx′における前記回帰円Cbのy座標を基準に
して、回帰円Cbの上方と下方とに夫々x軸に平行な計
測箇所たる走査線LSCをy軸方向に所定ピッチで複数
本(例えば3本)設定する。これによれば、各走査線L
SCは光切断画像sの所定の部位に確実に交差する。次
に、各走査線LSC上の輝度分布から光切断画像sの該
各走査線LSCに合致する画像点Psの座標を検出し、
これら画像点Psの座標から、図4(G)に示す如く、
光切断画像sに近似する回帰直線Ls(各画像点Psの
直線からのずれ量の総和が最小になるように回帰処理に
よって求められる直線)の方程式を算出し、この回帰直
線Lsのx座標を光切断画像sのx座標sxとする。
尚、ワークAが正常であれば、画像線Lsはy軸に平行
になるが、ワークAが空間座標系のX−Y座標面に対し
傾いていると、画像線Lsはy軸に対し傾く。この場合
は、異常表示を行うと共に、光切断画像sの一応のx座
標sxとして、回帰円Cbの中心を通るx軸に平行な直
線と画像線Lsとの交点のx座標を求める。
Next, as shown in FIG. 4F, based on the y-coordinate of the regression circle Cb at the determined x-coordinate sx ', the upper and lower sides of the regression circle Cb are parallel to the x-axis, respectively. A plurality (for example, three) of scanning lines LSC, which are important measurement locations, are set at a predetermined pitch in the y-axis direction. According to this, each scanning line L
The SC surely crosses a predetermined portion of the light section image s. Next, from the luminance distribution on each scanning line LSC, the coordinates of an image point Ps that matches each scanning line LSC of the light-section image s are detected,
From the coordinates of these image points Ps, as shown in FIG.
An equation of a regression line Ls (a line obtained by regression processing so as to minimize the total amount of deviation from the line of each image point Ps) approximating the light section image s is calculated, and the x coordinate of the regression line Ls is calculated. The x-coordinate sx of the light-section image s is set.
If the work A is normal, the image line Ls is parallel to the y-axis. However, if the work A is inclined with respect to the XY coordinate plane of the space coordinate system, the image line Ls is inclined with respect to the y-axis. . In this case, an abnormal display is performed, and the x coordinate of the intersection of the image line Ls and a straight line parallel to the x axis passing through the center of the regression circle Cb is obtained as a temporary x coordinate sx of the light section image s.

【0024】尚、濃淡付きの撮像画面を二値化した二値
化画像を作成して、上記走査線LSCの位置に計測箇所
たるx軸方向に長手のウインドウを設定し、ウインドウ
内の画像重心を画像点Psとしてその座標を求めること
も可能であるが、二値化画面ではノイズや外乱光による
画像部分が光切断画像と共に明部として現われることが
あるため、検出精度が悪くなる。
It is to be noted that a binarized image is prepared by binarizing the imaging screen with shading, and a window that is long in the x-axis direction, which is a measurement point, is set at the position of the scanning line LSC. Can be determined as the image point Ps, but the image portion due to noise or disturbance light may appear as a bright portion together with the light cut image on the binarized screen, so that the detection accuracy deteriorates.

【0025】そこで、本実施形態では、図6(A)に示
すように走査線上の輝度分布を表わす輝度分布グラフを
作成し、このグラフから走査線上の各点の輝度変化のピ
ーク度Pを求め、このピーク度Pに基づいて光切断画像
sに合致する画像点Psの座標を検出している。x座標
がnの走査線上の点のピーク度Pは、該点における輝度
分布グラフ上の輝度点をan、該点を中心にして走査線
上に設定する所定幅の計測範囲Wの両端点における輝度
分布グラフ上の輝度点を夫々bn,cnとして、bnと
cnとを結ぶ結線に対するanの高さを表わす値として
求められる。この場合、前記結線の中点に対するanの
高さ(={2an−(bn+cn)}/2)をピーク度
Pとしても良く、また、前記結線にanから降した垂線
の長さをピーク度Pとしても良い。ここで、図6(A)
の輝度分布では、X=n1の点のピーク度Pは正の値に
なり、X=n2の点のピーク度Pは負の値になる。そし
て、ピーク度分布曲線の山部の両側にピーク度が零にな
る零点P0が現われ、零点P0間の区間はライン上の照
明器による背景照明の影響を受けない部分になる。その
ため、図6(B)に示す如く、輝度分布グラフの零点P
0間の区間における面積重心G´を求めて、その位置を
画像点の位置とすれば、背景照明の影響を排除して画像
点の位置を正確に検出できる。
Therefore, in this embodiment, as shown in FIG. 6A, a brightness distribution graph representing the brightness distribution on the scanning line is created, and from this graph the peak degree P of the brightness change at each point on the scanning line is obtained. The coordinates of the image point Ps that matches the light section image s are detected based on the peak degree P. The peak degree P of a point on the scanning line whose x coordinate is n is defined as an an luminance point on the luminance distribution graph at the point, and luminance at both ends of a measurement range W of a predetermined width set on the scanning line with the point as the center. The luminance points on the distribution graph are defined as bn and cn, respectively, and are obtained as values representing the height of an with respect to the connection line connecting bn and cn. In this case, the height of an with respect to the middle point of the connection (= {2an− (bn + cn)} / 2) may be used as the peak degree P, and the length of a perpendicular line descending from an in the connection is defined as the peak degree P. It is good. Here, FIG.
, The peak degree P at the point X = n1 has a positive value, and the peak degree P at the point X = n2 has a negative value. Then, a zero point P0 at which the peak degree becomes zero appears on both sides of the peak of the peak degree distribution curve, and a section between the zero points P0 is a part which is not affected by the background illumination by the illuminator on the line. Therefore, as shown in FIG.
If the area centroid G ′ in the section between 0 is obtained and the position is set as the position of the image point, the position of the image point can be accurately detected without the influence of the background illumination.

【0026】然し、輝度分布グラフの山部の撮像方向側
(右側)の傾斜は反対側の傾斜よりも緩やかになり勝ち
であり、そのため、山部の面積重心G´が山部の頂点の
位置から撮像方向側にずれてしまう。一方、ピーク度分
布グラフの山部は、輝度分布グラフの山部の傾斜が両側
で異なっても、両側の傾斜がほぼ等しくなる。従って、
ピーク度分布グラフの零点P0間の区間における山部の
面積重心Gはその山部の頂点の位置から左程ずれない。
従って、画像点の検出精度を向上させるには、ピーク度
分布グラフの零点P0間の区間の面積重心Gを求めて、
該重心Gの位置を画像点Psのx座標とすることが望ま
しい。
However, the inclination of the peak of the luminance distribution graph on the imaging direction side (right side) tends to be gentler than the inclination on the opposite side, so that the area center of gravity G 'of the peak is the position of the peak of the peak. From the camera to the imaging direction. On the other hand, the peaks of the peak degree distribution graph have substantially the same inclination on both sides even if the inclinations of the peaks of the luminance distribution graph are different on both sides. Therefore,
The area center of gravity G of the peak in the section between the zero points P0 of the peak degree distribution graph does not shift to the left from the position of the peak of the peak.
Therefore, in order to improve the detection accuracy of the image points, the area centroid G of the section between the zero points P0 of the peak degree distribution graph is obtained,
It is desirable that the position of the center of gravity G be the x coordinate of the image point Ps.

【0027】ところで、ワークAの計測部位によって
は、図7(A−1)に示すように孔Bの奥にプレートA
Pが存在したり、図7(B−1)に示すようにワークA
の段付座面ASに孔Bが設けられていたり、図7(C−
1)に示すように孔BがワークAに溶着したカラーやナ
ット等の筒状部材ACで構成されることがある。そし
て、図7(A−1)の計測部位では、図7(A−2)に
示すように光切断画像sが孔部分の内方にも現われ、図
7(B−1)の計測部位では、図7(B−2)に示すよ
うに光切断画像sが段付形状になり、図7(C−1)の
計測部位では、図7(C−2)に示すように光切断画像
sがワークA表面に対応する画像と筒状部材ACの端面
に対応する画像とに分断されてしまう。
By the way, depending on the measurement site of the work A, as shown in FIG.
P exists or the work A as shown in FIG.
Hole B is provided in the stepped seating surface AS of FIG.
As shown in 1), the hole B may be formed of a cylindrical member AC such as a collar or a nut welded to the work A. At the measurement site in FIG. 7 (A-1), the light-section image s also appears inside the hole as shown in FIG. 7 (A-2), and in the measurement site in FIG. 7 (B-1). 7 (B-2), the light-section image s has a stepped shape, and at the measurement site in FIG. 7 (C-1), the light-section image s as shown in FIG. 7 (C-2). Is divided into an image corresponding to the surface of the work A and an image corresponding to the end surface of the tubular member AC.

【0028】このような光切断画像sが現われている撮
像画面に対して上記テンプレートTPsによるパターン
マッチングを行うと、図7(A−2)では孔部分内の画
像にテンプレートTPsが合致し、図7(B−2)では
座面外側のワーク一般面に対応する画像にテンプレート
TPsが合致し、図7(C−2)では筒状部材ACの端
面に対応する画像にテンプレートTPsが合致してしま
うことがあり、ワークAの所定の計測範囲に存在する光
切断画像sにテンプレートTPsが合致しているか否か
を判別できず、ワークAの変位dZを正確に検出できな
くなる。
When pattern matching using the template TPs is performed on an imaged screen on which such a light-section image s appears, the template TPs matches the image in the hole in FIG. In FIG. 7 (B-2), the template TPs matches the image corresponding to the work general surface outside the seating surface, and in FIG. 7 (C-2), the template TPs matches the image corresponding to the end surface of the tubular member AC. In some cases, it is not possible to determine whether the template TPs matches the light-section image s present in the predetermined measurement range of the work A, and the displacement dZ of the work A cannot be accurately detected.

【0029】そこで、本実施形態では、位置を計測すべ
きワーク面の存在する計測範囲を孔Bの中心を基準にし
て表わす属性情報、即ち、計測範囲の内径RINと外径
ROUTのデータをティーチング時に計測して記憶させ
ておき、各計測部位での計測に際し、図7(A−3)
(B−3)(C−3)に示すように、孔画像bから上記
の如く求められる孔中心mを中心とする半径がRINの
円の内側と、半径がROUTの円の外側とをマスキング
し、この状態でパターンマッチングを行うようにした。
これによれば、テンプレートTPsが合致するのは所定
の計測範囲に対応する光切断画像sの部分になる。そし
て、パターンマッチングから求められる光切断画像sの
概略x座標における上記RINの半径の円のy座標と上
記ROUTの半径の円のy座標との間に上記の如く走査
線LSCを設定することにより、所定の計測範囲のワー
ク面に対応する光切断画像sのx座標sxを正しく求め
ることができ、ワークAの変位dZを正確に検出でき
る。尚、図7(A−1)の計測部位では、RINを孔B
の径に基づいて設定して、ROUTは無しとし、図7
(B−1)の計測部位では、RINとROUTを座面A
Sの内径と外径に基づいて設定し、図7(C−1)の計
測部位では、RINをワークAに開設する筒状部材AC
の取付孔の径に基づいて設定する。
Therefore, in the present embodiment, the attribute information indicating the measurement range in which the work surface whose position is to be measured exists based on the center of the hole B, that is, the data of the inner diameter RIN and the outer diameter ROUT of the measurement range is taught. Measured and stored at the time, and when measuring at each measurement site, FIG. 7 (A-3)
(B-3) As shown in (C-3), the inside of the circle having a radius of RIN and the outside of the circle having a radius of ROUT centered on the hole center m obtained as described above from the hole image b are masked. Then, pattern matching is performed in this state.
According to this, the template TPs matches the portion of the light section image s corresponding to the predetermined measurement range. Then, by setting the scanning line LSC as described above between the y coordinate of the circle having the radius of RIN and the y coordinate of the circle having the radius of ROUT in the approximate x coordinate of the light-section image s obtained from the pattern matching. Thus, the x coordinate sx of the light-section image s corresponding to the work surface in the predetermined measurement range can be correctly obtained, and the displacement dZ of the work A can be accurately detected. Note that, at the measurement site shown in FIG.
7 is set based on the diameter of ROUT, and there is no ROUT.
At the measurement site (B-1), RIN and ROUT are
7C is set based on the inner and outer diameters of the S. At the measurement site in FIG.
Set based on the diameter of the mounting hole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 光学式測定装置の概要を示す斜視図FIG. 1 is a perspective view showing an outline of an optical measuring device.

【図2】 (A)図1のY軸方向から見た図、(B)図
1のX軸方向から見た図
2A is a diagram viewed from the Y-axis direction in FIG. 1, and FIG. 2B is a diagram viewed from the X-axis direction in FIG.

【図3】 (A)孔画像の撮像画面を示す図、(B)光
切断画像の撮像画面を示す図
FIG. 3A is a diagram illustrating an imaging screen of a hole image, and FIG. 3B is a diagram illustrating an imaging screen of a light-section image.

【図4】 (A)孔画像の微分化画面を示す図、(B)
パターンマッチングの状況を示す図、(C)走査線の設
定を示す図、(D)孔画像に近似する回帰円を示す図、
(E)光切断画像の撮像画面に対するパターンマッチン
グの状況を示す図、(F)走査線の設定を示す図、
(G)画像線を示す図
FIG. 4A is a diagram showing a differentiation screen of a hole image, and FIG.
A diagram showing a situation of pattern matching, (C) a diagram showing setting of scanning lines, (D) a diagram showing a regression circle approximating a hole image,
(E) A diagram showing the state of pattern matching of the light-section image with respect to the imaging screen, (F) a diagram showing the setting of scanning lines,
(G) Diagram showing image lines

【図5】 (A)図4(C)の走査線上の輝度分布を示
す図、(B)輝度分布の微分曲線及び近似放物線を示す
5A is a diagram illustrating a luminance distribution on a scanning line in FIG. 4C, and FIG. 5B is a diagram illustrating a differential curve and an approximate parabola of the luminance distribution.

【図6】 (A)図6(B)の走査線上の輝度分布を示
す図、(B)画像点の検出方法を示す図
6A is a diagram illustrating a luminance distribution on a scanning line in FIG. 6B, and FIG. 6B is a diagram illustrating a method for detecting image points;

【図7】 (A−1)(B−1)(C−1)各計測部位
の断面形状を示す図、(A−2)(B−2)(C−2)
各計測部位の光切断画像の撮像画面を示す図、(A−
3)(B−3)(C−3)マスキングした撮像画面を示
す図
FIG. 7 (A-1), (B-1), and (C-1) are diagrams showing the cross-sectional shapes of respective measurement sites, (A-2), (B-2), and (C-2).
The figure which shows the imaging screen of the light-section image of each measurement part, (A-
3) (B-3) (C-3) A diagram showing a masked imaging screen

【符号の説明】[Explanation of symbols]

1 スリット光源 2 撮像器 3 スポット光源 4 画像処理回路 A ワーク B 孔 b 孔画像 m 孔画像の中心 s 光切断画像 TPs パターンマッ
チング用テンプレート sx′光切断画像の概略位置 LSC 走査線 Ps 画像点 sx 光切断画像
の位置
Reference Signs List 1 slit light source 2 imager 3 spot light source 4 image processing circuit A work B hole b hole image m center of hole image s light cut image TPs template for pattern matching sx 'approximate position of light cut image LSC scanning line Ps image point sx light Cutting image position

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワークに設けられる孔の位置を光学的に
計測する方法であって、 ワークに正対させた撮像器によりワークの孔の像を撮像
する第1撮像工程と、 前記撮像器の光軸に斜交する面に沿ったスリット光をワ
ークに照射し、ワークに照射されたスリット光が描くワ
ークの光切断像を前記撮像器により撮像する第2撮像工
程と、 第1撮像工程で得られた撮像画面に現われる孔画像の画
面上の中心座標を計測する第1計測工程と、 第2撮像工程で得られた撮像画面に現われる光切断画像
の画面上の位置を計測する第2計測工程と、 光切断画像の画面上の位置から前記撮像器の光軸方向に
おけるワークの変位量を求め、この変位量と前記中心座
標とから空間座標系における孔の中心位置を算定する工
程とから成る方法において、 前記第2計測工程は、 位置を計測すべきワーク面が存在する計測範囲を孔の中
心を基準にして表わす予め記憶させた属性情報を読み出
し、第1計測工程で計測された中心座標を基準として第
2撮像工程で得られた撮像画面の前記計測範囲以外の部
分を前記属性情報に基づいてマスキングする工程と、 マスキングした画面に対するパターンマッチングにより
前記計測範囲に存在する光切断画像の概略位置を割出す
工程と、 割出された概略位置に基づいて前記計測範囲に存在する
光切断画像に交差するように複数の計測箇所を設定する
工程と、 光切断画像の各計測箇所に合致する画像点の座標を検出
する工程と、 これら画像点の座標から光切断画像の画面上の位置を求
める工程とから成る、 ことを特徴とする孔位置の光学的計測方法。
1. A method for optically measuring the position of a hole provided in a work, comprising: a first image pickup step of picking up an image of a hole in the work by an imager directly facing the work; A second imaging step of irradiating the workpiece with slit light along a plane oblique to the optical axis and capturing an optical cut image of the workpiece drawn by the slit light applied to the workpiece by the imager; and a first imaging step. A first measurement step of measuring the center coordinates of the hole image appearing on the obtained imaging screen on the screen, and a second measurement measuring the position on the screen of the light-section image appearing on the imaging screen obtained in the second imaging step From the step of calculating the amount of displacement of the workpiece in the optical axis direction of the imager from the position of the light section image on the screen, and calculating the center position of the hole in the spatial coordinate system from the amount of displacement and the center coordinates. The method comprising: The measuring step is a step of reading out attribute information stored in advance, which represents a measurement range in which a work surface whose position is to be measured is present with reference to the center of the hole, and using the center coordinates measured in the first measurement step as a reference, Masking a portion of the imaging screen obtained in the step other than the measurement range based on the attribute information, and determining a rough position of the light-section image existing in the measurement range by pattern matching on the masked screen. Setting a plurality of measurement points so as to intersect the light-section image existing in the measurement range based on the determined approximate position; and detecting coordinates of an image point matching each measurement point of the light-section image And a step of obtaining the position of the light-section image on the screen from the coordinates of these image points.
JP8259177A 1996-09-30 1996-09-30 Optical measurement method for hole position Pending JPH10105720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8259177A JPH10105720A (en) 1996-09-30 1996-09-30 Optical measurement method for hole position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8259177A JPH10105720A (en) 1996-09-30 1996-09-30 Optical measurement method for hole position

Publications (1)

Publication Number Publication Date
JPH10105720A true JPH10105720A (en) 1998-04-24

Family

ID=17330440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8259177A Pending JPH10105720A (en) 1996-09-30 1996-09-30 Optical measurement method for hole position

Country Status (1)

Country Link
JP (1) JPH10105720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120066A (en) * 2011-12-06 2013-06-17 Toyota Motor East Japan Inc Three-dimensional measuring method, three-dimensional measuring apparatus and three-dimensional measuring program
CN104567673A (en) * 2014-12-26 2015-04-29 苏州优谱德精密仪器科技有限公司 Method for measuring circle center position tolerance of workpiece hole
CN114923410A (en) * 2022-05-09 2022-08-19 一汽解放汽车有限公司 Longitudinal beam hole site online detection method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120066A (en) * 2011-12-06 2013-06-17 Toyota Motor East Japan Inc Three-dimensional measuring method, three-dimensional measuring apparatus and three-dimensional measuring program
CN104567673A (en) * 2014-12-26 2015-04-29 苏州优谱德精密仪器科技有限公司 Method for measuring circle center position tolerance of workpiece hole
CN114923410A (en) * 2022-05-09 2022-08-19 一汽解放汽车有限公司 Longitudinal beam hole site online detection method and device
CN114923410B (en) * 2022-05-09 2024-05-14 一汽解放汽车有限公司 On-line detection method and device for hole sites of longitudinal beams

Similar Documents

Publication Publication Date Title
US7202957B2 (en) Three-dimensional visual sensor
JP3327068B2 (en) Road surface measurement device
JP3758763B2 (en) Method for optical measurement of hole position
JPH10105720A (en) Optical measurement method for hole position
JPH10105718A (en) Optical measurement method for hole position
JPH10105721A (en) Detection of picture position
JP2913370B2 (en) Optical position measurement method
JP2000018919A (en) Imaging device, optical measuring apparatus, and optical system inspecting apparatus
JP4741943B2 (en) Inspection apparatus and inspection method
JP2932418B2 (en) Work position measurement method
JPH06281411A (en) Measuring method for hole position
JP2689070B2 (en) Measuring method of hole position
JP2689064B2 (en) Measuring method of hole position
JPH0282367A (en) Three-dimensional shape inspecting device
JP2601232B2 (en) IC lead displacement inspection equipment
JPH10232110A (en) Method for measuring work by optical cutting method
JPH03186705A (en) Three-dimensional shape dimension measuring instrument
JPH04355946A (en) Inspection of soldered part of electronic component
JP3318882B2 (en) Optical measuring device and measuring method
JPH08145637A (en) Method and apparatus for recognizing profile of pipe
JPH0749935B2 (en) Object recognition device
JPH0666401B2 (en) Inspection method for lead frame
JPH0372203A (en) Checking method of outer appearance of soldering part
JPH0694437A (en) Printed circuit shape inspection apparatus
JP3654378B2 (en) Image pickup device arrangement setting method and image processing method