JP2913370B2 - Optical position measurement method - Google Patents
Optical position measurement methodInfo
- Publication number
- JP2913370B2 JP2913370B2 JP6228102A JP22810294A JP2913370B2 JP 2913370 B2 JP2913370 B2 JP 2913370B2 JP 6228102 A JP6228102 A JP 6228102A JP 22810294 A JP22810294 A JP 22810294A JP 2913370 B2 JP2913370 B2 JP 2913370B2
- Authority
- JP
- Japan
- Prior art keywords
- camera
- image
- coordinates
- center
- screen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Image Analysis (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ワークに設けた円形孔
等の円形の被計測部の空間座標系における中心位置を計
測する光学式位置計測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical position measuring method for measuring a center position in a spatial coordinate system of a circular portion to be measured such as a circular hole provided in a work.
【0002】[0002]
【従来の技術】従来、この種の計測方法として、光軸が
互に斜交するように配置した2個のカメラを用い、ワー
クの被計測部を該両カメラで撮像して、一方のカメラの
画面上の被計測部の像の中心座標と他方のカメラの画面
上の被計測部の像の中心座標とから三角測量の原理で空
間座標系における被計測部の中心位置を算定する方法が
知られている。ここで、カメラの画面上の被計測部の像
の中心座標の計測に際しては、一般に、画面上を水平x
軸方向に走査して被計測部の像の周縁に合致するx軸方
向2箇所の周縁点の座標を求めることを垂直y軸方向に
位置をずらしながら繰返し、x軸方向2箇所の周縁点の
中点のx座標を平均化して被計測部の像の中心のx座標
を求め、同様に、画面上をy軸方向に走査してy軸方向
2箇所の周縁点の座標を求めることをx軸方向に位置を
ずらしながら繰返し、y軸方向2箇所の周縁点の中点の
y座標を平均化して被計測部の像の中心のy座標を求め
るようにしている(特開昭56−155804号参
照)。2. Description of the Related Art Conventionally, as a measuring method of this kind, two cameras arranged so that their optical axes are oblique to each other are used. The method of calculating the center position of the measured part in the spatial coordinate system from the center coordinates of the image of the measured part on the screen of the other camera and the center coordinates of the image of the measured part on the screen of the other camera is based on the principle of triangulation. Are known. Here, when measuring the center coordinates of the image of the measured part on the screen of the camera, generally, a horizontal x
Scanning in the axial direction and obtaining the coordinates of two peripheral points in the x-axis direction that match the peripheral edge of the image of the measured portion are repeated while shifting the position in the vertical y-axis direction, and the two peripheral points in the x-axis direction are obtained. The x-coordinate of the midpoint is averaged to obtain the x-coordinate of the center of the image of the measured portion. Similarly, scanning the screen in the y-axis direction to obtain the coordinates of two peripheral points in the y-axis direction is called x. This is repeated while shifting the position in the axial direction, and the y coordinate of the middle point of the two peripheral points in the y axis direction is averaged to obtain the y coordinate of the center of the image of the measured portion (Japanese Patent Application Laid-Open No. 56-155804). No.).
【0003】[0003]
【発明が解決しようとする課題】上記の方法は被計測部
の像が真円である場合には像の中心座標を精度良く求め
られるが、被計測部がカメラに正対する位置からずれる
とその像はずれ方向を短軸とする楕円となり、上記の方
法では像の中心座標の計測誤差を生じ易くなる。また、
上記の如く2個のカメラを用いて空間座標系における被
計測部の中心位置を計測する場合、一方のカメラはその
光軸がワーク表面の法線方向に合致するように配置でき
るが、他方のカメラの光軸はワーク表面に対し斜交する
ことになる。この場合、他方のカメラの画面の空間座標
系への投影面はワーク表面に対し傾斜し、その結果、他
方のカメラから見た該投影面に対する被計測部の投影像
は被計測部の実像とは正確には相似しなくなる。ここ
で、各カメラの画面上の被計測部の像は各カメラの画面
の空間座標系への投影面に対する各カメラから見た被計
測部の投影像に合致する。そして、従来は、各カメラの
画面上の被計測部の像の中心に合致する各投影面上の投
影像の中心を通る、空間座標系における各カメラの視線
の方程式を求め、両カメラの視線の交点を空間座標系に
おける被計測部の中心としてその位置を算定している。
然し、上記の如く他方のカメラの画面の空間座標系への
投影面に対する被計測部の投影像が被計測部の実像に相
似しなくなると、投影像の中心を通る他方のカメラの視
線が被計測部の中心を通らなくなり、中心位置の計測誤
差を生ずる。本発明は、以上の点に鑑み、2個のカメラ
の画像データから空間座標系における被計測部の中心位
置を正確に計測し得るようにした計測方法を提供するこ
とをその目的としている。In the above method, the center coordinates of the image to be measured are accurately obtained when the image of the portion to be measured is a perfect circle. The image becomes an ellipse having the shift direction as a short axis, and in the above-described method, a measurement error of the center coordinates of the image easily occurs. Also,
When measuring the center position of the measured part in the space coordinate system using two cameras as described above, one camera can be arranged so that its optical axis matches the normal direction of the work surface, while the other camera can be arranged. The optical axis of the camera is oblique to the work surface. In this case, the projection plane of the screen of the other camera onto the spatial coordinate system is inclined with respect to the work surface, and as a result, the projected image of the measured section on the projection plane viewed from the other camera is the same as the real image of the measured section. Are not exactly similar. Here, the image of the measured portion on the screen of each camera matches the projected image of the measured portion viewed from each camera on the projection plane of the screen of each camera onto the spatial coordinate system. Conventionally, the equation of the line of sight of each camera in a spatial coordinate system, which passes through the center of the projected image on each projection plane that matches the center of the image of the measured part on the screen of each camera, is obtained. The position is calculated by using the intersection of as the center of the measured part in the space coordinate system.
However, as described above, when the projected image of the measurement target on the projection plane of the screen of the other camera onto the spatial coordinate system does not resemble the real image of the measurement target, the line of sight of the other camera passing through the center of the projection image is affected. It does not pass through the center of the measuring unit, and causes a measurement error of the center position. In view of the above points, an object of the present invention is to provide a measurement method capable of accurately measuring the center position of a measurement target in a spatial coordinate system from image data of two cameras.
【0004】[0004]
【課題を解決するための手段】上記目的を達成すべく、
本発明は、ワークに設けた円形の被計測部を光軸が互に
斜交するように配置した第1と第2の2個のカメラで撮
像し、両カメラの画像データから空間座標系における被
計測部の中心位置を計測する方法において、第1カメラ
をその光軸がワークの表面の法線に合致するように配置
し、第1カメラの画面上の被計測部の像の周縁に合致す
る周方向複数箇所の周縁点の座標に基いて第1カメラの
画面上の被計測部の像を表わす第1の回帰楕円を求める
工程と、第2カメラの画面上の被計測部の像の周縁に合
致する周方向複数箇所の周縁点の座標を第1カメラの画
面の空間座標系への投影面に該各周縁点を第2カメラか
らの視線に沿って投影したときの座標に変換し、これら
周縁点の変換座標に基いて第2カメラから見た前記投影
面への被計測部の投影像を表わす第2の回帰楕円を求め
る工程と、第1の回帰楕円の中心座標と第2の回帰楕円
の中心座標とから空間座標系における被計測部の中心位
置を算定する工程と、から成ることを特徴とする。In order to achieve the above object,
The present invention captures an image of a circular object to be measured provided on a workpiece by two first and second cameras arranged so that their optical axes are oblique to each other, and uses image data of both cameras in a spatial coordinate system. In the method of measuring the center position of the measured portion, the first camera is arranged so that its optical axis coincides with the normal of the surface of the work, and the first camera coincides with the periphery of the image of the measured portion on the screen of the first camera. Obtaining a first regression ellipse representing the image of the measured part on the screen of the first camera based on the coordinates of the peripheral points at a plurality of circumferential points; The coordinates of the peripheral points at a plurality of positions in the circumferential direction corresponding to the peripheral edge are converted into coordinates when the respective peripheral points are projected along the line of sight from the second camera on the projection plane of the screen of the first camera onto the spatial coordinate system. Based on the transformed coordinates of these peripheral points, A step of calculating a second regression ellipse representing an image, and a step of calculating a center position of the measured part in a spatial coordinate system from the center coordinates of the first regression ellipse and the center coordinates of the second regression ellipse. It is characterized by the following.
【0005】[0005]
【作用】回帰楕円は複数の周縁点の可及的近傍を通るよ
うに回帰処理によって求められる。そして、回帰楕円を
求めることにより、被計測部の像が真円であれば真円、
楕円であれば楕円として被計測部の像が正確に同定さ
れ、像の中心座標を精度良く計測できる。ところで、第
1カメラの画面の空間座標系への投影面はワーク表面に
対し平行になり、該投影面に対する第1カメラから見た
被計測部の投影像は被計測部の実像に相似し、第1カメ
ラの画面上の被計測部の像の周縁点の座標に基いて求め
られる該投影像の回帰楕円の中心を通る第1カメラの視
線は被計測部の中心を通る。一方、第2カメラの画面の
空間座標系への投影面はワーク表面に対し傾斜し、該投
影面に対する第2カメラから見た被計測部の投影像は被
計測部の実像に相似しなくなる。然し、本発明では、第
2カメラの画面上の被計測部の像の周縁点の座標を上記
の如く変換しているため、変換された座標上の点は第1
カメラの空間座標系への投影面に対する第2カメラから
見た被計測部の投影像の周縁に合致することになる。そ
して、この投影像は被計測部の実像に相似し、周縁点の
変換座標に基いて求められる投影像の回帰楕円の中心を
通る第2カメラの視線は被計測部の中心を通る。従っ
て、第1カメラの視線と第2カメラの視線との交点とし
て空間座標系における被計測部の中心位置を正確に計測
できる。The regression ellipse is determined by regression processing so as to pass as close as possible to a plurality of peripheral points. Then, by calculating the regression ellipse, if the image of the measured portion is a perfect circle,
In the case of an ellipse, the image of the measured portion is accurately identified as an ellipse, and the center coordinates of the image can be measured with high accuracy. By the way, the projection plane of the screen of the first camera on the spatial coordinate system is parallel to the work surface, and the projected image of the measured section viewed from the first camera on the projected plane is similar to the real image of the measured section. The line of sight of the first camera passing through the center of the regression ellipse of the projection image obtained based on the coordinates of the peripheral point of the image of the measurement target on the screen of the first camera passes through the center of the measurement target. On the other hand, the projection plane of the screen of the second camera onto the spatial coordinate system is inclined with respect to the work surface, and the projected image of the measured section viewed from the second camera with respect to the projection plane does not resemble the real image of the measured section. However, in the present invention, since the coordinates of the peripheral point of the image of the measured portion on the screen of the second camera are converted as described above, the point on the converted coordinates is the first coordinate.
This coincides with the peripheral edge of the projection image of the measured portion viewed from the second camera with respect to the projection plane on the spatial coordinate system of the camera. This projected image is similar to the real image of the measured portion, and the line of sight of the second camera passing through the center of the regression ellipse of the projected image obtained based on the transformation coordinates of the peripheral point passes through the center of the measured portion. Therefore, it is possible to accurately measure the center position of the measured portion in the spatial coordinate system as an intersection between the line of sight of the first camera and the line of sight of the second camera.
【0006】[0006]
【実施例】図1は自動車車体等のワークaに基準孔とし
て形成した被計測部たる円形孔bの中心位置を計測する
装置の概要を示しており、該装置は、ワークaを照射す
るスポット光源1と、CCDカメラから成る第1と第2
の2個のカメラ21,22と、該両カメラ21,22からの
画像信号を入力する画像処理回路3とで構成されてい
る。FIG. 1 shows an outline of an apparatus for measuring the center position of a circular hole b which is a measurement target portion formed as a reference hole in a work a such as an automobile body. First and second light source 1 and CCD camera
Two camera 2 1, 2 2, and a image processing circuit 3 for inputting an image signal from the both the camera 2 1, 2 2.
【0007】スポット光源1と両カメラ21,22はロボ
ット等の動作端に取付けられる図示しない計測ヘッドに
搭載されており、計測ヘッドを円形孔bの形成箇所に対
向する所定の計測位置に移動した後、スポット光源1か
らスポット光を照射して両カメラ21,22によりワーク
aを撮像し、両カメラ21,22の画像データから空間座
標系における円形孔bの中心位置を計測する。The spot light source 1 and the cameras 2 1 and 2 2 are mounted on a measuring head (not shown) attached to an operating end of a robot or the like, and the measuring head is placed at a predetermined measuring position opposite to a location where the circular hole b is formed. after moving, the spotlight 1 both cameras 2 1 by irradiating a spot light from 2 2 imaging the workpiece a, the center position of the circular hole b in the spatial coordinate system from both cameras 2 1, 2 2 of the image data measure.
【0008】両カメラ21,22は夫々光軸01,02が図
2に示す如く所定角度θで斜交するように配置されてお
り、測定ヘッドを計測位置に移動したときに第1カメラ
21の光軸01がワークaの表面の法線方向に合致するよ
うに測定ヘッドの姿勢が制御される。The two cameras 2 1 and 2 2 are arranged such that the optical axes 0 1 and 0 2 obliquely intersect at a predetermined angle θ as shown in FIG. 1 the optical axis 0 1 of the camera 2 1 position of the measuring head is controlled so as to match the direction normal to the surface of the workpiece a.
【0009】ここで、両カメラ21,22の光軸01,02
の交点を原点0、両光軸01,02を含む平面上の光軸0
1に合致する座標軸をZ軸、該平面上のZ軸に直交する
座標軸をX軸、該平面に直交する座標軸をY軸とする空
間座標系を設定し、第1カメラ21の画面の空間座標系
への投影面Q1をX−Y平面として、該平面上のX,Y
座標に合致するように第1カメラ21の画面上にx,y
座標を設定し、また、X−Z座標面上に光軸02に直交
するようにX′軸を取り、第2カメラ22の画面の空間
座標系への投影面Q2をX′−Y平面として、該平面上
のX′,Y座標に合致するように第2カメラ22の画面
上にx,y座標を設定する。尚、両カメラ21,22の原
点からの距離は夫々Lとする。[0009] Here, both cameras 2 1, 2 2 of the optical axis 0 1, 0 2
Is the origin 0, and the optical axis 0 on a plane including both optical axes 0 1 and 0 2
Z-axis coordinate axes conform to 1, X-axis coordinate axes orthogonal to the Z axis on the plane, the coordinate axes perpendicular to the plane set the spatial coordinate system with the Y axis, the space of the first camera 2 1 Screen the projection plane to Q 1 to the coordinate system as the X-Y plane, X on the plane, Y
X the first camera 2 1 of screen to match the coordinates, y
Set the coordinates, also, X-Z takes on the coordinate plane X 'axis to be perpendicular to the optical axis 0 2, a projection plane Q 2 of the second camera 2 2 screen space coordinate system of the X'- as Y plane, X on the plane ', sets the x, y coordinate in the second camera 2 2 screen to match the Y-coordinate. The distance from both cameras 2 1, 2 2 of the origin and each L.
【0010】第1カメラ21の画面には、第1カメラ21
から見た投影面Q1に対する円形孔bの投影像に合致す
る、図3に示す如き孔部像が現われ、また、第2カメラ
22の画面には、第2カメラ22から見た投影面Q2に対
する円形孔bの投影像に合致する、図4(a)に示す如
き孔部像が現われる。[0010] The first camera 2 1 of the screen, the first camera 2 1
Matches the projected image of the circular hole b relative to the projection plane Q 1 as viewed from the hole portion image appears as shown in FIG. 3, The second camera 2 2 screens, the projection viewed from the second camera 2 2 matches the projected image of the circular hole b to the surface Q 2, such as holes image appears shown in Figure 4 (a).
【0011】ここで、図2を参照して、円形孔bの径方
向2箇所の周縁点をA,B、第1カメラ21の中心を
C1、第2カメラ22の中心をC2、第1カメラ21から見
た投影面Q1へのA,Bの投影点をA1,B1、第2カメ
ラ22から見た投影面Q2へのA,Bの投影点をA3,B3
とすると、投影面Q1はワークaの表面に対し平行であ
るために、三角形C1ABと三角形C1A1B1とは相似す
るが、投影面Q2はワークaの表面に対しθだけ傾斜す
るため、三角形C2ABと三角形C2A3B3とは相似しな
くなる。従って、第1カメラ21の画面上の孔部像は円
形孔bに対応した形状になるが、第2カメラ22の画面
上の孔部像は円形孔bに正確には対応しない歪んだ形状
になる。尚、図示例では第1カメラ21の光軸01に対し
円形孔bの中心が側方にオフセットしているため、第1
カメラ21の画面上の孔部像は楕円になっている。[0011] Referring now to FIG. 2, a peripheral point in the radial direction two portions of the circular hole b A, B, the first camera 2 1 of the center C 1, the second center of the camera 2 2 C 2 , a to projection plane Q 1 as seen from the first camera 2 1, a 1, B 1 the projected point B, a of the projection plane Q 2 to which seen from the second camera 2 2, the projected point B a 3 , B 3
Then, since the projection plane Q 1 is parallel to the surface of the work a, the triangle C 1 AB and the triangle C 1 A 1 B 1 are similar, but the projection plane Q 2 is θ with respect to the surface of the work a. Therefore, the triangle C 2 AB and the triangle C 2 A 3 B 3 are not similar to each other. Thus, the hole portion image of the first camera 2 1 on the screen is a shape corresponding to the circular hole b, the hole image on the second camera 2 2 screens distorted not correspond exactly to the circular hole b Shape. Since the center of the circular hole b to the optical axis 0 1 of the first camera 2 1 in the illustrated example is offset laterally, the first
Hole image on the screen of the camera 2 1 has an elliptical.
【0012】そして、第1カメラ21の画面上の孔部像
の中心座標から投影面Q1上の投影像の中心M1に対する
第1カメラ21の視線、即ち、線C1M1の方程式を求め
れば、この視線は円形孔bの中心Mを通る。これに対
し、第2カメラ22の画像上の孔部像の中心座標から投
影面Q2上の投影像の中心M3に対する第2カメラ22の
視線、即ち、線C2M3の方程式を求めても、この視線は
円形孔bの中心Mを通らなくなる。[0012] Then, the first camera 2 1 line of sight with respect to the center M 1 of the projected image on the projection plane Q 1 from the center coordinates of the hole portion image of the first camera 2 1 on the screen, i.e., a line C 1 M 1 If the equation is obtained, this line of sight passes through the center M of the circular hole b. In contrast, the second camera 2 2 sight to the center M 3 of the projected image on the projection plane Q 2 from the center coordinates of the hole image on the second camera 2 2 images, that is, the equation of the line C 2 M 3 Does not pass through the center M of the circular hole b.
【0013】一方、A3とB3に対する第2カメラ22の
視線、即ち、線C2A3と線C2B3の投影面Q1に対する
交点をA2とB2にすると、三角形C2ABと三角形C2A
2B2は相似することになり、第2カメラ22から見た投
影面Q1に対する円形孔bの投影像の中心M2に対する第
2カメラ22の視線、即ち、線C2M2は円形孔bの中心
Mを通り、線C1M1の方程式と線C2M2の方程式とから
両線の交点の座標を求めれば、これが空間座標系におけ
る円形孔における円形孔bの中心位置となる。Meanwhile, A 3 and a second camera 2 and second sight for B 3, i.e., when the intersection relative to the projection surface to Q 1 line C 2 A 3 and line C 2 B 3 to A 2 and B 2, triangle C 2 AB and triangle C 2 A
2 B 2 become to similar, second camera 2 2 sight relative to the center M 2 of the projected image of the circular hole b relative to the projection plane Q 1 as seen from the second camera 2 2, i.e., a line C 2 M 2 is When the coordinates of the intersection of both lines passing through the center M of the circular hole b and obtained from the equations of the line C 1 M 1 and the line C 2 M 2 are obtained, this is the center position of the circular hole b in the circular hole in the space coordinate system. Becomes
【0014】以下、両カメラ21,22の画像データに基
く円形孔bの中心位置の計測手順についてより詳細に説
明する。まず、各カメラ21,22の画面上の孔部像の周
縁に合致する周方向複数箇所の周縁点の座標を検出す
る。この座標の検出に際しては、先ず、各カメラ21,
22の画面上の孔部像の画像重心を求め、この重心に関
してy軸方向に対称な2本のx軸走査線と交差する、孔
部像の周縁に合致する4箇所の周縁点〜と、重心に
関してx軸方向に対称な2本のy軸走査線と交差する4
箇所の周縁点〜との計8箇所の周縁点をピックアッ
プしてその座標を検出する。Hereinafter, the procedure for measuring the center position of the circular hole b based on the image data of the cameras 2 1 and 2 2 will be described in more detail. First, to detect the coordinates of each camera 2 1, 2 2 of the screen on the peripheral points of the plurality of circumferential locations that match the periphery of the hole image. In detecting these coordinates, first, each camera 2 1 ,
Obtains an image centroid of the hole image on the 2 2 window, intersect the symmetrical two x-axis scanning line in the y-axis direction with respect to the center of gravity, the peripheral points of the four points that match the periphery of the hole image - and 4 intersects two y-axis scanning lines symmetric with respect to the center of gravity in the x-axis direction
A total of eight peripheral points, i.e., the peripheral points of the points, are picked up and their coordinates are detected.
【0015】そして、第1カメラ21の画面上の孔部像
を表わす回帰楕円S1を上記周縁点の座標から回帰処理
によって求める。この回帰楕円S1の中心座標を(x1,
y1)とすると、投影面Q1上の投影像の中心M1の空間
座標は(x1,y1,0)となり、また、第1カメラ21
の中心C1の空間座標は(0,0,L)であり、これら
空間座標から視線C1M1の方程式を求める。[0015] Then, a regression ellipse S 1 representing the hole image of the first camera 2 1 on the screen determined by regression processing from the coordinates of the peripheral points. The center coordinates of this regression ellipse S 1 are (x 1 ,
y 1 ), the spatial coordinates of the center M 1 of the projected image on the projection plane Q 1 are (x 1 , y 1 , 0), and the first camera 2 1
The spatial coordinates of the center C 1 of the (0,0, L) is to determine the equation of the line of sight C 1 M 1 from these space coordinates.
【0016】一方、第2カメラ22の画面については、
その孔部像の周縁点の座標を投影面Q1に各周縁点を第
2カメラ22からの視線に沿って投影したときの座標に
変換する。即ち、各周縁点に対する第2カメラ22の視
線(上記した線C2A3、C2B3に対応する線)と投影
面Q1との交点の座標に各周縁点の座標を変換する。こ
のように座標を変換すると、第2カメラ22の画面上の
孔部像の周縁点〜の位置は図4(b)に示すように
修正され、これら周縁点の座標から求められる回帰楕円
S2は第2カメラ22から見た投影面Q1に対する円形孔
bの投影像を表わすことになる。該投影像の中心M2の
空間座標は回帰楕円の中心座標を(x2,y2)として
(x2,y2,0)となり、また、第2カメラ22の中心
C2の空間座標は(Lsinθ,0,Lcosθ)であり、これ
ら空間座標から視線C2M2の方程式を求め、最後に、空
間座標系における円形孔bの中心Mの座標を上記の如く
両視線C1M1,C2M2の交点として算出する。[0016] On the other hand, for the second camera 2 2 of the screen,
It converted into coordinates in projecting the respective peripheral point coordinates of the peripheral points of the aperture image on the projection plane Q 1 along the line of sight from the second camera 2 2. That is, to convert the coordinates of each perimeter point to the coordinates of the intersection of the second camera 2 2 line of sight for each peripheral point (line corresponding to line C 2 A 3, C 2 B 3 described above) and the projection plane Q 1 . With this transform coordinates, the position of the peripheral edge point and the hole portion image on the second camera 2 2 screen is modified as shown in FIG. 4 (b), a regression ellipse S obtained from these peripheral point coordinates 2 would be indicative of a projected image of the circular hole b relative to the projection plane Q 1 as seen from the second camera 2 2. Spatial coordinates of the center M 2 of-projecting imaging is the center coordinates of the regression ellipse (x 2, y 2) ( x 2, y 2, 0) , and the addition, the second camera 2 2 spatial coordinates of the center C 2 Is (L sin θ, 0, L cos θ), and the equation of the line of sight C 2 M 2 is obtained from these spatial coordinates. Finally, the coordinates of the center M of the circular hole b in the space coordinate system are converted to the two lines of sight C 1 M 1 as described above. , C 2 M 2 .
【0017】尚、上記した回帰楕円S1,S2の算定に際
しては、回帰楕円に対する各周縁点のずれ量を算出し、
これら周縁点のずれ量のうちの最大ずれ量が所定値以上
のときは、最大ずれ量の孔縁点を削除し、残りの周縁点
の座標から再度回帰楕円を求め、この処理を最大ずれ量
が所定値未満になるまで繰返して最終的な回帰楕円を算
定する。この場合、周縁点の数が少なくなると回帰楕円
を正確に算定できなくなり、そのため周縁点が5個以下
になったときは計測不能としてその旨を表示する。In calculating the regression ellipses S 1 and S 2 , the amount of deviation of each peripheral point from the regression ellipse is calculated,
When the maximum deviation amount among the deviation amounts of these peripheral points is equal to or more than a predetermined value, the hole edge point with the maximum deviation amount is deleted, a regression ellipse is obtained again from the coordinates of the remaining peripheral points, and this process is repeated. Iteratively calculating the final regression ellipse until is less than a predetermined value. In this case, if the number of peripheral points decreases, the regression ellipse cannot be calculated accurately. Therefore, when the number of peripheral points decreases to five or less, the fact that measurement is impossible is displayed.
【0018】[0018]
【発明の効果】以上の説明から明らかなように、本発明
によれば、空間座標系における被計測部の中心位置を精
度良く計測できる。As is apparent from the above description, according to the present invention, the center position of the measured portion in the spatial coordinate system can be accurately measured.
【図1】 本発明方法の実施に用いる計測装置の概要を
示す図FIG. 1 is a diagram showing an outline of a measuring apparatus used for carrying out the method of the present invention.
【図2】 計測原理を示す図FIG. 2 shows the principle of measurement.
【図3】 第1カメラの画像を示す図FIG. 3 is a diagram showing an image of a first camera.
【図4】 (a)第2カメラの画像を示す図、(b)座標変換
後の画像を示す図4A is a diagram illustrating an image of a second camera, and FIG. 4B is a diagram illustrating an image after coordinate transformation.
a ワーク b 円形孔(被計測部) 21 第1カメラ 22 第2カメラ Q1 第1カメラの投影面 Q2 第2カメラの投影面 S1 第1の回帰楕円 S2 第2回帰楕円a Workpiece b Circular hole (measured part) 2 1 First camera 2 2 Second camera Q 1 Projection plane of first camera Q 2 Projection plane of second camera S 1 First regression ellipse S 2 Second regression ellipse
Claims (1)
互に斜交するように配置した第1と第2の2個のカメラ
で撮像し、両カメラの画像データから空間座標系におけ
る被計測部の中心位置を計測する方法において、 第1カメラをその光軸がワークの表面の法線に合致する
ように配置し、第1カメラの画面上の被計測部の像の周
縁に合致する周方向複数箇所の周縁点の座標に基いて第
1カメラの画面上の被計測部の像を表わす第1の回帰楕
円を求める工程と、 第2カメラの画面上の被計測部の像の周縁に合致する周
方向複数箇所の周縁点の座標を第1カメラの画面の空間
座標系への投影面に該各周縁点を第2カメラからの視線
に沿って投影したときの座標に変換し、これら周縁点の
変換座標に基いて第2カメラから見た前記投影面への被
計測部の投影像を表わす第2の回帰楕円を求める工程
と、 第1の回帰楕円の中心座標と第2の回帰楕円の中心座標
とから空間座標系における被計測部の中心位置を算定す
る工程と、 から成ることを特徴とする光学式位置計測方法。An image of a circular portion to be measured provided on a workpiece is captured by first and second cameras arranged so that optical axes are oblique to each other, and a spatial coordinate system is obtained from image data of both cameras. In the method for measuring the center position of the measured part in the method, the first camera is arranged so that its optical axis coincides with the normal of the surface of the work, and the first camera is arranged on the periphery of the image of the measured part on the screen of the first camera. A step of obtaining a first regression ellipse representing an image of the measured part on the screen of the first camera based on the coordinates of the peripheral points at a plurality of matching circumferential points; and an image of the measured part on the screen of the second camera. Are converted into coordinates when the respective peripheral points are projected along the line of sight from the second camera on the projection plane of the first camera screen on the spatial coordinate system, which coincides with the peripheral edge of the camera. Then, based on the transformation coordinates of these peripheral points, the measurement on the projection surface as viewed from the second camera is performed. Calculating a second regression ellipse representing a projected image of the following; calculating a center position of the measured part in a spatial coordinate system from the center coordinates of the first regression ellipse and the center coordinates of the second regression ellipse; An optical position measuring method, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6228102A JP2913370B2 (en) | 1994-09-22 | 1994-09-22 | Optical position measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6228102A JP2913370B2 (en) | 1994-09-22 | 1994-09-22 | Optical position measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0894318A JPH0894318A (en) | 1996-04-12 |
JP2913370B2 true JP2913370B2 (en) | 1999-06-28 |
Family
ID=16871231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6228102A Expired - Fee Related JP2913370B2 (en) | 1994-09-22 | 1994-09-22 | Optical position measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2913370B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109099839B (en) * | 2018-08-23 | 2021-02-12 | 武汉中观自动化科技有限公司 | Scanner auxiliary accessory and method for measuring circular holes in surface of workpiece |
WO2020085394A1 (en) * | 2018-10-24 | 2020-04-30 | 住友重機械工業株式会社 | Crane system, crane positioning device, and crane positioning method |
CN111397532A (en) * | 2020-04-01 | 2020-07-10 | 赵勇 | Three-dimensional measurement method based on marker |
CN111289226A (en) * | 2020-04-02 | 2020-06-16 | 易思维(杭州)科技有限公司 | Line laser flatness detection method based on visual measurement technology |
-
1994
- 1994-09-22 JP JP6228102A patent/JP2913370B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0894318A (en) | 1996-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008241643A (en) | Three-dimensional shape measuring device | |
JP2007093412A (en) | Three-dimensional shape measuring device | |
JP3696336B2 (en) | How to calibrate the camera | |
JP2913370B2 (en) | Optical position measurement method | |
JPH09101129A (en) | Road surface measuring device | |
JP2000205821A (en) | Instrument and method for three-dimensional shape measurement | |
JP3696335B2 (en) | Method for associating each measurement point of multiple images | |
JP3758763B2 (en) | Method for optical measurement of hole position | |
JP2932418B2 (en) | Work position measurement method | |
JP2689064B2 (en) | Measuring method of hole position | |
JPH08110206A (en) | Method and apparatus for detecting position and posture | |
JP2689070B2 (en) | Measuring method of hole position | |
JPH06281411A (en) | Measuring method for hole position | |
JPH10105718A (en) | Optical measurement method for hole position | |
JPH06109442A (en) | Detection apparatus for three-dimensional position | |
JPH06258022A (en) | Measuring method of hole position | |
JPH10105720A (en) | Optical measurement method for hole position | |
JP3318882B2 (en) | Optical measuring device and measuring method | |
JP3222664B2 (en) | Member position / posture measuring method and member joining method | |
JP3013255B2 (en) | Shape measurement method | |
JPH09329417A (en) | Light projector-receiver inter-calibration method for three-dimensional measurement | |
JPH10105721A (en) | Detection of picture position | |
JPH05329793A (en) | Visual sensor | |
JPH03160303A (en) | Detecting method of multiple hole | |
JP2006220425A (en) | Visual inspection device and visual inspection method for printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |