JPH1010050A - 三態窒素計の気化分離器 - Google Patents
三態窒素計の気化分離器Info
- Publication number
- JPH1010050A JPH1010050A JP16651096A JP16651096A JPH1010050A JP H1010050 A JPH1010050 A JP H1010050A JP 16651096 A JP16651096 A JP 16651096A JP 16651096 A JP16651096 A JP 16651096A JP H1010050 A JPH1010050 A JP H1010050A
- Authority
- JP
- Japan
- Prior art keywords
- glass tube
- gas component
- reaction
- liquid
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
(57)【要約】
【課題】 試料水に多少の懸濁物質があっても前処理を
行わずに三態窒素を高精度に測定することができる三態
窒素計の気化分離器の提供を目的とする。 【解決手段】 上記三態窒素を含有する試料水中に複数
の反応試薬を選択的に流入混合してから液相からガス成
分を分離する気化分離器として、水平ラインから所定角
度だけ傾斜した姿勢を保持して配置されガラス管17の
上側部に反応液流入口23aとガス成分流出口22aを
開口し、下側部にクリーンエア流入口21aと廃液排出
口10を開口して、廃液排出口10にドレンポンプP7
を配備した気化分離器を提供する。上記ガラス管17と
して、縦型構造、円筒形の縦型構成内壁円に反応液が流
下する内部溝24を形成した構成及び蛇管構造とする。
更に各例におけるガラス管17のガス成分流出口22a
の近傍部位に液レベル検出センサ25を設置してある。
行わずに三態窒素を高精度に測定することができる三態
窒素計の気化分離器の提供を目的とする。 【解決手段】 上記三態窒素を含有する試料水中に複数
の反応試薬を選択的に流入混合してから液相からガス成
分を分離する気化分離器として、水平ラインから所定角
度だけ傾斜した姿勢を保持して配置されガラス管17の
上側部に反応液流入口23aとガス成分流出口22aを
開口し、下側部にクリーンエア流入口21aと廃液排出
口10を開口して、廃液排出口10にドレンポンプP7
を配備した気化分離器を提供する。上記ガラス管17と
して、縦型構造、円筒形の縦型構成内壁円に反応液が流
下する内部溝24を形成した構成及び蛇管構造とする。
更に各例におけるガラス管17のガス成分流出口22a
の近傍部位に液レベル検出センサ25を設置してある。
Description
【0001】
【発明の属する技術分野】本発明は水中の三態窒素であ
るアンモニウムイオン(NH4 +)、硝酸イオン(N
O3 -)、亜硝酸イオン(NO2 -)の濃度をフローインジ
ェクション分析法の原理を用いて定量する三態窒素計に
関し、特に液相と気相を分離する気化分離器の新規な構
造に関するものである。
るアンモニウムイオン(NH4 +)、硝酸イオン(N
O3 -)、亜硝酸イオン(NO2 -)の濃度をフローインジ
ェクション分析法の原理を用いて定量する三態窒素計に
関し、特に液相と気相を分離する気化分離器の新規な構
造に関するものである。
【0002】
【従来の技術】一般に河川とか湖沼の水中に存在する前
記三態窒素を低濃度まで測定分析する方法としては、イ
オンクロマトグラフ法,比色法,中和滴定法,イオン電
極法が従来から用いられている。
記三態窒素を低濃度まで測定分析する方法としては、イ
オンクロマトグラフ法,比色法,中和滴定法,イオン電
極法が従来から用いられている。
【0003】この中で機器分析に分類されるイオンクロ
マトグラフ法は、イオン交換カラムを用いた高速液体ク
ロマトグラフの一種であり、無機陰イオンや陽イオンの
系統分析用として開発されたものであって、従来から分
析に難点のあったF-,Cl-,Br-,NO2 -,N
O3 -,SO3 2-,SO4 2-,PO4 3-等の無機陰イオンを
定量することができる。分析は陰イオン交換樹脂粒子を
充填した分離カラムの上端に試料溶液を注入すると、陰
イオンはイオン結合によってカラムに吸着する。次に導
電率検出器にほとんど検出されない競合陰イオンを含む
溶離液を流すと、各陰イオンは競合イオンと競合して夫
々特有の移動度でカラムから溶出するので、溶離液中の
陰イオン濃度を定量することができる。
マトグラフ法は、イオン交換カラムを用いた高速液体ク
ロマトグラフの一種であり、無機陰イオンや陽イオンの
系統分析用として開発されたものであって、従来から分
析に難点のあったF-,Cl-,Br-,NO2 -,N
O3 -,SO3 2-,SO4 2-,PO4 3-等の無機陰イオンを
定量することができる。分析は陰イオン交換樹脂粒子を
充填した分離カラムの上端に試料溶液を注入すると、陰
イオンはイオン結合によってカラムに吸着する。次に導
電率検出器にほとんど検出されない競合陰イオンを含む
溶離液を流すと、各陰イオンは競合イオンと競合して夫
々特有の移動度でカラムから溶出するので、溶離液中の
陰イオン濃度を定量することができる。
【0004】このイオンクロマトグラフ法は導電率検出
器を用いて前記アンモニウムイオンを数ppmから数十
ppmレベルの濃度まで測定可能であり、測定時間は試
料の導入後、数分から10分程度を必要とする。定量範
囲は0.1〜30(mg/l)と比較的高濃度である。
器を用いて前記アンモニウムイオンを数ppmから数十
ppmレベルの濃度まで測定可能であり、測定時間は試
料の導入後、数分から10分程度を必要とする。定量範
囲は0.1〜30(mg/l)と比較的高濃度である。
【0005】比色法は試料としての検水に試薬を投入し
て測定対象物質と等量の化学反応式から特定波長の吸光
度を測定してアンモニウムイオンを連続測定する方法で
あり、アンモニウムイオンが次亜塩素酸イオンの共存の
もとでフェノールと反応して生じるインドフェノール青
の630nmでの吸光度を測定してアンモニウムイオン
濃度を定量するインドフェノール青吸光光度法が代表的
方法であり、定量範囲は1.6〜33(mg/l)と比
較的高濃度である。
て測定対象物質と等量の化学反応式から特定波長の吸光
度を測定してアンモニウムイオンを連続測定する方法で
あり、アンモニウムイオンが次亜塩素酸イオンの共存の
もとでフェノールと反応して生じるインドフェノール青
の630nmでの吸光度を測定してアンモニウムイオン
濃度を定量するインドフェノール青吸光光度法が代表的
方法であり、定量範囲は1.6〜33(mg/l)と比
較的高濃度である。
【0006】中和滴定法は蒸留による前処理を行って抽
出したアンモニアを一定量の硫酸(25mmol/l)
中に吸収させた溶液について、50(mmol/l)水
酸化ナトリウム溶液で滴定してアンモニウムイオンを定
量する方法であり、定量範囲は0.3〜40(mg/
l)と比較的高濃度である。
出したアンモニアを一定量の硫酸(25mmol/l)
中に吸収させた溶液について、50(mmol/l)水
酸化ナトリウム溶液で滴定してアンモニウムイオンを定
量する方法であり、定量範囲は0.3〜40(mg/
l)と比較的高濃度である。
【0007】イオン電極法は前処理を行った試料に水酸
化ナトリウム溶液を加えてpHを11〜13に調節して
アンモニウムイオンをアンモニアに変え、指示電極(ア
ンモニア電極)を用いて電位を測定してアンモニウムイ
オンを定量す方法であり、定量範囲は0.1〜100
(mg/l)とかなり高濃度である。
化ナトリウム溶液を加えてpHを11〜13に調節して
アンモニウムイオンをアンモニアに変え、指示電極(ア
ンモニア電極)を用いて電位を測定してアンモニウムイ
オンを定量す方法であり、定量範囲は0.1〜100
(mg/l)とかなり高濃度である。
【0008】このような従来の各種分析方法が有してい
る課題を解消するため、本出願人は先に実願平7−10
5115号により、フローインジェクション法を応用し
て水中のアンモニウムイオン、硝酸イオン及び亜硝酸イ
オンを測定する装置と方法を提案した。上記フローイン
ジェクション法とは、連続して流れる試薬溶液(キャリ
ヤー)の流れの中に試料水と反応試薬とを連続投入し、
この反応液を混合コイル内で反応させて、得られた反応
生成物を種々の検出器により検出して定量する方法であ
る。特にこの装置は河川等の上水原水に溶存する各種窒
素形態の濃度を前記三つの形態に分離して測定するのに
有用であり、測定原理はヨウ化カリウム溶液、三塩化チ
タン溶液、次亜塩素酸溶液等を試薬として試料水中に順
次添加して、化学発光式の一酸化窒素検出器を用いて亜
硝酸,硝酸,アンモニアの量に比例した一酸化窒素濃度
のピークとして化学発光量を検出することにより測定を
実施する。
る課題を解消するため、本出願人は先に実願平7−10
5115号により、フローインジェクション法を応用し
て水中のアンモニウムイオン、硝酸イオン及び亜硝酸イ
オンを測定する装置と方法を提案した。上記フローイン
ジェクション法とは、連続して流れる試薬溶液(キャリ
ヤー)の流れの中に試料水と反応試薬とを連続投入し、
この反応液を混合コイル内で反応させて、得られた反応
生成物を種々の検出器により検出して定量する方法であ
る。特にこの装置は河川等の上水原水に溶存する各種窒
素形態の濃度を前記三つの形態に分離して測定するのに
有用であり、測定原理はヨウ化カリウム溶液、三塩化チ
タン溶液、次亜塩素酸溶液等を試薬として試料水中に順
次添加して、化学発光式の一酸化窒素検出器を用いて亜
硝酸,硝酸,アンモニアの量に比例した一酸化窒素濃度
のピークとして化学発光量を検出することにより測定を
実施する。
【0009】図10に基づいて三態窒素計の具体的な測
定原理を説明する。1は前記アンモニウムイオン、硝酸
イオン及び亜硝酸イオンを含有する試料水であり、複数
の反応試薬2,3,4とともに流路用細管内を流体ポン
プP1,P2,P3,P4の駆動に伴ってインジェクション
ポート5による流路切換を行いながら該試料水1と反応
試薬2,3,4とが混合器7に送り込まれる。P5は空
気ポンプであり、クリーンエア6が同様に混合器7に供
給される。
定原理を説明する。1は前記アンモニウムイオン、硝酸
イオン及び亜硝酸イオンを含有する試料水であり、複数
の反応試薬2,3,4とともに流路用細管内を流体ポン
プP1,P2,P3,P4の駆動に伴ってインジェクション
ポート5による流路切換を行いながら該試料水1と反応
試薬2,3,4とが混合器7に送り込まれる。P5は空
気ポンプであり、クリーンエア6が同様に混合器7に供
給される。
【0010】コイルによって構成された混合器7内で試
料水1と反応試薬2,3,4の流れが乱流状態になるこ
とにより、試料水1と反応試薬の2,3,4の反応が促
進されてから気化分離器8に入り、液相に溶け込んでい
る気体の気化分離作用により気体が気相側に分離され、
得られたガス成分は加熱酸化炉9に入り、気化分離器8
の廃液は廃液排出口10から背圧により自動的に排出さ
れる。
料水1と反応試薬2,3,4の流れが乱流状態になるこ
とにより、試料水1と反応試薬の2,3,4の反応が促
進されてから気化分離器8に入り、液相に溶け込んでい
る気体の気化分離作用により気体が気相側に分離され、
得られたガス成分は加熱酸化炉9に入り、気化分離器8
の廃液は廃液排出口10から背圧により自動的に排出さ
れる。
【0011】上記ガス成分は加熱酸化炉9で加熱される
ことによって一酸化窒素(NO)に転換され、この試料
気体が乾燥器11によって除湿されてから減圧タイプの
化学発光検出器12に流入する。P6は排気ポンプであ
り、化学発光検出器12内の減圧と測定後のガスの排気
を行う。この化学発光検出器12にはオゾン発生器13
で得られたオゾンガスが注入され、試料気体中のNOと
O3(オゾンガス)の反応によって生じる化学発光強度
が検出されて、注入した反応試薬の種類と化学発光強度
の関係に基づいて試料気体中に含まれる三態窒素濃度が
計測され、この計測信号14が演算制御部15に入力さ
れて演算処理により濃度換算され、表示・記録部16で
濃度の表示及びプリンタ等に記録される。
ことによって一酸化窒素(NO)に転換され、この試料
気体が乾燥器11によって除湿されてから減圧タイプの
化学発光検出器12に流入する。P6は排気ポンプであ
り、化学発光検出器12内の減圧と測定後のガスの排気
を行う。この化学発光検出器12にはオゾン発生器13
で得られたオゾンガスが注入され、試料気体中のNOと
O3(オゾンガス)の反応によって生じる化学発光強度
が検出されて、注入した反応試薬の種類と化学発光強度
の関係に基づいて試料気体中に含まれる三態窒素濃度が
計測され、この計測信号14が演算制御部15に入力さ
れて演算処理により濃度換算され、表示・記録部16で
濃度の表示及びプリンタ等に記録される。
【0012】この演算制御部15の制御出力15a,1
5bは、加熱酸化炉9の温度調節、オゾン発生器13の
運転/停止制御、反応試薬2,3,4の注入時のインジ
ェクションポート5による流路切換制御、流体ポンプP
1,P2,P3,P4と空気ポンプP5及び排気ポンプP6の
運転/停止制御信号として用いられる。
5bは、加熱酸化炉9の温度調節、オゾン発生器13の
運転/停止制御、反応試薬2,3,4の注入時のインジ
ェクションポート5による流路切換制御、流体ポンプP
1,P2,P3,P4と空気ポンプP5及び排気ポンプP6の
運転/停止制御信号として用いられる。
【0013】反応試薬2,3,4として、アンモニウム
イオンの測定には次亜塩素酸(HOCl)又は次亜塩素
酸ソーダ(NaClO)が用いられ、亜硝酸イオン測定
にはヨウ化カリウムが、硝酸イオン測定には三塩化チタ
ンの各溶液が用いられる。
イオンの測定には次亜塩素酸(HOCl)又は次亜塩素
酸ソーダ(NaClO)が用いられ、亜硝酸イオン測定
にはヨウ化カリウムが、硝酸イオン測定には三塩化チタ
ンの各溶液が用いられる。
【0014】このようなフローインジェクション法を用
いた三態窒素の測定法の特徴は、応答性がきわめて速
く、測定時間の大幅な短縮がはかれる上、検量線の直線
範囲が大きいことから測定レンジは低濃度から高濃度ま
で極めて広く、高精度で且つ繰り返し再現性が高い点に
ある。更に液相から分離された気相系での測定であるた
め、試料水中に懸濁物等の不純物が含まれている場合で
あっても、単に濾過等の前処理を実施することによって
気化分離器8前段での配管系の汚れがなく、従って下水
処理水とか河川水,湖沼水等の外、これらよりも汚れの
多い試料でも検出器本体に影響を及ぼすことなく迅速に
3態窒素の測定を実施することが可能となる。
いた三態窒素の測定法の特徴は、応答性がきわめて速
く、測定時間の大幅な短縮がはかれる上、検量線の直線
範囲が大きいことから測定レンジは低濃度から高濃度ま
で極めて広く、高精度で且つ繰り返し再現性が高い点に
ある。更に液相から分離された気相系での測定であるた
め、試料水中に懸濁物等の不純物が含まれている場合で
あっても、単に濾過等の前処理を実施することによって
気化分離器8前段での配管系の汚れがなく、従って下水
処理水とか河川水,湖沼水等の外、これらよりも汚れの
多い試料でも検出器本体に影響を及ぼすことなく迅速に
3態窒素の測定を実施することが可能となる。
【0015】
【発明が解決しようとする課題】前記した各種三態窒素
の測定方法において、イオンクロマトグラフ法の場合は
定量範囲が比較的低濃度まで可能であるが、前処理とか
検量線作成時間を除く測定時間が数分から10分程度と
かなり長時間を必要とする上、検水中に懸濁物質(水中
の濁質成分等)とか有機成分等が存在すると測定の妨害
となるため、プレフィルタ等を用いて前処理する必要が
ある。更に水道水を除く河川水とか湖沼水、下水処理水
などの検水は、汚れに対する対応が十分とれないことに
起因して連続測定は困難である。
の測定方法において、イオンクロマトグラフ法の場合は
定量範囲が比較的低濃度まで可能であるが、前処理とか
検量線作成時間を除く測定時間が数分から10分程度と
かなり長時間を必要とする上、検水中に懸濁物質(水中
の濁質成分等)とか有機成分等が存在すると測定の妨害
となるため、プレフィルタ等を用いて前処理する必要が
ある。更に水道水を除く河川水とか湖沼水、下水処理水
などの検水は、汚れに対する対応が十分とれないことに
起因して連続測定は困難である。
【0016】前記比色法は、試料としての検水に試薬を
投入して測定対象物質と等量の化学反応式から特定波長
の吸光度を測定してアンモニウムイオンを連続測定する
方法であるため、前処理、発色操作、吸光度測定と多く
の手分析操作を必要とするとともに検水用の試料が10
0ml程度という多量を必要とし、測定時間は全工程で
30分〜1時間以上もかかる上、特に比色を測定原理と
しているためにppmレベルでの測定は可能であるが、
ppbレベルでの測定の場合には、測定誤差が大きくな
ってしまうために実用化及び自動化は難しいという問題
点がある。
投入して測定対象物質と等量の化学反応式から特定波長
の吸光度を測定してアンモニウムイオンを連続測定する
方法であるため、前処理、発色操作、吸光度測定と多く
の手分析操作を必要とするとともに検水用の試料が10
0ml程度という多量を必要とし、測定時間は全工程で
30分〜1時間以上もかかる上、特に比色を測定原理と
しているためにppmレベルでの測定は可能であるが、
ppbレベルでの測定の場合には、測定誤差が大きくな
ってしまうために実用化及び自動化は難しいという問題
点がある。
【0017】更に前記中和滴定法とか陰イオン電極法
は、何れも操作が煩瑣であって測定に長時間を要し、し
かも定量範囲がかなり高濃度であるため、能率面及び測
定精度の面での難点が存在する。
は、何れも操作が煩瑣であって測定に長時間を要し、し
かも定量範囲がかなり高濃度であるため、能率面及び測
定精度の面での難点が存在する。
【0018】一方、フローインジェクション法を用いた
三態窒素の測定法によれば、応答性が速くて測定時間の
大幅な短縮がはかれる上、測定レンジが低濃度から高濃
度まで極めて広く、高精度で且つ繰り返し再現性が高い
という利点があるが、特に反応試薬の注入後に液中に溶
存する測定目的物質を気相側へ移行させる気化分離器8
の機能が重要であって、この気化分離効率が計測精度と
信頼性に大きな影響を及ぼす。
三態窒素の測定法によれば、応答性が速くて測定時間の
大幅な短縮がはかれる上、測定レンジが低濃度から高濃
度まで極めて広く、高精度で且つ繰り返し再現性が高い
という利点があるが、特に反応試薬の注入後に液中に溶
存する測定目的物質を気相側へ移行させる気化分離器8
の機能が重要であって、この気化分離効率が計測精度と
信頼性に大きな影響を及ぼす。
【0019】この気化分離器8は、図11に示したよう
にガラス管17中にガス透過膜18が配置された構造を
有し、水平ラインから所定角度だけ傾斜した姿勢を保持
して配置されていて、上方から流入する反応液23が流
れる際に、液相19から液中に溶存する測定目的物質が
ガス透過膜18を通過して気相20へ移行して、下方か
ら送り込まれるクリーンエア21をキャリアガスとする
ガス成分22がガラス管17の最上部から次段の加熱酸
化炉9(図10に図示)に入り、気化分離器8の廃液は
廃液排出口10から排出されるように構成されている。
にガラス管17中にガス透過膜18が配置された構造を
有し、水平ラインから所定角度だけ傾斜した姿勢を保持
して配置されていて、上方から流入する反応液23が流
れる際に、液相19から液中に溶存する測定目的物質が
ガス透過膜18を通過して気相20へ移行して、下方か
ら送り込まれるクリーンエア21をキャリアガスとする
ガス成分22がガラス管17の最上部から次段の加熱酸
化炉9(図10に図示)に入り、気化分離器8の廃液は
廃液排出口10から排出されるように構成されている。
【0020】特にガス透過膜18でのガス透過の度合は
計測精度に直接影響を及ぼすものであり、試料水1中に
懸濁物質が僅かでも含まれている場合には、長期連続測
定中にガス透過効率で低下する難点がある。そこで測定
精度確保の観点から、前処理として反応液の濾過操作を
実施してから気化分離器8内に流入するようにしてガス
透過膜18の透過効率を高く維持する手段もある。
計測精度に直接影響を及ぼすものであり、試料水1中に
懸濁物質が僅かでも含まれている場合には、長期連続測
定中にガス透過効率で低下する難点がある。そこで測定
精度確保の観点から、前処理として反応液の濾過操作を
実施してから気化分離器8内に流入するようにしてガス
透過膜18の透過効率を高く維持する手段もある。
【0021】しかし三態窒素計で測定対象となるアンモ
ニウムイオン,硝酸イオン,亜硝酸イオンの中でアンモ
ニウムイオンとか亜硝酸イオンは生物学的に不安定であ
って前処理として濾過操作を実施すると濾過装置内に微
生物が繁殖する場合があり、この微生物によりアンモニ
ウムイオンや亜硝酸イオンが分解して濃度変化する惧れ
がある。従って懸濁物質が多量に含まれている場合を除
いて、多少の懸濁物質があっても前処理を行わずに測定
することが必要である。
ニウムイオン,硝酸イオン,亜硝酸イオンの中でアンモ
ニウムイオンとか亜硝酸イオンは生物学的に不安定であ
って前処理として濾過操作を実施すると濾過装置内に微
生物が繁殖する場合があり、この微生物によりアンモニ
ウムイオンや亜硝酸イオンが分解して濃度変化する惧れ
がある。従って懸濁物質が多量に含まれている場合を除
いて、多少の懸濁物質があっても前処理を行わずに測定
することが必要である。
【0022】そこで本発明は上記に鑑みてなされたもの
であって、多少の懸濁物質があっても前処理を行わずに
三態窒素であるアンモニウムイオン、硝酸イオン、亜硝
酸イオンを高精度に分析することができる三態窒素計の
気化分離器を提供することを目的とするものである。
であって、多少の懸濁物質があっても前処理を行わずに
三態窒素であるアンモニウムイオン、硝酸イオン、亜硝
酸イオンを高精度に分析することができる三態窒素計の
気化分離器を提供することを目的とするものである。
【0023】
【課題を解決するための手段】本発明は上記の目的を達
成するために、アンモニウムイオンと硝酸イオン及び亜
硝酸イオンを含有する試料水を流体ポンプの駆動によっ
て流路用細管中を流下させながら、該試料水中に複数の
反応試薬を選択的に流入混合し、気化分離器によって液
相から分離したガス成分を加熱酸化炉で一酸化窒素に転
換した後、検出器により化学発光強度を検出して気相中
のアンモニウムイオンと硝酸イオン及び亜硝酸イオンを
定量するようにした三態窒素計において、先ず請求項1
により、水平ラインから所定角度だけ傾斜した姿勢を保
持して配置されガラス管の上側部に反応液流入口とガス
成分流出口を開口し、該ガラス管の下側部にクリーンエ
ア流入口と廃液排出口を開口して、この廃液排出口にド
レンポンプを配備した三態窒素計の気化分離器を提供す
る。
成するために、アンモニウムイオンと硝酸イオン及び亜
硝酸イオンを含有する試料水を流体ポンプの駆動によっ
て流路用細管中を流下させながら、該試料水中に複数の
反応試薬を選択的に流入混合し、気化分離器によって液
相から分離したガス成分を加熱酸化炉で一酸化窒素に転
換した後、検出器により化学発光強度を検出して気相中
のアンモニウムイオンと硝酸イオン及び亜硝酸イオンを
定量するようにした三態窒素計において、先ず請求項1
により、水平ラインから所定角度だけ傾斜した姿勢を保
持して配置されガラス管の上側部に反応液流入口とガス
成分流出口を開口し、該ガラス管の下側部にクリーンエ
ア流入口と廃液排出口を開口して、この廃液排出口にド
レンポンプを配備した三態窒素計の気化分離器を提供す
る。
【0024】前記ガラス管を、縦方向に立ち上がった姿
勢を保持して配置する構成と、縦方向に立ち上がった円
筒形として構成し、このガラス管の内壁円周面に沿って
反応液が流下するための内部溝を形成した構成と、縦方
向の蛇管形状として構成し、反応液が渦流状に流下する
ように形成した気化分離器の各種例を提供する。更に各
例におけるガラス管のガス成分流出口の近傍部位に液レ
ベル検出センサを設置してある。
勢を保持して配置する構成と、縦方向に立ち上がった円
筒形として構成し、このガラス管の内壁円周面に沿って
反応液が流下するための内部溝を形成した構成と、縦方
向の蛇管形状として構成し、反応液が渦流状に流下する
ように形成した気化分離器の各種例を提供する。更に各
例におけるガラス管のガス成分流出口の近傍部位に液レ
ベル検出センサを設置してある。
【0025】かかる三態窒素計の気化分離器によれば、
反応液流入口から流入する反応液は傾斜したガラス管、
縦方向に立ち上がったガラス管もしくは蛇管形状のガラ
ス管に沿って流下する際に、クリーンエア流入口から流
入するクリーンエアと直接接触して液中に溶存する測定
目的物質がクリーンエアをキャリアガスとしてガス成分
流出口から流出し、次段の加熱酸化炉に送り込まれる。
気化分離器の廃液は廃液排出口に配備されたドレンポン
プの駆動により排出される。このドレンポンプは反応液
の注入流量とのバランスを保つように廃液の排出量を調
節しており、これによって気化分離部での反応液の貯留
量増加がないように機能する。
反応液流入口から流入する反応液は傾斜したガラス管、
縦方向に立ち上がったガラス管もしくは蛇管形状のガラ
ス管に沿って流下する際に、クリーンエア流入口から流
入するクリーンエアと直接接触して液中に溶存する測定
目的物質がクリーンエアをキャリアガスとしてガス成分
流出口から流出し、次段の加熱酸化炉に送り込まれる。
気化分離器の廃液は廃液排出口に配備されたドレンポン
プの駆動により排出される。このドレンポンプは反応液
の注入流量とのバランスを保つように廃液の排出量を調
節しており、これによって気化分離部での反応液の貯留
量増加がないように機能する。
【0026】又、ガラス管のガス成分流出口の近傍部位
に液レベル検出センサを設置したことにより、ガラス管
内の反応液のレベルが上昇した場合には液レベル検出セ
ンサがこれを感知して警報信号を発して、試料水と反応
試薬を送り込む流体ポンプの稼働を停止する等の手段を
取ることにより、廃液流量と反応液流入量とのバランス
の崩れに起因するガラス管内での反応液の貯留量の増加
及びガス成分流出口からの反応液の流出現象は防止され
る。
に液レベル検出センサを設置したことにより、ガラス管
内の反応液のレベルが上昇した場合には液レベル検出セ
ンサがこれを感知して警報信号を発して、試料水と反応
試薬を送り込む流体ポンプの稼働を停止する等の手段を
取ることにより、廃液流量と反応液流入量とのバランス
の崩れに起因するガラス管内での反応液の貯留量の増加
及びガス成分流出口からの反応液の流出現象は防止され
る。
【0027】
【発明の実施の形態】以下本発明にかかる三態窒素計の
気化分離器の具体的な各種実施例を、前記従来の構成部
分と同一の構成部分に同一の符号を付して詳述する。図
1は本発明の第1実施例にかかる気化分離器8の構成を
示しており、17はガラス管であって、このガラス管1
7は水平ラインから所定角度だけ傾斜した姿勢を保持し
て配置されている。23aはガラス管17の上側部に開
口された反応液流入口、22aはガス成分流出口、21
aはガラス管17の下側部に開口されたクリーンエア流
入口、10は廃液排出口であり、この廃液排出口10に
ドレンポンプP7が配備されている。ガラス管17は円
筒形もしくは角筒形の何れであっても良い。
気化分離器の具体的な各種実施例を、前記従来の構成部
分と同一の構成部分に同一の符号を付して詳述する。図
1は本発明の第1実施例にかかる気化分離器8の構成を
示しており、17はガラス管であって、このガラス管1
7は水平ラインから所定角度だけ傾斜した姿勢を保持し
て配置されている。23aはガラス管17の上側部に開
口された反応液流入口、22aはガス成分流出口、21
aはガラス管17の下側部に開口されたクリーンエア流
入口、10は廃液排出口であり、この廃液排出口10に
ドレンポンプP7が配備されている。ガラス管17は円
筒形もしくは角筒形の何れであっても良い。
【0028】従って該気化分離器8は従来例(図11)
におけるガス透過膜18を取り除いたことが構成上の特
徴となっている。ここで反応液とは試料水と反応試薬と
が混合された液を指している。
におけるガス透過膜18を取り除いたことが構成上の特
徴となっている。ここで反応液とは試料水と反応試薬と
が混合された液を指している。
【0029】かかる第1実施例によれば、反応液流入口
23aから流入する反応液はガラス管17の傾斜に沿っ
て流下し、クリーンエア流入口21aから流入するクリ
ーンエアが反応液とは逆方向に流れてガラス管17内で
直接接触して液中に溶存する測定目的物質がクリーンエ
アをキャリアガスとしてガス成分流出口22aから流出
し、図外の加熱酸化炉に送り込まれる。気化分離器8の
廃液は廃液排出口10に配備されたドレンポンプP7の
駆動により排出される。このドレンポンプP7は気化分
離部での反応液の貯留量増加がないように、反応液の注
入流量とのバランスを保って廃液の排出量を調節する機
能を有している。
23aから流入する反応液はガラス管17の傾斜に沿っ
て流下し、クリーンエア流入口21aから流入するクリ
ーンエアが反応液とは逆方向に流れてガラス管17内で
直接接触して液中に溶存する測定目的物質がクリーンエ
アをキャリアガスとしてガス成分流出口22aから流出
し、図外の加熱酸化炉に送り込まれる。気化分離器8の
廃液は廃液排出口10に配備されたドレンポンプP7の
駆動により排出される。このドレンポンプP7は気化分
離部での反応液の貯留量増加がないように、反応液の注
入流量とのバランスを保って廃液の排出量を調節する機
能を有している。
【0030】従って第1実施例によれば、従来例におけ
るガス透過膜18がないため、懸濁物質によるガス透過
効率劣化に伴う測定精度の低下をきたす惧れがない。図
2は第1実施例におけるアンモニウムイオンNH4 +濃度
(ppb)と応答強度の相関を示す検量線であり、従来
用いられていたガス透過膜がなくても測定精度上で何ら
の問題は生じない。
るガス透過膜18がないため、懸濁物質によるガス透過
効率劣化に伴う測定精度の低下をきたす惧れがない。図
2は第1実施例におけるアンモニウムイオンNH4 +濃度
(ppb)と応答強度の相関を示す検量線であり、従来
用いられていたガス透過膜がなくても測定精度上で何ら
の問題は生じない。
【0031】図3は本発明の第2実施例にかかる気化分
離器8の構成を示しており、基本的構成は第1実施例と
同一であるが、本第2実施例では縦型の構成,即ち、ガ
ラス管17が縦方向に立ち上がった姿勢を保持して配置
されており、側部上方に反応液流入口23aが、側部下
方にクリーンエア流入口21aが、最上部にガス成分流
出口22aが、最下部に廃液排出口10がそれぞれ開口
され、この廃液排出口10にドレンポンプP8が配備さ
れている。
離器8の構成を示しており、基本的構成は第1実施例と
同一であるが、本第2実施例では縦型の構成,即ち、ガ
ラス管17が縦方向に立ち上がった姿勢を保持して配置
されており、側部上方に反応液流入口23aが、側部下
方にクリーンエア流入口21aが、最上部にガス成分流
出口22aが、最下部に廃液排出口10がそれぞれ開口
され、この廃液排出口10にドレンポンプP8が配備さ
れている。
【0032】かかる第2実施例によれば、反応液流入口
23aから流入する反応液は縦方向に立ち上がったガラ
ス管17の壁面に沿って流下し、クリーンエア流入口2
1aから流入するクリーンエアと直接接触して液中に溶
存する測定目的物質がクリーンエアをキャリアガスとし
てガス成分流出口22aから流出し、加熱酸化炉に送り
込まれる。この時、第1実施例と同様にドレンポンプP
8は気化分離部の反応液の貯留量増加がないように反応
液の注入流量とのバランスを保って廃液の排出量を調節
する。
23aから流入する反応液は縦方向に立ち上がったガラ
ス管17の壁面に沿って流下し、クリーンエア流入口2
1aから流入するクリーンエアと直接接触して液中に溶
存する測定目的物質がクリーンエアをキャリアガスとし
てガス成分流出口22aから流出し、加熱酸化炉に送り
込まれる。この時、第1実施例と同様にドレンポンプP
8は気化分離部の反応液の貯留量増加がないように反応
液の注入流量とのバランスを保って廃液の排出量を調節
する。
【0033】この第2実施例の場合も従来例におけるガ
ス透過膜がないため、懸濁物質によるガス透過効率劣化
に伴う測定精度の低下をきたす惧れは生じない。
ス透過膜がないため、懸濁物質によるガス透過効率劣化
に伴う測定精度の低下をきたす惧れは生じない。
【0034】図4は本発明の第3実施例にかかる気化分
離器8の構成を示しており、本第3実施例ではガラス管
17を縦方向に立ち上がった円筒形として構成し、この
ガラス管17の内壁円周面に沿って反応液が流下するよ
うに、該ガラス管17の内壁面に内部溝24が形成され
ている。このガラス管17の側部上方に反応液流入口2
3aが、側部下方にクリーンエア流入口21aが、最上
部にガス成分流出口22aが、最下部に廃液排出口10
がそれぞれ開口され、この廃液排出口10にドレンポン
プP9が配備されている。
離器8の構成を示しており、本第3実施例ではガラス管
17を縦方向に立ち上がった円筒形として構成し、この
ガラス管17の内壁円周面に沿って反応液が流下するよ
うに、該ガラス管17の内壁面に内部溝24が形成され
ている。このガラス管17の側部上方に反応液流入口2
3aが、側部下方にクリーンエア流入口21aが、最上
部にガス成分流出口22aが、最下部に廃液排出口10
がそれぞれ開口され、この廃液排出口10にドレンポン
プP9が配備されている。
【0035】かかる第3実施例によれば、反応液流入口
23aから流入する反応液はガラス管17の内壁面に形
成された内部溝24に沿って流下し、クリーンエア流入
口21aから流入するクリーンエアと直接接触して液中
に溶存する測定目的物質がクリーンエアをキャリアガス
としてガス成分流出口22aから流出し、加熱酸化炉に
送り込まれる。ドレンポンプP9は気化分離部の反応液
の貯留量増加がないように反応液の注入流量とのバラン
スを保って廃液の排出量を調節する。
23aから流入する反応液はガラス管17の内壁面に形
成された内部溝24に沿って流下し、クリーンエア流入
口21aから流入するクリーンエアと直接接触して液中
に溶存する測定目的物質がクリーンエアをキャリアガス
としてガス成分流出口22aから流出し、加熱酸化炉に
送り込まれる。ドレンポンプP9は気化分離部の反応液
の貯留量増加がないように反応液の注入流量とのバラン
スを保って廃液の排出量を調節する。
【0036】図5は本発明の第4実施例にかかる気化分
離器8の構成を示しており、本第4実施例ではガラス管
17を縦方向の蛇管形状として反応液が渦流状に流下す
るように形成したことが特徴となっていて、このガラス
管17の側部上方に反応液流入口23aが、側部下方に
クリーンエア流入口21aが、最上部にガス成分流出口
22aが、最下部に廃液排出口10がそれぞれ開口さ
れ、この廃液排出口10にドレンポンプP10が配備され
ている。
離器8の構成を示しており、本第4実施例ではガラス管
17を縦方向の蛇管形状として反応液が渦流状に流下す
るように形成したことが特徴となっていて、このガラス
管17の側部上方に反応液流入口23aが、側部下方に
クリーンエア流入口21aが、最上部にガス成分流出口
22aが、最下部に廃液排出口10がそれぞれ開口さ
れ、この廃液排出口10にドレンポンプP10が配備され
ている。
【0037】かかる第4実施例によれば、反応液流入口
23aから流入する反応液は蛇管形状のガラス管17の
内壁面に沿って渦流として流下する際に液相に溶け込ん
でいる気体の気相側への分離作用が高められ、クリーン
エア流入口21aから流入するクリーンエアと接触して
液中に溶存する測定目的物質がクリーンエアをキャリア
ガスとしてガス成分流出口22aから流出し、加熱酸化
炉に送り込まれる。ドレンポンプP10は気化分離部の反
応液の貯留量増加がないように反応液の注入流量とのバ
ランスを保って廃液の排出量を調節する。
23aから流入する反応液は蛇管形状のガラス管17の
内壁面に沿って渦流として流下する際に液相に溶け込ん
でいる気体の気相側への分離作用が高められ、クリーン
エア流入口21aから流入するクリーンエアと接触して
液中に溶存する測定目的物質がクリーンエアをキャリア
ガスとしてガス成分流出口22aから流出し、加熱酸化
炉に送り込まれる。ドレンポンプP10は気化分離部の反
応液の貯留量増加がないように反応液の注入流量とのバ
ランスを保って廃液の排出量を調節する。
【0038】図6は本発明の第5実施例にかかる気化分
離器8の構成を示しており、この第5実施例ではガラス
管17が第1実施例(図1)と同様に水平ラインから所
定角度だけ傾斜して配置され、反応液流入口23a、ク
リーンエア流入口21a、ガス成分流出口22a、廃液
排出口10がそれぞれ開口されているとともに廃液排出
口10にドレンポンプP7が配備されており、更にガス
成分流出口22aの近傍部位に液レベル検出センサ25
が設置されている。
離器8の構成を示しており、この第5実施例ではガラス
管17が第1実施例(図1)と同様に水平ラインから所
定角度だけ傾斜して配置され、反応液流入口23a、ク
リーンエア流入口21a、ガス成分流出口22a、廃液
排出口10がそれぞれ開口されているとともに廃液排出
口10にドレンポンプP7が配備されており、更にガス
成分流出口22aの近傍部位に液レベル検出センサ25
が設置されている。
【0039】即ち、前記第1実施例によれば、懸濁物質
が甚だしい場合を除いて多少の懸濁物質が流入しても前
処理なしで連続測定が可能であるが、ガラス管17内に
ガス透過膜が存在しないため、反応液を排出するための
ドレンポンプP7の動作が重要となる。これは廃液流量
と反応液流入量とのバランスが崩れて反応液流入量より
も廃液流量の方が少ない場合には、ガラス管17内に反
応液の貯留量が徐々に増加し、ついにはガス成分流出口
22aからガス成分のみならず反応液が流出して次段の
加熱酸化炉に流入してしまう惧れがある。特に長期に亙
る連続測定を実施する場合には上記反応液の流出現象が
生じる可能性がある。
が甚だしい場合を除いて多少の懸濁物質が流入しても前
処理なしで連続測定が可能であるが、ガラス管17内に
ガス透過膜が存在しないため、反応液を排出するための
ドレンポンプP7の動作が重要となる。これは廃液流量
と反応液流入量とのバランスが崩れて反応液流入量より
も廃液流量の方が少ない場合には、ガラス管17内に反
応液の貯留量が徐々に増加し、ついにはガス成分流出口
22aからガス成分のみならず反応液が流出して次段の
加熱酸化炉に流入してしまう惧れがある。特に長期に亙
る連続測定を実施する場合には上記反応液の流出現象が
生じる可能性がある。
【0040】そこで第5実施例ではガス成分流出口22
aの近傍部位に液レベル検出センサ25を設置したこと
により、反応液のレベルが上昇した場合に該液レベル検
出センサ25がこれを感知して演算制御部15に警報信
号を発し、試料水と反応試薬を送り込む流体ポンプの稼
働を停止する等の手段を取ることにより、上記の問題点
を解消することができる。
aの近傍部位に液レベル検出センサ25を設置したこと
により、反応液のレベルが上昇した場合に該液レベル検
出センサ25がこれを感知して演算制御部15に警報信
号を発し、試料水と反応試薬を送り込む流体ポンプの稼
働を停止する等の手段を取ることにより、上記の問題点
を解消することができる。
【0041】図7は前記第2実施例で説明したガラス管
17が縦方向に立ち上がった気化分離器8のガス成分流
出口22aの近傍部位に液レベル検出センサ25を設置
した第6実施例であり、図8は前記第3実施例で説明し
た円筒形のガラス管17の内壁円周面に沿って内部溝2
4を形成した気化分離器8のガス成分流出口22aの近
傍部位に液レベル検出センサ25を設置した第7実施例
であり、図9は前記第4実施例で説明したガラス管17
を渦流状に形成した蛇管形状とした気化分離器8のガス
成分流出口22aの近傍部位に液レベル検出センサ25
を設置した第8実施例である。各例における液レベル検
出センサ25の機能は第5実施例で説明した場合と基本
的に同一である。
17が縦方向に立ち上がった気化分離器8のガス成分流
出口22aの近傍部位に液レベル検出センサ25を設置
した第6実施例であり、図8は前記第3実施例で説明し
た円筒形のガラス管17の内壁円周面に沿って内部溝2
4を形成した気化分離器8のガス成分流出口22aの近
傍部位に液レベル検出センサ25を設置した第7実施例
であり、図9は前記第4実施例で説明したガラス管17
を渦流状に形成した蛇管形状とした気化分離器8のガス
成分流出口22aの近傍部位に液レベル検出センサ25
を設置した第8実施例である。各例における液レベル検
出センサ25の機能は第5実施例で説明した場合と基本
的に同一である。
【0042】
【発明の効果】以上詳細に説明したように、本発明にか
かる三態窒素計は、試料水と反応試薬とが混合されて試
料水となり、反応溶液が気化分離器でガス成分が液相か
ら分離されて加熱酸化炉及び検出器に送り込まれ、化学
発光強度から気相中のアンモニウムイオンと硝酸イオン
及び亜硝酸イオンを定量することができるが、この気化
分離器内にガス透過膜が存在しないため、懸濁物質によ
るガス透過効率劣化に伴う測定精度の低下をきたす惧れ
は生じない。
かる三態窒素計は、試料水と反応試薬とが混合されて試
料水となり、反応溶液が気化分離器でガス成分が液相か
ら分離されて加熱酸化炉及び検出器に送り込まれ、化学
発光強度から気相中のアンモニウムイオンと硝酸イオン
及び亜硝酸イオンを定量することができるが、この気化
分離器内にガス透過膜が存在しないため、懸濁物質によ
るガス透過効率劣化に伴う測定精度の低下をきたす惧れ
は生じない。
【0043】特に試料水中に懸濁物質が多少含まれてい
ても、前処理として反応液の濾過操作を実施する必要が
ないので、濾過操作による微生物が繁殖に起因するアン
モニウムイオンや亜硝酸イオンの分解とか濃度変化はな
く、三態窒素であるアンモニウムイオン、硝酸イオン、
亜硝酸イオンを高精度に測定することができる三態窒素
計の気化分離器を提供することが出来る。
ても、前処理として反応液の濾過操作を実施する必要が
ないので、濾過操作による微生物が繁殖に起因するアン
モニウムイオンや亜硝酸イオンの分解とか濃度変化はな
く、三態窒素であるアンモニウムイオン、硝酸イオン、
亜硝酸イオンを高精度に測定することができる三態窒素
計の気化分離器を提供することが出来る。
【図1】本発明の第1実施例にかかる気化分離器の構成
を示す概要図。
を示す概要図。
【図2】第1実施例におけるNH4 +イオン濃度と応答強
度の相関を示す検量線図。
度の相関を示す検量線図。
【図3】本発明の第2実施例の構成を示す概要図。
【図4】本発明の第3実施例の構成を示す概要図。
【図5】本発明の第4実施例の構成を示す概要図。
【図6】本発明の第5実施例の構成を示す概要図。
【図7】本発明の第6実施例の構成を示す概要図。
【図8】本発明の第7実施例の構成を示す概要図。
【図9】本発明の第8実施例の構成を示す概要図。
【図10】三態窒素計の具体的な測定原理を全体的に示
す概要図。
す概要図。
【図11】従来の気化分離器の構成を示す概要図。
8…気化分離器 10…廃液排出口 15…演算制御部 17…ガラス管 21a…クリーンエア流入口 22a…ガス成分流出口 23a…反応液流入口 25…液レベル検出センサ
Claims (5)
- 【請求項1】 アンモニウムイオンと硝酸イオン及び亜
硝酸イオンを含有する試料水を流体ポンプの駆動によっ
て流路用細管中を流下させながら、該試料水中に複数の
反応試薬を選択的に流入混合し、気化分離器によって液
相から分離したガス成分を加熱酸化炉で一酸化窒素に転
換した後、検出器により化学発光強度を検出して気相中
のアンモニウムイオンと硝酸イオン及び亜硝酸イオンを
定量するようにした三態窒素計において、 水平ラインから所定角度だけ傾斜した姿勢を保持して配
置されガラス管の上側部に反応液流入口とガス成分流出
口を開口し、該ガラス管の下側部にクリーンエア流入口
と廃液排出口を開口して、この廃液排出口にドレンポン
プを配備したことを特徴とする三態窒素計の気化分離
器。 - 【請求項2】 前記ガラス管を、縦方向に立ち上がった
姿勢を保持して配置した請求項1記載の三態窒素計の気
化分離器。 - 【請求項3】 前記ガラス管を、縦方向に立ち上がった
円筒形として構成し、このガラス管の内壁円周面に沿っ
て反応液が流下するための内部溝を形成した請求項1記
載の三態窒素計の気化分離器。 - 【請求項4】 前記ガラス管を、縦方向の蛇管形状とし
て構成し、反応液が渦流状に流下するように形成した請
求項1記載の三態窒素計の気化分離器。 - 【請求項5】 前記ガス成分流出口の近傍部位に液レベ
ル検出センサを設置した請求項1,2,3,4記載の三
態窒素計の気化分離器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16651096A JPH1010050A (ja) | 1996-06-27 | 1996-06-27 | 三態窒素計の気化分離器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16651096A JPH1010050A (ja) | 1996-06-27 | 1996-06-27 | 三態窒素計の気化分離器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1010050A true JPH1010050A (ja) | 1998-01-16 |
Family
ID=15832684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16651096A Pending JPH1010050A (ja) | 1996-06-27 | 1996-06-27 | 三態窒素計の気化分離器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1010050A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013073693A1 (ja) * | 2011-11-17 | 2013-05-23 | 株式会社島津製作所 | 気液接触抽出方法及び装置 |
JP5684959B1 (ja) * | 2013-10-25 | 2015-03-18 | 株式会社ピュアロンジャパン | 溶存気体濃度測定装置および溶存気体濃度測定方法 |
US9347919B2 (en) | 2011-11-17 | 2016-05-24 | Shimadzu Corporation | Gas-liquid contact extraction method and apparatus |
CN108426873A (zh) * | 2018-03-09 | 2018-08-21 | 中国科学院海洋研究所 | 一种氢化物的检测方法和专用装置 |
-
1996
- 1996-06-27 JP JP16651096A patent/JPH1010050A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013073693A1 (ja) * | 2011-11-17 | 2013-05-23 | 株式会社島津製作所 | 気液接触抽出方法及び装置 |
CN103946683A (zh) * | 2011-11-17 | 2014-07-23 | 株式会社岛津制作所 | 气液接触提取方法以及装置 |
JPWO2013073693A1 (ja) * | 2011-11-17 | 2015-04-02 | 株式会社島津製作所 | 気液接触抽出方法及び装置 |
US9347919B2 (en) | 2011-11-17 | 2016-05-24 | Shimadzu Corporation | Gas-liquid contact extraction method and apparatus |
JP5684959B1 (ja) * | 2013-10-25 | 2015-03-18 | 株式会社ピュアロンジャパン | 溶存気体濃度測定装置および溶存気体濃度測定方法 |
WO2015059810A1 (ja) * | 2013-10-25 | 2015-04-30 | 株式会社ピュアロンジャパン | 溶存気体濃度測定装置および溶存気体濃度測定方法 |
CN108426873A (zh) * | 2018-03-09 | 2018-08-21 | 中国科学院海洋研究所 | 一种氢化物的检测方法和专用装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0897538B1 (en) | Method and apparatus for the measurement of dissolved carbon in deionized water | |
US5205988A (en) | Apparatus for measuring gaseous aldehyde | |
JP4049801B2 (ja) | サンプル中の元素を定量又は半定量的に測定可能なフロー分析システム | |
US5668014A (en) | Device and method for estimating three nitrogen-including ionic substances in water | |
US6228325B1 (en) | Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same | |
Capitan-Vallvey et al. | Flow-injection method for the determination of tin in fruit juices using solid-phase spectrophotometry | |
CN110082303A (zh) | 仪器检测水质中cod含量的方法 | |
JPH1010050A (ja) | 三態窒素計の気化分離器 | |
TWI844937B (zh) | 尿素檢測方法及裝置 | |
JP3538957B2 (ja) | 水中の3態窒素の分析方法及び分析装置 | |
GB2163553A (en) | Method and apparatus for chemiluminescence analysis | |
JP3329071B2 (ja) | 硝酸イオンと亜硝酸イオンの分析方法及び分析装置 | |
van Staden | Solving the problems of sequential injection systems as process analyzers | |
Luo et al. | Flow/sequential injection determination of gaseous ammonia with a glass diffusion denuder | |
Young et al. | Biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total oxygen demand (TOD) | |
Chung et al. | Determination of aqueous ozone for potable water treatment applications by chemiluminescence flow-injection analysis. A feasibility study | |
JP3911820B2 (ja) | イオン濃度計測装置 | |
Korenaga | A Flow Injection Analyzer for Chemical Oxygen Demand Using Potassium Permanganate | |
KR20180004948A (ko) | 미세유체칩을 이용한 수질 중 6가 크롬(ⅵ)의 측정 장치 | |
JP2000146942A (ja) | 水中の窒素濃度測定装置 | |
JP2001124757A (ja) | 3態窒素分析システムにおけるシステムの自己診断方法 | |
JP3911821B2 (ja) | イオン濃度計測装置 | |
JPH10282083A (ja) | 水中のアンモニウムイオン測定方法 | |
JPS61104256A (ja) | 全揮発性有機化合物分析装置 | |
JP4085122B2 (ja) | サンプル中の元素を定量又は半定量的に測定可能なフロー分析システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040127 |
|
A521 | Written amendment |
Effective date: 20040329 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20040817 Free format text: JAPANESE INTERMEDIATE CODE: A02 |