JPH0994645A - Method for cleaning surface of continuously cast slab - Google Patents

Method for cleaning surface of continuously cast slab

Info

Publication number
JPH0994645A
JPH0994645A JP25135195A JP25135195A JPH0994645A JP H0994645 A JPH0994645 A JP H0994645A JP 25135195 A JP25135195 A JP 25135195A JP 25135195 A JP25135195 A JP 25135195A JP H0994645 A JPH0994645 A JP H0994645A
Authority
JP
Japan
Prior art keywords
cast slab
heating
slab
remelting
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25135195A
Other languages
Japanese (ja)
Inventor
San Nakato
參 中戸
Kenichi Tanmachi
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25135195A priority Critical patent/JPH0994645A/en
Publication of JPH0994645A publication Critical patent/JPH0994645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely achieve the surface cleaning of a continuously cast slab particularly without developing secondary surface defect by heating and remelting the surface layer of the continuously cast slab continuously drawn out from the lower end of a continuous cast mold on the way of cooling with heating device. SOLUTION: At the step on the way of cooling the high temp. in the inner part of the continuously cast slab 7, the heating and the remelting are executed to clean the cast slab. For example, the heating devices 8, 8' are arranged along a carrying course of continuously cast slab 7 at the position just before the upstream side or just after the downstream side of a cast slab cutting device 9 in a continuous caster to execute the heating and the remelting. In the treatment at this step, since the heating and the remelting are executed by effectively utilizing the high temp. of the continuously cast slab 7, this treatment is extremely profitable to the reducing point of the thermal energy and to the eliminating point of the surface defect. The heating devices 8, 8' have the constitution shifting a plasma torch, etc., along the width direction on the surface of the cast slab 7. Therefore, this treatment can be treated by small scale device and a holding time in the molten state can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造鋳片の表
面清浄化方法に関し、とくに表面割れやのろかみなどの
表面欠陥のない連続鋳造鋳片(以下、単に「連鋳鋳片」
という)を製造するのに有効に用いられる技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a surface of a continuously cast slab, and more particularly to a continuously cast slab (hereinafter simply referred to as "continuous cast slab") having no surface defects such as surface cracks and frostiness.
It is a technology that is effectively used for manufacturing.

【0002】[0002]

【従来の技術】一般に、スラブやブルーム、ビレットな
どの連鋳鋳片には、表面割れ(縦割れ、横割れ、コーナ
ー割れ), のろかみあるいはオッシレーションマークと
いった表面欠陥が生成する場合がある。これらの表面欠
陥のうち大きなものは、ガスバーナーによる溶削やグラ
インダーなどよる切削を行って手入れを行うことが必要
となる。こうした連鋳鋳片の手入れは、作業負荷の増大
や製品歩留りの低下を招くだけでなく、高温鋳片の加熱
炉への「無手入れ装入」や圧延機による「直接圧延」が
できなくなるという問題があった。
2. Description of the Related Art In general, continuous cast slabs such as slabs, blooms, and billets may have surface defects such as surface cracks (longitudinal cracks, lateral cracks, corner cracks), mortar, or oscillation marks. . For these large surface defects, it is necessary to carry out maintenance by performing fusing with a gas burner or cutting with a grinder. The maintenance of such continuous cast slabs not only increases the work load and lowers the product yield, but also makes it impossible to perform "maintenance-free charging" of the high-temperature slab into the heating furnace and "direct rolling" by the rolling mill. There was a problem.

【0003】とくに、連鋳鋳片の表層部というのは、ア
ルミナやモールドパウダーを主成分とする非金属介在物
やガス気泡(Arガス, N2ガスなど)が集まり易く、これ
らは、加熱工程や圧延工程の処理では除去されないのが
普通である。そのために、例えば、厚板製品では表面凹
凸キズ(ヘゲ) となり、また薄板製品では筋状キズ(ヘ
ゲ, スリバー)となり、製品歩留りの低下につながると
いう問題があった。
Particularly, the surface layer portion of the continuous cast slab tends to collect non-metallic inclusions and gas bubbles (Ar gas, N 2 gas, etc.) whose main component is alumina or mold powder, and these are heated in the heating process. It is not usually removed by the treatment of rolling or rolling process. For this reason, for example, a thick plate product has surface unevenness scratches (balding), and a thin plate product has streaky scratches (balding, sliver), which leads to a reduction in product yield.

【0004】このような問題に対して従来、特公昭49
−23974号公報では、鋳片を真空下でアーク溶解す
る表面改質手入れ法を提案している。しかし、この方法
は、 アーク溶解であることから、溶融領域が広く、
かつ溶融状態に保持される時間が長い、 大電流を必
要とする、 減圧下で行う必要がある、という点にお
いて経済的でなく、しかも連鋳機の冷却途中の連鋳鋳片
をオンラインで実施するには多くの困難があった。
In order to solve such a problem, Japanese Patent Publication No.
No. 23974 proposes a surface modification maintenance method of arc melting a cast slab under vacuum. However, since this method is arc melting, it has a wide melting region,
Moreover, it is not economical in that it is held in the molten state for a long time, requires a large current, and needs to be performed under reduced pressure, and performs continuous casting slabs online during cooling of the continuous casting machine. There were many difficulties to do.

【0005】その他、特開平3−42145号公報で
は、薄鋼板の表面を双ロールを用いて再溶融する方法を
提案しているが、この方法は、表層部(数百ミクロン程
度)を固定式の加熱手段で溶融させると共に、続くロー
ラー圧延工程において微細割れと内部欠陥を除去する技
術である。しかしこの方法は、表層部のみ、あるいは局
部を加熱・再溶融するには有効であるが、例えばスラブ
の全面を深さ2mm以上にわたって再溶融するような場合
では、極めて大容量のエネルギーを必要として、実際的
でない。
In addition, Japanese Laid-Open Patent Publication No. 3-42145 proposes a method of remelting the surface of a thin steel sheet by using twin rolls. In this method, the surface layer portion (several hundreds of microns) is fixed type. This is a technique for melting fine particles and internal defects in the subsequent roller rolling step while melting with the heating means. However, this method is effective for heating and remelting only the surface layer part or a local part, but when remelting the entire surface of the slab over a depth of 2 mm or more, an extremely large amount of energy is required. , Impractical.

【0006】[0006]

【発明が解決しようとする課題】従来技術が抱えている
問題点は、上述した内容に加えてさらに、これらの技術
が主として、冷却後の冷鋳片や冷スラブを対象として処
理する方法であることから、熱経済効果ならびに表面清
浄化効果に乏しいという点にあった。即ち、これらの従
来技術では、未だ内部が高温の段階にある連鋳鋳片を対
象とし、その冷却途中で清浄化処理をする方法ではな
く、しかもこの段階で表面欠陥が現れる表層部のみを集
中的に加熱し再溶融する方法ではないから、本発明が目
指す本来的な効果を得ることができない。また、こうし
た多くの従来技術では、加熱再溶融時に二次的な表面欠
陥を再発させるという危険もあった。
The problem with the prior art is that, in addition to the above-mentioned contents, these technologies mainly deal with cold cast pieces or cold slabs after cooling. Therefore, the thermo-economic effect and the surface cleaning effect are poor. That is, in these conventional techniques, continuous casting slabs whose internal temperature is still high are targeted, and not a method of performing a cleaning treatment during cooling, and only the surface layer portion where surface defects appear at this stage is concentrated. Since it is not a method of heating and remelting it, the original effect aimed at by the present invention cannot be obtained. Further, in many of these conventional techniques, there is also a risk of recurrence of secondary surface defects during heating and remelting.

【0007】本発明の目的は、連鋳鋳片の効果的な表面
清浄化処理技術を提案することにある。本発明の他の目
的は、熱鋳片の段階において表面清浄化を行うことによ
り、表面清浄に優れた連鋳スラブを製造することにあわ
せ、エネルギーコストの削減を図ることにある。本発明
のさらに他の目的は、表面欠陥の現われやすい鋳片表面
層のみをまんべんなく集中的に処理することで、二次的
表面欠陥の再発を阻止して清浄化効果をあげることにあ
る。
An object of the present invention is to propose an effective surface cleaning treatment technique for continuous cast slabs. Another object of the present invention is to reduce the energy cost in addition to producing a continuous casting slab excellent in surface cleaning by performing surface cleaning in the stage of hot cast slab. Still another object of the present invention is to uniformly and intensively treat only the slab surface layer where surface defects are likely to appear, thereby preventing recurrence of secondary surface defects and improving the cleaning effect.

【0008】[0008]

【課題を解決するための手段】本発明は、従来技術が抱
えている上述した問題点を確実に解決することができる
表面清浄化技術であって、その特徴とする構成は、連続
鋳造鋳型の下端より連続的に引き抜かれる連続鋳造鋳片
の表層部を、その冷却途中において、加熱装置にて加熱
し再溶融させることを特徴とする連続鋳造鋳片の表面清
浄化方法である。そして、本発明において、上記加熱
を、鋳片切断装置の近傍;即ち、該切断装置の上流側の
直前もしくは下流側の直後の位置にて行うことが効果的
である。その理由は、鋳片表面を詳しく観察できること
と、鋳片温度が 800℃以上と高いので、表面溶融に至る
までの加熱所要エネルギーが少なくて良いからである。
また、本発明において、上記加熱装置は、連続鋳造鋳片
の表面, とくに幅方向に沿って移動可能に設けられるも
のであって、プラズマもしくはレーザーを熱源とするも
のであることを特徴とする。
SUMMARY OF THE INVENTION The present invention is a surface cleaning technique capable of reliably solving the above-mentioned problems of the prior art, and its characteristic constitution is that of a continuous casting mold. It is a method for cleaning the surface of a continuously cast slab, characterized in that the surface layer portion of the continuously cast slab that is continuously pulled out from the lower end is heated and remelted by a heating device during cooling. Then, in the present invention, it is effective to perform the above heating in the vicinity of the slab cutting device; that is, immediately before the upstream side or immediately after the downstream side of the cutting device. The reason is that the surface of the slab can be observed in detail and the slab temperature is as high as 800 ° C or higher, so that the energy required for heating until the surface melting is small.
Further, in the present invention, the heating device is provided so as to be movable along the surface of the continuously cast slab, particularly in the width direction, and uses plasma or laser as a heat source.

【0009】[0009]

【発明の実施の形態】本発明の特徴の第1点は、連鋳鋳
片の内部が高温の冷却途中の段階で加熱再溶融して清浄
化を図ることにある。例えば、連鋳機の鋳片切断装置の
上流側直前の位置もしくは下流側直後の位置に、連鋳鋳
片の搬送経路に沿って加熱装置を設置して、加熱し再溶
融するのである。この段階での処理では、連鋳鋳片の高
い温度を有効に利用して、加熱・再溶融を行うことがで
きるから、熱エネルギーの削減面でもまた表面欠陥を解
消する上でも、極めて有利である。
BEST MODE FOR CARRYING OUT THE INVENTION The first feature of the present invention resides in that the inside of a continuously cast slab is heated and remelted in the course of cooling at a high temperature for cleaning. For example, a heating device is installed along the transport path of the continuous cast slab at a position immediately upstream or immediately downstream of the slab cutting device of the continuous casting machine to heat and remelt the slab. In the treatment at this stage, the high temperature of the continuous cast slab can be effectively utilized to perform heating and remelting, which is extremely advantageous in terms of reducing thermal energy and eliminating surface defects. is there.

【0010】本発明において、上記の加熱再溶融の処理
に当たって重要なことは、表面欠陥はその大半が連鋳鋳
片の表層部のみに生成するものであるから、この部分を
効果的に加熱し再溶融する方法が有利となるということ
である。発明者らの知見では、加熱装置を用いて連鋳鋳
片の表層部を加熱再溶融する深さは、深いほど清浄化が
完全に近づくわけではなく、最大でも10mm程度で良い
ということがわかった。とくに、鋳片表面に生成した微
細な割れの修復、表層直下のブローホールの介在物(ア
ルミナクラスターやモールドパウダーによる欠陥)を圧
延前にスケールオフ可能な状態とするには、表層部下2
mmの範囲内を均一に加熱し再溶融する必要のあることが
わかった。
In the present invention, what is important in the above heat remelting treatment is that most of the surface defects are generated only in the surface layer portion of the continuous cast slab, so that this portion is effectively heated. The method of remelting is advantageous. The inventors of the present invention have found that the depth of heating and remelting the surface layer portion of the continuous cast slab using a heating device is such that the deeper the cleaning is, the closer the cleaning becomes to perfection, and the maximum depth is about 10 mm. It was In particular, in order to repair fine cracks formed on the surface of the cast slab and to make it possible to scale off the inclusions of blowholes (defects due to alumina clusters and mold powder) immediately below the surface layer before rolling, the surface layer below the surface layer 2
It was found that it was necessary to uniformly heat and remelt in the range of mm.

【0011】この点、固定の加熱装置で連鋳鋳片の表面
を溶融したり、溶融深さを深くするには、より多くの熱
エネルギーの供給が必要となり、装置も大型化するので
経済的でない。
In this respect, in order to melt the surface of the continuously cast slab or deepen the melting depth with a fixed heating device, more heat energy needs to be supplied, and the device becomes large in size, which is economical. Not.

【0012】上述したように、かかる加熱装置として
は、鋳片の幅方向に移動可能に配設するプラズマトーチ
もしくはレーザートーチを用いるが、これらは入射エネ
ルギー密度が高く、鋳片表層部にエネルギーを集中させ
るのに好都合だからである。なお、プラズマトーチやレ
ーザートーチによる入射エネルギーのコントロールは、
次のような視点の下に行う。今、所要昇温量:Δθ
(℃), エネルギー投入速度:P(J/S), エネルギー投
入面積:S(m2), 投入深さ:Δh(m), エネルギー
投入時間:Δt(s)とすると、昇温量Δシータは、下
記(1) 式で与えられる。
As described above, as such a heating device, a plasma torch or a laser torch arranged so as to be movable in the width direction of the slab is used, but these have a high incident energy density and the energy is applied to the surface layer of the slab. Because it is convenient to focus. In addition, control of incident energy by plasma torch and laser torch is
From the following perspectives. Now, the required temperature rise: Δθ
(° C), energy input speed: P (J / S), energy input area: S (m 2 ), input depth: Δh (m), energy input time: Δt (s) Is given by equation (1) below.

【数1】 ここで、δは鋼の密度(kg/cm3) ,Cは鋼の比熱(J/kg
・K) Kは鋼の熱伝導度(W/m・k)である。従って、上記
(1) 式から明らかなように、投入時間Δtを小さく、投
入深さΔhを小さくすれば、投入時間Δtが同じ場合、
小さなエネルギー投入速度Pでより高い昇温量Δθが得
られることがわかる。
[Equation 1] Where δ is the density of steel (kg / cm 3 ), C is the specific heat of steel (J / kg
・ K) K is the thermal conductivity (W / m · k) of steel. Therefore, above
As is clear from the equation (1), if the charging time Δt is made small and the charging depth Δh is made small, if the charging time Δt is the same,
It can be seen that a higher temperature rise amount Δθ can be obtained with a small energy input speed P.

【0013】本発明においては、かかる加熱装置として
は、これを固定式でなく、プラズマトーチやレーザート
ーチを鋳片の表面に沿う幅方向に沿って移動させる構成
のものを採用する。このような加熱手段であれば、小型
の加熱装置ですむし、溶融状態での保持時間を短くでき
るので、待機中での処理にもかかわらず、酸化の危険も
少なくなり、二次的な表面欠陥の発生も抑制できる。
In the present invention, such a heating device is not a fixed type, but a structure in which a plasma torch or a laser torch is moved along the width direction along the surface of the slab is adopted. With such a heating means, a small heating device can be used, and the holding time in the molten state can be shortened, so the risk of oxidation is reduced and secondary surface defects can be achieved despite the treatment during standby. The occurrence of can be suppressed.

【0014】[0014]

【実施例】【Example】

<例1>この例は、連続鋳造装置の鋳片冷却途中となる
鋳片切断装置に至る直前の位置に、出力50KW、プラズ
マフレーム直径20mm( 鋳片表面) のプラズマ加熱装置
を、スラブの表面, 裏面の両側にそれぞれ1台づつ設置
し、この装置を鋳片幅方向に1秒間に1往復する速度で
鋳造方向と垂直方向に連続して走査して実施した例であ
る。なお、連続鋳造は、厚さ 220mm、幅1200mmのアルミ
キルド極低炭素鋼スラブを鋳造速度2m/minで鋳造し
た。その結果、連鋳鋳片の表面にはオッシレーションマ
ークや窪み、割れはなく平滑で、切断後の連鋳スラブは
冷却途中で加熱・再溶融しない従来の連鋳スラブと比較
すると、極めて美麗な表面性状のものが得られた。ま
た、これらのスラブを無手入れで加熱・圧延して得られ
た冷間圧延後のコイルについて、介在物気泡起因の表面
欠陥発生率を比較した。本発明を適用しない場合、コイ
ル単位で0.8 %の発生率であったが、プラズマ加熱を行
い、再溶融した鋳片から得られたコイルは発生率が0%
であった。なお、図1は、この例に用いた連続鋳造装置
を示すものであり、図示の1は取鍋、2はロングノズ
ル、3はタンディッシュ、4は浸漬ノズル、5は連鋳鋳
型、6は鋳片支持ロール、7は連鋳鋳片、8, 8´は鋳
片表面加熱装置(レーザトーチ)、9は鋳片切断装置で
ある。
<Example 1> In this example, a plasma heating device with an output of 50 KW and a plasma frame diameter of 20 mm (the surface of the slab) was attached to the surface of the slab immediately before reaching the slab cutting device during the slab cooling of the continuous casting device. In this example, one device is installed on each side of the back surface, and the apparatus is continuously scanned in the direction perpendicular to the casting direction at a speed of reciprocating once per second in the width direction of the slab. In the continuous casting, an aluminum-killed ultra-low carbon steel slab having a thickness of 220 mm and a width of 1200 mm was cast at a casting speed of 2 m / min. As a result, the surface of the continuous cast slab is smooth with no oscillation marks, dents, or cracks, and the continuous cast slab after cutting is extremely beautiful compared to conventional continuous cast slabs that do not heat or remelt during cooling. A surface texture was obtained. Further, the rates of surface defects caused by inclusion bubbles were compared for cold-rolled coils obtained by heating and rolling these slabs without care. When the present invention was not applied, the occurrence rate was 0.8% per coil, but the occurrence rate was 0% for the coil obtained from the slab that was remelted by plasma heating.
Met. 1 shows a continuous casting apparatus used in this example, in which 1 is a ladle, 2 is a long nozzle, 3 is a tundish, 4 is a dipping nozzle, 5 is a continuous casting mold, and 6 is A slab support roll, 7 is a continuous cast slab, 8, 8'is a slab surface heating device (laser torch), and 9 is a slab cutting device.

【0015】<例2>鋳造速度 1.0 m/minで鋳造して得
られた厚さ 215mm, 幅1600mmのアルミキルドした厚板用
連鋳鋳片を、鋳片切断装置で長さ3m程度の大きさに切
断した。この切断後の熱片状態の連鋳スラブを、直ちに
10KWの出力を有するレーザー加熱装置内に供給し、表
面にビーム系5mmのレーザー光を1秒間に6回(3往
復)の速度で連続的に、例1に示すのと同じようにして
走査して加熱した。その結果、レーザー光を照射しない
従来の鋳片に見られたオッシレーションマークは消失
し、また、オッシレーション谷部に発生していた横割れ
も完全に修復していた。さらに、この方法を適用した厚
板製品について観察したところ、ヘゲキズ, レンガかみ
込みキズは皆無であった。
<Example 2> An aluminum-killed continuous cast slab for a thick plate having a thickness of 215 mm and a width of 1600 mm obtained by casting at a casting speed of 1.0 m / min was cut with a slab cutting device to a size of about 3 m. Disconnected. The continuous cast slab in the hot piece state after cutting was immediately supplied into a laser heating device having an output of 10 KW, and a laser beam of 5 mm beam system was continuously applied to the surface at a rate of 6 times (3 reciprocations) per second. And scanned and heated in the same manner as shown in Example 1. As a result, the oscillation mark found in the conventional slab that was not irradiated with laser light disappeared, and the lateral cracks that occurred in the oscillation valley were completely repaired. Furthermore, when observing a plank product to which this method was applied, there were no heggling scratches and brick entrapment scratches.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、連
鋳スラブの表面欠陥を鋳造のままで皆無にすることがで
き、あらためて表面手入れをする必要がなくなる。とく
に、二次的な表面欠陥を発生させることなく連鋳スラブ
の表面清浄化が確実に達成できる。しかも、本発明方法
は、連鋳鋳片の冷却途中で処理するので、熱エネルギー
の少ない方法で処理でき、製品コストの低下、素材の安
定供給による生産性の向上に有効である。
As described above, according to the present invention, it is possible to eliminate surface defects of the continuous casting slab as it is, and it becomes unnecessary to take care of the surface again. In particular, the surface cleaning of the continuous cast slab can be reliably achieved without generating secondary surface defects. Moreover, since the method of the present invention is processed during cooling of the continuous cast slab, it can be processed by a method with less heat energy, which is effective in reducing product cost and improving productivity by stable supply of raw materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様の一例を示す連続鋳造装置で
ある。
FIG. 1 is a continuous casting apparatus showing an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 取鍋 2 ロングノズル 3 タンディッシュ 4 浸漬ノズル 5 連鋳鋳型 6 鋳片支持ロール 7 連鋳鋳片 8, 8´ 鋳片表面加熱装置 9 鋳片切断装置 1 Ladle 2 Long nozzle 3 Tundish 4 Immersion nozzle 5 Continuous casting mold 6 Slab support roll 7 Continuous casting slab 8, 8'Slab surface heating device 9 Slab cutting device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造鋳型の下端より連続的に引き抜
かれる連続鋳造鋳片の表層部を、その冷却途中におい
て、加熱装置にて加熱し再溶融することを特徴とする連
続鋳造鋳片の表面清浄化方法。
1. The surface of a continuous cast slab, characterized in that the surface layer portion of the continuous cast slab that is continuously drawn from the lower end of the continuous casting mold is heated and remelted by a heating device during the cooling process. Cleaning method.
【請求項2】 上記加熱を、鋳片切断装置近傍の位置に
て行うことを特徴とする請求項1に記載の表面清浄化方
法。
2. The surface cleaning method according to claim 1, wherein the heating is performed at a position near a slab cutting device.
【請求項3】 上記加熱装置は、連続鋳造鋳片の表面に
沿って移動可能に設けられるものであって、プラズマも
しくはレーザーを熱源とするものであることを特徴とす
る請求項1に記載の清浄化方法。
3. The heating device is provided so as to be movable along the surface of a continuously cast slab, and uses plasma or laser as a heat source. Cleaning method.
JP25135195A 1995-09-28 1995-09-28 Method for cleaning surface of continuously cast slab Pending JPH0994645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25135195A JPH0994645A (en) 1995-09-28 1995-09-28 Method for cleaning surface of continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25135195A JPH0994645A (en) 1995-09-28 1995-09-28 Method for cleaning surface of continuously cast slab

Publications (1)

Publication Number Publication Date
JPH0994645A true JPH0994645A (en) 1997-04-08

Family

ID=17221543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25135195A Pending JPH0994645A (en) 1995-09-28 1995-09-28 Method for cleaning surface of continuously cast slab

Country Status (1)

Country Link
JP (1) JPH0994645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255140A (en) * 2008-04-18 2009-11-05 Nippon Steel Corp Surface melting treatment apparatus of cast steel slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255140A (en) * 2008-04-18 2009-11-05 Nippon Steel Corp Surface melting treatment apparatus of cast steel slab

Similar Documents

Publication Publication Date Title
JP5490923B2 (en) Slab processing method and slab processing system
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
KR101436843B1 (en) Method and device for in-line surface treatment of slabs
JPH10314908A (en) Method for cleaning surface of continuously cast slab and device therefor
JPH0994645A (en) Method for cleaning surface of continuously cast slab
JPH11170020A (en) Method for cleaning surface of continuously cast thin slab
JP2006021246A (en) Equipment for manufacturing high-strength hot-rolled steel sheet
JP2005500168A (en) Continuous casting method of steel beam blank
JPH0218936B2 (en)
JP2012016723A (en) Method and device for repairing surface of continuously cast slab
JP2003275852A (en) Method and apparatus for continuously casting steel
JP2004181561A (en) Manufacturing method of hot rolled steel material
JP2024142252A (en) Laser cutting device and laser cutting method
KR20150075571A (en) Apparatus for producing bar of continuous casting process
JP2006181583A (en) Method for producing continuously cast slab
JPH11170019A (en) Method for continuously casting metal and machine therefor
WO2024204436A1 (en) Hot-rolling equipment and hot-rolling method
JP5263095B2 (en) Manufacturing method and continuous casting equipment of continuous cast slab
US20230372998A1 (en) Device and method for producing hot-rolled metal strips
JP3455034B2 (en) Continuous casting method for high carbon special steel
JP2007245178A (en) Method for continuously casting steel
JP3687533B2 (en) Direct rolling method for continuous cast slabs
JP2008080344A (en) Method for manufacturing steel sheet
JPS6277155A (en) Twin roll type continuous casting method
JP2003305539A (en) Continuous casting method for high carbon special steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302