JP2008080344A - Method for manufacturing steel sheet - Google Patents

Method for manufacturing steel sheet Download PDF

Info

Publication number
JP2008080344A
JP2008080344A JP2006260461A JP2006260461A JP2008080344A JP 2008080344 A JP2008080344 A JP 2008080344A JP 2006260461 A JP2006260461 A JP 2006260461A JP 2006260461 A JP2006260461 A JP 2006260461A JP 2008080344 A JP2008080344 A JP 2008080344A
Authority
JP
Japan
Prior art keywords
slab
rolling
product
thickness
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006260461A
Other languages
Japanese (ja)
Other versions
JP4545130B2 (en
Inventor
Hironori Yamamoto
裕基 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006260461A priority Critical patent/JP4545130B2/en
Publication of JP2008080344A publication Critical patent/JP2008080344A/en
Application granted granted Critical
Publication of JP4545130B2 publication Critical patent/JP4545130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel sheet, which method can improve productivity and can reduce a manufacturing cost without taking excessive conditioning of a slab before rolling. <P>SOLUTION: In manufacturing the steel sheet by rolling a slab, the rolling work is carried out after removing the skin of the slab within the range from 1.5 mm to 2.5 mm when the ratio (D) of the target thickness of the steel sheet after rolling to the thickness of the slab is within the range from 0.018 to 0.6, and the surface temperature (T) of the slab just after taking out from a heating furnace is within the range from 1335°K to 1483°K, and the following equation (1) is satisfied, D≥-19.334×(T/1000)<SP>2</SP>+57.297×(T/1000)-41.898, where 0.018≤D≤0.60, and 1335°K≤T≤1483°K. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造工程で製造したスラブを圧延して鋼板を製造する場合におけるスラブの事前加工の技術に関するものである。   The present invention relates to a slab pre-processing technique in the case of manufacturing a steel sheet by rolling a slab manufactured in a continuous casting process.

連続鋳造により鋳造したスラブ表面には、長手方向(鋳造方向)にキズ(以下、スラブにおける長手方向のキズを「縦割れ」という)が発生し易く(非特許文献1)、縦割れを有するスラブをそのまま圧延すると製品の表面にキズが残って不良品となり、製品歩留が低下するという問題があった。
スラブ表面の縦割れは、連続鋳造工程において鋼の温度不均一に起因する凝固遅れ部分に内部応力が集中することにより発生することが知られている。従来、連続鋳造工程における鋼の温度均一化を図るために、モールドパウダーの改善および鋳造時の冷却方法の改善等を行い、スラブにおける縦割れの発生をある程度減少させることによって、無手入れ圧延やHCR(ホットチャージ圧延)化が図られてきた。
Slabs cast by continuous casting are susceptible to scratches (hereinafter referred to as “longitudinal cracks”) in the longitudinal direction (casting direction) (non-patent document 1), and slabs having longitudinal cracks. If the material is rolled as it is, scratches remain on the surface of the product, resulting in a defective product, resulting in a decrease in product yield.
It is known that vertical cracks on the surface of a slab occur due to concentration of internal stress in a solidification delay portion caused by temperature nonuniformity of steel in a continuous casting process. Conventionally, in order to achieve uniform temperature of steel in the continuous casting process, improvement of mold powder and cooling method at the time of casting, etc. have been carried out, and by reducing the occurrence of vertical cracks in the slab to some extent, no maintenance rolling and HCR (Hot charge rolling) has been attempted.

しかしながら、モールドパウダーの改善および鋳造時の冷却方法の改善等を行ってもスラブ表面の縦割れを皆無にするのは困難であり、とくに、炭素濃度が0.08〜0.16重量%の(亜包晶)中炭素鋼における連続鋳造では、割れ深さ2mm以下の微細な表面割れ(縦小割れ)の発生が顕著であった(図4)。
そこで、圧延処理の前に鋳片の表面処理が必要かどうかを判断するために、精錬工程の操業データから算出された脱酸生成物(酸化アルミニウム)発生量を判定するための尺度となる判定尺度、連続鋳造におけるタンディッシュ内の溶鋼滞留量および温度等から求めたタンディッシュ内の介在物浮上量の判定尺度、および鋳型内のモールドパウダー巻き込み量の判定尺度を鋳片の合否基準と照合する技術(特許文献1)、厚板向けの含Nb、含V中炭素鋼の連続鋳造において、タンディッシュ内の溶鋼分析値よりTi/N比を算出し、Ti/N比≧3の場合割れが発生しないと予測して無手入れのまま圧延工程に送り、Ti/N比<3の場合表面手入れ分の付加重量を付加してスカーフィング等の表面手入れをした後に圧延工程に送る技術(特許文献2)、および、ボトム鋳片(鋳造開始時の鋳片)の表面欠陥等をなくすための表面手入れ方法と運用方法とを、タンディッシュ内での溶鋼加熱、溶鋼攪拌の有無、および地金付着量により定まる鋳造条件において鋳造開始時の鋳片の総酸素濃度のピックアップ量と酸化物系介在物の分離率とを予め測定しておき、この測定結果に照らし合わせてその後の鋳造開始時の鋳片の総酸素濃度と酸化物系介在物の分離率とを推定し、この推定値に基づいて決定する技術が開示されている(特許文献3)。
鉄と鋼(社団法人日本鉄鋼協会)、第86年(1982)第13号、第1764〜1770頁 特開2004−306085号公報 特開2002−283021号公報 特開2000−61591号公報
However, it is difficult to eliminate vertical cracks on the surface of the slab even if the mold powder is improved and the cooling method during casting is improved. In particular, the carbon concentration is 0.08 to 0.16% by weight ( In the continuous casting of subperitectic medium carbon steel, the occurrence of fine surface cracks (longitudinal small cracks) with a crack depth of 2 mm or less was remarkable (FIG. 4).
Therefore, in order to determine whether or not the surface treatment of the slab is necessary before the rolling process, the determination is a measure for determining the amount of deoxidation product (aluminum oxide) generated calculated from the refining process operation data. The scale of inclusion floating in the tundish obtained from the scale, the amount of molten steel retained in the tundish and the temperature in continuous casting, and the judgment scale of the amount of mold powder entrained in the mold are checked against the acceptance criteria of the slab. In the technology (Patent Document 1), continuous casting of Nb-containing and V-containing medium carbon steel for thick plates, the Ti / N ratio is calculated from the analytical value of the molten steel in the tundish. Technology that predicts that it will not occur and sends it to the rolling process as it is without care. If Ti / N ratio <3, it adds the additional weight for surface care and sends it to the rolling process after carrying out surface care such as scarfing ( Permissible literature 2) and surface care method and operation method for eliminating surface defects of bottom slab (slab at the start of casting), molten steel heating in the tundish, presence or absence of molten steel stirring, and ground Under the casting conditions determined by the amount of gold adhesion, the pick-up amount of the total oxygen concentration of the slab at the start of casting and the separation rate of oxide inclusions are measured in advance, and the subsequent casting starts in light of this measurement result. A technique is disclosed in which the total oxygen concentration of the slab and the separation rate of oxide inclusions are estimated and determined based on this estimated value (Patent Document 3).
Iron and Steel (Japan Iron and Steel Association), 86th (1982) No. 13, pp. 1744-1770 JP 2004-306085 A JP 2002-283021 A JP 2000-61591 A

特許文献1に開示された技術では「脱酸生成物(酸化アルミニウム)発生量」、特許文献2に開示された技術では「Ti/N比」、および特許文献3に開示された技術では「鋳造開始時の鋳片の総酸素濃度のピックアップ量と酸化物系介在物の分離率」というように、従来、鋳片の表面処理の要否の判断に溶鋼の成分を用いて行うことが多かった。そのため、鋳造工程において管理および観察されていない要因によって実績成分が予測を外れ、または何らかの操業異常が発生することにより、スラグの表面手入れの要否判断を誤るおそれがあった。   In the technique disclosed in Patent Document 1, “deoxidation product (aluminum oxide) generation amount”, in the technique disclosed in Patent Document 2, “Ti / N ratio”, and in the technique disclosed in Patent Document 3, “casting”. Conventionally, it has often been done using a component of molten steel to determine whether or not the surface treatment of the slab is necessary, such as the pickup amount of the total oxygen concentration of the slab at the start and the separation rate of oxide inclusions . For this reason, there is a risk that a result component may be unpredictable due to a factor that is not managed and observed in the casting process, or an operation abnormality may occur, and thus the necessity of slag surface maintenance may be erroneously determined.

本発明は、上述の問題に鑑みてなされたもので、スラグの表面手入れの要否を適切に判断し、良好な品質を確保しながら圧延前の過剰なスラブの手入れを避けることにより、生産性の向上および製造コストの低減を図ることができる鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and appropriately determines the necessity of slag surface maintenance, and avoids excessive slab maintenance before rolling while ensuring good quality. It aims at providing the manufacturing method of the steel plate which can aim at the improvement and reduction of manufacturing cost.

本発明者は、上記課題を解決すべく厚板向け中炭素鋼の無手入れ圧延を試行し、縦小割れと圧延製品欠陥の関係を評価した。その結果、スラブ表面の割れ発生状況が同じでも、圧延条件(加熱炉取り出し時のスラブ表面温度、製品厚とスラブ厚との比)により圧延製品の欠陥発生状況が大きく異なることを見いだした。
すなわち、縦小割れは加熱炉取り出し時のスラブ表面温度と製品厚/スラブ厚が特定の関係を満足する場合は縦小割れが発生していても製品欠陥は発生しない。一方、特定の関係から外れる場合は縦小割れが製品の表面欠陥として残存し不良品となるのである。
In order to solve the above-mentioned problems, the present inventor tried unmaintained rolling of medium carbon steel for thick plates and evaluated the relationship between vertical small cracks and rolled product defects. As a result, it was found that even if the crack occurrence situation on the slab surface was the same, the defect occurrence situation of the rolled product varied greatly depending on the rolling conditions (the slab surface temperature at the time of taking out the heating furnace, the ratio of the product thickness to the slab thickness).
That is, in the case of the vertical small crack, when the slab surface temperature and the product thickness / slab thickness at the time of taking out the heating furnace satisfy a specific relationship, no product defect occurs even if the vertical small crack occurs. On the other hand, when it deviates from a specific relationship, small vertical cracks remain as product surface defects and become defective products.

これらの知見に基づき、前記目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明に係る鋼板の製造方法は、スラブを圧延して鋼板を製造する方法であって、圧延後の鋼板の目標製品厚とスラブ厚との比(D=目標製品厚÷スラブ厚)が0.018以上0.6以下かつ加熱炉から取り出した時のスラブの表面温度(T)が1335K以上1483K以下であってさらに(1)式を満たす場合に、前記スラブの表面を1.5mm以上2.5mm以下の範囲で除去した後に圧延を行う。
Based on these findings, the following technical means were taken in the present invention in order to achieve the object.
The method for producing a steel plate according to the present invention is a method for producing a steel plate by rolling a slab, and the ratio of the target product thickness to the slab thickness of the steel plate after rolling (D = target product thickness ÷ slab thickness) is 0. When the surface temperature (T) of the slab when it is taken out from the heating furnace is 1335K or more and 1483K or less and further satisfies the formula (1), the surface of the slab is 1.5 mm or more and 2 or less. Roll after removing in a range of 5 mm or less.

D≧−19.334×(T÷1000)2+57.297×(T÷1000)−41.898 …(1)
( 0.018≦D≦0.60 、 1335(K)≦T≦1483(K))
他の本発明に係る鋼板の製造方法は、スラブを圧延して鋼板を製造する方法であって、圧延後の鋼板の目標製品厚とスラブ厚との比(D=目標製品厚÷スラブ厚)が0.018以上0.6以下かつ加熱炉から取り出した時のスラブの表面温度(T)が1335K以上1483K以下であってさらに(2)式を満たす場合に、前記スラブの表面を無手入れのままで圧延を行う。
D ≧ −19.334 × (T ÷ 1000) 2 + 57.297 × (T ÷ 1000) −41.898 (1)
(0.018 ≦ D ≦ 0.60, 1335 (K) ≦ T ≦ 1483 (K))
Another method of manufacturing a steel sheet according to the present invention is a method of manufacturing a steel sheet by rolling a slab, wherein the ratio of the target product thickness of the steel sheet after rolling to the slab thickness (D = target product thickness ÷ slab thickness). Is not less than 0.018 and not more than 0.6 and the surface temperature (T) of the slab when taken out from the heating furnace is not less than 1335K and not more than 1483K and further satisfies the formula (2), the surface of the slab is not maintained. Roll as it is.

D< −19.334×(T÷1000)2+57.297×(T÷1000)−42.033 …(2)
( 0.018≦D≦0.60 、 1335(K)≦T≦1483(K))
D <−19.334 × (T ÷ 1000) 2 + 57.297 × (T ÷ 1000) −42.033 (2)
(0.018 ≦ D ≦ 0.60, 1335 (K) ≦ T ≦ 1483 (K))

本発明によると、圧延前の過剰なスラブの手入れを避け、生産性の向上および製造コストの低減を図ることができる鋼板の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the steel plate which can avoid the maintenance of the excess slab before rolling and can aim at the improvement of productivity and reduction of manufacturing cost can be provided.

図1には、厚板圧延装置1の概略が示されており、かかる厚板圧延装置1は上流側にスラブを加熱する加熱炉2を有し、加熱炉2の下流側には一対のワークロール3と一対のバックアップロール4とを備える粗圧延機(粗ミル)5が備えられている。粗圧延機5の下流側には、スラブに水や空気を吹き付けたりして温度を調整する冷却装置6が設けられ、冷却装置6の下流側には、一対のワークロール3と一対のバックアップロール4とを備える仕上げ圧延機(仕上げミル)7が設けられている。
加熱炉2と粗圧延機5との間には、必要に応じてスラブを研磨するためのスカーファー8が設けられている。
FIG. 1 shows an outline of a thick plate rolling apparatus 1, which has a heating furnace 2 for heating a slab on the upstream side, and a pair of workpieces on the downstream side of the heating furnace 2. A rough rolling mill (coarse mill) 5 including a roll 3 and a pair of backup rolls 4 is provided. A cooling device 6 that adjusts the temperature by spraying water or air on the slab is provided on the downstream side of the roughing mill 5, and a pair of work rolls 3 and a pair of backup rolls are provided on the downstream side of the cooling device 6. 4, a finish rolling mill (finish mill) 7 is provided.
Between the heating furnace 2 and the roughing mill 5, a scarfer 8 for polishing the slab as necessary is provided.

図2は鋼板の製造における連続鋳造工程から圧延工程までのフローチャートである。
図2において、溶鋼は連続鋳造機で鋳型から流れ出て帯状の鋼塊として凝固し(#11)、ガスカッターによって所定の長さのスラブに切断される(#12)。
スラブは、圧延に備えて加熱炉にて加熱される(#13)。加熱炉は回分式または連続式のものが使用される。スラブは、所定の温度に設定された加熱炉内で所定時間加熱された後に加熱炉から取り出され、表面温度が測定される(#14)。
表面温度の測定は、本出願人による特許出願(特願平5−14561)の願書に添付した明細書および図面に記載された装置および方法による(特開平6−229833号公報)。スラブの表面温度は、可搬式の放射温度計等により簡便に測定することもできる。
FIG. 2 is a flowchart from a continuous casting process to a rolling process in the production of a steel sheet.
In FIG. 2, the molten steel flows out of the mold by a continuous casting machine and solidifies as a strip-shaped steel ingot (# 11), and is cut into a slab having a predetermined length by a gas cutter (# 12).
The slab is heated in a heating furnace in preparation for rolling (# 13). The heating furnace is a batch type or a continuous type. The slab is heated for a predetermined time in a heating furnace set to a predetermined temperature and then removed from the heating furnace, and the surface temperature is measured (# 14).
The surface temperature is measured by the apparatus and method described in the specification and drawings attached to the application of the patent application (Japanese Patent Application No. 5-14561) by the present applicant (Japanese Patent Laid-Open No. 6-229833). The surface temperature of the slab can also be easily measured with a portable radiation thermometer or the like.

ところで、加熱炉内における加熱によりスラブは表面が酸化し、火炎により酸化表面が剥離して連続鋳造工程で生じた微細な縦割れは消滅してしまう。また、加熱温度が高いほど、表面からの剥離量が増加し、微細な縦割れの消滅に有利である。しかし、表面からの剥離量の増加は製品歩留の低下を招き、また加熱温度を高めると、スラブに結晶状態等の組織および強度の変化が生ずるために、圧延製品の用途および圧延製品の厚みへの要求によっては加熱温度を高めることが難しい場合がある。さらに、圧延を高圧下比で行うと微細な縦割れは消滅し易く、表面が平滑な圧延製品が得易い。   By the way, the surface of the slab is oxidized by heating in the heating furnace, the oxidized surface is peeled off by the flame, and the fine vertical cracks generated in the continuous casting process disappear. Moreover, the higher the heating temperature, the greater the amount of peeling from the surface, which is advantageous in eliminating fine vertical cracks. However, an increase in the amount of delamination from the surface leads to a decrease in product yield, and when the heating temperature is increased, the structure and strength of the slab change, such as the crystal state, and the thickness of the rolled product. It may be difficult to increase the heating temperature depending on the requirements of the device. Further, when rolling is performed at a high pressure ratio, fine vertical cracks are likely to disappear, and a rolled product with a smooth surface is easily obtained.

そこで、目標製品厚から求めた圧下比および加熱後のスラブの表面温度を指標として、加熱炉から取り出した後のスラブを圧延したときに製品表面にキズが残存するかどうかを予測する(#15)。そして、圧延したときに製品表面にキズが残存すると予測されたときは(#15でYes)、スラブの表面手入れを行う(#16)。予測の方法については、後に説明する。表面手入れとは、スカーファーによりスラブ全面を研削(溶削)し、更に残存した割れやスカーフヒレをグラインダーや部分スカーファー等で部分的に研削することをいう。   Therefore, using the reduction ratio obtained from the target product thickness and the surface temperature of the heated slab as an index, it is predicted whether or not scratches will remain on the product surface when the slab after taking out from the heating furnace is rolled (# 15 ). When it is predicted that scratches will remain on the product surface when rolled (Yes in # 15), the surface of the slab is cleaned (# 16). The prediction method will be described later. “Surface care” means that the entire surface of the slab is ground (melted) with a scurfer, and the remaining cracks and scarf fins are partially ground with a grinder or a partial scurfer.

モールドパウダーの組成コントロールによる鋳型内熱流束の低減によって、スラブ表面に生ずる割れはほとんどが深さ2mm以下に抑えられている。したがって、表面手入れでは、表面の研削量を1mm以上にすれば製品のキズの発生はほぼ防止できる。スカーファーによる溶削量にバラツキがあること、および過度の研削を行うと歩留ロスが増加することを考慮すると、表面の研削量は1.5mm以上2.5mm以下が望ましい。
なお、溶削量のコントロールは、「山村直一ら、ホットスカーフ運転の自動化および歩留向上、材料とプロセス、VOL.9、No.5、1996、p.1035」、「加藤芳充ら、鋼片溶削量測定装置、材料とプロセス、VOL.5、No.2、1992、p.364」、および「鉄と鋼、Vol.78、No.8、p.T137-T140」に記載されている方法による。
By reducing the heat flux in the mold by controlling the composition of the mold powder, most cracks generated on the slab surface are suppressed to a depth of 2 mm or less. Therefore, in surface care, if the amount of surface grinding is 1 mm or more, the generation of scratches on the product can be substantially prevented. In consideration of the variation in the amount of cutting by the scurfer and the fact that the yield loss increases when excessive grinding is performed, the surface grinding amount is preferably 1.5 mm or more and 2.5 mm or less.
In addition, the control of the amount of cutting is `` Naoichi Yamamura et al., Automation of hot scarf operation and yield improvement, materials and processes, VOL. 9, No. 5, 1996, p. 1035 '', `` Yoshimitsu Kato et al., Steel slab cutting amount measuring device, material and process, VOL.5, No.2, 1992, p.364 ”and“ Iron and steel, Vol.78, No.8, p.T137-T140 ” Depending on how you are.

スラブは、研削(表面手入れ)が行われた後に(#16)、またはそのまま無手入れで(研削しないで)圧延してもキズが残存しないと予測された後に(#15でNo)、圧延工程で圧延されて鋼板製品となる(#17)。
次に、加熱後の温度およ圧下比を指標として加熱炉から取り出した後のスラブを圧延したときに製品表面にキズが残存するかどうかを予測する(#15)方法について説明する。
表1は無手入れで下記圧延条件により圧延を行った後の製品表面のキズの評価を製品厚みおよび製品幅等とともに整理したものである。また、図3は表1における加熱炉取り出し時の表面温度および圧下比と製品のキズの状態との関係を示す図である。
〔圧延条件〕
スラブの厚み:280mm
圧延製品の厚み:5〜168mm
製品厚/スラブ厚(=1/圧下比)(D):0.018〜0.6
加熱炉取り出し時のスラブの表面温度(T):1335〜1483K
図3における各点(キー)の圧延後の製品のキズの評価は下記の基準による。
After the slab has been ground (surface care) (# 16), or after it is predicted that no scratch will remain even if it is rolled without maintenance (without grinding) (No in # 15), the rolling process Is rolled into a steel plate product (# 17).
Next, a method for predicting whether scratches remain on the product surface when the slab after being taken out from the heating furnace is rolled using the temperature and reduction ratio after heating as an index will be described (# 15).
Table 1 summarizes the evaluation of scratches on the product surface after rolling under the following rolling conditions without care, together with the product thickness, product width, and the like. FIG. 3 is a graph showing the relationship between the surface temperature and rolling ratio at the time of taking out the heating furnace in Table 1 and the state of scratches on the product.
[Rolling conditions]
Slab thickness: 280mm
Rolled product thickness: 5 to 168 mm
Product thickness / slab thickness (= 1 / rolling ratio) (D): 0.018 to 0.6
Surface temperature of slab at the time of taking out the heating furnace (T): 1335-1483K
Evaluation of the scratch of the product after rolling of each point (key) in FIG. 3 is based on the following criteria.

△:表面のキズなし(表1における○)
□:キズの深さ0.1mm未満(補修可能、表1における△)
◇:キズの深さ0.1mm以上(補修不可能、表1における×)
(「補修」とは、圧延された製品に対して行われるキズ消去作業(表面手入れ)をいう。)
以下、Dは、製品厚みが圧延実績および圧延前の目標のいずれについても製品厚/スラブ厚を表すものとする。
Δ: No scratch on the surface (◯ in Table 1)
□: Depth of scratch less than 0.1 mm (repairable, Δ in Table 1)
◇: Scratch depth of 0.1 mm or more (repair impossible, x in Table 1)
("Repair" refers to scratch removal work (surface care) performed on rolled products.)
Hereinafter, D represents the product thickness / slab thickness for both the rolling performance and the target before rolling.

図3に示されるように、圧延後の製品表面のキズの有無およびキズの状態は、加熱炉取り出し時のスラブの表面温度T(以下「表面温度T」ということがある)と製品厚/スラブ厚Dとの関係において(1)式および(2)式により区画される3つの領域で、それぞれ「表面のキズなし」、「補修可能な程度のキズ」および「補修不可能なキズ」に分けられる。
D≧−19.334×(T÷1000)2+57.297×(T÷1000)−41.898 …(1)
D<−19.334×(T÷1000)2+57.297×(T÷1000)−42.033 …(2)
すなわち、表面温度Tが1335Kから1483Kの範囲、かつ製品厚/スラブ厚Dが0.018から0.6の範囲で行う圧延において、(1)式で規定される領域1の圧延条件では、ほぼ全ての圧延品の表面に製品として容認できないキズが観察された。つまり、(1)式を満足する圧延条件では、無手入れでは製品表面にキズの発生が予測される(#15)。
As shown in FIG. 3, the presence or absence of scratches on the surface of the product after rolling and the state of the scratches are the surface temperature T of the slab at the time of taking out the heating furnace (hereinafter sometimes referred to as “surface temperature T”) and the product thickness / slab. In relation to the thickness D, the three areas defined by the formulas (1) and (2) are divided into “no scratches on the surface”, “scratches that can be repaired”, and “scratches that cannot be repaired”, respectively. It is done.
D ≧ −19.334 × (T ÷ 1000) 2 + 57.297 × (T ÷ 1000) −41.898 (1)
D <−19.334 × (T ÷ 1000) 2 + 57.297 × (T ÷ 1000) −42.033 (2)
That is, in the rolling performed in the range where the surface temperature T is in the range of 1335K to 1483K and the product thickness / slab thickness D is in the range of 0.018 to 0.6, the rolling condition in the region 1 defined by the equation (1) is almost Unacceptable scratches were observed on the surface of all rolled products. In other words, under rolling conditions that satisfy equation (1), it is predicted that scratches will occur on the product surface without maintenance (# 15).

また、(2)式により規定される領域3の圧延条件では、ほぼ全ての圧延品の表面にキズが発生せず、製品として出荷可能なレベルの表面状態であった。したがって、領域3の表面温度Tおよび目標製品厚/スラブ厚Dの組み合わせによる圧延作業では、スラブを無手入れのまま圧延しても製品表面にキズの生じないことが予測され(#15)、予測に従って無手入れ圧延を行うことにより、歩留りアップ、コスト低減、工期短縮をはかることができる。
(1)式および(2)式の何れにも該当しない領域2の圧延条件では、製品表面に補修可能な軽微なキズが残存する場合が多い。このような圧延条件では、より確実に良好な製品の表面品質を確保できるように表面手入れを行った後に圧延を行うのが好ましい。
Further, under the rolling conditions in the region 3 defined by the expression (2), almost all rolled products did not have scratches on the surface, and the surface state was a level that could be shipped as a product. Therefore, in the rolling operation by the combination of the surface temperature T in the region 3 and the target product thickness / slab thickness D, it is predicted that no scratch will occur on the product surface even if the slab is rolled without care (# 15). By performing maintenance-free rolling in accordance with the above, it is possible to increase yield, reduce costs, and shorten the work period.
Under the rolling conditions in the region 2 that does not correspond to either of the formulas (1) and (2), minor scratches that can be repaired often remain on the product surface. Under such rolling conditions, it is preferable to perform rolling after surface care so as to ensure the surface quality of a good product more reliably.

このように、(1)式および(2)式に圧延条件である表面温度Tおよび目標製品厚/スラブ厚Dを当てはめて、(1)式を満足するか、(2)式を満足するか、またはいずれも満足しないかを判別することにより、無手入れで圧延を行った場合の製品表面のキズの程度を予測することができる。この予測結果は、圧延前の手入れを行うかどうかの判断に役立てられる。
(1)式および(2)式に当てはめるスラブの表面温度Tは、実測値を使用するのが好ましいが、加熱炉の加熱条件と表面温度Tの実測値とが高い相関を有するときは、加熱条件から推定される表面温度を当てはめてもよい。
In this way, if the surface temperature T and the target product thickness / slab thickness D, which are rolling conditions, are applied to the formulas (1) and (2), the formula (1) is satisfied or the formula (2) is satisfied? By determining whether or not both are satisfied, the degree of scratches on the product surface when rolling without maintenance can be predicted. This prediction result is useful for determining whether to perform maintenance before rolling.
The surface temperature T of the slab applied to the equations (1) and (2) is preferably measured values. However, when the heating conditions of the heating furnace and the measured values of the surface temperature T have a high correlation, heating is performed. You may apply the surface temperature estimated from conditions.

なお、表1において、サンプルNo.1〜21は図3における領域1に含まれる条件、サンプルNo.22〜74は領域2に含まれる条件、およびサンプルNo.74〜164は領域3に含まれる条件で圧延を行った結果である。
表2は、領域2および領域3における条件で圧延を行う前に、スカーファーによりスカーフ量が1.5mmとなるようにスラブ全面を研削する手入れを実施した場合の、圧延後の製品表面のキズ発生状況を示す表である。
In Table 1, sample No. 1 to 21 are the conditions included in the region 1 in FIG. 22 to 74 are the conditions included in the region 2 and the sample Nos. 74 to 164 are the results of rolling under the conditions included in region 3.
Table 2 shows the scratches on the surface of the product after rolling when the entire surface of the slab is ground with a scarf so that the amount of scarf is 1.5 mm before rolling under the conditions in regions 2 and 3. It is a table | surface which shows the generation | occurrence | production situation.

表2に示されるように、(1)式および(2)式により、圧延条件が領域1および領域2に属し無手入れでは製品表面にキズを有すると予測される場合には、圧延前に手入れを実施することにより、製品における表面キズをなくし製品不合格の発生を予防することができる。
なお、表2において、サンプルNo.151〜171は図3における領域1に含まれる条件、およびサンプルNo.172〜221は領域2に含まれる条件で圧延を行った結果である。
As shown in Table 2, if the rolling conditions belong to region 1 and region 2 and it is predicted that the product surface will be flawed without maintenance according to equations (1) and (2), the product is cleaned before rolling. By carrying out the above, it is possible to eliminate surface scratches in the product and prevent the product from being rejected.
In Table 2, sample No. 151 to 171 are the conditions included in region 1 in FIG. 172 to 221 are the results of rolling under the conditions included in region 2.

図2に示される鋼板の製造方法において、スラブごとに納入先が求める製品品質に応じた条件で圧延を行わなければならない状況下では、とくに圧延条件から製品表面のキズの有無を予測することができることは、圧延前のスラブの手入れ量を最小限にし、コストおよび納期の最適化を図るうえで極めて有益である。手入れが必要なスラブを選別することにより、大幅なコスト低減および納期の短縮が可能となる。
上述の実施形態において、連続鋳造工程から圧延工程までの間に他の工程を含ませてもよい。例えば、加熱工程の前に溶断ノロの除去工程を設けてもよい。
In the steel sheet manufacturing method shown in FIG. 2, it is possible to predict the presence or absence of scratches on the product surface from the rolling conditions, particularly in a situation where rolling must be performed under conditions according to the product quality required for each slab. What can be done is extremely beneficial in minimizing the amount of slab care before rolling and optimizing costs and delivery times. By selecting slabs that require maintenance, it is possible to significantly reduce costs and shorten delivery times.
In the above-described embodiment, another process may be included between the continuous casting process and the rolling process. For example, you may provide the removal process of fusing noro before a heating process.

その他、連続鋳造(#11)、切断(#12)、加熱(#13)、表面温度の測定(#14)、表面手入れ要否判断(#15)、表面手入れ(#16)および圧延(#17)の各工程は、本発明の趣旨に沿って適宜変更することができる。   In addition, continuous casting (# 11), cutting (# 12), heating (# 13), surface temperature measurement (# 14), surface maintenance necessity judgment (# 15), surface care (# 16) and rolling (#) Each step of 17) can be appropriately changed in accordance with the gist of the present invention.

本発明は、連続鋳造工程で製造したスラブを圧延する前におけるスラブの事前加工に利用することができる。   The present invention can be used for slab pre-processing before rolling a slab manufactured in a continuous casting process.

厚板圧延装置の概略図である。It is the schematic of a thick plate rolling apparatus. 鋼板の製造における連続鋳造工程から圧延工程までのフローチャートである。It is a flowchart from the continuous casting process in the manufacture of a steel plate to a rolling process. 加熱炉取り出し時の表面温度および圧下比と製品のキズの状態との関係を示す図である。It is a figure which shows the relationship between the surface temperature and reduction ratio at the time of taking out a heating furnace, and the state of the crack of a product. スラブ表面の縦小割れの断面図。Sectional drawing of the vertical small crack of the slab surface.

符号の説明Explanation of symbols

D 圧延後の鋼板の目標製品厚とスラブ厚との比
T 加熱炉から取り出した時のスラブの表面温度
D Ratio of the target product thickness of the steel sheet after rolling and the slab thickness T Surface temperature of the slab when taken out from the heating furnace

Claims (2)

スラブを圧延して鋼板を製造する方法であって、
圧延後の鋼板の目標製品厚とスラブ厚との比(D=目標製品厚÷スラブ厚)が0.018以上0.6以下かつ加熱炉から取り出した時のスラブの表面温度(T)が1335K以上1483K以下であってさらに(1)式を満たす場合に、
前記スラブの表面を1.5mm以上2.5mm以下の範囲で除去した後に圧延を行う
ことを特徴とする鋼板の製造方法。
D≧−19.334×(T÷1000)2+57.297×(T÷1000)−41.898 …(1)
( 0.018≦D≦0.60 、 1335(K)≦T≦1483(K))
A method of rolling a slab to produce a steel plate,
The ratio of the target product thickness of the rolled steel sheet to the slab thickness (D = target product thickness / slab thickness) is 0.018 or more and 0.6 or less, and the surface temperature (T) of the slab when taken out from the heating furnace is 1335K. More than 1483K and satisfying the formula (1),
Rolling after removing the surface of the slab in the range of 1.5 mm or more and 2.5 mm or less.
D ≧ −19.334 × (T ÷ 1000) 2 + 57.297 × (T ÷ 1000) −41.898 (1)
(0.018 ≦ D ≦ 0.60, 1335 (K) ≦ T ≦ 1483 (K))
スラブを圧延して鋼板を製造する方法であって、
圧延後の鋼板の目標製品厚とスラブ厚との比(D=目標製品厚÷スラブ厚)が0.018以上0.6以下かつ加熱炉から取り出した時のスラブの表面温度(T)が1335K以上1483K以下であってさらに(2)式を満たす場合に、
前記スラブの表面を無手入れのままで圧延を行う
ことを特徴とする鋼板の製造方法。
D< −19.334×(T÷1000)2+57.297×(T÷1000)−42.033 …(2)
( 0.018≦D≦0.60 、 1335(K)≦T≦1483(K))
A method of rolling a slab to produce a steel plate,
The ratio of the target product thickness of the rolled steel sheet to the slab thickness (D = target product thickness / slab thickness) is 0.018 or more and 0.6 or less, and the surface temperature (T) of the slab when taken out from the heating furnace is 1335K. More than 1483K and satisfying the formula (2),
A method for producing a steel sheet, comprising rolling the surface of the slab without care.
D <−19.334 × (T ÷ 1000) 2 + 57.297 × (T ÷ 1000) −42.033 (2)
(0.018 ≦ D ≦ 0.60, 1335 (K) ≦ T ≦ 1483 (K))
JP2006260461A 2006-09-26 2006-09-26 Steel plate manufacturing method Expired - Fee Related JP4545130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260461A JP4545130B2 (en) 2006-09-26 2006-09-26 Steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260461A JP4545130B2 (en) 2006-09-26 2006-09-26 Steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2008080344A true JP2008080344A (en) 2008-04-10
JP4545130B2 JP4545130B2 (en) 2010-09-15

Family

ID=39351721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260461A Expired - Fee Related JP4545130B2 (en) 2006-09-26 2006-09-26 Steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP4545130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191205A (en) * 2010-03-15 2011-09-29 Nippon Steel Corp Method and device for integrity checking of radiation thermometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052140A (en) * 2017-12-15 2018-05-18 吉林圆方机械集团有限公司 A kind of semiaxis method for controlling heating temp of microwaven and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209702A (en) * 1981-06-17 1982-12-23 Nippon Steel Corp Production of hot rolled steel plate with superior fatigue characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209702A (en) * 1981-06-17 1982-12-23 Nippon Steel Corp Production of hot rolled steel plate with superior fatigue characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191205A (en) * 2010-03-15 2011-09-29 Nippon Steel Corp Method and device for integrity checking of radiation thermometer

Also Published As

Publication number Publication date
JP4545130B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
EP2394756B1 (en) Titanium slab for hot-rolling, and smelting method and rolling method therefor
KR102031462B1 (en) Method of manufacturing sub-peritectic steel
WO2008146891A1 (en) Method of trimming surface layer portion of hot slab and process for producing hot rolled steel
JP4545130B2 (en) Steel plate manufacturing method
JP2012076094A (en) Method for detecting flaw of continuously cast slab and system for detecting flaw
CA2653360C (en) Method and device for producing a metal strip by continuous casting
JP5394724B2 (en) How to clean hot slab surface
KR101223107B1 (en) Apparatus for manufacturing martensitic stainless hot rolled steel strip and method for manufacturing martensitic stainless hot rolled steel strip
JP4710213B2 (en) Hot rolled steel manufacturing method
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
JP2006021218A (en) Method for determining amount of scarfing for ingot
JP5130973B2 (en) Slab continuous casting method
JP4407371B2 (en) Steel continuous casting method
KR100799508B1 (en) Roll chock, manufacturing method thereof and rolling mill
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JPH0515904A (en) Method for rolling cast slab just after solidification
JP3455034B2 (en) Continuous casting method for high carbon special steel
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
JP2003305539A (en) Continuous casting method for high carbon special steel
JP2002283021A (en) Method for predicting surface crack on continuously cast slab
KR20220133604A (en) Apparatus of manufacturing for continuous casting and methods of manufacturing high-quality strand
JP2007160379A (en) Method for preventing rolling flaw of high-alloy steel rolled stock
JP2008184636A (en) Method for cutting off thick steel plate
CN117206330A (en) Method and device for controlling foreign matter indentation and indentation defects on surface of short-process pickled steel
KR20100074481A (en) Method for continuous casting of stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4545130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees