JP2009255140A - Surface melting treatment apparatus of cast steel slab - Google Patents

Surface melting treatment apparatus of cast steel slab Download PDF

Info

Publication number
JP2009255140A
JP2009255140A JP2008108550A JP2008108550A JP2009255140A JP 2009255140 A JP2009255140 A JP 2009255140A JP 2008108550 A JP2008108550 A JP 2008108550A JP 2008108550 A JP2008108550 A JP 2008108550A JP 2009255140 A JP2009255140 A JP 2009255140A
Authority
JP
Japan
Prior art keywords
cast steel
steel piece
slab
surface layer
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008108550A
Other languages
Japanese (ja)
Other versions
JP5131008B2 (en
Inventor
Keiji Tsunenari
敬二 恒成
Takehiko Fuji
健彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008108550A priority Critical patent/JP5131008B2/en
Publication of JP2009255140A publication Critical patent/JP2009255140A/en
Application granted granted Critical
Publication of JP5131008B2 publication Critical patent/JP5131008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the yield of a cast steel slab by subjecting even both end faces in the width direction of a cast steel slab to a surface melting treatment. <P>SOLUTION: A plasma torch 10 is arranged in the upper part of a cast piece H. On both sides in the width direction B of a position which is irradiated with plasma arc P from the plasma torch 10 in the cast piece H, there are arranged holding members 20, 21. The holding members 20, 21 are horizontally movable by a moving mechanisms 24, 25 and are able to come in contact with both sides in the width direction B of the cast piece H. The holding members 20, 21, in contact with both sides of the cast piece H, are able to hold the molten part M which is fused by the plasma arc P from the plasma torch 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば鋼の連続鋳造鋳片や、圧延後の鋼片などの鋳鋼片の表層を、プラズマアークによって溶融処理する表層溶融処理装置に関する。   The present invention relates to a surface layer melting apparatus for melting a surface layer of a cast steel piece such as a continuous cast slab of steel or a rolled steel piece by a plasma arc.

例えば連続鋳造後の鋳片や圧延後の鋼片等の鋳鋼片の表層を溶融して改質する処理には、プラズマ加熱装置が用いられている(特許文献1)。   For example, a plasma heating apparatus is used for the process of melting and modifying the surface layer of a cast steel piece such as a cast piece after continuous casting or a rolled steel piece (Patent Document 1).

プラズマ加熱装置は、例えば搬送される鋳鋼片に対向配置されたトーチを陰極、鋳鋼片を陽極とする直流プラズマのプラズマトーチを備え、当該プラズマトーチと鋳鋼片との間にプラズマアークを発生させ、そのプラズマアークの熱によって鋳鋼片を加熱して溶融し、その表層を例えば改質処理するようになっている。   The plasma heating apparatus includes, for example, a plasma torch of a direct current plasma having a torch disposed opposite to a conveyed cast steel piece as a cathode and a cast steel piece as an anode, and generates a plasma arc between the plasma torch and the cast steel piece, The cast steel piece is heated and melted by the heat of the plasma arc, and the surface layer is subjected to, for example, a modification treatment.

鋳鋼片の表層を溶融処理する場合には、鋳鋼片の表層をプラズマアークによって均一に加熱、溶融させ、可能な限り鋳鋼片の表層を均一に溶融処理する必要がある。したがって、例えば特許文献1等に示す技術を用いて幅の広い鋳鋼片を加熱する場合、鋳鋼片の幅方向全体にプラズマアークを照射して、鋳鋼片を加熱する必要がある。このため、交流磁場の電磁力を用いてプラズマアークを鋳鋼片の幅方向(鋳鋼片の搬送方向と直角方向)に往復移動させて、鋳鋼片の上面を幅方向に渡って全面に加熱溶融することが提案されている(特許文献2)。なお本願において「鋳鋼片」とは、「鋳片」と「鋼片」を総称したものであり、「鋳片」とは鋳造後の鋼材を、「鋼片」とは鋳片を圧延した後の鋼材を各々意味している。   When the surface layer of the cast steel slab is melted, it is necessary to uniformly heat and melt the surface layer of the cast steel slab by a plasma arc, and to melt the surface layer of the cast steel slab as uniformly as possible. Therefore, for example, when heating a wide cast steel piece using the technique shown in Patent Document 1 or the like, it is necessary to irradiate a plasma arc on the entire width direction of the cast steel piece to heat the cast steel piece. For this reason, the plasma arc is reciprocated in the width direction of the cast steel piece (perpendicular to the conveying direction of the cast steel piece) using the electromagnetic force of the alternating magnetic field, and the upper surface of the cast steel piece is heated and melted over the entire width direction. (Patent Document 2). In the present application, “cast steel slab” is a general term for “slab slab” and “steel slab”, “slab slab” is a steel material after casting, and “steel slab” is after rolling the slab. Each steel material is meant.

特開2004−195512号公報JP 2004-195512 A 特開昭54−142154号公報JP 54-142154 A

しかしながら前記従来の技術は、鋳鋼片の表層を均一に加熱溶融するには好適であったが、幅方向の両端面部分まで溶融するには至らなかった。これは、幅方向の両端面部分をも溶融するように表層部分全域にプラズマアークを照射して加熱すると、当該端面部分の溶融した溶融部が鋳鋼片から下方に垂れ落ちてしまうためである(いわゆる「溶け落ち」現象)。   However, the conventional technique is suitable for uniformly heating and melting the surface layer of the cast steel slab, but has not been melted to both end portions in the width direction. This is because when the surface layer part is irradiated with a plasma arc so as to melt both end faces in the width direction and heated, the melted part of the end face part hangs down from the cast steel piece ( The so-called “melt-off” phenomenon).

しかしながらこの幅方向の両端面部分についても溶融処理しないと、表面性状が荒れた状態のままになったり、当該部分に存在する介在物を浮遊させて除去することができなくなる。したがってこの状態のまま圧延処理を実施すると、製品表面に疵が発生するおそれがある。そこで従来は、鋳鋼片の幅方向の両端面部分の内側の表層の溶融処理を行った後、溶融処理が行われていない幅方向の両端面部分を切り捨てる必要があった。このため、鋳鋼片の歩留まりが低下していた。   However, if both end portions in the width direction are not melted, the surface properties remain rough, or inclusions present in the portions cannot be floated and removed. Therefore, if the rolling process is performed in this state, wrinkles may occur on the product surface. Therefore, conventionally, it has been necessary to cut off both end portions in the width direction that have not been subjected to the melting treatment after melting the surface layer inside the end portions in the width direction of the cast steel piece. For this reason, the yield of cast steel slabs has been reduced.

本発明は、かかる点に鑑みてなされたものであり、鋳鋼片の表層溶融処理を行なうにあたり、前記溶け落ち現象を防止して鋳鋼片の幅方向の両端面部分まで表層溶融処理を可能とし、鋳鋼片の歩留まりを向上させることを目的としている。   The present invention has been made in view of such a point, and in performing the surface layer melting treatment of the cast steel piece, the melting phenomenon is prevented and the surface layer melting treatment can be performed up to both end portions in the width direction of the cast steel piece, The purpose is to improve the yield of cast steel pieces.

前記の目的を達成するため、本発明は、搬送されていく鋳鋼片の表層を、当該鋳鋼片の上方に配置したプラズマトーチからのプラズマアークによって溶融処理する装置であって、前記搬送されていく鋳鋼片の両側に配置され、当該鋳鋼片の幅方向の端面に接触させて、前記プラズマアークによって溶融した前記端面の溶融部を保持する一対の保持部材を有することを特徴としている。   In order to achieve the above-mentioned object, the present invention is an apparatus for melting a surface layer of a cast steel piece to be conveyed by a plasma arc from a plasma torch disposed above the cast steel piece, which is conveyed It has a pair of holding members which are arranged on both sides of the cast steel piece and are brought into contact with the end face in the width direction of the cast steel piece to hold the molten portion of the end face melted by the plasma arc.

本発明の表層溶融処理装置は、前記鋳鋼片の両側に、鋳鋼片の幅方向の端面に接触可能な一対の保持部材を有しているので、鋳鋼片の表層を溶融処理した際に、保持部材を接触させることで溶融部は下方に垂れる落ちることなく、保持される。これによって、鋳鋼片の幅方向の両端面部分まで、すなわち鋳鋼片の幅方向全体にプラズマアークを照射して、当該鋳鋼片の表層を溶融処理することができる。このように幅方向の両端面部分も製品として有効に利用することができるので、鋳鋼片の歩留まりを向上させることができる。   Since the surface layer melting treatment apparatus of the present invention has a pair of holding members that can contact the end surfaces in the width direction of the cast steel piece on both sides of the cast steel piece, it is retained when the surface layer of the cast steel piece is melted. By bringing the members into contact with each other, the melted portion is held without falling down. Thereby, the surface layer of the cast steel piece can be melted by irradiating the plasma arc to the both end portions in the width direction of the cast steel piece, that is, the entire width direction of the cast steel piece. Thus, since both end portions in the width direction can be effectively used as products, the yield of cast steel pieces can be improved.

前記保持部材は、耐火物からなっていてもよい。また前記保持部材は、銅からなっていてもよい。さらに前記保持部材は、銅からなる本体部と、前記本体部に対して前記鋳鋼片側に取り付けられ、耐火物からなる接触部とを有していてもよい。   The holding member may be made of a refractory material. The holding member may be made of copper. Furthermore, the holding member may have a main body portion made of copper and a contact portion attached to the cast steel piece side with respect to the main body portion and made of a refractory material.

なお、鋳鋼片が搬送されてプラズマアークによる加熱溶融領域を過ぎると、それに伴って溶融部は、幅方向の両側から次第に加熱温度が低下して冷却され、固化していく。そこで、この冷却効果を高めるため、前記保持部材の内部に、冷却媒体を流通させる冷却流路を設けてもよい。   In addition, when a cast steel piece is conveyed and passes the heating-melting area | region by a plasma arc, a heating temperature will fall gradually from both sides of the width direction in connection with it, and it will solidify and solidify. Therefore, in order to enhance this cooling effect, a cooling flow path for circulating a cooling medium may be provided inside the holding member.

前記保持部材には、当該保持部材を前記鋳鋼片の搬送方向と直角方向に水平移動させる移動機構が設けられていてもよい。   The holding member may be provided with a moving mechanism that horizontally moves the holding member in a direction perpendicular to the conveying direction of the cast steel piece.

前記移動機構を制御して前記一の保持部材を所定の位置に移動させ、前記鋳鋼片をセンタリングさせてもよい。かかる場合、例えば一の保持部材を所定の位置に移動させた後、他の保持部材を移動させて一対の保持部材で鋳鋼片を保持することによって、鋳鋼片がセンタリングされる。   The moving mechanism may be controlled to move the one holding member to a predetermined position to center the cast steel piece. In such a case, for example, after moving one holding member to a predetermined position, the other holding member is moved and the cast steel piece is held by the pair of holding members, whereby the cast steel piece is centered.

前記保持部材には、前記溶融処理中の鋳鋼片を接地する接触端子が設けられていてもよい。   The holding member may be provided with a contact terminal for grounding the cast steel piece being melted.

前記保持部材において、前記鋳鋼片の幅方向の端面との接触面における前記鋳鋼片の搬送方向に沿った方向の両端部は、当該端面側に凸に湾曲した湾曲部を有していてもよい。   In the holding member, both end portions of the contact surface with the end surface in the width direction of the cast steel piece in the direction along the transport direction of the cast steel piece may have curved portions that are convexly curved toward the end surface side. .

本発明によれば、鋳鋼片の表層溶融処理を行なうにあたり、当該鋳鋼片の幅方向の両端面部分まで表層溶融処理できるので、鋳鋼片の歩留まりを向上させることができる。   According to the present invention, in performing the surface layer melting treatment of the cast steel piece, the surface layer melting treatment can be performed up to both end portions in the width direction of the cast steel piece, so that the yield of the cast steel piece can be improved.

以下、本発明の好ましい実施の形態について説明する。図1は、本実施の形態にかかる表層溶融処理装置1の構成の概略を正面からみた模式図であり、図2は表層溶融処理装置1の構成の概略を上方からからみた模式図であり、図3は表層溶融処理装置1の構成の概略を側方からみた模式図である。なお、本実施の形態においては、鋳鋼片として連続鋳造される鋳片Hを用いる。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a schematic view of an outline of the configuration of the surface layer melting apparatus 1 according to the present embodiment as viewed from the front, and FIG. 2 is a schematic diagram of an outline of the configuration of the surface layer melting apparatus 1 as viewed from above. FIG. 3 is a schematic view of the outline of the configuration of the surface layer melting apparatus 1 as seen from the side. In the present embodiment, a slab H continuously cast is used as a cast steel slab.

表層溶融処理装置1は、水平方向に搬送される鋳片Hの搬送ライン(図示せず)上に設けられている。表層溶融処理装置1は、例えば搬送方向Aに搬送される鋳片Hの上方に配置された、1本または複数本のプラズマトーチ10を有している。本実施の形態では、図示の都合上、4本のプラズマトーチ10を描図している。プラズマトーチ10は、複数本の場合には鋳片Hの幅方向B(搬送方向Aと直角方向)に沿って並列に配置されるが、プラズマトーチ10自体の本数は任意である。   The surface layer melting apparatus 1 is provided on a conveying line (not shown) of the slab H that is conveyed in the horizontal direction. The surface layer melting apparatus 1 has one or a plurality of plasma torches 10 arranged above a slab H that is conveyed in the conveying direction A, for example. In the present embodiment, for convenience of illustration, four plasma torches 10 are drawn. In the case of a plurality of plasma torches 10, the plasma torches 10 are arranged in parallel along the width direction B (perpendicular to the conveying direction A) of the slab H, but the number of plasma torches 10 itself is arbitrary.

プラズマトーチ10は、直流電源11に接続されており、この直流電源11からの直流電流による電圧の印加によって、鋳片Hとの間に直流プラズマによるプラズマアークPを形成することができる。プラズマアークPには、鋳片H側からプラズマトーチ10側に電流Iが流れている。プラズマアークPを生成するためのプラズマガスとしては、非酸化性ガス、例えばアルゴンガスや、水素とアルゴンガスの混合ガスが好ましい。なお、直流電源11からの直流電流の供給は、例えば汎用コンピュータの制御部100によって制御される。   The plasma torch 10 is connected to a DC power source 11, and a plasma arc P by DC plasma can be formed between the slab H and the slab H by applying a voltage due to a DC current from the DC power source 11. In the plasma arc P, a current I flows from the slab H side to the plasma torch 10 side. As the plasma gas for generating the plasma arc P, a non-oxidizing gas such as argon gas or a mixed gas of hydrogen and argon gas is preferable. The supply of the direct current from the direct current power supply 11 is controlled by, for example, the control unit 100 of the general-purpose computer.

プラズマトーチ10の下方であって、かつ鋳片Hの搬送方向Aの前後、すなわちプラズマトーチ10によって形成されるプラズマアークPの搬送方向Aの前後には、プラズマアークPに対して交流磁場を発生させるための電磁コイル12、13が、対向して平行に設けられている。電磁コイル12、13は、例えばループ状で、鋳片Hの幅方向Bに延伸している。これらの電磁コイル12、13は、交流電源(図示せず)からの交流電流の供給によって、プラズマアークPに対して周期的にローレンツ力を作用させて、プラズマアークPを、供給される交流の周波数に応じて鋳片Hの幅方向Bに往復移動させる。これによって、プラズマアークPは、鋳片Hの上面に対して幅方向Bの全体に渡って照射可能になっている。   An AC magnetic field is generated for the plasma arc P below the plasma torch 10 and before and after the slab H transfer direction A, that is, before and after the plasma arc P transfer direction A formed by the plasma torch 10. Electromagnetic coils 12 and 13 are provided in parallel to face each other. The electromagnetic coils 12 and 13 have, for example, a loop shape and extend in the width direction B of the slab H. These electromagnetic coils 12, 13 cause the Lorentz force to act on the plasma arc P periodically by supplying an alternating current from an alternating current power source (not shown), thereby supplying the plasma arc P to the supplied alternating current. The slab H is reciprocated in the width direction B according to the frequency. Thereby, the plasma arc P can be irradiated over the entire upper surface of the slab H in the width direction B.

プラズマトーチ10よりも搬送方向後方側には、搬送方向Aからみて、各プラズマトーチ10間の位置に、鋳片Hの上面に対して、金属や合金等のアロイング素材14を添加するためのアロイング素材供給部15が配置されている。また鋳片Hの上面における幅方向Bの端面近傍に対しても、アロイング素材14を添加するためのアロイング素材供給部15が配置されている。これらアロイング素材供給部15に対しては、アロイング素材ホッパー(図示せず)から、アロイング素材となる所定量のアロイング素材14が供給される。なお、アロイング素材としては、例えばニッケル、フェロニッケルなどが用いられる。   An alloying for adding an alloying material 14 such as a metal or an alloy to the upper surface of the slab H at the position between the plasma torches 10 as viewed from the conveying direction A on the rear side of the plasma torch 10 in the conveying direction. A material supply unit 15 is arranged. An alloying material supply unit 15 for adding the alloying material 14 is also disposed near the end face in the width direction B on the upper surface of the slab H. A predetermined amount of the alloying material 14 serving as an alloying material is supplied to the alloying material supply unit 15 from an alloying material hopper (not shown). In addition, as an alloying material, nickel, ferronickel, etc. are used, for example.

鋳片Hにおけるプラズマトーチ10からのプラズマアークPが照射される位置の幅方向Bの両側、すなわち前記搬送されていく鋳片Hの両側には、一対の保持部材20、21が対向配置されている。保持部材20、21には、それぞれシャフト22、23を介して、例えばシリンダなどの移動機構24、25が設けられている。これら移動機構24、25によって、保持部材20、21は、それぞれ鋳片Hの幅方向Bに水平移動し、鋳片Hの幅方向Bの端面に接触可能となっている。なお、これら移動機構24、25の動作は、制御部100によって制御される。制御部100では、一の移動機構24を制御して一の保持部材20を所定の位置に移動させた後、他の移動機構25を制御して他の保持部材21を移動させ、一対の保持部材20、21で鋳片Hを保持することによって、鋳片Hをセンタリングすることができる。   A pair of holding members 20 and 21 are arranged opposite to each other in the width direction B of the slab H where the plasma arc P from the plasma torch 10 is irradiated, that is, on both sides of the slab H being conveyed. Yes. The holding members 20 and 21 are provided with moving mechanisms 24 and 25 such as cylinders via shafts 22 and 23, respectively. By these moving mechanisms 24 and 25, the holding members 20 and 21 can horizontally move in the width direction B of the slab H, and can contact the end surface of the slab H in the width direction B. The operations of the moving mechanisms 24 and 25 are controlled by the control unit 100. In the control unit 100, after controlling one moving mechanism 24 to move one holding member 20 to a predetermined position, the other moving mechanism 25 is controlled to move another holding member 21 and a pair of holding members The slab H can be centered by holding the slab H with the members 20 and 21.

次に例えば搬送方向Aに向かって右側に配置されている保持部材20について詳しく説明する。保持部材20は、図4に示すように、本体部30と鋳片Hの幅方向Bの側面に接触する接触部31とを有し、本体部30に対して接触部31が取り付けられている。本体部30には、例えば熱伝導率のよい銅が用いられ、接触部31には、例えばBN系(セラミック系)耐火物が用いられる。また接触部31には、その他のセラミック系材料、例えばアルミナ、ジルコニア、窒化ホウ酸、窒化アルミ等を用いてもよい。   Next, for example, the holding member 20 disposed on the right side in the transport direction A will be described in detail. As shown in FIG. 4, the holding member 20 includes a main body 30 and a contact portion 31 that contacts a side surface in the width direction B of the slab H, and the contact portion 31 is attached to the main body 30. . For example, copper having good thermal conductivity is used for the main body 30, and BN (ceramic) refractory is used for the contact portion 31, for example. The contact portion 31 may be made of other ceramic materials such as alumina, zirconia, nitriding boric acid, and aluminum nitride.

本体部30は略直方体形状であり、本体部30の上面は鋳片Hの上面よりも高く配置されている。また搬送方向Aの本体部30の長さLは、図5に示すように、溶融処理の際に鋳鋼片Hの表層が溶融した溶融部Mを保持するのに十分な長さ、すなわち鋳片Hの幅方向Bの端部の溶融部Mが固化するのに十分な長さに設定されている。   The main body 30 has a substantially rectangular parallelepiped shape, and the upper surface of the main body 30 is disposed higher than the upper surface of the slab H. Further, the length L of the main body 30 in the transport direction A is long enough to hold the melted portion M in which the surface layer of the cast steel piece H is melted during the melting process, that is, the cast piece as shown in FIG. It is set to a length sufficient to solidify the melted portion M at the end in the width direction B of H.

接触部31は平板状であり、図4に示すように、本体部30の鋳片H側の側面の上部に固定されている。接触部31の上面は、鋳片Hの上面よりも高く配置されている。また接触部31の上下方向の長さDは、溶融処理の際の溶融部Mを保持するのに十分な長さに設定され、すなわち接触部31の下面が溶融部Mの下面よりも低くなるように設定されている。搬送方向Aの接触部31の長さは、図5に示すように、上述した本体部30と同じ長さLに設定されている。このような構成により、接触部31が溶融処理中の鋳片Hの幅方向Bの側面に接触した際に、溶融部Mが下方に垂れないように保持することができる。   The contact portion 31 has a flat plate shape and is fixed to the upper portion of the side surface of the main body portion 30 on the slab H side, as shown in FIG. The upper surface of the contact part 31 is arranged higher than the upper surface of the slab H. The vertical length D of the contact portion 31 is set to a length sufficient to hold the melted portion M during the melting process, that is, the lower surface of the contact portion 31 is lower than the lower surface of the melted portion M. Is set to As shown in FIG. 5, the length of the contact portion 31 in the transport direction A is set to the same length L as the main body portion 30 described above. With such a configuration, when the contact portion 31 comes into contact with the side surface in the width direction B of the slab H during the melting process, the melting portion M can be held so as not to hang down.

本体部30の内部には、例えば冷却媒体としての冷却水が流通する冷却流路32が設けられている。冷却流路32は、本体部30の外部に設けられた冷却水供給源33に連通している。また、冷却流路32には、冷却水の流れを制御するバルブや流量調整部等を含む供給機器群34が設けられている。そして冷却水は、冷却流路32、冷却水供給源33、供給機器群34内を循環する。例えば冷却水供給源33内の冷却水は、供給機器群34によって本体部30内の冷却流路32に供給されて流通した後、冷却水供給源33に流入する。   Inside the main body 30, for example, a cooling passage 32 through which cooling water as a cooling medium flows is provided. The cooling flow path 32 communicates with a cooling water supply source 33 provided outside the main body 30. The cooling flow path 32 is provided with a supply device group 34 including a valve for controlling the flow of the cooling water, a flow rate adjusting unit, and the like. The cooling water circulates in the cooling flow path 32, the cooling water supply source 33, and the supply device group 34. For example, the cooling water in the cooling water supply source 33 is supplied to the cooling flow path 32 in the main body 30 by the supply device group 34 and circulates, and then flows into the cooling water supply source 33.

接触部31の下方であって、本体部30の鋳片H側の側面には、鋳片Hの幅方向Bの側面に接触する接触端子としてのアース端子35が設けられている。アース端子35は、本体部30内を通る導線36を介して直流電源11に接続されている。そしてアース端子35は、溶融処理中の鋳片Hの幅方向Bの側面に接触した際、当該鋳片Hを直流電源11に接地することができる。なおアース端子35及び導線36は、本体部30と絶縁されている。アース端子35は、鋳片Hの搬送方向Aに回転可能な回転ローラ構成としてもよい。   Below the contact portion 31 and on the side surface of the main body 30 on the slab H side, a ground terminal 35 is provided as a contact terminal that contacts the side surface in the width direction B of the slab H. The ground terminal 35 is connected to the DC power supply 11 via a conducting wire 36 passing through the main body 30. The ground terminal 35 can ground the slab H to the DC power source 11 when contacting the side surface in the width direction B of the slab H during the melting process. The ground terminal 35 and the conductive wire 36 are insulated from the main body 30. The ground terminal 35 may have a rotating roller configuration that can rotate in the conveyance direction A of the slab H.

なお、保持部材21の構成については、上述した保持部材20と同様であるので説明を省略する。   The configuration of the holding member 21 is the same as that of the holding member 20 described above, and a description thereof will be omitted.

本実施の形態にかかる表層溶融処理装置1は、以上の構成を有しており、次にその表層溶融処理装置1で行われる鋳片Hの溶融処理について説明する。   The surface layer melting apparatus 1 according to the present embodiment has the above-described configuration. Next, the melting process of the slab H performed in the surface layer melting apparatus 1 will be described.

先ず鋳片Hを搬送し、その先端部分がプラズマトーチ10の下方(保持部材20、21の位置)まで搬送されたときに鋳片Hの搬送を停止する。その後図6(a)に示すように、制御部100によって一の移動機構24を制御して、一の保持部材20を所定の位置に移動させる。この所定の位置とは、鋳片Hが保持部材20と接触した際に、鋳片Hがセンタリングされる位置である。次に図6(b)に示すように、他の移動機構25を制御して他の保持部材21を鋳片H側に移動させて、鋳片Hが保持部材20に接触するまで移動させる。したがって、このとき鋳片Hの幅方向Bの両側面には保持部材20、21がそれぞれ接触し、鋳片Hは保持部材20、21に保持されている。こうして鋳片Hがセンタリングされる。   First, the slab H is transported, and the transport of the slab H is stopped when the tip portion is transported to a position below the plasma torch 10 (positions of the holding members 20 and 21). Thereafter, as shown in FIG. 6A, the control unit 100 controls the one moving mechanism 24 to move the one holding member 20 to a predetermined position. The predetermined position is a position where the slab H is centered when the slab H comes into contact with the holding member 20. Next, as shown in FIG. 6B, the other moving mechanism 25 is controlled to move the other holding member 21 to the slab H side and move until the slab H comes into contact with the holding member 20. Accordingly, at this time, the holding members 20 and 21 are in contact with both side surfaces of the slab H in the width direction B, and the slab H is held by the holding members 20 and 21. In this way, the slab H is centered.

鋳片Hがセンタリングされると、直流電源11によってプラズマトーチ10に電圧を印加し、プラズマトーチ10内に直流プラズマを発生させる。そうすると図6(c)に示すように、プラズマトーチ10と鋳片Hとの間に直流プラズマによるプラズマアークPが形成される。このとき、電磁コイル12、13を作動させることで、図6(c)の往復矢印で示したように、プラズマアークPは交流磁場による電磁力を受けて、鋳片Hの幅方向Bに往復移動する。そしてこのプラズマアークPの形成と同時に、図3に示したように、アロイング素材供給部15から所定の金属や合金等のアロイング素材14を鋳片Hに対して連続的に供給しつつ、鋳片Hを搬送する。   When the slab H is centered, a voltage is applied to the plasma torch 10 by the DC power source 11 to generate DC plasma in the plasma torch 10. 6C, a plasma arc P is formed between the plasma torch 10 and the slab H by DC plasma. At this time, by operating the electromagnetic coils 12 and 13, the plasma arc P receives electromagnetic force due to an alternating magnetic field and reciprocates in the width direction B of the slab H as shown by the reciprocal arrows in FIG. Moving. Simultaneously with the formation of the plasma arc P, as shown in FIG. 3, the slab is continuously supplied to the slab H with the alloying material 14 such as a predetermined metal or alloy from the alloying material supply unit 15. Transport H.

そうすると鋳片Hの表層は、プラズマアークPの熱によってアロイング素材14と共に溶融し、鋳片Hの表層上に溶融部Mが形成される。この溶融部Mは、プラズマアークPの往復移動によって鋳片Hの幅方向Bの全体に渡って形成されるが、溶融部Mは保持部材20、21に保持されるので、鋳片Hから垂れ落ちることがない。   Then, the surface layer of the slab H is melted together with the alloying material 14 by the heat of the plasma arc P, and a molten portion M is formed on the surface layer of the slab H. The melting part M is formed over the entire width direction B of the slab H by the reciprocating movement of the plasma arc P. However, since the melting part M is held by the holding members 20 and 21, it droops from the slab H. It wo n’t fall.

また、かかるプラズマアークPによる鋳片Hの表層の溶融処理の際に、冷却水供給源33から保持部材20、21内に冷却水を流通させる。そうすると図2に示すように、冷却水によって、溶融部Mの幅方向Bの両端部が冷却され固化する。その後、鋳片Hの搬送中に、溶融部Mの内側部分も自然冷却されて固化し、鋳片Hの表層を改質する一連の溶融処理が終了する。   Further, when the surface layer of the slab H is melted by the plasma arc P, cooling water is circulated from the cooling water supply source 33 into the holding members 20 and 21. Then, as shown in FIG. 2, both ends of the melt direction M in the width direction B are cooled and solidified by the cooling water. Thereafter, during the conveyance of the slab H, the inner part of the melting portion M is also naturally cooled and solidified, and a series of melting processes for modifying the surface layer of the slab H is completed.

以上の実施の形態によれば、溶融処理中の鋳片Hの幅方向Bの両側面に保持部材20、21を接触させているので、鋳片Hの表層を幅方向B全体に渡って溶融処理しても、溶融部Mは下方に垂れ落ちることなく、保持部材20、21によって保持される。このように鋳片Hの幅方向Bの両端面部分まで表層溶融処理を行うことができるので、当該幅方向Bの両端面部分を製品として有効に利用することができ、鋳片Hの歩留まりを向上させることができる。   According to the above embodiment, since the holding members 20 and 21 are brought into contact with both side surfaces in the width direction B of the slab H during the melting process, the surface layer of the slab H is melted over the entire width direction B. Even if it processes, the fusion | melting part M is hold | maintained by the holding members 20 and 21, without dripping down. In this way, since the surface layer melting treatment can be performed up to both end surface portions in the width direction B of the slab H, both end surface portions in the width direction B can be effectively used as products, and the yield of the slab H can be increased. Can be improved.

また、鋳片Hの表層溶融処理中、保持部材20、21を流通する冷却水によって溶融部Mを冷却することができるので、溶融部Mを短時間で固化させることができ、鋳片Hの表層溶融処理を短時間で行うことができる。このように溶融部Mが短時間で固化すると、保持部材20、21の搬送方向Aの長さLを短くすることができ、表層溶融処理装置1を小型化することができる。   Further, during the surface layer melting process of the slab H, the melted part M can be cooled by the cooling water flowing through the holding members 20 and 21, so that the melted part M can be solidified in a short time, The surface layer melting treatment can be performed in a short time. Thus, when the fusion | melting part M solidifies in a short time, the length L of the conveyance direction A of the holding members 20 and 21 can be shortened, and the surface layer melting processing apparatus 1 can be reduced in size.

また、保持部材20、21は移動機構24、25によって鋳片Hの幅方向に移動できるので、鋳片Hの幅に応じて適切に鋳片Hの側面に接触することができる。さらに制御部100は、移動機構24、25を制御して保持部材20、21を移動させることにより、鋳片Hをセンタリングすることができるので、溶融処理中、鋳片Hの幅方向Bの全体にプラズマアークPを確実に形成することができる。   In addition, since the holding members 20 and 21 can be moved in the width direction of the slab H by the moving mechanisms 24 and 25, the holding members 20 and 21 can appropriately contact the side surface of the slab H according to the width of the slab H. Furthermore, since the control part 100 can center the slab H by controlling the moving mechanisms 24 and 25 and moving the holding members 20 and 21, the entire slab H in the width direction B can be processed during the melting process. Thus, the plasma arc P can be reliably formed.

ところで、従来溶融処理中の鋳片Hの接地は、例えば鋳片Hの下面に接触するように別途専用の接触部材が用いられていた。この点、本実施の形態の保持部材20、21には、アース端子35が設けられているので、従来のように別途接触部材を設ける必要がない。また、アース端子35は移動機構24、25によって鋳片Hの幅方向Bに移動できるので、鋳片Hの幅に応じて、当該鋳片Hを適切に接地することができる。   By the way, for the ground contact of the slab H during the conventional melting process, for example, a separate dedicated contact member has been used so as to contact the lower surface of the slab H. In this regard, the holding members 20 and 21 of the present embodiment are provided with the ground terminal 35, so that it is not necessary to provide a separate contact member as in the prior art. Further, since the ground terminal 35 can be moved in the width direction B of the slab H by the moving mechanisms 24 and 25, the slab H can be appropriately grounded according to the width of the slab H.

また、保持部材20、21の本体部30には熱伝導率のよい銅が用いられているので、本体部30を流通する冷却水によって溶融部Mを効率よく冷却することができる。   In addition, since copper having good thermal conductivity is used for the main body 30 of the holding members 20 and 21, the melted part M can be efficiently cooled by the cooling water flowing through the main body 30.

さらに、保持部材20、21の接触部31には耐火物が用いられているので、接触部31が鋳片Hとの接触によって磨耗しても容易にメンテナンスを行うことができる。またかかる耐火物は安価であり、保持部材20、21の製造を低廉化することができる。さらにアロイング素材14を添加して溶融処理を行う場合、アロイング素材14を溶融部Mに均一に拡散させるため、すなわちアロイング素材14が拡散する前に溶融部Mが固化するのを防止するため、溶融部Mを急冷しないほうが好ましく、この様な場合には接触部31に用いられる耐火物は溶融部Mの冷却速度を緩和する効果もある。なお、この溶融部Mの冷却速度の調節は、上述した冷却水供給源33や供給機器群34を制御して、保持部材20、21内を流通する冷却水の温度や流量を調節することによって行うこともできる。   Furthermore, since a refractory is used for the contact portion 31 of the holding members 20 and 21, maintenance can be easily performed even if the contact portion 31 is worn due to contact with the slab H. Further, such a refractory is inexpensive, and the production of the holding members 20 and 21 can be reduced. Furthermore, when the alloying material 14 is added and the melting process is performed, the alloying material 14 is uniformly diffused into the melting part M, that is, the melting part M is prevented from solidifying before the alloying material 14 is diffused. It is preferable that the part M is not rapidly cooled. In such a case, the refractory used for the contact part 31 also has an effect of relaxing the cooling rate of the melting part M. In addition, the adjustment of the cooling rate of the melting part M is performed by controlling the cooling water supply source 33 and the supply device group 34 described above, and adjusting the temperature and flow rate of the cooling water flowing through the holding members 20 and 21. It can also be done.

以上の実施の形態では、保持部材20、21の本体部30と接触部31には、それぞれ銅と耐火物を用いていたが、本体部30と接触部31には共に銅を用いてもよく、あるいは共に耐火物を用いてもよい。例えば金属や合金等のアロイング素材14を添加せずに鋳片Hの表層を溶融処理する場合には、溶融部Mを急冷することができるので、本体部30と接触部31に銅を用いることができる。   In the above embodiment, the main body 30 and the contact portion 31 of the holding members 20 and 21 are respectively made of copper and refractory. However, both the main body 30 and the contact portion 31 may be made of copper. Alternatively, both may use a refractory. For example, when the surface layer of the slab H is melted without adding the alloying material 14 such as metal or alloy, the molten part M can be rapidly cooled, so that copper is used for the main body part 30 and the contact part 31. Can do.

以上の実施の形態では、保持部材20、21の平面形状は長方形であったが、図7に示すように、鋳片Hとの接触面における搬送方向Aに沿った方向の両端部が、鋳片Hの幅方向Bの側面側に凸に湾曲した(凸状に湾曲するが鋳片H側に突出していない)湾曲部40、40を有していてもよい。かかる場合、鋳片Hが保持部材20、21の長手方向に対して斜めに搬送されても、保持部材20、21が受ける衝撃を緩和することができる。   In the above embodiment, the planar shape of the holding members 20 and 21 is rectangular, but as shown in FIG. 7, both end portions in the direction along the conveying direction A on the contact surface with the slab H are cast. You may have the curved parts 40 and 40 curved convexly on the side surface side of the width direction B of the piece H (it curves in convex shape, but does not protrude on the cast piece H side). In such a case, even if the slab H is conveyed obliquely with respect to the longitudinal direction of the holding members 20 and 21, the impact received by the holding members 20 and 21 can be reduced.

以下、鋳片の表層を溶融処理する実施例において、表面溶融処理後の鋳片の品質について説明する。なお、鋳片の表層を溶融処理する装置としては、先に図1〜図5に示した表面溶融処理装置1を用い、保持部材20、21の本体部30と接触部31には銅を用いた。   Hereinafter, the quality of the slab after the surface melting process will be described in an example in which the surface layer of the slab is melt-processed. As the apparatus for melting the surface layer of the slab, the surface melting apparatus 1 previously shown in FIGS. 1 to 5 is used, and copper is used for the main body part 30 and the contact part 31 of the holding members 20 and 21. It was.

本実施例においては、連続鋳造を完了した0.2%C鋼(単位は質量%)の厚さ250mm、幅を1200mmの鋳片Hを切断後に、前記した実施の形態で説明したプラズマ加熱溶融により溶融処理する方法を用いて、アロイング素材14としてニッケルを添加して連続鋳造鋳片Hの表層5mmを10mm/sの速度で溶融処理した。このとき、各プラズマトーチ10の間隔は100mmとし、12本のトーチを使用した。また鋳片Hの両側に配置された保持部材20、21の接触部31の上面の位置は、鋳片Hの上面から10mm上方であり、接触部31の下面の位置は、鋳片Hの上面から10mm下方である。すなわち、接触部31の上下方向の長さDは20mmである。   In this example, the plasma heating and melting described in the above embodiment is performed after cutting a slab H having a thickness of 250 mm and a width of 1200 mm of 0.2% C steel (unit: mass%) that has been continuously cast. The surface layer 5 mm of the continuous cast slab H was melted at a speed of 10 mm / s by adding nickel as the alloying material 14 using the method of melting by the above. At this time, the interval between the plasma torches 10 was 100 mm, and twelve torches were used. Further, the position of the upper surface of the contact portion 31 of the holding members 20 and 21 arranged on both sides of the slab H is 10 mm above the upper surface of the slab H, and the position of the lower surface of the contact portion 31 is the upper surface of the slab H. 10 mm below. That is, the vertical length D of the contact portion 31 is 20 mm.

かかる溶融処理を行った結果、鋳片Hの幅方向Bの全体に溶融深さが5mm±0.5mmの均一な溶融状態が得られ、鋳片Hの幅方向Bの端部の溶け落ち現象も起こらなかった。またカントバック分析でニッケル濃度が1質量%を目標として添加した、アロイング素材14としてのニッケルの濃度も1±0.2%と良好であった。   As a result of this melting treatment, a uniform molten state having a melting depth of 5 mm ± 0.5 mm is obtained in the entire width direction B of the slab H, and the end portion of the slab H in the width direction B is burned off. Didn't happen either. In addition, the concentration of nickel as the alloying material 14 added with the target of a nickel concentration of 1% by mass in the cant back analysis was also as good as 1 ± 0.2%.

なお前記実施例において、保持部材20、21の接触部31にBN系耐火物を用いて、鋳片Hの表層溶融処理を行った場合でも、上述と同様に鋳片Hの幅方向Bの端部の溶け落ち現象が起こらず、アロイング素材14の濃度も良好であった。   In the embodiment, even when the surface layer melting treatment of the slab H is performed using the BN refractory for the contact portion 31 of the holding members 20 and 21, the end of the slab H in the width direction B is the same as described above. The melt-out phenomenon of the part did not occur, and the concentration of the alloying material 14 was also good.

また前記実施例において、鋳片Hの幅を800mmとし、プラズマトーチ10の本数を8本に減少させても、上述と鋳片Hの幅方向Bの端部の溶け落ち現象が起こらず、アロイング素材14の濃度も良好であった。さらに鋳片Hの幅を変更しても、鋳片Hのセンタリングが適切に行われたことも確認できた。   Further, in the above embodiment, even if the width of the slab H is 800 mm and the number of the plasma torches 10 is reduced to 8, the above-mentioned and the end portion in the width direction B of the slab H do not occur and the alloying is not performed. The density of the material 14 was also good. Furthermore, even if the width of the slab H was changed, it was confirmed that the slab H was properly centered.

本発明は、例えば鋼の連続鋳造鋳片や、圧延後の鋼片などの鋳鋼片の表層を、プラズマアークによって溶融処理する際に有用である。   The present invention is useful, for example, when a surface layer of a cast steel slab such as a continuous cast slab of steel or a steel slab after rolling is melted by a plasma arc.

本実施の形態にかかる表層溶融処理装置1の構成の概略を正面からみた模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the surface layer melting | dissolving processing apparatus 1 concerning this Embodiment from the front. 本実施の形態にかかる表層溶融処理装置1の構成の概略を上方からみた模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the surface layer melting | dissolving processing apparatus 1 concerning this Embodiment from the upper direction. 本実施の形態にかかる表層溶融処理装置1の構成の概略を側方からみた模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the surface layer fusion processing apparatus 1 concerning this Embodiment from the side. 保持部材の縦断面図である。It is a longitudinal cross-sectional view of a holding member. 保持部材の平面図である。It is a top view of a holding member. 鋳片の表層溶融処理の工程を示した説明図であり、(a)は一の保持部材を所定の位置に移動させた状態を示し、(b)は鋳片をセンタリングさせた状態を示し、(c)は鋳片の表層を溶融処理している状態を示している。It is explanatory drawing which showed the process of the surface layer melting process of slab, (a) shows the state which moved one holding member to the predetermined position, (b) shows the state which centered the slab, (C) has shown the state which has melt-processed the surface layer of slab. 他の実施の形態にかかる保持部材の平面図である。It is a top view of the holding member concerning other embodiments.

符号の説明Explanation of symbols

1 表層溶融処理装置
10 プラズマトーチ
11 直流電源
12、13 電磁コイル
14 アロイング素材
15 アロイング素材供給部
20、21 保持部材
22、23 シャフト
24、25 移動機構
30 本体部
31 接触部
32 冷却流路
33 冷却水供給源
34 供給機器群
35 アース
36 導線
40 湾曲部
100 制御部
H 鋳片
A 搬送方向
B 幅方向
D 接触部の上下方向の長さ
L 本体部の搬送方向の長さ
M 溶融部
P プラズマアーク
DESCRIPTION OF SYMBOLS 1 Surface melting processing apparatus 10 Plasma torch 11 DC power supply 12, 13 Electromagnetic coil 14 Alloying material 15 Alloying material supply part 20, 21 Holding member 22, 23 Shaft 24, 25 Moving mechanism 30 Main part 31 Contact part 32 Cooling flow path 33 Cooling Water supply source 34 Supply device group 35 Ground 36 Conductor 40 Bending part 100 Control part H Cast piece A Transport direction B Width direction D Length of contact part in the vertical direction L Length of main part in the transport direction M Melting part P Plasma arc

Claims (9)

搬送されていく鋳鋼片の表層を、当該鋳鋼片の上方に配置したプラズマトーチからのプラズマアークによって溶融処理する装置であって、
前記搬送されていく鋳鋼片の両側に配置され、当該鋳鋼片の幅方向の端面に接触させて、前記プラズマアークによって溶融した前記端面の溶融部を保持する一対の保持部材を有することを特徴とする、鋳鋼片の表層溶融処理装置。
An apparatus for melting a surface layer of a cast steel piece to be conveyed by a plasma arc from a plasma torch disposed above the cast steel piece,
It is disposed on both sides of the cast steel piece to be conveyed, and has a pair of holding members that hold the molten portion of the end face melted by the plasma arc in contact with the end face in the width direction of the cast steel piece. A surface layer melting apparatus for cast steel pieces.
前記保持部材は、耐火物からなることを特徴とする、請求項1に記載の表層溶融処理装置。 The surface layer melting apparatus according to claim 1, wherein the holding member is made of a refractory material. 前記保持部材は、銅からなることを特徴とする、請求項1に記載の表層溶融処理装置。 The surface layer melting apparatus according to claim 1, wherein the holding member is made of copper. 前記保持部材は、銅からなる本体部と、前記本体部に対して前記鋳鋼片側に取り付けられ、耐火物からなる接触部とを有することを特徴とする請求項1に記載の表層溶融処理装置。 2. The surface layer melting apparatus according to claim 1, wherein the holding member includes a main body portion made of copper and a contact portion made of a refractory and attached to the cast steel piece side with respect to the main body portion. 前記保持部材の内部には、冷却媒体を流通させる冷却流路が設けられていることを特徴とする、請求項1〜4のいずれかに記載の鋳鋼片の表層溶融処理装置。 The apparatus for melting a surface layer of a cast steel piece according to any one of claims 1 to 4, wherein a cooling flow path for circulating a cooling medium is provided inside the holding member. 前記保持部材には、当該保持部材を前記鋳鋼片の搬送方向と直角方向に水平移動させる移動機構が設けられていることを特徴とする、請求項1〜5のいずれかに記載の鋳鋼片の表層溶融処理装置。 The cast member according to any one of claims 1 to 5, wherein the retaining member is provided with a moving mechanism that horizontally moves the retaining member in a direction perpendicular to the conveying direction of the cast steel piece. Surface melt processing equipment. 前記移動機構を制御して前記一の保持部材を所定の位置に移動させ、前記鋳鋼片をセンタリングさせる制御部を有することを特徴とする、請求項6に記載の鋳鋼片の表層溶融処理装置。 The apparatus for melting a surface layer of a cast steel piece according to claim 6, further comprising a control unit that controls the moving mechanism to move the one holding member to a predetermined position to center the cast steel piece. 前記保持部材には、前記溶融処理中の鋳鋼片を接地する接触端子が設けられていることを特徴とする、請求項1〜7のいずれかに記載の鋳鋼片の表層溶融処理装置。 The apparatus for melting a surface layer of a cast steel piece according to any one of claims 1 to 7, wherein the holding member is provided with a contact terminal for grounding the cast steel piece being melted. 前記保持部材において、前記鋳鋼片の幅方向の端面との接触面における前記鋳鋼片の搬送方向に沿った方向の両端部は、当該端面側に凸に湾曲した湾曲部を有することを特徴とする、請求項1〜8のいずれかに記載の鋳鋼片の表層溶融処理装置。 In the holding member, both end portions in a direction along the conveying direction of the cast steel piece at a contact surface with the end surface in the width direction of the cast steel piece have curved portions that are convexly curved toward the end surface side. A surface layer melting apparatus for cast steel pieces according to any one of claims 1 to 8.
JP2008108550A 2008-04-18 2008-04-18 Surface melting processing equipment for cast steel pieces Active JP5131008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108550A JP5131008B2 (en) 2008-04-18 2008-04-18 Surface melting processing equipment for cast steel pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108550A JP5131008B2 (en) 2008-04-18 2008-04-18 Surface melting processing equipment for cast steel pieces

Publications (2)

Publication Number Publication Date
JP2009255140A true JP2009255140A (en) 2009-11-05
JP5131008B2 JP5131008B2 (en) 2013-01-30

Family

ID=41383250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108550A Active JP5131008B2 (en) 2008-04-18 2008-04-18 Surface melting processing equipment for cast steel pieces

Country Status (1)

Country Link
JP (1) JP5131008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359056B1 (en) 2011-12-28 2014-02-06 주식회사 포스코 Surface reforming apparatus using plasma and power supply method for this
KR101443797B1 (en) 2012-09-12 2014-09-26 메탈젠텍 주식회사 Apparatus for improving surface of cast strip and surface improving method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994645A (en) * 1995-09-28 1997-04-08 Kawasaki Steel Corp Method for cleaning surface of continuously cast slab
JP2004195513A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Surface layer reforming method for steel cast slab containing copper, reformed cast slab, and processed product
JP2004195512A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Surface layer reforming method for steel cast slab, reformed cast slab, and processed product
JP2007100118A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Method for manufacturing steel material to be hot-dip galvanized, and steel material to be hot-dip galvanized
JP2007098399A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Method for producing composite steel material, composite steel material and rail steel obtained by using the same
JP2007098440A (en) * 2005-10-05 2007-04-19 Nippon Steel Corp Heating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994645A (en) * 1995-09-28 1997-04-08 Kawasaki Steel Corp Method for cleaning surface of continuously cast slab
JP2004195513A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Surface layer reforming method for steel cast slab containing copper, reformed cast slab, and processed product
JP2004195512A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Surface layer reforming method for steel cast slab, reformed cast slab, and processed product
JP2007100118A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Method for manufacturing steel material to be hot-dip galvanized, and steel material to be hot-dip galvanized
JP2007098399A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Method for producing composite steel material, composite steel material and rail steel obtained by using the same
JP2007098440A (en) * 2005-10-05 2007-04-19 Nippon Steel Corp Heating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359056B1 (en) 2011-12-28 2014-02-06 주식회사 포스코 Surface reforming apparatus using plasma and power supply method for this
KR101443797B1 (en) 2012-09-12 2014-09-26 메탈젠텍 주식회사 Apparatus for improving surface of cast strip and surface improving method thereof

Also Published As

Publication number Publication date
JP5131008B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
CN106987838B (en) Laser cladding device and method for removing air holes/inclusions of laser cladding layer
CN108817712B (en) Magnetic control hot wire swinging laser welding device, method and application
JP5131008B2 (en) Surface melting processing equipment for cast steel pieces
JP4113813B2 (en) Induction heating device
US5439046A (en) Process for producing thin sheet by continuous casting in twin-roll system
JP4603453B2 (en) Heating device
JP5068716B2 (en) Method for surface modification of steel slab
EP3132871B1 (en) Continuous casting device for slab comprising titanium or titanium alloy
JP4959293B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP5009121B2 (en) Surface layer melting treatment method for cast steel pieces and surface layer melting treatment apparatus for cast steel pieces
JP4948973B2 (en) Method for measuring molten depth of cast steel slab and surface treatment method for cast steel slab
JP3771900B2 (en) Steel slab surface reformer
JP5010344B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP4959294B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP5375242B2 (en) Continuous casting apparatus and continuous casting method
JP5020910B2 (en) Method for surface modification of steel slab
US4884625A (en) Method of the plasma jet remelting of a surface layer of a flat metal work having parallel side edges and apparatus for carrying out the method
JP4102353B2 (en) Method for melting surface layer of ferromagnetic metal material
JP2005305533A (en) Dressing method for steel cast slab
UA134189U (en) METHOD OF PLASMA-MECHANICAL PROCESSING
KR20090067982A (en) Scarfing apparatus and method for treating surface of slab using the same
EP1083012A1 (en) Continuous casting method with rollers and relative device
KR20120087524A (en) The device to prevent clogging of submerged entry nozzle
JP4161680B2 (en) Method for producing medium carbon steel continuous cast slab
RU74922U1 (en) DEVICE FOR ELECTRIC ARC Hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5131008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350