JP2007098440A - Heating apparatus - Google Patents

Heating apparatus Download PDF

Info

Publication number
JP2007098440A
JP2007098440A JP2005292016A JP2005292016A JP2007098440A JP 2007098440 A JP2007098440 A JP 2007098440A JP 2005292016 A JP2005292016 A JP 2005292016A JP 2005292016 A JP2005292016 A JP 2005292016A JP 2007098440 A JP2007098440 A JP 2007098440A
Authority
JP
Japan
Prior art keywords
plasma
slab
metal
metal plate
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005292016A
Other languages
Japanese (ja)
Other versions
JP4603453B2 (en
Inventor
Takehiko Fuji
健彦 藤
Kenichi Yamamoto
研一 山本
Jun Tanaka
純 田中
Koichi Takeda
紘一 武田
Takeo Yamamoto
武男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005292016A priority Critical patent/JP4603453B2/en
Publication of JP2007098440A publication Critical patent/JP2007098440A/en
Application granted granted Critical
Publication of JP4603453B2 publication Critical patent/JP4603453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly heat a cast slab or a steel slab in the width direction regarding to a heating apparatus for heating a metal plate. <P>SOLUTION: On the surface of the cast slab H, a plurality of plasma torches 10 are parallel arranged along the width direction A of the cast slab H, and the metal bars 11, 12 are disposed so as to interpose the line of the plurality of plasma torches 10 from both sides of the width direction A. The metal bars 11, 12 are stood so as to flow electric current in the same direction as the plasma arcs P formed with the plasma torches 10, and in the metal bars 11, 12, DC electric sources 13, 14 adjustable to current value, are arranged. The metal bars 11, 12 can be shifted in the horizontal direction with a horizontal shifting mechanism 20 and the magnetic field formed with the electric current I of the plasma arc P is negated with the magnetic field formed with the electric current I<SB>1</SB>of the metal bars 11, 12 by adjusting the current value of the metal bars 11, 12 and the position of the shifting part in the width direction A. Consequently, the lined up plasma arcs P are prevented from leaning to the center of the cast slab H with the electromagnetic force. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,金属板を加熱する加熱装置に関する。   The present invention relates to a heating device for heating a metal plate.

例えば連続鋳造後の鋳片や圧延途中の鋼片の表層を改質する処理には,プラズマ加熱装置が用いられている(例えば,特許文献1参照。)。   For example, a plasma heating apparatus is used for the process of modifying the slab after continuous casting or the surface layer of a steel slab during rolling (see, for example, Patent Document 1).

プラズマ加熱装置は,例えば搬送される鋳片に対向配置されたプラズマトーチを備え,そのプラズマトーチと鋳片との間にプラズマアークを形成し,そのプラズマアークの熱より鋳片を加熱できる。   The plasma heating device includes, for example, a plasma torch arranged opposite to a slab to be conveyed, forms a plasma arc between the plasma torch and the slab, and can heat the slab by the heat of the plasma arc.

比較的幅の広い鋳片を加熱する場合,鋳片の幅方向全体にプラズマアークを当てて,鋳片を加熱する必要がある。このため,例えばプラズマトーチを鋳片の幅方向にスキャンさせて鋳片の幅方向の全体を加熱したり,電磁力を用いてプラズマアークを幅方向に揺動させて鋳片を加熱すること(例えば特許文献2参照。)が提案されている。この電磁力を用いてプラズマアークを揺動させる方法は,プラズマトーチをスキャンさせる方法に比べて,機械的な部品点数を少なくできる点で優れている。   When heating a relatively wide slab, it is necessary to heat the slab by applying a plasma arc to the entire width of the slab. For this reason, for example, the plasma torch is scanned in the width direction of the slab to heat the entire width of the slab, or the slab is heated by swinging the plasma arc in the width direction using electromagnetic force ( For example, see Patent Document 2). The method of swinging the plasma arc using this electromagnetic force is superior in that the number of mechanical parts can be reduced compared to the method of scanning the plasma torch.

特開2004−195512号公報JP 2004-195512 A 特開昭54−142154号公報JP 54-142154 A

しかしながら,プラズマアークを揺動させる場合には,その揺動幅が通常10cm程度と狭いので,幅広の鋳片の加熱を想定する場合には,図6に示すように鋳片Hの幅方向Aに沿って複数のプラズマトーチ100を設置する必要がある。しかし,単に複数のプラズマトーチ100を並設した場合,複数本のプラズマアークPの電流Iにより形成される磁場の相互作用によって,各プラズマアークPに中央方向の電磁力Fが作用する。このため,鋳片H上においてプラズマアークPが中央側に偏ってしまう。こうなると,鋳片の両端部の加熱が十分に行われず,鋳片が幅方向に不均一に加熱されて,例えば鋳片の表層改質処理に斑が生じ,最終加工品の品質が低下する。   However, when the plasma arc is oscillated, the oscillation width is usually as narrow as about 10 cm. Therefore, when heating of a wide slab is assumed, as shown in FIG. It is necessary to install a plurality of plasma torches 100 along. However, when a plurality of plasma torches 100 are simply arranged in parallel, an electromagnetic force F in the central direction acts on each plasma arc P by the interaction of magnetic fields formed by the currents I of the plurality of plasma arcs P. For this reason, the plasma arc P is biased toward the center on the slab H. In this case, the both ends of the slab are not sufficiently heated, and the slab is heated unevenly in the width direction. For example, the surface modification process of the slab is uneven, and the quality of the final processed product is degraded. .

本発明は,かかる点に鑑みてなされたものであり,鋳片や鋼片などの金属板を幅方向に均一に加熱することを目的とする。   This invention is made | formed in view of this point, and it aims at heating metal plates, such as a slab and a steel slab, uniformly in the width direction.

上記目的を達成するための本発明は,金属板を加熱する加熱装置であって,金属板の表面上において金属板の幅方向に沿って並列に配置され,金属板との間にプラズマアークを形成する複数のプラズマトーチと,前記複数のプラズマトーチの並列方向の両側に配置され,前記プラズマトーチによるプラズマアークと同じ方向に電流を流す導線と,前記導線に流れる電流値を調整可能な電源と,を有することを特徴とする。   In order to achieve the above object, the present invention is a heating apparatus for heating a metal plate, which is arranged in parallel along the width direction of the metal plate on the surface of the metal plate, and generates a plasma arc between the metal plate and A plurality of plasma torches to be formed; a conductor that is arranged on both sides in the parallel direction of the plurality of plasma torches; and a power source that allows a current to flow in the same direction as a plasma arc by the plasma torch; ,.

本発明によれば,複数のプラズマトーチの両側の導線に電流を流すことよって磁場を形成し,その磁場によってプラズマアークの電流による磁場を打ち消して,プラズマアークに作用する電磁力を除去することができる。これにより,プラズマアークが金属板の中央側に偏ることがなく,金属板を幅方向に均一に加熱することができる。ところで,幅の異なる金属板を処理する場合には,その幅に合わせて,外側にあるプラズマトーチによるプラズマアークの数を増やしたり,或いはプラズマトーチの稼動を停止させ,プラズマアークの本数を変える必要がある。かかる場合においても,電源により導線の電流値を調整して,導線の電流による磁場を調整することにより,各プラズマアークにおける磁場を打ち消すことができる。このため,金属板の幅が変動した場合であっても,プラズマアークの偏りを防止し,金属板を均一に加熱することができる。なお,前記導線の電源には,前記プラズマトーチと別の電源が用いられてもよい。   According to the present invention, it is possible to form a magnetic field by flowing a current through the conductive wires on both sides of a plurality of plasma torches, cancel the magnetic field due to the current of the plasma arc by the magnetic field, and remove the electromagnetic force acting on the plasma arc. it can. Thereby, the plasma arc is not biased toward the center side of the metal plate, and the metal plate can be uniformly heated in the width direction. By the way, when processing metal plates with different widths, it is necessary to increase the number of plasma arcs by the plasma torch on the outside or stop the operation of the plasma torch to change the number of plasma arcs according to the width. There is. Even in such a case, the magnetic field in each plasma arc can be canceled by adjusting the current value of the conducting wire by the power source and adjusting the magnetic field due to the conducting wire current. For this reason, even when the width of the metal plate fluctuates, the plasma arc can be prevented from being biased and the metal plate can be heated uniformly. Note that a power source different from the plasma torch may be used as the power source of the conducting wire.

前記導線は,前記プラズマトーチの並列方向に移動自在であってもよい。かかる場合,例えば金属板の幅が変動した場合に,導線と金属板との距離を調整して,プラズマアークにおける磁場を打ち消すことができる。   The conducting wire may be movable in a parallel direction of the plasma torch. In such a case, for example, when the width of the metal plate varies, the distance between the conductive wire and the metal plate can be adjusted to cancel the magnetic field in the plasma arc.

前記導線は,前記複数のプラズマトーチの並列方向の両側にそれぞれ二本ずつ配置され,その各側の二本の導線は,金属板の長手方向の平面から見て前記並列されたプラズマトーチを通る直線を挟んで当該直線と等距離の位置にそれぞれ配置され,なおかつ前記各導線は,前記プラズマトーチ側に移動した際に前記プラズマトーチと接触しない位置に配置されていてもよい。   Two conductors are arranged on each side of the plurality of plasma torches in the parallel direction, and the two conductors on each side pass through the parallel plasma torches when viewed from the plane in the longitudinal direction of the metal plate. The conductors may be arranged at positions equidistant from the straight line across the straight line, and the conductive wires may be arranged at positions that do not come into contact with the plasma torch when moved to the plasma torch side.

前記加熱装置は,プラズマアークを生じさせるプラズマトーチの数と,前記導線の移動先の位置と,前記導線の電流値を,金属板の幅に応じて制御する制御部を備えていてもよい。   The heating device may include a control unit that controls the number of plasma torches that generate a plasma arc, the position of the destination of the conductor, and the current value of the conductor according to the width of the metal plate.

前記複数のプラズマトーチの両側の導線は,それぞれ別個の電源に接続されていてもよい。   The conducting wires on both sides of the plurality of plasma torches may be connected to separate power sources.

本発明によれば,金属板を幅方向に均一に加熱できるので,その金属板から高品質の製品を製造することができる。   According to the present invention, since the metal plate can be heated uniformly in the width direction, a high-quality product can be manufactured from the metal plate.

以下,本発明の好ましい実施の形態について説明する。図1は,本実施の形態にかかる加熱装置1の構成の概略を示す模式図である。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a schematic diagram showing an outline of a configuration of a heating device 1 according to the present embodiment.

例えば加熱装置1は,水平方向に搬送される鋳片Hの搬送ライン上に設けられている。加熱装置1は,例えば搬送される鋳片Hの上方に配置された複数のプラズマトーチ10と,そのプラズマトーチ10の並列方向A(搬送方向Bに直交する鋳片Hの幅方向)の両側に配置された導線としての金属棒11,12と,金属棒11,12に給電する直流電源13,14と,誘導コイル15を備えている。   For example, the heating apparatus 1 is provided on the conveyance line of the slab H conveyed in the horizontal direction. The heating device 1 includes, for example, a plurality of plasma torches 10 arranged above the slab H to be transported, and both sides of the plasma torch 10 in the parallel direction A (width direction of the slab H perpendicular to the transport direction B). Metal rods 11 and 12 as arranged conducting wires, DC power supplies 13 and 14 for feeding the metal rods 11 and 12, and an induction coil 15 are provided.

複数のプラズマトーチ10は,例えば鋳片Hの幅方向Aに沿って直線状に等間隔に並列に配置されている。各プラズマトーチ10と鋳片Hとの間には,図示しない電源によって高電圧が印加され,各プラズマトーチ10毎にプラズマアークPを形成できる。各プラズマアークPには,鋳片H側からプラズマトーチ10側に同じ電流Iが流れる。   The plurality of plasma torches 10 are arranged in parallel at equal intervals in a straight line along the width direction A of the slab H, for example. A high voltage is applied between each plasma torch 10 and the slab H by a power source (not shown), and a plasma arc P can be formed for each plasma torch 10. In each plasma arc P, the same current I flows from the slab H side to the plasma torch 10 side.

金属棒11,12は,鋳片Hの幅方向Aの両側であって一直線上のプラズマトーチ10を挟むように配置されている。金属棒11,12は,例えば銅製の円筒管により形成され,プラズマアークPと同方向の垂直方向(鋳片Hの表面の法線方向)に向けて立設されている。金属棒11,12は,プラズマトーチ10と鋳片Hとの間に形成されるプラズマアークPと同程度の高さに配置され,なおかつプラズマアークPよりも長く形成されている。   The metal rods 11 and 12 are arranged on both sides of the slab H in the width direction A and sandwich the plasma torch 10 on a straight line. The metal rods 11 and 12 are formed of, for example, a copper cylindrical tube and are erected in the vertical direction (the normal direction of the surface of the slab H) in the same direction as the plasma arc P. The metal rods 11 and 12 are disposed at the same height as the plasma arc P formed between the plasma torch 10 and the slab H, and are longer than the plasma arc P.

金属棒11,12は,例えばシリンダなどの水平移動機構20に取り付けられており,並列方向Aに沿って移動できる。金属棒11,12は,それぞれ鋳片Hの幅方向Aの端部に対して進退できる。   The metal rods 11 and 12 are attached to a horizontal movement mechanism 20 such as a cylinder, and can move along the parallel direction A. The metal bars 11 and 12 can advance and retreat with respect to the end of the slab H in the width direction A, respectively.

例えば一方側の金属棒11は,図2に示すように二本の金属棒11a,11bから構成されている。金属棒11a,11bは,平面から見てプラズマトーチ10の配列された直線Lに対して線対称の位置にそれぞれ配置されている。また,金属棒11a,11bは,鋳片H側に移動した際にプラズマトーチ10に接触しないように直線Lから所定距離離されて配置されている。   For example, the metal rod 11 on one side is composed of two metal rods 11a and 11b as shown in FIG. The metal rods 11a and 11b are respectively arranged at positions symmetrical with respect to the straight line L on which the plasma torch 10 is arranged as viewed from the plane. Further, the metal bars 11a and 11b are arranged at a predetermined distance from the straight line L so as not to contact the plasma torch 10 when moved to the slab H side.

他方側の金属棒12も,金属棒11と同様に二本の金属棒12a,12bから構成されている。各金属棒12a,12bは,プラズマトーチ10の列の直線Lに対し線対称の位置で,なおかつ鋳片H側に移動した際にプラズマトーチ10に接触しない位置に配置されている。   Similarly to the metal rod 11, the other metal rod 12 is also composed of two metal rods 12a and 12b. The metal rods 12a and 12b are arranged at positions that are line-symmetric with respect to the straight line L of the row of plasma torches 10 and that do not contact the plasma torch 10 when moved to the slab H side.

金属棒11,12は,例えばそれぞれ別の直流電源13,14に接続されている。この直流電源13,14により,各金属棒11,12にプラズマアークPと同じ方向の電流Iを所望の電流値で流すことができる。各金属棒11,12を流れる電流Iにより鋳片H上の領域に磁場を形成し,その磁場によって,各プラズマアークPの電流Iの相互作用で形成される磁場を打ち消すことができる。この磁場が打ち消されることにより,各プラズマアークPには,互いに引き寄せ合う電磁力が作用しない。 The metal rods 11 and 12 are connected to, for example, separate DC power supplies 13 and 14, respectively. The direct current power supplies 13 and 14 allow a current I 1 in the same direction as the plasma arc P to flow through the metal rods 11 and 12 at a desired current value. A magnetic field is formed in the region on the slab H by the current I 1 flowing through the metal rods 11 and 12, and the magnetic field formed by the interaction of the current I of each plasma arc P can be canceled by the magnetic field. By canceling out this magnetic field, the electromagnetic forces attracting each other do not act on each plasma arc P.

例えば直流電源13,14や水平移動機構20は,制御部30によって制御されている。制御部30には,例えば汎用コンピュータが用いられる。この制御部30には,例えば鋳片Hの幅に応じて,稼働するプラズマトーチ10(プラズマアークを形成するプラズマトーチの数)を選択し,さらにそのプラズマトーチ10が使用された際に各プラズマアークPにおける磁場が打ち消されるように金属棒11,12の移動先の位置と電流値を選択し設定するプログラムが設けられている。これにより,加熱される鋳片Hの幅が入力されると,制御部30により,稼働するプラズマトーチ10が選択され,磁場を打ち消すための適正な金属棒11,12の移動先の位置と電流値が算出される。その後制御部30により,直流電源13,14と水平移動機構20の動作が制御されて,金属棒11,12の並列方向Aの位置と電流値が調整される。   For example, the DC power supplies 13 and 14 and the horizontal movement mechanism 20 are controlled by the control unit 30. For the control unit 30, for example, a general-purpose computer is used. The control unit 30 selects, for example, the plasma torch 10 (the number of plasma torches that form a plasma arc) to be operated according to the width of the slab H, and each plasma when the plasma torch 10 is used. A program is provided for selecting and setting the movement destination position and current value of the metal rods 11 and 12 so that the magnetic field in the arc P is canceled. Thus, when the width of the slab H to be heated is input, the control unit 30 selects the plasma torch 10 to be operated, and the position and current of the proper movement destination of the metal rods 11 and 12 for canceling the magnetic field. A value is calculated. Thereafter, the control unit 30 controls the operations of the DC power supplies 13 and 14 and the horizontal movement mechanism 20 to adjust the position and current value of the metal bars 11 and 12 in the parallel direction A.

金属棒11,12の内部には,例えば図3に示すように冷媒となる水が流れる冷媒流路40が形成されている。これにより,金属棒11,12の発熱による温度上昇を抑えることができる。   Inside the metal rods 11 and 12, for example, as shown in FIG. 3, a coolant channel 40 through which water serving as a coolant flows is formed. Thereby, the temperature rise by the heat_generation | fever of the metal rods 11 and 12 can be suppressed.

誘導コイル15は,図1に示すようにコイルの軸方向が鋳片Hの搬送方向Bに向けられた状態で,図2に示すようにプラズマトーチ10の列の搬送方向Bの両側に平行に配置されている。この誘導コイル15に交流電流を流すことによって,各プラズマアークPに周期的にローレンツ力を作用させて,各プラズマアークPを並列方向Aに往復移動させることができる。   As shown in FIG. 1, the induction coil 15 is parallel to both sides of the conveying direction B of the row of plasma torches 10 as shown in FIG. Has been placed. By flowing an alternating current through the induction coil 15, each plasma arc P can be reciprocated in the parallel direction A by periodically applying a Lorentz force to each plasma arc P.

なお,本実施の形態においては,例えば金属棒11,12,直流電源13,14,水平移動機構20及び制御部30によってプラズマアークの制御装置が構成されている。   In the present embodiment, for example, the metal rods 11 and 12, the DC power supplies 13 and 14, the horizontal movement mechanism 20, and the control unit 30 constitute a plasma arc control device.

次に,加熱装置1の作用について説明する。本実施の形態では,加熱装置1を用いて,鋳片Hに添加元素(例えば炭素)を添加して鋳片Hを表層改質する場合を例に挙げて説明する。   Next, the operation of the heating device 1 will be described. In the present embodiment, a case where the heating device 1 is used to add an additive element (for example, carbon) to the slab H to modify the surface of the slab H will be described as an example.

先ず加熱処理される鋳片Hの幅に応じて,稼動するプラズマトーチ10が選択され,金属棒11,12の並列方向Aの移動先の位置及び電流値が設定される。このとき,鋳片Hの幅の全体にプラズマアークPを当てるための必要最低限の数のプラズマトーチ10が選択される。また,金属棒11,12の移動先の位置と電流値は,プラズマアークPの電流Iの相互作用で形成される磁場を,金属棒11,12の電流Iによって形成される磁場によって打ち消すように設定される。金属棒11,12の位置は,水平移動機構20により調整され,金属棒11,12の電流値は,直流電源13,14によって調整される。 First, the operating plasma torch 10 is selected according to the width of the slab H to be heat-treated, and the position and current value of the movement destination of the metal bars 11 and 12 in the parallel direction A are set. At this time, the minimum necessary number of plasma torches 10 for applying the plasma arc P to the entire width of the slab H are selected. Further, the position and current value of the movement destination of the metal rods 11 and 12 are such that the magnetic field formed by the interaction of the current I of the plasma arc P is canceled by the magnetic field formed by the current I 1 of the metal rods 11 and 12. Set to The positions of the metal bars 11 and 12 are adjusted by the horizontal movement mechanism 20, and the current values of the metal bars 11 and 12 are adjusted by the DC power supplies 13 and 14.

金属棒11,12の移動先の位置や電流値の設定が終了すると,例えば連続鋳造された鋳片Hが搬送ライン上を搬送される。鋳片Hは,先ず例えば加熱装置1のプラズマトーチ10の上流側において誘導加熱によって溶融温度以上に予熱され,その溶融部分に炭素(グラファイト)が供給されて溶着される。その後,鋳片Hは,加熱装置1のプラズマトーチ10により加熱される。このとき,図1に示すようにプラズマトーチ10と鋳片Hの表面との間にプラズマアークPが形成される。各プラズマアークPは,誘導コイル15の作用により幅方向Aに揺動される。このプラズマアークPにより鋳片Hの幅方向Aの全体が加熱され,鋳片Hの表層が所定の深さまで改質される。   When the setting of the movement destination position and current value of the metal rods 11 and 12 is completed, for example, the continuously cast slab H is transported on the transport line. The slab H is first preheated to a melting temperature or higher by induction heating, for example, on the upstream side of the plasma torch 10 of the heating device 1, and carbon (graphite) is supplied and welded to the molten portion. Thereafter, the slab H is heated by the plasma torch 10 of the heating device 1. At this time, a plasma arc P is formed between the plasma torch 10 and the surface of the slab H as shown in FIG. Each plasma arc P is swung in the width direction A by the action of the induction coil 15. The whole of the slab H in the width direction A is heated by the plasma arc P, and the surface layer of the slab H is reformed to a predetermined depth.

次に,図4及び図5に示すように幅が狭い鋳片Hの表層を改質する場合には,使用する必要がない両側のプラズマトーチ10が停止され,金属棒11,12が,鋳片Hの端部側に移動され,最も外側のプラズマトーチ10に近づけられる。このときも金属棒11,12の移動先の位置と電流値は,各プラズマアークPの電流Iの相互作用により形成される磁場を,金属棒11,12の電流Iにより形成される磁場によって打ち消すように設定される。 Next, when modifying the surface layer of the narrow slab H as shown in FIGS. 4 and 5, the plasma torches 10 on both sides that do not need to be used are stopped, and the metal rods 11 and 12 are cast. It is moved to the end side of the piece H and brought close to the outermost plasma torch 10. Also at this time, the position and current value of the movement destination of the metal rods 11 and 12 are determined by the magnetic field formed by the interaction of the current I of each plasma arc P by the magnetic field formed by the current I 1 of the metal rods 11 and 12. Set to cancel.

一方,幅が広い鋳片Hが処理される場合には,停止していた外側のプラズマトーチ10が稼動し,金属棒11,12が鋳片Hの外方側に移動され,金属棒11,12の移動先の位置と電流値が,プラズマアークPにおける磁場が打ち消されるように設定される。   On the other hand, when a wide slab H is processed, the outer plasma torch 10 that has been stopped is operated, and the metal rods 11 and 12 are moved to the outer side of the slab H. The position and current value of 12 destinations are set so that the magnetic field in the plasma arc P is canceled.

以上の実施の形態によれば,鋳片Hの幅方向Aに並列されたプラズマトーチ10の外側に,金属棒11,12が設けられているので,プラズマアークPの電流Iの相互作用により形成されている磁場を,金属棒11,12の電流Iにより形成される磁場によって打ち消すことができる。これにより,並列されたプラズマアークPが電磁力により鋳片Hの中央側に偏ることがなくなり,鋳片Hを幅方向に均一に加熱することができる。したがって,鋳片Hの表層を均一に改質することができる。 According to the above embodiment, since the metal rods 11 and 12 are provided outside the plasma torch 10 arranged in parallel in the width direction A of the slab H, it is formed by the interaction of the current I of the plasma arc P. The applied magnetic field can be canceled out by the magnetic field formed by the current I 1 of the metal rods 11 and 12. As a result, the parallel plasma arcs P are not biased toward the center of the slab H by electromagnetic force, and the slab H can be heated uniformly in the width direction. Therefore, the surface layer of the slab H can be uniformly modified.

また,金属棒11,12に,独自の電流値を設定可能な直流電源13,14を接続し,金属棒11,12を幅方向Aに移動自在にしたので,例えば加熱される鋳片Hの幅が変わり,使用されるプラズマトーチ10の数が変更される場合においても,金属棒11,12の電流Iによって形成される磁場を調整し,プラズマアークP間で作用する電磁力をなくして,プラズマアークPの偏りを防止することができる。仮に,金属棒11,12の電源として,プラズマトーチ10の電源を用いた場合には,プラズマトーチ10の電圧は一定であるため,金属棒11,12に流れる電流値を自由に設定できない。このため,金属棒11,12の位置を動かすと,プラズマアークPにおける磁場の打ち消し状態が維持できない。本実施の形態では,金属棒11,12にプラズマトーチ10と別の直流電流13,14を接続しているので,金属棒11,12の位置を動かしても,電流値を調整することにより,プラズマアークPにおける磁場の打ち消し状態を維持することができる。したがって,鋳片Hの幅の変動にも柔軟に対応できる。 In addition, since the DC power sources 13 and 14 capable of setting unique current values are connected to the metal rods 11 and 12, and the metal rods 11 and 12 are movable in the width direction A, for example, the slab H to be heated Even when the width is changed and the number of plasma torches 10 used is changed, the magnetic field formed by the current I 1 of the metal rods 11 and 12 is adjusted to eliminate the electromagnetic force acting between the plasma arcs P. , The bias of the plasma arc P can be prevented. If the power source of the plasma torch 10 is used as the power source of the metal rods 11 and 12, the voltage of the plasma torch 10 is constant, so that the value of the current flowing through the metal rods 11 and 12 cannot be set freely. For this reason, if the positions of the metal rods 11 and 12 are moved, the magnetic field cancellation state in the plasma arc P cannot be maintained. In the present embodiment, since the plasma torch 10 and another DC current 13 and 14 are connected to the metal rods 11 and 12, even if the position of the metal rods 11 and 12 is moved, the current value is adjusted, The canceling state of the magnetic field in the plasma arc P can be maintained. Therefore, the width of the slab H can be flexibly dealt with.

金属棒11,12は,それぞれ二本の金属棒から構成され,その各二本の金属棒を,平面から見て複数のプラズマトーチ10の列を通る直線Lに等距離の位置で,なおかつ直線Lから離れた位置に配置したので,金属棒11,12を移動させた際に金属棒11,12がプラズマトーチ10と接触することを防止できる。   Each of the metal rods 11 and 12 is composed of two metal rods, and each of the two metal rods is equidistant from the straight line L passing through the row of the plurality of plasma torches 10 when viewed from the plane, and is also a straight line. Since the metal rods 11 and 12 are moved away from L, the metal rods 11 and 12 can be prevented from coming into contact with the plasma torch 10 when the metal rods 11 and 12 are moved.

さらに,上記実施の形態では,金属棒11,12に異なる直流電源が取り付けられているので,各金属棒11,12に流れる電流Iを個別に調整することができる。こうすることにより,例えば金属棒11,12や鋳片Hの状態などによって複数のプラズマアークPが左右対称でない場合に,各金属棒11,12の電流IからプラズマアークPにかかる磁場を微調整して,プラズマアークP全体における磁場の打ち消し状態を維持することができる。また,例えば加熱される前の鋳片Hに元々温度斑があるような場合には,敢えて両側の金属棒11,12の電流値を変えてプラズマアークPの磁場の打ち消し状態を崩すこともできる。こうすることにより,プラズマアークPに電磁力が作用し,プラズマアークPの位置が調整されるので,例えば鋳片Hの温度の低い部分により多い熱を供給することができる。これにより,鋳片Hを幅方向Aに均一な温度に昇温することができ,鋳片Hの幅方向Aの全体で均一な処理を施すことができる。 Furthermore, in the above embodiment, since the DC power source different metal rod 11, 12 is attached, it is possible to adjust the current I 1 flowing through the metal rod 11 and 12 separately. By doing so, for example, when the plurality of plasma arcs P are not symmetrical due to the state of the metal rods 11 and 12 and the slab H, the magnetic field applied to the plasma arc P from the current I 1 of each metal rod 11 and 12 is reduced. By adjusting, the cancellation state of the magnetic field in the entire plasma arc P can be maintained. Further, for example, when the slab H before being heated originally has a temperature spot, the current value of the metal rods 11 and 12 on both sides can be changed to cancel the magnetic field cancellation state of the plasma arc P. . By doing so, an electromagnetic force acts on the plasma arc P and the position of the plasma arc P is adjusted, so that more heat can be supplied to, for example, the portion of the slab H where the temperature is low. As a result, the slab H can be heated to a uniform temperature in the width direction A, and uniform processing can be performed throughout the width direction A of the slab H.

以上の実施の形態では,鋳片Hの幅方向Aの両側の各金属棒11,12には,別個の直流電源13,14が接続されていたが,同じ電源に接続されていてもよい。かかる場合も,金属棒11,12の電流Iによる磁場により,プラズマアークPにおける磁場を打ち消して,プラズマアークPの偏りを防止できる。したがって,鋳片Hを幅方向Aに均一に加熱することができる。また,金属棒11,12に流れる電流値が同じであっても,各金属棒11,12の幅方向Aの位置を変えることによって,プラズマアークPにおける磁場を制御して,各プラズマアークPの位置を積極的に調整することもできる。 In the above embodiment, the separate DC power sources 13 and 14 are connected to the metal bars 11 and 12 on both sides in the width direction A of the slab H, but they may be connected to the same power source. Also in such a case, the magnetic field in the plasma arc P can be canceled out by the magnetic field generated by the current I 1 of the metal rods 11 and 12, and the bias of the plasma arc P can be prevented. Therefore, the slab H can be heated uniformly in the width direction A. Even if the current values flowing through the metal rods 11 and 12 are the same, the magnetic field in the plasma arc P is controlled by changing the position of the metal rods 11 and 12 in the width direction A, so The position can also be adjusted positively.

以上の実施の形態では,金属棒11,12が移動可能であったが,固定されていてもよい。つまり各金属棒11,12の電流値だけを調整できるようにしてもよい。この場合も,鋳片Hの幅が変動した際に,金属棒11,12の電流値を調整して,金属棒11,12の電流Iの磁場によりプラズマアークPにおける磁場を打ち消すことができる。それ故,プラズマアークPの偏りを防止し,鋳片Hを均一に加熱することができる。なお,金属棒11,12が固定されている例において,金属棒11,12は,プラズマトーチ10の列の直線L上に配置されていてもよい。 In the above embodiment, the metal rods 11 and 12 are movable, but may be fixed. That is, only the current value of each metal rod 11 and 12 may be adjusted. Also in this case, when the width of the slab H changes, the current value of the metal rods 11 and 12 can be adjusted to cancel the magnetic field in the plasma arc P by the magnetic field of the current I 1 of the metal rods 11 and 12. . Therefore, the bias of the plasma arc P can be prevented and the slab H can be heated uniformly. In the example in which the metal rods 11 and 12 are fixed, the metal rods 11 and 12 may be arranged on a straight line L in the row of the plasma torch 10.

以上の実施の形態では,金属棒11(12)の二本の金属棒11a,11b(12a,12b)は,同じ電流値で鋳片Hの端部に対して同じ距離に調整されていたが,それぞれ別の電流値と距離に設定してもよい。こうすることにより,プラズマアークPの形成領域の磁場をさらに厳密に制御して,プラズマアークPの位置を厳格に調整できる。   In the above embodiment, the two metal bars 11a and 11b (12a and 12b) of the metal bar 11 (12) are adjusted to the same distance from the end of the slab H with the same current value. , Different current values and distances may be set. By doing so, the position of the plasma arc P can be strictly adjusted by more strictly controlling the magnetic field in the formation region of the plasma arc P.

以上,添付図面を参照しながら本発明の好適な実施の形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された思想の範疇内において,各種の変更例または修正例に相到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。例えば,以上の実施の形態は,鋳片Hが水平方向に搬送される例であったが,本発明は,鋳片Hが鉛直方向に搬送され,その鋳片Hに対して水平方向からプラズマアークPを形成する場合にも適用できる。また,以上の実施の形態では,鋳片Hの片側を加熱していたが,鋳片Hの両面にプラズマトーチ10と金属棒11,12を設けて,鋳片Hの両面を加熱してもよい。   The preferred embodiment of the present invention has been described above with reference to the accompanying drawings, but the present invention is not limited to such an example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the spirit described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs. For example, the above embodiment is an example in which the slab H is transported in the horizontal direction. However, in the present invention, the slab H is transported in the vertical direction, and plasma is generated from the horizontal direction with respect to the slab H. The present invention can also be applied when the arc P is formed. In the above embodiment, one side of the slab H is heated. However, even if both sides of the slab H are heated by providing the plasma torch 10 and the metal rods 11 and 12 on both sides of the slab H. Good.

また,上記実施の形態では,鋳片Hを誘導加熱した後に,加熱装置1によりプラズマ加熱して,鋳片Hを表層改質処理していたが,加熱装置1自体が,鋳片Hを予備加熱する予熱部を有し,その予熱部には,鋳片Hを誘導加熱するための電磁誘導コイルと,その誘導加熱時に炭素などの添加物を供給するノズルなどの添加物供給部が備えられていてもよい。この場合,加熱装置1は,表面改質処理装置としての機能を有する。   Further, in the above embodiment, the slab H is subjected to plasma heating by the heating device 1 after induction heating of the slab H, and the slab H is subjected to the surface layer reforming treatment. It has a preheating part for heating, and the preheating part is provided with an electromagnetic induction coil for induction heating the slab H and an additive supply part such as a nozzle for supplying an additive such as carbon during the induction heating. It may be. In this case, the heating device 1 has a function as a surface modification treatment device.

上記実施の形態では,鋳片Hを誘導加熱し添加物を溶着し,その後プラズマ加熱して表層改質処理していたが,本発明は,他の方法の表層改質処理にも適用できる。例えば,誘導加熱などによる予熱を行わずに,加熱装置1において鋳片Hを加熱し,鋳片Hに炭素などの添加物を供給して,表層改質処理を行うようにしてもよい。この場合,加熱装置1は,添加物を供給する添加物供給部を備えていてもよい。また,本発明は,鋳片Hに炭素以外の添加元素やその合金を添加して行われる表層改質処理にも適用できる。さらに,本発明は,表層改質処理以外の加熱に適用してもよい。以上の実施の形態は,鋳片Hを加熱するものであったが,加熱の対象は,鋳片Hに限られず,他の金属板であってもよい。   In the above embodiment, the slab H is induction-heated and the additive is welded, and then the plasma heating is performed to modify the surface layer. However, the present invention can also be applied to other methods of modifying the surface layer. For example, without performing preheating by induction heating or the like, the slab H may be heated in the heating device 1 and an additive such as carbon may be supplied to the slab H to perform the surface layer reforming process. In this case, the heating apparatus 1 may include an additive supply unit that supplies the additive. The present invention can also be applied to a surface layer reforming process performed by adding an additive element other than carbon or an alloy thereof to the slab H. Furthermore, the present invention may be applied to heating other than the surface layer reforming treatment. Although the above embodiment heated the slab H, the object of heating is not limited to the slab H, and may be another metal plate.

連続鋳造の終了した,表面平均温度800℃の鋳片を切断し,その後誘導加熱により鋳片を1100℃に加熱し,その後プラズマ加熱を連続して行って,鋳片の表層を上述の図1又は図4に示す装置を用いて改質処理した。サンプルには,幅1200mm,厚さ250mm,長さ10mの0.2質量%C鋼の鋳片と,幅800mm,厚さ250mm,長さ10mの0.2質量%C鋼の鋳片を用いて,鋳片の表層の5mmを改質処理した。加熱装置1のプラズマトーチ10の間隔は,100mmとし,幅広の前者の鋳片に対しては12本のプラズマトーチ10を使用した。幅狭の後者の鋳片に対しては,8本のプラズマトーチ10を使用した。また,各プラズマトーチ10のプラズマ電流は,それぞれ300Aに設定した。   A slab having an average surface temperature of 800 ° C., which has been continuously cast, is cut, and then the slab is heated to 1100 ° C. by induction heating, and then plasma heating is continuously performed. Alternatively, reforming treatment was performed using the apparatus shown in FIG. For the sample, a slab of 0.2 mass% C steel having a width of 1200 mm, a thickness of 250 mm and a length of 10 m and a slab of 0.2 mass% C steel having a width of 800 mm, a thickness of 250 mm and a length of 10 m are used. Then, 5 mm of the surface layer of the slab was modified. The interval between the plasma torches 10 of the heating device 1 was 100 mm, and twelve plasma torches 10 were used for the wide former slab. Eight plasma torches 10 were used for the latter narrow slab. The plasma current of each plasma torch 10 was set to 300A.

先ず,金属棒11,12を,前者の幅1200mmの鋳片の端部から外側に300mm離した位置に固定し,金属棒11,12に流れる電流値も固定した。このときの電流値は,例えば2本合わせて合計3600Aに設定した。この場合,前者の鋳片に対しては,幅方向に溶融深さが5mm±0.5mmの範囲の十分均一な溶融状態が得られた。一方,後者の鋳片に対しては,金属棒を設置しなかったため,プラズマアークPが引き合う動きが見られ,幅方向の溶融深さが3〜7mm(平均5mm)の間で変動して不均一となり,さらに鋳片の端部の20mmの部分が未溶融の状態になった。なお,溶融深さのばらつきは,エッチングにより断面組織を測定した。   First, the metal rods 11 and 12 were fixed at positions 300 mm away from the end of the former slab having a width of 1200 mm, and the current value flowing through the metal rods 11 and 12 was also fixed. The current value at this time was set to a total of 3600 A, for example, by combining two. In this case, for the former slab, a sufficiently uniform molten state having a melting depth in the range of 5 mm ± 0.5 mm in the width direction was obtained. On the other hand, the metal slab was not installed on the latter slab, so that the plasma arc P attracted, and the melt depth in the width direction varied between 3 and 7 mm (average 5 mm). It became uniform, and the 20 mm portion at the end of the slab became unmelted. Note that the cross-sectional structure was measured by etching for the variation in melt depth.

次に,鋳片の幅に応じて,金属棒11,12を移動させ,電流値も変えた。この場合,後者の幅800mmの鋳片を処理する場合に,金属棒11,12を鋳片の端部から外側に230mm離した位置に移動させ,金属棒11,12には,2本合わせて合計2400Aになる電流を流した。なお,前者の鋳片を処理する場合には,上述の条件と同様に,鋳片の端部から300mm離した位置に金属棒11,12を移動させ,その金属棒11,12には,2本合わせて合計3600Aになる電流を流した。この結果,前者の鋳片と後者の鋳片の両方について,幅方向の溶融深さが5mm±0.5mmの範囲で均一な溶融状態が得られた。   Next, the metal bars 11 and 12 were moved according to the width of the slab, and the current value was also changed. In this case, when processing the latter slab having a width of 800 mm, the metal bars 11 and 12 are moved to a position 230 mm away from the end of the slab, and the two metal bars 11 and 12 are aligned. A current of 2400 A in total was passed. In the case of processing the former slab, the metal bars 11 and 12 are moved to a position 300 mm away from the end of the slab, as in the above-described conditions. A total current of 3600 A was applied. As a result, for both the former slab and the latter slab, a uniform molten state was obtained when the melt depth in the width direction was in the range of 5 mm ± 0.5 mm.

本発明は,金属板を幅方向に均一に加熱する際に有用である。   The present invention is useful when heating a metal plate uniformly in the width direction.

加熱装置の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of a heating apparatus. 平面から見た加熱装置の模式図である。It is a schematic diagram of the heating apparatus seen from the plane. 金属棒の断面を示す斜視図である。It is a perspective view which shows the cross section of a metal bar. 幅狭の鋳片を加熱する場合の加熱装置の状態を示す説明図である。It is explanatory drawing which shows the state of the heating apparatus in the case of heating a narrow slab. 図4の加熱装置を平面から見た模式図である。It is the schematic diagram which looked at the heating apparatus of FIG. 4 from the plane. 単にプラズマトーチを並列させた場合のプラズマアークの状態を示す説明図である。It is explanatory drawing which shows the state of the plasma arc when a plasma torch is simply put in parallel.

符号の説明Explanation of symbols

1 加熱装置
10 プラズマトーチ
11,12 金属棒(導線)
13,14 直流電源
H 鋳片
P プラズマアーク
A 幅方向,並列方向
1 Heating device 10 Plasma torch 11, 12 Metal rod (conductor)
13, 14 DC power supply H Cast slab P Plasma arc A Width direction, parallel direction

Claims (6)

金属板を加熱する加熱装置であって,
金属板の表面上において金属板の幅方向に沿って並列に配置され,金属板との間にプラズマアークを形成する複数のプラズマトーチと,
前記複数のプラズマトーチの並列方向の両側に配置され,前記プラズマトーチによるプラズマアークと同じ方向に電流を流す導線と,
前記導線に流れる電流値を調整可能な電源と,を有することを特徴とする,加熱装置。
A heating device for heating a metal plate,
A plurality of plasma torches arranged in parallel along the width direction of the metal plate on the surface of the metal plate and forming a plasma arc with the metal plate;
A conductive wire disposed on both sides in the parallel direction of the plurality of plasma torches and for passing a current in the same direction as a plasma arc by the plasma torch;
And a power supply capable of adjusting a value of a current flowing through the conducting wire.
前記導線の電源には,前記プラズマトーチと別の電源が用いられていることを特徴とする,請求項1に記載の加熱装置。 The heating apparatus according to claim 1, wherein a power source for the conducting wire is a power source different from the plasma torch. 前記導線は,前記プラズマトーチの並列方向に移動自在であることを特徴とする,請求項1又は2に記載の加熱装置。 The heating apparatus according to claim 1 or 2, wherein the conducting wire is movable in a parallel direction of the plasma torch. 前記導線は,前記複数のプラズマトーチの並列方向の両側にそれぞれ二本ずつ配置され,
その各側の二本の導線は,金属板の長手方向の平面から見て前記並列されたプラズマトーチを通る直線を挟んで当該直線と等距離の位置にそれぞれ配置され,なおかつ前記各導線は,前記プラズマトーチ側に移動した際に前記プラズマトーチと接触しない位置に配置されていることを特徴とする,請求項3に記載の加熱装置。
Two conductors are arranged on each side in the parallel direction of the plurality of plasma torches,
The two conductors on each side are arranged at positions equidistant from the straight line across the straight line passing through the parallel plasma torches as viewed from the plane in the longitudinal direction of the metal plate, The heating apparatus according to claim 3, wherein the heating apparatus is disposed at a position that does not come into contact with the plasma torch when moved to the plasma torch side.
プラズマアークを生じさせるプラズマトーチの数と,前記導線の移動先の位置と,前記導線の電流値を,金属板の幅に応じて制御する制御部を備えたことを特徴とする,請求項3又は4に記載の加熱装置。 4. A control unit for controlling the number of plasma torches for generating a plasma arc, the position of the conductor to be moved, and the current value of the conductor in accordance with the width of the metal plate. Or the heating apparatus of 4. 前記複数のプラズマトーチの両側の導線は,それぞれ別個の電源に接続されていることを特徴とする,請求項1〜5のいずれかに記載の加熱装置。 The heating device according to any one of claims 1 to 5, wherein the conductive wires on both sides of the plurality of plasma torches are respectively connected to separate power sources.
JP2005292016A 2005-10-05 2005-10-05 Heating device Active JP4603453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292016A JP4603453B2 (en) 2005-10-05 2005-10-05 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292016A JP4603453B2 (en) 2005-10-05 2005-10-05 Heating device

Publications (2)

Publication Number Publication Date
JP2007098440A true JP2007098440A (en) 2007-04-19
JP4603453B2 JP4603453B2 (en) 2010-12-22

Family

ID=38025892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292016A Active JP4603453B2 (en) 2005-10-05 2005-10-05 Heating device

Country Status (1)

Country Link
JP (1) JP4603453B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284582A (en) * 2007-05-17 2008-11-27 Nippon Steel Corp Surface layer treatment apparatus for cast slab and surface treatment method for cast slab
JP2009097056A (en) * 2007-10-19 2009-05-07 Nippon Steel Corp Method for melting surface layer of steel cast slab, and apparatus for melting surface layer of steel cast slab
JP2009255140A (en) * 2008-04-18 2009-11-05 Nippon Steel Corp Surface melting treatment apparatus of cast steel slab
KR101337496B1 (en) 2011-07-11 2013-12-05 (주)모인시스 Apparatus For Improving Surface of Cast Strip and Method of it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541280A (en) * 1991-08-01 1993-02-19 Sumitomo Metal Ind Ltd Dc arc generating method
JPH05220501A (en) * 1992-02-13 1993-08-31 Nippon Steel Corp Method for rolling steel contg. copper and tin
JP2003086351A (en) * 2001-09-13 2003-03-20 Tetronics Ltd Plasma heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541280A (en) * 1991-08-01 1993-02-19 Sumitomo Metal Ind Ltd Dc arc generating method
JPH05220501A (en) * 1992-02-13 1993-08-31 Nippon Steel Corp Method for rolling steel contg. copper and tin
JP2003086351A (en) * 2001-09-13 2003-03-20 Tetronics Ltd Plasma heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284582A (en) * 2007-05-17 2008-11-27 Nippon Steel Corp Surface layer treatment apparatus for cast slab and surface treatment method for cast slab
JP2009097056A (en) * 2007-10-19 2009-05-07 Nippon Steel Corp Method for melting surface layer of steel cast slab, and apparatus for melting surface layer of steel cast slab
JP2009255140A (en) * 2008-04-18 2009-11-05 Nippon Steel Corp Surface melting treatment apparatus of cast steel slab
KR101337496B1 (en) 2011-07-11 2013-12-05 (주)모인시스 Apparatus For Improving Surface of Cast Strip and Method of it

Also Published As

Publication number Publication date
JP4603453B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US20100059493A1 (en) Induction heated, hot wire welding
EP1854335B1 (en) Induction heating device for a metal plate
JP2006294396A (en) Induction heating device
JP4603453B2 (en) Heating device
KR20080066590A (en) Apparatus and method for deep groove welding
JP4959293B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
EP2740808B1 (en) Method and apparatus for heating steel sheet
JP5987420B2 (en) Electric heating method and hot press molding method
JP4113813B2 (en) Induction heating device
JP5068716B2 (en) Method for surface modification of steel slab
JP5010344B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP5131008B2 (en) Surface melting processing equipment for cast steel pieces
JP2010111886A (en) Heat treatment method and apparatus
JP2010182594A (en) Induction heating apparatus of metal plate
JP4959294B2 (en) Surface treatment apparatus for cast steel pieces and surface treatment method for cast steel pieces
JP2013071149A (en) Welding method using right and left difference of two electrodes
JP4948973B2 (en) Method for measuring molten depth of cast steel slab and surface treatment method for cast steel slab
JP4102353B2 (en) Method for melting surface layer of ferromagnetic metal material
JP2005211939A (en) Consumable electrode type welding torch
JP5009121B2 (en) Surface layer melting treatment method for cast steel pieces and surface layer melting treatment apparatus for cast steel pieces
JP2009084664A (en) Induction heating billet heater
RU2751611C1 (en) Device for producing fine powder
JP2020075263A (en) Welding method
TW201424462A (en) Heating coil and heat treatment apparatus
JP5263095B2 (en) Manufacturing method and continuous casting equipment of continuous cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4603453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350