JP6004623B2 - Two-electrode differential welding method - Google Patents

Two-electrode differential welding method Download PDF

Info

Publication number
JP6004623B2
JP6004623B2 JP2011211524A JP2011211524A JP6004623B2 JP 6004623 B2 JP6004623 B2 JP 6004623B2 JP 2011211524 A JP2011211524 A JP 2011211524A JP 2011211524 A JP2011211524 A JP 2011211524A JP 6004623 B2 JP6004623 B2 JP 6004623B2
Authority
JP
Japan
Prior art keywords
electrode
welding
welded
amount
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011211524A
Other languages
Japanese (ja)
Other versions
JP2013071149A (en
Inventor
幸治 保田
幸治 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Marine United Corp
Original Assignee
Japan Marine United Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Marine United Corp filed Critical Japan Marine United Corp
Priority to JP2011211524A priority Critical patent/JP6004623B2/en
Publication of JP2013071149A publication Critical patent/JP2013071149A/en
Application granted granted Critical
Publication of JP6004623B2 publication Critical patent/JP6004623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、先行電極と後行電極の2電極を用いて隅肉溶接を行う際に、溶接とは別の外部熱源を用いて入熱量を調整し、被溶接部材の倒れを防止する2電極左右差溶接方法に関する。   In the present invention, when fillet welding is performed using two electrodes, a leading electrode and a trailing electrode, the amount of heat input is adjusted using an external heat source that is different from the welding to prevent the to-be-welded member from collapsing. The present invention relates to a left-right difference welding method.

造船、橋梁などの構造物においてはT型隅肉溶接が多く行われている。この時、溶接作業の能率向上のために電極をウェブ材の両側に配し、両側から同時に隅肉溶接を行うのが一般的である。
このような2電極を同時に使用する場合、ブローホールなどの溶接欠陥防止のために、2つの電極は一定の距離だけ離され、脚長を確保するために、両側の電極における溶接電流は等しくされている。
T-type fillet welding is often performed in structures such as shipbuilding and bridges. At this time, in order to improve the efficiency of the welding operation, it is common to place electrodes on both sides of the web material and perform fillet welding simultaneously from both sides.
When such two electrodes are used at the same time, the two electrodes are separated by a certain distance in order to prevent welding defects such as blowholes, and the welding currents at the electrodes on both sides are made equal to ensure leg length. Yes.

ところが、2電極により同時に溶接を行う場合、先行側と後行側との溶着量および入熱量をそれぞれ等しくすると、先行側の入熱による影響で、後行側の溶け込みが先行側に対して大きくなり、したがってウェブ材が他方の被溶接部材に対して垂直に溶接されずに、後行側に倒れてしまうという欠点があった。   However, when performing welding simultaneously with two electrodes, if the amount of welding and the amount of heat input on the leading side and the trailing side are equal, the penetration on the trailing side is larger than that on the leading side due to the influence of heat input on the leading side. Therefore, there is a drawback that the web material is not welded perpendicularly to the other member to be welded and falls to the trailing side.

このため、これを解決する手段として、後行側の電極による入熱量を減ずる(例えば、ワイヤー突き出し長さやワイヤー径を変える、つまり溶接電流を減ずる)ことで、両側の溶け込み深さを均一にし、ウェブ材の倒れを防止する2電極溶接方法が提案されている(例えば、特許文献1参照)。   For this reason, as a means to solve this, by reducing the amount of heat input by the trailing electrode (for example, changing the wire protrusion length or wire diameter, that is, reducing the welding current), the penetration depth on both sides is made uniform, A two-electrode welding method that prevents the web material from collapsing has been proposed (see, for example, Patent Document 1).

特開平9−1341号公報JP-A-9-1341

しかしながら、実際の溶接では図2に示すように、溶接ワイヤー3の曲がり癖やコンタクトチップ4の損耗の影響でコンタクトチップ4内の給電点5、つまりワイヤー突き出し長さLが常に変動している。
また、例えば図3に示すように、被溶接部材12には製作誤差が原因で、他方の被溶接部材11との間にギャップと呼ばれる不均一な隙間があるのが一般的である。ギャップ13があった場合は、所定脚長を確保するために溶接電流を調整しながら施工している。
つまり、実施工の中では、電極による入熱量を抑制し、左右の溶け込み深さをコントロールしようとしても、ギャップ13などに代表される部材誤差対応のための調整や、コンタクトチップ4の損耗による電流変化があり、両側の溶け込み深さを均一にすることは難しいという問題があった。
However, in actual welding, as shown in FIG. 2, the feeding point 5 in the contact tip 4, that is, the wire protrusion length L always fluctuates due to the bending of the welding wire 3 and the wear of the contact tip 4.
For example, as shown in FIG. 3, the welded member 12 generally has a non-uniform gap called a gap between the welded member 11 and the other welded member 11 due to manufacturing errors. When there is a gap 13, construction is performed while adjusting the welding current in order to secure a predetermined leg length.
That is, in the construction work, even if an attempt is made to suppress the amount of heat input by the electrodes and to control the penetration depth on the left and right sides, adjustments to deal with member errors typified by the gap 13 and the like, and current due to wear of the contact tips 4 There was a problem that it was difficult to make the penetration depths on both sides uniform.

本発明は、上記のような課題を解決するためになされたものであり、溶接とは別の外部熱源で入熱量を調整し、溶け込み深さをコントロールすることで被溶接部材12の倒れを防止する2電極左右差溶接方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and prevents the member to be welded 12 from collapsing by adjusting the amount of heat input with an external heat source different from welding and controlling the penetration depth. An object of the present invention is to provide a two-electrode left-right difference welding method.

本発明に係る2電極左右差溶接方法は、先行電極と後行電極とを用いて被溶接部材の両側から同時に隅肉溶接を行う2電極溶接方法において、
前記隅肉溶接を施工中に、溶接以外の外部熱源を用いて、先行電極側の入熱量と後行電極側の入熱量との間に差をつけることにより、前記被溶接部材の両側の溶け込み深さを均一にすることを特徴とする。
The two-electrode difference welding method according to the present invention is a two-electrode welding method in which fillet welding is performed simultaneously from both sides of a member to be welded using a leading electrode and a trailing electrode.
During construction of the fillet welding, by using an external heat source other than welding, the difference between the amount of heat input on the leading electrode side and the amount of heat input on the trailing electrode side is obtained, so that both sides of the welded member are melted. It is characterized by uniform depth.

ここで、本発明において、先行電極側の入熱量とは、先行電極による溶接の入熱量と外部熱源による入熱量との和である総入熱量をいう。したがって、先行電極側に外部熱源がない場合は、先行電極側の入熱量は、先行電極による溶接の入熱量のみとなる。また、後行電極側の入熱量も同じく、後行電極による溶接の入熱量と外部熱源による入熱量との和である総入熱量をいう。したがって、後行電極側に外部熱源がない場合は、後行電極側の入熱量は、後行電極による溶接の入熱量のみとなる。   Here, in the present invention, the amount of heat input on the leading electrode side refers to the total amount of heat input that is the sum of the amount of heat input from welding by the leading electrode and the amount of heat input from the external heat source. Therefore, when there is no external heat source on the leading electrode side, the heat input amount on the leading electrode side is only the heat input amount of welding by the leading electrode. Similarly, the amount of heat input on the trailing electrode side is the total amount of heat input that is the sum of the amount of heat input from welding by the trailing electrode and the amount of heat input from the external heat source. Therefore, when there is no external heat source on the trailing electrode side, the heat input amount on the trailing electrode side is only the heat input amount of welding by the trailing electrode.

また、本発明の2電極左右差溶接方法においては、外部熱源として、先行電極側には溶接部を加熱する熱源、後行電極側には溶接部を冷却する冷却源のいずれか一方または両方を設けるものである。   In the two-electrode left-right difference welding method of the present invention, as an external heat source, one or both of a heat source for heating the welded portion on the preceding electrode side and a cooling source for cooling the welded portion on the subsequent electrode side are used. It is to be provided.

また、本発明の2電極左右差溶接方法においては、温度センサーにより被溶接部材の特定の部位の温度を計測することにより、計測された温度に基づく先行電極側の入熱量を一定にして、後行電極側の冷却量を変更するものである。   Further, in the two-electrode left-right difference welding method of the present invention, by measuring the temperature of a specific part of the member to be welded by a temperature sensor, the amount of heat input on the leading electrode side based on the measured temperature is made constant, and The amount of cooling on the row electrode side is changed.

また、本発明の2電極左右差溶接方法においては、被溶接部材の特定の部位は、先行電極側の溶接部の前記被溶接部材の裏側の位置で、前記先行電極と前記後行電極との間の位置とするものである。   Further, in the two-electrode left-right difference welding method of the present invention, the specific part of the welded member is a position on the back side of the welded member of the welded part on the preceding electrode side, and the preceding electrode and the succeeding electrode are It is a position between.

本発明によれば、被溶接部材の隅肉溶接を施工中に、溶接以外の外部熱源を用いて、先行電極側の入熱量と後行電極側の入熱量との間に差をつけることとしたので、ギャップや消耗部品の損耗などがあっても、管理の難しい電極による入熱量の変更をともなわずに、被溶接部材の倒れを防止できる効果がある。   According to the present invention, during construction of fillet welding of a member to be welded, using an external heat source other than welding, making a difference between the heat input amount on the preceding electrode side and the heat input amount on the subsequent electrode side; Therefore, even if there is a gap, wear of consumable parts, etc., there is an effect that the to-be-welded member can be prevented from falling without changing the amount of heat input by an electrode that is difficult to manage.

本発明の施工の形態における2電極左右差溶接方法の概要を示す図で、(a)は平面図、(b)は正面図である。It is a figure which shows the outline | summary of the 2 electrode left-right difference welding method in the form of construction of this invention, (a) is a top view, (b) is a front view. 電極のコンタクトチップ部の断面図である。It is sectional drawing of the contact tip part of an electrode. 被溶接部材の製作誤差によるギャップを示す図で、(a)は正面図、(b)は側面図である。It is a figure which shows the gap by the manufacture error of a to-be-welded member, (a) is a front view, (b) is a side view.

以下、本発明の施工の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の施工の形態における2電極左右差溶接方法の概要を示す図である。
図1に示すように、いずれも消耗電極である先行電極1と後行電極2とが所定の極間距離Sを隔てて、被溶接部材12の例えば図1の左側と右側に配置されている。被溶接部材12は、他方の被溶接部材11の上に立設され、先行電極1と後行電極2とにより被溶接部材12の両側から同時に隅肉溶接される。
先行電極1は溶接進行方向(矢印の方向)の先頭に位置する電極であり、消耗電極の溶接ワイヤー3aが所要の突出し長さとなるように自動送給されるようになっている。後行電極2は先行電極1より後方に所定の距離Sだけ離れた位置に配置されており、同様に消耗電極の溶接ワイヤー3bが所要の突出し長さとなるように自動送給されるようになっている。なお、溶接ワイヤー3a、3bの種類(ソリッドワイヤー、コアードワイヤーなど)、ワイヤー径は同種、同径、あるいは異種、異径のどのような組み合わせでもかまわない。
FIG. 1 is a diagram showing an outline of a two-electrode left-right difference welding method in the embodiment of the present invention.
As shown in FIG. 1, the leading electrode 1 and the trailing electrode 2, both of which are consumable electrodes, are arranged on the welded member 12, for example, on the left side and the right side of FIG. 1 with a predetermined distance S between them. . The member to be welded 12 is erected on the other member to be welded 11 and is fillet welded simultaneously from both sides of the member to be welded 12 by the leading electrode 1 and the trailing electrode 2.
The leading electrode 1 is an electrode positioned at the head of the welding progress direction (the direction of the arrow), and is automatically fed so that the consumable electrode welding wire 3a has a required protruding length. The trailing electrode 2 is arranged at a position separated from the leading electrode 1 by a predetermined distance S, and similarly, the consumable electrode welding wire 3b is automatically fed so as to have a required protruding length. ing. Note that the types of the welding wires 3a and 3b (solid wire, cored wire, etc.) and wire diameter may be the same type, the same diameter, or different combinations of different diameters.

さらに、先行電極1側には溶接部10aを加熱する熱源6が設けられている。熱源6は、例えばガスバーナーや高周波加熱などにより加熱を行うものである。一方、後行電極2側には溶接部10bを冷却する冷却源7が設けられている。冷却源7は、例えば圧縮空気の噴きつけや接触式の水冷銅板などにより冷却するものである。熱源6および冷却源7は、例えば不図示の溶接台車(被溶接部材12に沿って移動する台車)に先行電極1、後行電極2の各溶接トーチと共に搭載して手動または自動で移動させることができる。なお、熱源6および冷却源7は両方を使用してもよく、どちらか一方を使用してもよい。   Further, a heat source 6 for heating the welded portion 10a is provided on the leading electrode 1 side. The heat source 6 performs heating by, for example, a gas burner or high-frequency heating. On the other hand, a cooling source 7 for cooling the welded portion 10b is provided on the trailing electrode 2 side. The cooling source 7 is cooled by, for example, spraying compressed air or a contact-type water-cooled copper plate. For example, the heat source 6 and the cooling source 7 are mounted on a welding cart (not shown) (a cart that moves along the member to be welded 12) together with the welding torches of the leading electrode 1 and the trailing electrode 2, and are moved manually or automatically. Can do. Note that both the heat source 6 and the cooling source 7 may be used, or one of them may be used.

また、後行電極2側には被溶接部材12の温度を検知する温度センサー8(例えば、赤外線センサー)が設置されている。温度センサー8も上記溶接台車上に設置されている。この温度センサー8は、被溶接部材12の特定の部位の温度を計測するものである。すなわち、先行電極1の溶接熱の伝播による入熱、つまり後行電極2側の溶接前の部材温度上昇を知りたいので、温度センサー8は後行電極2側に配置する。ここで、特定の部位とは、先行電極1側の溶接部10aの被溶接部材12の裏側の位置で、先行電極1と後行電極2との間の位置をいう。   Further, a temperature sensor 8 (for example, an infrared sensor) that detects the temperature of the member to be welded 12 is installed on the trailing electrode 2 side. The temperature sensor 8 is also installed on the welding carriage. This temperature sensor 8 measures the temperature of a specific part of the member 12 to be welded. That is, since it is desired to know the heat input due to the propagation of the welding heat of the leading electrode 1, that is, the temperature rise of the member before welding on the trailing electrode 2 side, the temperature sensor 8 is disposed on the trailing electrode 2 side. Here, the specific part refers to a position between the preceding electrode 1 and the succeeding electrode 2 on the back side of the welded member 12 of the welded portion 10a on the preceding electrode 1 side.

次に、この2電極左右差溶接方法の作用について説明する。
被溶接部材12は、先行電極1と後行電極2とにより両側から同時に隅肉溶接される。この溶接施工中に、先行電極1側に設けられたバーナー等の熱源6により溶接部10aを加熱し、入熱量を調整し、溶け込み深さをコントロールする。また、溶接施工中には、ギャップの多少により作業者が溶接電流を増減させるので、熱源6による加熱量もこれに応じて調整する。すなわち、ギャップが大きい場合は溶接速度を遅くしたり、溶接電流を上げるなどの調整を行うことにより溶接による入熱量が多くなる。よって、この場合は、熱源6による加熱量を少なくすることで総入熱量(溶接入熱量と熱源6の加熱量との和)が一定になるように調整する。
Next, the effect | action of this 2 electrode left-right difference welding method is demonstrated.
The member to be welded 12 is fillet welded simultaneously from both sides by the leading electrode 1 and the trailing electrode 2. During this welding operation, the welded portion 10a is heated by a heat source 6 such as a burner provided on the preceding electrode 1 side, the amount of heat input is adjusted, and the penetration depth is controlled. In addition, during welding work, the operator increases or decreases the welding current depending on the gap, so the amount of heating by the heat source 6 is adjusted accordingly. That is, when the gap is large, the amount of heat input by welding is increased by adjusting the welding speed to be slow or the welding current to be increased. Therefore, in this case, the total heat input (the sum of the welding heat input and the heating amount of the heat source 6) is adjusted to be constant by reducing the heating amount by the heat source 6.

一方、後行電極2側では、冷却源7の圧縮空気の噴きつけなどにより溶接部10bを冷却することで総入熱量を調整し、溶け込み深さをコントロールする。冷却量は、温度センサー8により計測した温度情報と後行側の電極による入熱量を元に決定する。特定の部位の計測温度、後行側の電極による入熱量と冷却量の関係はあらかじめ実験により求めたものをデータベース化しておき、溶接施工中においては、このデータベースを参照し、冷却量を調整する。   On the other hand, on the side of the trailing electrode 2, the total heat input is adjusted by cooling the welded portion 10 b by blowing compressed air from the cooling source 7, and the penetration depth is controlled. The cooling amount is determined based on the temperature information measured by the temperature sensor 8 and the amount of heat input by the succeeding electrode. The relationship between the measured temperature of a specific part, the amount of heat input and the amount of cooling by the electrode on the following side is obtained in advance as a database, and the amount of cooling is adjusted by referring to this database during welding. .

本発明では、上述のように隅肉溶接施工中に、外部熱源を用いて、先行電極1側の総入熱量と後行電極2側の総入熱量との間に差をつけることで、両側の溶け込み深さを均一にし、被溶接部材12の倒れを防止するものである。例えば、先行電極1側の総入熱量は一定にして、後行電極2側の冷却量を変更することで、先行後行の総入熱量に差をつける。
したがって、本発明によれば、不安定で調整の難しい電極による入熱量ではなく、外部の熱源6または冷却源7による入熱量の調整であるので、部材の製作誤差や消耗部品の損耗度の影響があった場合でも被溶接部材の倒れを確実に防止することができる。
In the present invention, during fillet welding as described above, an external heat source is used to make a difference between the total heat input on the leading electrode 1 side and the total heat input on the trailing electrode 2 side. The penetration depth is made uniform, and the to-be-welded member 12 is prevented from falling. For example, by making the total heat input on the leading electrode 1 side constant and changing the cooling amount on the trailing electrode 2 side, a difference is made in the total heat input on the leading and trailing.
Therefore, according to the present invention, it is not the amount of heat input by the unstable and difficult to adjust electrode, but the amount of heat input by the external heat source 6 or the cooling source 7, so the influence of manufacturing errors of members and the degree of wear of consumable parts is affected. Even when there is, it is possible to reliably prevent the member to be welded from falling.

1 先行電極
2 後行電極
3a、3b 溶接ワイヤー
6 熱源
7 冷却源
8 温度センサー
10a、10b 溶接部
11、12 被溶接部材
DESCRIPTION OF SYMBOLS 1 Leading electrode 2 Subsequent electrode 3a, 3b Welding wire 6 Heat source 7 Cooling source 8 Temperature sensor 10a, 10b Welding part 11, 12 Member to be welded

Claims (1)

先行電極と後行電極とを用いて被溶接部材の両側から同時に隅肉溶接を行う2電極溶接方法において、
前記隅肉溶接を施工中に、溶接以外の外部熱源を用いて、先行電極側の入熱量と後行電極側の入熱量との間に差をつけることにより、前記被溶接部材の両側の溶け込み深さを均一にするものであり、
前記外部熱源として、先行電極側には溶接部を加熱する熱源、後行電極側には溶接部を冷却する冷却源のいずれか一方または両方を設け、
温度センサーにより前記被溶接部材の特定の部位の温度を計測することにより、計測された温度に基づく先行電極側の入熱量を一定にして、後行電極側の冷却量を変更し、
前記被溶接部材の特定の部位は、先行電極側の溶接部の前記被溶接部材の裏側の位置で、前記先行電極と前記後行電極との間の位置とすることを特徴とする2電極左右差溶接方法。
In a two-electrode welding method in which fillet welding is performed simultaneously from both sides of a member to be welded using a leading electrode and a trailing electrode,
During construction of the fillet welding, by using an external heat source other than welding, the difference between the amount of heat input on the leading electrode side and the amount of heat input on the trailing electrode side is obtained, so that both sides of the welded member are melted. The depth is uniform ,
As the external heat source, one or both of a heat source for heating the welded portion on the leading electrode side and a cooling source for cooling the welded portion on the following electrode side are provided,
By measuring the temperature of the specific part of the member to be welded by the temperature sensor, the amount of heat input on the leading electrode side based on the measured temperature is made constant, and the cooling amount on the trailing electrode side is changed,
The specific part of the member to be welded is a position between the preceding electrode and the succeeding electrode at a position on the back side of the welded member of the welded portion on the preceding electrode side. Differential welding method.
JP2011211524A 2011-09-27 2011-09-27 Two-electrode differential welding method Expired - Fee Related JP6004623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211524A JP6004623B2 (en) 2011-09-27 2011-09-27 Two-electrode differential welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211524A JP6004623B2 (en) 2011-09-27 2011-09-27 Two-electrode differential welding method

Publications (2)

Publication Number Publication Date
JP2013071149A JP2013071149A (en) 2013-04-22
JP6004623B2 true JP6004623B2 (en) 2016-10-12

Family

ID=48476075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211524A Expired - Fee Related JP6004623B2 (en) 2011-09-27 2011-09-27 Two-electrode differential welding method

Country Status (1)

Country Link
JP (1) JP6004623B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258161B2 (en) * 2014-08-29 2018-01-10 株式会社神戸製鋼所 Tandem arc welding method, tandem arc welding apparatus, and tandem arc welding system
CN111408865A (en) * 2020-05-08 2020-07-14 安徽伟宏钢结构集团股份有限公司 Female surface butt-joint oblique-vertical welding method convenient to operate
JP7219247B2 (en) * 2020-06-22 2023-02-07 日本ファブテック株式会社 Steel material cooling device and steel material welding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496446A (en) * 1978-01-17 1979-07-30 Nippon Kokan Kk <Nkk> Welding method for welded steel pipe of high toughness
JP2745674B2 (en) * 1989-05-12 1998-04-28 石川島播磨重工業株式会社 Method and apparatus for preventing distortion in thin plate welding
JPH091341A (en) * 1995-06-22 1997-01-07 Hitachi Zosen Corp Two electrode fillet welding method in consumable electrode welding
JPH09192839A (en) * 1996-01-19 1997-07-29 Mitsubishi Heavy Ind Ltd Method and device for automatic welding
US6861617B2 (en) * 2003-06-03 2005-03-01 Edison Welding Institute, Inc. Method of reducing distortion by transient thermal tensioning

Also Published As

Publication number Publication date
JP2013071149A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
TWI712458B (en) Wire manufactured by additive manufacturing methods
JP6004623B2 (en) Two-electrode differential welding method
EP2500127A2 (en) Cladding application method and apparatus using hybrid laser process
JP5832304B2 (en) TIG arc welding electrode and TIG arc welding method
JP5828652B2 (en) Plasma mig welding torch
JP2013111654A (en) Welding system, welding process, and welded article
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JP5408055B2 (en) Manufacturing method of welded joint and welding apparatus for carrying out the method
KR20210039300A (en) Sliding copper backing plate for welding and welding method
KR101608975B1 (en) Tandem GMAW device for welding thick plate
JP5543160B2 (en) Composite welding apparatus and composite welding method
JP6079715B2 (en) Seam joining method of ERW steel pipe
JP6092163B2 (en) Welding apparatus and welding method
CN107635706B (en) Welding method and welding device
JP2014046316A (en) Arc welding method, and arc welding apparatus
JP2020075263A (en) Welding method
JP5565021B2 (en) Welding wire feed guide, submerged arc welding machine, and UOE steel pipe manufacturing method
JP2016043391A (en) Laser arc hybrid welding method
JP5590912B2 (en) Butt automatic welding equipment for shear-cut steel plates
JP2020127947A (en) Method for steel strip joint and device therefor
WO2022030162A1 (en) Ultra-narrow-gap submerged arc welding method and ultra-narrow-gap submerged arc welding device
JP6012326B2 (en) Electron beam welding method
JP2006205249A (en) Submerged arc welding method in manufacturing of uoe pipe and method for manufacturing uoe pipe using the same
KR20080090686A (en) Welding device for smooth surfaced defect-less bead
JP2007030015A (en) Steel plate connection welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees