JP6012326B2 - Electron beam welding method - Google Patents

Electron beam welding method Download PDF

Info

Publication number
JP6012326B2
JP6012326B2 JP2012165833A JP2012165833A JP6012326B2 JP 6012326 B2 JP6012326 B2 JP 6012326B2 JP 2012165833 A JP2012165833 A JP 2012165833A JP 2012165833 A JP2012165833 A JP 2012165833A JP 6012326 B2 JP6012326 B2 JP 6012326B2
Authority
JP
Japan
Prior art keywords
welding
weld bead
bead
weld
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012165833A
Other languages
Japanese (ja)
Other versions
JP2014024089A (en
Inventor
真彦 豊田
真彦 豊田
成忠 寺井
成忠 寺井
佐藤 貴志
貴志 佐藤
忠弘 木村
忠弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012165833A priority Critical patent/JP6012326B2/en
Publication of JP2014024089A publication Critical patent/JP2014024089A/en
Application granted granted Critical
Publication of JP6012326B2 publication Critical patent/JP6012326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被溶接物に適用される電子ビーム溶接方法に関する。   The present invention relates to an electron beam welding method applied to an object to be welded.

一般的に、電子ビーム溶接機は電子銃、真空チャンバー、排気系、被溶接物駆動装置、高圧電源、制御盤等で構成される。電子ビーム溶接は、突き合わされた二以上の母材(被溶接物)が互いに接して形成される突合せ部に対して電子銃から電子ビームを照射することで、突合せ部を溶融、蒸発させるとともに急速に凝固させ、それら二以上の母材を接合する溶接方法である。   In general, an electron beam welder includes an electron gun, a vacuum chamber, an exhaust system, a workpiece driving device, a high voltage power source, a control panel, and the like. Electron beam welding is performed by irradiating an electron beam from an electron gun onto a butt portion formed by contacting two or more base materials (workpieces) that are in contact with each other, thereby rapidly melting and evaporating the butt portion. It is a welding method in which the two or more base materials are joined together.

電子ビーム溶接は、従来の溶接方法に較べて、母材に与える熱変形や溶接歪が小さいこと等から、一般に高品位な溶接を実現できることが知られている。したがって、より高い精度が求められるワーク(部材)の組立などには非常に有効な接合手段であり、精密部品から大型構造部品まで幅広く応用されている。
特に、比較的大型の構造部品において電子ビーム溶接を適用する場合には、その突合せ部が、サブマージアーク溶接やTIG溶接で通常用いられる突き合わせ時に断面U字型となる開先とは異なり、通常、I型開先とされる。したがって、開先加工にともなう手間を省略することが可能であるとともに、溶接自体も1パスで行われることとなり、従来に比べて大幅に工数を低減することが可能である。
Electron beam welding is generally known to be able to achieve high-quality welding because, for example, thermal deformation and welding distortion applied to the base material are small compared to conventional welding methods. Therefore, it is a very effective joining means for assembling workpieces (members) that require higher accuracy, and is widely applied from precision parts to large structural parts.
In particular, when applying electron beam welding to a relatively large structural part, the butt portion is different from a groove having a U-shaped cross section at the time of butt use normally used in submerged arc welding or TIG welding. It is considered as a type I groove. Therefore, it is possible to omit the labor associated with the groove processing, and welding itself is performed in one pass, and the number of man-hours can be greatly reduced as compared with the conventional case.

しかし、1パスで行う場合、1つの溶接ビードで目はずれによる溶接欠陥を防止する必要があり、溶接ビード幅を開先の幅よりも広げなければならない。溶接ビード幅を広げると、入熱が大きくなってしまい強度の低下を招くだけではなく、冷却速度も低下することから焼き入れ効果による強度の上昇も得られない。これにより、結果として溶接金属の機械的性質が全体として低下してしまう。
さらに、電子ビーム溶接は、溶接ビードが鋼板中の細かい磁気によって偏向され易いため、厚みが厚くなるほど目はずれによる溶接欠陥が生じやすい。つまり、板厚が厚くなるほど、目はずれを防止するために溶接ビード幅を広げる必要があり、入熱も大きくなってしまうため、溶接金属の機械的性質は板厚を増加させるほど低下する傾向にある。
However, when it is performed in one pass, it is necessary to prevent welding defects due to misalignment with one weld bead, and the weld bead width must be wider than the groove width. Increasing the weld bead width not only increases heat input and causes a decrease in strength, but also decreases the cooling rate, so that an increase in strength due to the quenching effect cannot be obtained. As a result, the mechanical properties of the weld metal are deteriorated as a whole.
Further, in electron beam welding, since the weld bead is easily deflected by the fine magnetism in the steel sheet, a weld defect due to misalignment tends to occur as the thickness increases. In other words, as the plate thickness increases, the weld bead width needs to be increased in order to prevent misalignment, and the heat input also increases, so the mechanical properties of the weld metal tend to decrease as the plate thickness increases. is there.

そこで、1パスではなく複数パスを行うことで、目はずれを防止しつつ溶接金属の機械的性質を向上させる方法として、例えば、特許文献1や特許文献2に記載の技術が挙げられる。
特許文献1に記載の技術では、開先から左右に少しずらして複数パスを施す。複数の溶接ビードによって開先を溶接することで、幅広い溶接ビードを形成し目はずれによる欠陥が生じない接合を行う。そして、最終パスで、幅広い溶接ビード内の中心付近に、入熱の小さい細い溶接ビードを施し、焼き入れ効果を生じさせることで、強度を母材並みに回復させる方法がある。
Therefore, as a method of improving the mechanical properties of the weld metal while preventing misalignment by performing a plurality of passes instead of one pass, for example, techniques described in Patent Literature 1 and Patent Literature 2 are cited.
In the technique described in Patent Document 1, a plurality of passes are applied with a slight shift left and right from the groove. By welding the groove with a plurality of weld beads, a wide weld bead is formed, and joining without causing defects due to misalignment is performed. In the final pass, there is a method in which a thin weld bead with a small heat input is provided near the center in a wide range of weld beads and the strength is restored to the level of the base material by producing a quenching effect.

また、特許文献2に記載の技術では、1パス目の第一溶接ビードを開先よりも広い幅で形成した後に、第一溶接ビードよりも幅の狭い2パス目以降の第二、第三溶接ビードを開先から左右に少しずらして形成することで、総溶接ビード幅を広くし目はずれを防止する。そして、第二、第三溶接ビードを開先からずらして形成することにより第一溶接ビードに小入熱を与え、第一溶接ビードを再溶融させることで結晶粒を微細化し靱性を向上させる方法がある。   In the technique described in Patent Document 2, after the first weld bead of the first pass is formed with a width wider than the groove, the second and third second and third passes after the second pass having a narrower width than the first weld bead. By forming the weld bead slightly shifted left and right from the groove, the total weld bead width is widened to prevent misalignment. Then, the second and third weld beads are shifted from the groove to form a small heat input to the first weld bead, and the first weld bead is remelted to refine crystal grains and improve toughness. There is.

特開平10−314960号公報JP-A-10-314960 特開2012−35318号公報JP 2012-35318 A

しかしながら、いずれの方法も入熱が大きくなるため、冷却速度が遅くなり焼き入れ効果が充分に得られないことや、母材の一部が融点以下で加熱されることで溶融金属の強度が母材よりも低くなることなどの問題から、溶接金属の強度を得ることは難しい。
さらに、TMCP(Thermo−Mechanical Control Process)を用いた高張力鋼のような鋼材では、より溶接金属の強度を求められるが、合金元素を大幅に減少させているため十分な溶接金属の強度を得ることがさらに難しいという問題がある。
また、従来の電子ビーム溶接の方法は、各パスを施工する毎に溶接ビード幅を変更する必要があるため、一箇所の開先を溶接するために何度も条件調整を行うという手間がかかっている。
However, since both methods increase heat input, the cooling rate is slow and a sufficient quenching effect cannot be obtained, and the strength of the molten metal is reduced by heating a part of the base material below the melting point. It is difficult to obtain the strength of the weld metal due to problems such as being lower than the material.
Furthermore, in steel materials such as high-tensile steel using TMCP (Thermo-Mechanical Control Process), the strength of the weld metal is required more, but since the alloy elements are greatly reduced, sufficient weld metal strength is obtained. The problem is that it is even more difficult.
In addition, the conventional electron beam welding method requires changing the weld bead width every time each pass is applied, so it takes time and effort to adjust the conditions many times in order to weld a single groove. ing.

本発明は、上記課題を解決するためになされたものであって、目外れによる欠陥を防止し、溶接金属の強度の低下を防ぐことが容易にできる電子ビーム溶接方法を提供するものである。   The present invention has been made to solve the above-described problems, and provides an electron beam welding method that can easily prevent defects due to off-axis and prevent a decrease in the strength of the weld metal.

上記課題を解決するために、本発明は以下の手段を提案している。
本発明の一態様に係る電子ビーム溶接方法は、2つの母材の突合せ部に形成された開先を含むように、一次溶接ビードを施工する工程と、前記一次溶接ビードと幅が等しい複数の二次溶接ビードを、前記一次溶接ビードと重なり、かつ、これら複数の二次溶接ビードが互いに重ならない位置に順次施工する工程と、を備え、前記二次溶接ビードを前記2つの母材の前記開先の対向する面に傾斜させて施工することを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
An electron beam welding method according to an aspect of the present invention includes a step of applying a primary weld bead so as to include a groove formed at a butt portion of two base materials, and a plurality of widths equal to the primary weld bead. the secondary weld bead, the overlapping primary weld bead, and includes a step of the plurality of secondary weld bead sequentially construction so as not to overlap each other, and the said secondary weld bead of the two base materials It is characterized in that the construction is carried out by inclining on the facing surface of the groove .

このような構成によれば、一次溶接ビードと二次溶接ビードとが重なることで、開先に対して形成される溶接ビードの幅を広くとることができる。また、二次溶接ビードが互いに重ならないことで一次溶接ビードにかかる入熱を小さくすることができる。さらに、等しい溶接ビード幅とすることで最後まで同一の溶接条件で容易に溶接を行うことができる。   According to such a structure, the width of the weld bead formed with respect to the groove can be increased by overlapping the primary weld bead and the secondary weld bead. Moreover, the heat input concerning a primary welding bead can be made small because a secondary welding bead does not mutually overlap. Furthermore, welding can be easily performed under the same welding conditions until the end by setting equal weld bead widths.

このような構成によれば、一次溶接ビードと二次溶接ビードとが互いに重なり合う領域が減少するため、さらに一次溶接ビードへの入熱を小さくすることができる。   According to such a configuration, since the region where the primary weld bead and the secondary weld bead overlap each other is reduced, the heat input to the primary weld bead can be further reduced.

さらに、本発明の他の態様に係る電子ビーム溶接方法は、前記一次溶接ビード及び前記二次ビードの幅を1mmから3mmの範囲に設定することを特徴とする。   Furthermore, the electron beam welding method according to another aspect of the present invention is characterized in that a width of the primary welding bead and the secondary bead is set in a range of 1 mm to 3 mm.

このような構成によれば、一次溶接ビード及び二次溶接ビードを細い幅で形成することで入熱を小さくすることが可能となり、一つ一つの溶接ビードの冷却速度が上昇する。そして、細い幅の溶接ビードを形成することで開先に形成される溶接ビードの幅を狭くすることができ、開先の幅より必要以上に大きく溶接ビードを形成することを防ぐことができる。   According to such a configuration, it is possible to reduce the heat input by forming the primary welding bead and the secondary welding bead with a narrow width, and the cooling rate of each welding bead is increased. By forming the weld bead with a narrow width, the width of the weld bead formed at the groove can be narrowed, and the formation of the weld bead larger than necessary than the width of the groove can be prevented.

本発明の電子ビーム溶接方法によれば、同じ幅の第一溶接ビードと第二溶接ビードを重ねることで、開先に対して形成される溶接ビードの幅が広くして目外れによる欠陥を防止し、第二溶接ビード同士を重ねないことで、入熱を小さくし溶接金属の強度の低下を防ぐことが容易にできる電子ビーム溶接方法を提供するものである。   According to the electron beam welding method of the present invention, by overlapping the first weld bead and the second weld bead having the same width, the width of the weld bead formed with respect to the groove is widened to prevent a defect due to an off-axis. In addition, it is an object of the present invention to provide an electron beam welding method capable of easily reducing the heat input and preventing the strength of the weld metal from being lowered by not overlapping the second weld beads.

本発明の第一実施形態に係る電子ビーム溶接方法の行程を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the process of the electron beam welding method which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る電子ビーム溶接方法の工程を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the process of the electron beam welding method which concerns on 2nd embodiment of this invention. 本発明の実施例と比較例との強度の関係を示すグラフである。It is a graph which shows the relationship of the intensity | strength of the Example and comparative example of this invention.

以下、本発明に係る第一実施形態について図1を参照して説明する。   Hereinafter, a first embodiment according to the present invention will be described with reference to FIG.

図1に示すように、本実施形態の電子ビーム溶接方法は、母材4の開先5に対し、一次溶接ビードを形成する第一溶接工程S1の後に、2回の二次溶接ビードを形成する第二溶接工程S2及び第三溶接工程S3を備えている。
具体的には、本実施形態の電子ビーム溶接方法は、開先5を形成する準備工程S0と、一次溶接ビードである第一溶接ビード1を形成する第一溶接工程S1と、第1の二次溶接ビードである第二溶接ビード2を形成する第二溶接工程S2と、第2の二次溶接ビードである第三溶接ビード3を形成する第三溶接工程S3とから構成されており、これらの工程が順次施される。
As shown in FIG. 1, in the electron beam welding method of the present embodiment, the secondary welding bead is formed twice after the first welding step S <b> 1 for forming the primary welding bead on the groove 5 of the base material 4. The second welding step S2 and the third welding step S3 are provided.
Specifically, in the electron beam welding method of the present embodiment, the preparation step S0 for forming the groove 5, the first welding step S1 for forming the first welding bead 1 as the primary welding bead, and the first two A second welding step S2 for forming a second welding bead 2 as a second welding bead, and a third welding step S3 for forming a third welding bead 3 as a second secondary welding bead. These steps are sequentially performed.

図1(a)に示すように、まず、準備工程S0では、二つの母材4の端面を対向するように突き合わせ、突合せ部である開先5を形成する。開先5は、0mm〜0.5mmの幅になるように母材4間の位置が調整されている。
母材4である被溶接物には、電子ビーム溶接が施工可能な材料が使用できる。中でも、TMCPを用いた高張力鋼などに使用されることが好ましい。
As shown in FIG. 1A, first, in the preparation step S0, the end surfaces of the two base materials 4 are butted together so as to form a groove 5 that is a butted portion. The position between the base materials 4 is adjusted so that the groove 5 has a width of 0 mm to 0.5 mm.
A material to which electron beam welding can be applied can be used for the work piece that is the base material 4. Among these, it is preferably used for high-strength steel using TMCP.

図1(b)に示すように、第一溶接工程S1では、開先5を含むように開先5に対して平行に第一溶接ビード1を形成する。第一溶接ビード1の幅を1mmから3mmの範囲に設定するために、表1の溶接施工条件を使用する。
なお、本実施形態における溶接ビードの幅は、最も狭い部分の長さを意味する。
As shown in FIG. 1B, in the first welding step S <b> 1, the first weld bead 1 is formed in parallel to the groove 5 so as to include the groove 5. In order to set the width of the first weld bead 1 in the range of 1 mm to 3 mm, the welding conditions shown in Table 1 are used.
In addition, the width of the weld bead in this embodiment means the length of the narrowest part.

本実施形態における電子ビーム溶接施工条件を表1に示す。   Table 1 shows the electron beam welding conditions in this embodiment.

Figure 0006012326
Figure 0006012326

図1(c)に示すように、第二溶接工程S2では、第一溶接工程S1で形成した第一溶接ビード1を充分に冷却した後に、第1の二次溶接ビードである第二溶接ビード2を形成する。第二溶接ビード2は、第一溶接ビード1の中心線O1が含まれない偏った位置に、第一溶接ビード1と接しながら、中心線O1と第二溶接ビード2の中心線O2とが縦断面視にて、即ち、母材4の厚さ方向を含む断面視にて、互いに平行になるように形成される。ここで、第二溶接工程S2では、表1の溶接施工条件で施工し、第一溶接工程S1から溶接施工条件の変更を行わない。   As shown in FIG.1 (c), in 2nd welding process S2, after fully cooling the 1st welding bead 1 formed at 1st welding process S1, the 2nd welding bead which is a 1st secondary welding bead is shown. 2 is formed. In the second weld bead 2, the center line O 1 and the center line O 2 of the second weld bead 2 are vertically cut in contact with the first weld bead 1 at a biased position where the center line O 1 of the first weld bead 1 is not included. They are formed so as to be parallel to each other in a plan view, that is, in a cross-sectional view including the thickness direction of the base material 4. Here, in 2nd welding process S2, it constructs on the welding construction conditions of Table 1, and does not change welding construction conditions from 1st welding process S1.

図1(d)に示すように、第三溶接工程S3では、第二溶接ビード2を充分に冷却した後に、第2の二次溶接ビードである第三溶接ビード3を形成する。第三溶接ビード3は、第二溶接ビード2とは逆側の第一溶接ビード1の中心線O1が含まれない偏った位置に、第一溶接ビード1と接しながら、中心線O1と第三溶接ビード3の中心線O3が縦断面視で平行になるように形成される。つまり、第三溶接ビード3は、第二溶接ビード2と互いに接することないため、重ならない位置に形成される。即ち、第二溶接ビード2と第三溶接ビード3とは開先5を挟むように間隔をあけて形成される。ここで、第三溶接工程S3では、表1の溶接施工条件で施工し、第一溶接工程S1から溶接施工条件の変更を行わない。
なお、第二溶接ビード2と第三溶接ビード3とは第一溶接ビード1の中心線O1を境界として線対称に配置されていることが好ましく、開先5を境界として線対称に配置されていることがより好ましい。
As shown in FIG. 1 (d), in the third welding step S3, the second weld bead 2 is sufficiently cooled, and then the third weld bead 3 as the second secondary weld bead is formed. The third weld bead 3 is in contact with the first weld bead 1 at a biased position where the center line O1 of the first weld bead 1 on the opposite side to the second weld bead 2 is not included. The center line O3 of the weld bead 3 is formed to be parallel in a longitudinal sectional view. That is, since the third weld bead 3 does not contact the second weld bead 2, the third weld bead 3 is formed at a position that does not overlap. That is, the second weld bead 2 and the third weld bead 3 are formed with an interval so as to sandwich the groove 5. Here, in 3rd welding process S3, it constructs on the welding construction conditions of Table 1, and does not change welding construction conditions from 1st welding process S1.
The second weld bead 2 and the third weld bead 3 are preferably arranged symmetrically with respect to the center line O1 of the first weld bead 1, and are arranged symmetrically with respect to the groove 5 as a boundary. More preferably.

次に、上記構成の電子ビーム溶接方法の作用について説明する。
上記のような電子ビーム溶接方法によれば、第一溶接ビード1と第二溶接ビード2と第三溶接ビード3とが重なることで、開先5に対して形成した第一溶接ビード1の幅を、第二溶接ビード2と第三溶接ビード3の幅の分だけさらに広くとることができ、目はずれを防止できる。さらに、第二溶接ビード2と第三溶接ビード3とが互いに重ならないことで、冷却された第一溶接ビード1の中央部分を二重、三重に加熱することがないため、入熱を小さくすることができ、再溶融による第一溶接ビード1の強度の低下を防止できる。さらに、等しい溶接ビード幅とすることで最後まで同一の条件で溶接を行うことができるため、母材4に対し溶接を容易に施工することが出来る。
Next, the operation of the electron beam welding method configured as described above will be described.
According to the electron beam welding method as described above, the first weld bead 1, the second weld bead 2, and the third weld bead 3 overlap with each other so that the width of the first weld bead 1 formed on the groove 5 is increased. Can be made wider by the width of the second weld bead 2 and the third weld bead 3, and misalignment can be prevented. Furthermore, since the second weld bead 2 and the third weld bead 3 do not overlap each other, the central portion of the cooled first weld bead 1 is not heated twice or triple, thereby reducing heat input. It is possible to prevent a decrease in strength of the first weld bead 1 due to remelting. Furthermore, since it can weld on the same conditions to the last by setting it as equal weld bead width, welding can be easily applied with respect to the base material 4. FIG.

また、第一溶接ビード1から第三溶接ビード3までを1mmから3mmという細い幅で形成することで、一つ一つの溶接ビードの入熱を小さくさせることが可能となる。これにより、各溶接ビードの冷却速度を上昇させることになり、焼き入れ効果により溶接金属の強度を向上させることが出来る。そして、細い幅の溶接ビードを形成することで開先5に対して最終的に形成される溶接ビード幅を狭くすることができる。   Further, by forming the first weld bead 1 to the third weld bead 3 with a narrow width of 1 mm to 3 mm, the heat input of each weld bead can be reduced. Thereby, the cooling rate of each weld bead is increased, and the strength of the weld metal can be improved by the quenching effect. And the weld bead width finally formed with respect to the groove | channel 5 can be made narrow by forming the weld bead of a thin width | variety.

次に、図2を参照して第二実施形態の電子ビーム溶接方法について説明する。
第二実施形態においては第一実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この第二実施形態の電子ビーム溶接方法は、第二溶接工程S2と第三溶接工程S3について第一実施形態と相違する。
Next, the electron beam welding method of the second embodiment will be described with reference to FIG.
In the second embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted. The electron beam welding method of the second embodiment is different from the first embodiment in the second welding step S2 and the third welding step S3.

即ち、第二実施形態では、第二傾斜溶接工程S21と第三斜溶溶接工程S31が第一溶接ビード1に対して傾斜して行われる。
図2(c)に示すように、第二傾斜溶接工程S21では、第一溶接工程S1で形成した第一溶接ビード1を充分に冷却した後に、第一の二次溶接ビードである第二傾斜溶接ビード21を形成する。第二傾斜溶接ビード21は、第一溶接ビード1の中心線O1が含まれない偏った位置で第一溶接ビード1と接しつつ、縦断面視にて、第一溶接ビード1の中心線O1に対して第二傾斜溶接ビード21の中心線O21が傾斜するように形成される。即ち、第二傾斜溶接ビード21の中心線O21は、電子ビームの照射方向に向かうに従って第一溶接ビード1の中心線O1に近接するように傾斜している。ここで、第二傾斜溶接工程S21では、表1の溶接施工条件で施工し、第一溶接工程S1から溶接施工条件の変更を行わない。
図2(d)に示すように、第三斜溶溶接工程S31では、第二傾斜溶接工程S21を充分に冷却した後に、第二の二次溶接ビードである第三傾斜溶接ビード31を形成する。第三傾斜溶接ビード31は、第二傾斜溶接工程S21とは逆側の第一溶接ビード1の中心線O1が含まれない偏った位置で第一溶接ビード1と接しつつ、縦断面視にて、第一溶接ビード1の中心線O1に対して第三傾斜溶接ビード31の中心線O31が傾斜するように形成される。即ち、第三溶接ビードの中心線O31は、電子ビームの照射方向に向かうに従って第一溶接ビード1の中心線O1に近接するように傾斜している。ここで、第三斜溶溶接工程S31では、表1の溶接施工条件で施工し、第一溶接工程S1から溶接施工条件の変更を行わない。
That is, in the second embodiment, the second inclined welding step S21 and the third oblique melting welding step S31 are performed while being inclined with respect to the first welding bead 1.
As shown in FIG.2 (c), in 2nd inclination welding process S21, after fully cooling the 1st welding bead 1 formed at 1st welding process S1, it is the 2nd inclination which is a 1st secondary welding bead. A weld bead 21 is formed. The second inclined weld bead 21 is in contact with the first weld bead 1 at a biased position where the center line O1 of the first weld bead 1 is not included. On the other hand, it forms so that the centerline O21 of the 2nd inclination welding bead 21 inclines. That is, the center line O21 of the second inclined weld bead 21 is inclined so as to approach the center line O1 of the first weld bead 1 in the direction of electron beam irradiation. Here, in 2nd inclination welding process S21, it constructs on the welding construction conditions of Table 1, and does not change a welding construction condition from 1st welding process S1.
As shown in FIG. 2D, in the third oblique welding step S31, the second inclined welding step S21 is sufficiently cooled, and then the third inclined weld bead 31 that is the second secondary welding bead is formed. . The third inclined weld bead 31 is in vertical sectional view while contacting the first weld bead 1 at a biased position not including the center line O1 of the first weld bead 1 on the opposite side to the second inclined welding step S21. The center line O31 of the third inclined weld bead 31 is formed to be inclined with respect to the center line O1 of the first weld bead 1. That is, the center line O31 of the third weld bead is inclined so as to approach the center line O1 of the first weld bead 1 as it goes in the electron beam irradiation direction. Here, in the third oblique melting welding step S31, the welding is performed under the welding conditions shown in Table 1, and the welding conditions are not changed from the first welding step S1.

上記のような第二実施形態の電子ビーム溶接方法によれば、通常電子ビーム溶接ビードは入射側の方がわずかに幅を広く形成され、第一溶接ビード1と第二傾斜溶接ビード21及び第三傾斜溶接ビード31とが互いに重なり合う領域が減少するため、さらに第一溶接ビード1への入熱を小さくすることができ、溶接金属の強度低下を防止することができる。   According to the electron beam welding method of the second embodiment as described above, the normal electron beam weld bead is formed slightly wider on the incident side, and the first weld bead 1, the second inclined weld bead 21, and the first Since the region where the three inclined weld beads 31 overlap with each other is reduced, the heat input to the first weld bead 1 can be further reduced, and the strength of the weld metal can be prevented from being lowered.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
[実施例]
母材4として、TMCPを用いた高張力鋼を使用する。準備工程S0では、二つの母材4の端面を対向させ開先5に形成する。
第一溶接工程S1として、溶接ビーム幅2mmの第一溶接ビード1が開先5を含むように開先5に対して平行に形成した。溶接施工条件は、表1の条件である加速電圧130〜170kV、ビーム電流80〜180mA、溶接速度200〜450mm/minにて溶接を行った。
第二溶接工程S2として、第一溶接ビード1を充分に冷却した後に、溶接ビーム幅2mmの第二溶接ビード2を第一溶接ビード1の中心線O1が含まれない偏った位置で第一溶接ビード1と接しながら、第一溶接ビード1の中心線O1と第二溶接ビード2の中心線O2とが縦断面視で平行になるように形成した。
第三溶接工程S3として、溶接ビーム幅2mmの第三溶接ビード3を第一溶接ビード1の中心線O1から第二溶接ビード2と反対側にずらした位置で第一溶接ビード1と接しながら、第一溶接ビード1の中心線O1と第三溶接ビード3の中心線O3とが縦断面視で平行になるように形成した。溶接施工条件は、第一溶接工程S1と同様とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Example]
As the base material 4, high strength steel using TMCP is used. In the preparation step S <b> 0, the end surfaces of the two base materials 4 are opposed to each other and are formed in the groove 5.
As the first welding step S <b> 1, the first weld bead 1 having a welding beam width of 2 mm was formed in parallel to the groove 5 so as to include the groove 5. Welding was performed at the acceleration voltage of 130 to 170 kV, the beam current of 80 to 180 mA, and the welding speed of 200 to 450 mm / min, which are the conditions in Table 1.
As the second welding step S2, after the first welding bead 1 is sufficiently cooled, the second welding bead 2 having a welding beam width of 2 mm is first welded at a biased position where the center line O1 of the first welding bead 1 is not included. The center line O1 of the first weld bead 1 and the center line O2 of the second weld bead 2 were formed so as to be parallel in a longitudinal sectional view while in contact with the bead 1.
As the third welding step S3, the third welding bead 3 having a welding beam width of 2 mm is in contact with the first welding bead 1 at a position shifted from the center line O1 of the first welding bead 1 to the side opposite to the second welding bead 2, The center line O1 of the first weld bead 1 and the center line O3 of the third weld bead 3 were formed to be parallel in a longitudinal sectional view. The welding conditions were the same as in the first welding step S1.

[比較例]
母材4として、TMCPを用いた高張力鋼を使用する。母材4の開先5に、第一溶接工程S1として、溶接ビーム幅2mmの第一溶接ビード1が開先5を含むように形成した。溶接施工条件は、実施例1と同様に表1の条件である加速電圧130〜170kV、ビーム電流80〜180mA、溶接速度200〜450mm/minにて溶接を行う。
なお、第二溶接工程S2及び第三溶接工程S3については施工しない点について実施例と異なる。
[Comparative example]
As the base material 4, high strength steel using TMCP is used. The first weld bead 1 having a welding beam width of 2 mm was formed on the groove 5 of the base material 4 so as to include the groove 5 as the first welding step S1. As in the case of Example 1, welding is performed at the acceleration voltage of 130 to 170 kV, the beam current of 80 to 180 mA, and the welding speed of 200 to 450 mm / min.
The second welding step S2 and the third welding step S3 are different from the examples in that they are not constructed.

比較例の電子ビーム溶接との実施例との強度試験結果を図3に示す。
実施例では、第一溶接工程S1から第三溶接工程S3までを順次施工することで溶接ビードの幅が4mmの溶接を開先5に行った。また、比較例では、第一溶接工程S1のみを施工したため溶接ビードの幅が2mmの溶接を開先5に行った。
図3に示すように、実施例と比較例の電子ビーム溶接について、溶接金属の強度を比較した。実施例は、比較例よりも高い強度を示し、1.06倍程度の強度となることが分かった。
FIG. 3 shows the strength test results of the comparative example and the electron beam welding example.
In the example, welding with a weld bead width of 4 mm was performed on the groove 5 by sequentially performing the first welding step S1 to the third welding step S3. Moreover, in the comparative example, since only the first welding step S <b> 1 was performed, welding with a weld bead width of 2 mm was performed on the groove 5.
As shown in FIG. 3, the strength of the weld metal was compared between the electron beam welding of the example and the comparative example. The example showed higher strength than the comparative example and was found to be about 1.06 times stronger.

これらの結果から、強度の低下を防ぎながら、溶接ビードの幅を広く形成することができることがわかった。また、第二溶接ビード2と第三溶接ビード3とが互いに重なり合わないようにすることで、強度の低下が防げることがわかった。また、溶接ビードの幅を第一溶接ビード1から第三溶接ビード3まで溶接ビードを2mmと細く一定の幅に設定し、変更することなく溶接を行うことで強度の低下を防ぎながらに容易に溶接ができることがわかった。   From these results, it was found that the width of the weld bead can be formed wide while preventing a decrease in strength. Moreover, it turned out that the fall of intensity | strength can be prevented by making it the 2nd welding bead 2 and the 3rd welding bead 3 not mutually overlap. In addition, the weld bead width is set to a constant width as thin as 2 mm from the first weld bead 1 to the third weld bead 3, and welding is performed without any change while preventing a decrease in strength. It was found that welding was possible.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。   Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.

また、本実施形態において二次溶接ビードを形成する第二溶接工程S2と第三溶接工程S3は複数回繰り返し実施されてもよい。例えば、第二溶接ビード2に対して第一溶接ビード1とは反対側に第四溶接ビードを形成し、第三溶接ビード3に対して第一溶接ビード1とは反対側に第五溶接ビードを形成しても良い。即ち、二次溶接ビードを形成する溶接工程に回数に制限はなく、溶接対象となる母材や使用される環境に合わせて、第六溶接ビードや第七溶接ビード以降を形成しても良い。
なお、施工される二次溶接ビードは第一溶接ビード1の中心線O1を境界として、片側に方よって形成されるのではなく、左右に均等に順次形成されることがより好ましい。
In the present embodiment, the second welding step S2 and the third welding step S3 for forming the secondary weld bead may be repeated a plurality of times. For example, a fourth weld bead is formed on the opposite side of the second weld bead 2 from the first weld bead 1, and a fifth weld bead on the opposite side of the third weld bead 3 from the first weld bead 1. May be formed. That is, the number of welding processes for forming the secondary weld bead is not limited, and the sixth weld bead and the seventh weld bead may be formed in accordance with the base material to be welded and the environment in which it is used.
In addition, it is more preferable that the secondary weld bead to be constructed is not sequentially formed on one side with the center line O1 of the first weld bead 1 as a boundary but sequentially formed on the left and right.

O1…第一溶接ビード1の中心線 1…第一溶接ビード 2…第二溶接ビード 3…第三溶接ビード 4…母材 5…開先 21…第二傾斜溶接ビード 31…第三傾斜溶接ビード S0…準備工程 S1…第一溶接工程 S2…第二溶接工程 S3…第三溶接工程 S21…第二傾斜溶接工程 S31…第三傾斜溶接工程 O1 ... center line of the first weld bead 1 ... first weld bead 2 ... second weld bead 3 ... third weld bead 4 ... base material 5 ... groove 21 ... second inclined weld bead 31 ... third inclined weld bead S0 ... Preparation step S1 ... First welding step S2 ... Second welding step S3 ... Third welding step S21 ... Second inclined welding step S31 ... Third inclined welding step

Claims (2)

2つの母材の突合せ部に形成された開先を含むように、一次溶接ビードを施工する工程と、
前記一次溶接ビードと幅が等しい複数の二次溶接ビードを、前記一次溶接ビードと重なり、かつ、これら複数の二次溶接ビードが互いに重ならない位置に順次施工する工程と、を備え
前記二次溶接ビードを前記2つの母材の前記開先の対向する面に傾斜させて施工することを特徴とする電子ビーム溶接方法。
A step of constructing a primary weld bead so as to include a groove formed in a butt portion of two base materials;
A plurality of secondary weld beads having the same width as the primary weld bead, and a step of sequentially applying the plurality of secondary weld beads to a position where the plurality of secondary weld beads do not overlap with each other .
An electron beam welding method , wherein the secondary welding bead is applied while being inclined on the opposing surfaces of the groove of the two base materials .
前記一次溶接ビード及び前記二次溶接ビードの幅を1mmから3mmの範囲に設定することを特徴とする請求項1に記載の電子ビーム溶接方法。 The electron beam welding method according to claim 1 , wherein the width of the primary welding bead and the secondary welding bead is set in a range of 1 mm to 3 mm.
JP2012165833A 2012-07-26 2012-07-26 Electron beam welding method Active JP6012326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165833A JP6012326B2 (en) 2012-07-26 2012-07-26 Electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165833A JP6012326B2 (en) 2012-07-26 2012-07-26 Electron beam welding method

Publications (2)

Publication Number Publication Date
JP2014024089A JP2014024089A (en) 2014-02-06
JP6012326B2 true JP6012326B2 (en) 2016-10-25

Family

ID=50198259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165833A Active JP6012326B2 (en) 2012-07-26 2012-07-26 Electron beam welding method

Country Status (1)

Country Link
JP (1) JP6012326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223934B2 (en) * 2014-09-10 2017-11-01 三菱重工業株式会社 Electron beam welding method, method of manufacturing electron beam welded structure, and electron beam welded structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566071A (en) * 1966-10-12 1971-02-23 Westinghouse Electric Corp Method of metals joining
DE2239304A1 (en) * 1972-08-10 1974-02-21 Steigerwald Krauss Maffei Gmbh Electron beam welded joints - between manganese steel and transformation hardenable steel with dual heating of transition hardenable steel
FR2464782A1 (en) * 1979-09-14 1981-03-20 Petroles Cie Francaise IMPROVED ELECTRON BEAM WELDING METHOD AND DEVICE FOR CARRYING OUT SAID METHOD
JPH02165877A (en) * 1988-12-15 1990-06-26 Mitsubishi Heavy Ind Ltd Electron beam welding method for low alloy steels
JPH02165878A (en) * 1988-12-15 1990-06-26 Mitsubishi Heavy Ind Ltd Electron beam welding method for low alloy steels
JPH10314960A (en) * 1997-05-14 1998-12-02 Mitsubishi Heavy Ind Ltd Electron beam welding method
JPH11254152A (en) * 1998-03-06 1999-09-21 Toshiba Corp Welding method for conductor
JP5535820B2 (en) * 2010-08-11 2014-07-02 三菱重工業株式会社 Electron beam welding method

Also Published As

Publication number Publication date
JP2014024089A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6714580B2 (en) Method of joining two blanks, blank and resulting product
JP6913087B2 (en) How to join two blanks and how to form a product
JP6838199B2 (en) A method for laser beam welding of one or more steel sheets made of press-curable manganese-boron steel
JP6515299B2 (en) Fillet arc welded joint and method of manufacturing the same
JP5042648B2 (en) Laser welding method for structure made of steel plate
CN109641321B (en) Method for manufacturing laser welded joint and laser welded joint
WO2013179614A1 (en) Laser-arc hybrid welding method
JP2020529319A (en) A method for joining two blanks and a product obtained from the method.
JP2020124739A (en) Both surface friction agitation joint method and both surface friction agitation joint device
WO2019182081A1 (en) Gas-shielded arc welding method for steel sheets
JP6217666B2 (en) Butt welding method for thick steel plate, method for producing butt weld joint formed thereby, and method for producing welded structure for obtaining the butt weld joint
JP2013111654A (en) Welding system, welding process, and welded article
JP3767369B2 (en) Method of lap welding of thin steel plates and welded thin steel plates
CN113165094A (en) Butt welding method and butt welding equipment for extremely thick plates
JP6012326B2 (en) Electron beam welding method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
KR102032106B1 (en) Vertical direction narrow gas shielded arc welding method
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP2007283339A (en) Manufacturing method of butt-welded metal plate
JP2018069323A (en) Producing method of welding joint and repairing method of welding joint
JP2013237103A (en) Multi-electrode submerged arc welding method of steel sheet
JP6319217B2 (en) Steel plate welding method and steel plate welding apparatus
WO2017094578A1 (en) Vertical narrow gap gas shielded arc welding method
CN113573838B (en) Overlap laser welded joint, method for producing same, and structural member for automobile body
JP2006218500A (en) Steel sheet welded by laser beam butt welding, and its welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R151 Written notification of patent or utility model registration

Ref document number: 6012326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151