JP3771900B2 - Steel slab surface reformer - Google Patents

Steel slab surface reformer Download PDF

Info

Publication number
JP3771900B2
JP3771900B2 JP2002367198A JP2002367198A JP3771900B2 JP 3771900 B2 JP3771900 B2 JP 3771900B2 JP 2002367198 A JP2002367198 A JP 2002367198A JP 2002367198 A JP2002367198 A JP 2002367198A JP 3771900 B2 JP3771900 B2 JP 3771900B2
Authority
JP
Japan
Prior art keywords
slab
surface layer
additive element
steel slab
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002367198A
Other languages
Japanese (ja)
Other versions
JP2004195514A (en
Inventor
健彦 藤
寛 原田
洋 永浜
渡 大橋
徹郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002367198A priority Critical patent/JP3771900B2/en
Publication of JP2004195514A publication Critical patent/JP2004195514A/en
Application granted granted Critical
Publication of JP3771900B2 publication Critical patent/JP3771900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼鋳片の表層の溶融改質装置に関する。
【0002】
【従来の技術】
鋳片表面の欠陥を修復する目的で鋳片表面を溶融させる技術として、例えば、特許文献1には、鋳片の表層部を高周波誘導加熱溶融する鋳片の溶融手入れ法が開示されている。この技術では、鋳片に近接して設置された誘導コイルに高周波電流を印加し、鋳片表面に誘導電流を発生させ、そのジュール熱によって鋳片表面を溶融させるというものである。
【0003】
【特許文献1】
特開昭53−100928号公報
【0004】
【発明が解決しようとする課題】
しかし、上記の特許文献1について、発明者らは鋳片サンプルを鉛直に立てた場合と水平に置いた場合に、鋳片を周回するコイルを用いて表層を溶融する試験を行った結果、鉛直に立てた場合には溶融部の特に下側において溶融部表面の乱れが発生し溶融後の再凝固表面性状が悪くなること、また、水平に置いた場合には、側面と下面において、同様に表面性状が悪くなること、また場合によっては、重力の作用に抗することができず、液滴が生成して漏れ落ちるような現象があるということ等の問題があることが判明した。
これは、図3に示すような、電磁力により溶融部を保持しようとする力が作用するものの、力学的に十分に安定していないことからこのような現象が起こったものと考えられる。
本発明は、鋼鋳片表層を安定して溶融し、添加元素を添加することにより鋼鋳片表層を改質する装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、
(1) 鋼鋳片を周回するように配置された誘導加熱コイルと、該コイルの内側に設置された冷却機能を有する導電性セグメント容器と、添加元素供給装置からなる鋼鋳片の表層改質装置であって、該導電性セグメント間に間隙を有することを特徴とする鋼鋳片の表層改質装置。
(2) 導電性セグメント容器が鋳片長手方向に一対に配置されたことを特徴とする(1)に記載の鋼鋳片の表層改質装置。
(3) 添加元素供給装置が一対に配置された導電性セグメント容器間に設置されたことを特徴とする(2)に記載の鋼鋳片の表層改質装置。
(4) 導電性セグメントを移動させる機能を有することを特徴とする(1)〜(3)いずれかに記載の鋼鋳片の表層改質装置。
(5) 添加元素供給装置に替えて、添加元素供給可能なプラズマ加熱装置を設置したことを特徴とする(1)〜(4)いずれかに記載の鋼鋳片の表層改質装置。
である。
【0006】
【発明の実施の形態】
本発明は、鋼の鋳片表層に添加元素を溶着させる装置として、誘導加熱を用いて鋼の鋳片表層を溶融し、そこへ添加元素供給装置により添加元素を供給する際に、該コイルの内側に冷却機能を有する導電性セグメント容器を設置することで、液滴が生成して漏れ落ちることなく、安定して確実に複合鋼材を製造できる装置を見出した。以下に詳細に説明する。
【0007】
本発明では、鋼の鋳片表層を溶融させる装置として、鋼鋳片を周回できるように配置された誘導加熱コイルを用いる。この誘導加熱コイルにより鋳片の表層部は溶融する。この溶融部へ添加元素を供給する装置を用いて、添加元素を供給する。添加元素供給装置としては、ワイヤーやシート等が用いられる。ここで、添加元素として純金属やその合金を用いても良く、以降はこれらをまとめて添加元素と記載する。
【0008】
例えば連続鋳造機で得られた鋳片は、切断後、溶融処理場に輸送され、鋳片を周回するように配置された誘導コイルにより加熱され、鋳片表層溶融部にワイヤーやシートを用いて添加元素もしくはその合金を添加して溶着される。誘導コイルは鋳片表層溶融部で電磁力により溶融部分を内面に向かって電磁力によって押さえつけることにより安定した溶融部表面を作り、その後再度冷却され凝固する。
【0009】
また、鋳片表層溶融部に添加元素を添加して溶着させる場合、鋳片の酸化を防止することが好ましいため、図1に示す如く、誘導コイル3はチャンバー内で不活性ガス雰囲気(例えばアルゴン、窒素等)に仕切られた装置6であることが好ましく、さらにより確実に酸化を防止するためには、不活性ガス雰囲気中に約2容量%程度の水素を含んで溶融改質できる様な、水素供給設備等を備えていることが好ましい。
ここで、誘導コイルによる電磁力の力の発生原理を図3に示す。誘導コイル3が発生する磁場15と、導体14である鋳片に誘導した電流の相互作用により、溶融部には電磁力が作用する。この電磁力はピンチ力と呼ばれる溶融部を圧縮する作用があり、溶融部表面の安定化に寄与する。
【0010】
しかし、このような静的な平衡保持だけでは必ずしも十分とは言えないため、さらに溶融部表面の安定化に寄与するために、本発明では図4(b)に示す様な冷却機能を有する導電性セグメント容器が、図1、2のように誘導加熱コイル3の内側に設置され、さらに各セグメント間に間隙を有するものを使用している。ここで、導電性セグメントの原理について説明すると、図4(a)の様に各セグメント間に間隙がない場合は、コイル電流22に対して誘導電流23が発生するため、磁場がほとんど打ち消されてしまうのに対し、図4(b)の場合は各セグメント20間に間隙(スリット)24を有するため、各セグメント内の誘導電流23が閉ループで発生するため、各セグメント内の磁場は打ち消され、コイル電流22による磁場を発生させることができる。
【0011】
この様な間隙は、単一のセグメントを複数並列に連接したもので、各セグメント間に、マイカ板等を挟んで構成したものを用いても良く、またセグメントに1つ以上の貫通スリットを有するものを用いても良い。セグメント間の間隙は特に規定するものではないが、通常0.3mm〜3mmである。下限は絶縁材を用いる際の絶縁材厚さの限界から決まり、上限は3mm超の場合は磁場を均一に保持しにくくなることから、それぞれ決まる値である。
【0012】
冷却機能を有する導電性セグメント容器の作用は、高周波磁場を鋳片表層に効果的に付与すると同時に、鋳片組織や温度の操業変動によるバラツキによって発生する溶融部表面の乱れが出た際に、冷却機能を有する導電性セグメント容器が溶融部溶湯と接触した際の接触部の瞬間的な凝固を発生させ、直後に強くなった電磁力により再度押し戻されることで再溶融が起こり、その結果安定な溶融状態を継続できるというものである。
冷却機能を有する導電性セグメント容器は水冷式のものが通常使用され、また材質は銅や銅合金で作られたものが一般的である。
【0013】
また、鋼鋳片は、通常連続鋳造により製造されることが多い。以下に連続鋳造を用いる際に、本発明装置を適用した場合について説明する。
まず、連続鋳造機端、すなわち連続鋳造後の鋳片が水平に移動している際に、本発明装置を設置する場合について説明する。この場合、鋳片は一般の湾曲型もしくは垂直部を鋳型下数mにわたって有する垂直曲げ型連鋳機において、一般には曲げ戻しを受けたあと、ガスカットされる前に水平部を有することから、この部分に配置する。誘導コイルは鋳片を周回するように配置されている。この方式の場合、鋳片上部は誘導コイルによる加熱により鋳片表層部が溶融しても、重力による滴下が起こらないため、容易に処理される。また鋳片下部の溶融部は、図3に示す原理に基づいた電磁力の作用により保持され、重力による滴下や再凝固後の表面形状が悪化することを防止できる。この処理は、鋳片反転装置を用いて180度反転させることで、片面ずつ処理することもできる。鋳片端部については、上記鋳片反転装置を用いて±90度反転させることで、処理することができる。
【0014】
さらに連続鋳造機内、すなわち鋳片が垂直に移動している際に、本発明装置を適用する場合について説明する。連続鋳造機内において、鋳型を出た鋳片は、2次冷却帯内において、誘導コイルにより加熱される。誘導コイルは溶融部の電磁力による保持を受けて、溶融部分が重力により滴下することなく、下部の誘導コイルを通過後に再度冷却され凝固する。ここで、鋳片溶融部分は溶融部の下部側が重力の作用によってより滴下しやすくなるため、誘導コイルは上部コイルよりは下部コイルを鋳片近くに設置することで、溶融部の下部側がより強い電磁力を発生して溶融部が漏れることを防止できるため好ましい。
【0015】
次に、導電性セグメント容器の配置は、通常鋳片長手方向に一対に配置される。この様な配置にすることで、導電性セグメント容器間の鋳片の溶融部は、安定した表層部となっており、ここへ添加元素を添加することで、良好な品質の表層改質鋳片を製造することができる。
従って、添加元素供給装置2を一対に配置された導電性セグメント容器間に設置することで、添加元素である純金属もしくは合金の添加を、安定した表層部に行うことができるため、効果的である。
【0016】
また、導電性セグメントは移動できる機能を有するものが好ましい。すなわち、コイルは通常固定寸法であり、鋳片は幅が随時変わることから、幅が変わった場合でも前記の安定保持効果を享受するためには、導電性セグメントを移動させることで、鋳片とのクリアランスを所望の値に設定することができる。この具体的な例を図5に示しているが、鋳片5の幅が変わった場合に、鋳片とのクリアランスが一定になるように、矩形鋳片の1対の辺の導電性セグメント20を移動させることで、安定保持効果を享受できる。また、鋼種や処理条件により、任意のクリアランスにも設定可能である。
導電性セグメントを移動させる機能を有する装置としては、例えば油圧シリンダーで該短辺を一括して移動する様な構造のもの等が挙げられる。
【0017】
また、誘導加熱とプラズマ加熱を併用して行う場合について説明する。連続鋳造機1で連続鋳造を完了した鋳片5は、切断後、溶融処理場に輸送され、図1のように誘導コイル3により加熱され、さらに添加元素供給装置2に替えてプラズマ装置を設置し、添加元素もしくはその合金をプラズマに供給することで、鋳片表層溶融部に添加元素もしくはその合金を添加して溶着させる。
誘導コイル単独でも鋳片の表層部分を溶融させることはできるが、プラズマを併用することでプラズマによる加熱でも鋳片の表層部分を溶融できるため、誘導コイルの負荷を低減できる効果がある。例えば、誘導コイルを予熱機能およびピンチ力の発生による溶融部の圧縮機能として用いて、プラズマを鋳片表層の溶融機能および添加元素供給機能として用いることもできる。
【0018】
プラズマ装置で加熱溶融するには添加元素もしくはその合金の形状がパウダー状であり、プラズマ内に吹き込むのが一般的であるのに対し、誘導加熱装置とプラズマ加熱装置を併用して用いた場合には、添加元素もしくはその合金の形状にかかわらず実施できるという利点がある。
なお、添加元素の成分としては、鋼材の特性を変化させるために用いられるものとして、炭素、シリコン、マンガン、リン、硫黄、ニッケル、クロム、モリブデン、銅、金、アルミニウム、マグネシウム、レアアースメタル等が挙げられる。
【0019】
上記添加元素は純金属として添加しても良いし、合金として添加しても良い。また、目的に応じて複数を混合して添加しても良い。
添加元素の合金としては、上記添加元素の複数成分の合金に加え、添加元素成分と酸素あるいは窒素との化合物なども含まれる。
添加元素の合金については、上記添加元素の複数成分の合金であれば特に規定するものではないが、通常はフェロマンガン、フェロニッケル、フェロリンその他合金鉄等が用いられる。
さらに、添加元素成分と窒素との化合物については例えば窒化鉄が、また添加元素成分と酸素との化合物については例えばマグネシウム酸化物が挙げられる。
【0020】
以上の様に、本発明装置を用いることで、表層と内部の性質が異なる鋼の特性を併せ持つ、低コスト鋼材の表層改質複合鋼材鋳片が得られる。
また、上記の表層改質複合鋼材鋳片を加工することにより、薄板、厚板の鋼板、形鋼、鋼管等の、表層と内部の性質が異なる鋼の特性を併せ持つ低コスト製品が得られる。
【0021】
【実施例】
(実施例1)
図1に示すような装置を用いて、内寸1510mm×260mmで幅1500mm、厚さ250mmの連続鋳造鋳片の表層部を溶融改質を行った。
連続鋳造鋳片と水冷導電性セグメント容器とのクリアランスは5mmであった。ここで、水冷導電性セグメント容器は、厚み20mm、周方向20mmのセグメントを複数並列に連接したもので、各セグメント間距離が1mmになるように、マイカ板を各セグメント間に挟んで構成した、長さ10cmのものを用いた。
上記セグメント容器は、長手方向に1cmのクリアランスで一対に配置し固定した。またセグメント容器の外側にクリアランス1cmで、長さ5cmの誘導コイルを設置した。コイルには40kHzの高周波電源を接続した。
【0022】
本装置を用いて、低炭アルミキルド鋳片を予め加熱炉で800℃に保持した後、電源に2MWの電力を印加しつつ、移動速度1m/分で処理し、800℃に予熱したニッケルを1質量%添加を目標として添加した。その結果、鋳片表層3mmがほぼ均一に溶融処理され、0.95〜1.05質量%のニッケルの溶着が実施できることを確認した。
【0023】
(実施例2)
図5に示すような装置において、内寸1510mm×260mmで幅1000mm、厚さ250mmの連続鋳造鋳片の表層部を溶融改質を行った。
連続鋳造鋳片と水冷導電性セグメント容器とのクリアランスは、鋳片厚み方向には5mmであった。また、幅方向には移動式の短辺水冷導電性セグメントブロックが配されており、クリアランスが片側5mmになるように移動させて設定した。
長辺側の水冷導電性セグメント容器は実施例1と同様に、厚み20mm、周方向20mmのセグメントを複数並列に連接したもので、各セグメント間距離が1mmになるように、マイカ板を各セグメント間に挟んで構成した、長さ10cmのものを用いた。
上記セグメント容器は、長手方向に1cmのクリアランスで一対に配置し固定した。またセグメント容器の外側にクリアランス1cmで、長さ5cmの誘導コイルを設置した。コイルには16kHzの高周波電源を接続した。
【0024】
本装置を用いて、低炭アルミキルド鋳片を予め加熱炉で800℃に保持した後、電源に3MWの電力を印加しつつ、移動速度1m/分で処理し、800℃に予熱したニッケルを1質量%添加を目標として添加した。その結果、鋳片表層5mmがほぼ均一に溶融処理され、0.95〜1.05質量%のニッケルの溶着が実施できることを確認した。
【0025】
【発明の効果】
以上説明したように、本発明の装置を用いれば、鋼鋳片の表層溶融改質を安定して行うことができ、良好な品質の表層改質鋳片やその加工製品を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の装置の構成。
【図2】本発明の装置の構成(溶融部の詳細図)。
【図3】原理の説明図。
【図4】導電性セグメントの原理。
【図5】幅変更を伴う場合の、本発明の装置の構成。
【符号の説明】
1:連続鋳造機
2:元素添加装置
3:電磁誘導コイル
4:サポートロール
5:鋳片
6:アルゴンと2%程度の水素を含む雰囲気をつくる容器
7:凝固部
8:溶融した部分
9:未凝固部
10:連続引抜もしくは移動
11:コイル電流
12:交流電流
13:時間
14:電気伝導体
15:磁場
16:未溶融の加熱部
17:特定成分が富化された部分
18:電磁力の方向と強さ
19:重力による静鉄圧
20:導電性セグメント
21:導電体
22:コイル電流
23:誘導電流
24:スリット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a melt reforming apparatus for a surface layer of a steel slab.
[0002]
[Prior art]
As a technique for melting the slab surface for the purpose of repairing defects on the slab surface, for example, Patent Document 1 discloses a slab melting care method in which the surface layer portion of the slab is heated by high frequency induction heating. In this technique, a high frequency current is applied to an induction coil installed close to the slab, an induced current is generated on the slab surface, and the slab surface is melted by the Joule heat.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 53-100988
[Problems to be solved by the invention]
However, as for the above-mentioned Patent Document 1, the inventors conducted a test for melting the surface layer using a coil that circulates the slab when the slab sample is placed vertically and horizontally, In the case of standing upside down, the melted part surface is disturbed especially at the lower side of the melted part, and the re-solidified surface properties after melting are deteriorated. It has been found that there are problems such as the deterioration of the surface properties and, in some cases, the phenomenon that the action of gravity cannot be resisted and droplets are generated and leaked.
It is considered that this phenomenon occurred because a force to hold the melted portion by electromagnetic force acts as shown in FIG. 3 but it is not sufficiently stable mechanically.
An object of the present invention is to provide an apparatus for stably melting a steel slab surface layer and modifying the steel slab surface layer by adding an additive element.
[0005]
[Means for Solving the Problems]
The present invention
(1) Surface modification of a steel slab comprising an induction heating coil arranged to circulate around a steel slab, a conductive segment container having a cooling function installed inside the coil, and an additive element supply device An apparatus for modifying a surface layer of a steel slab, characterized in that a gap is provided between the conductive segments.
(2) The surface reforming apparatus for steel slab according to (1), wherein the conductive segment containers are arranged in a pair in the slab longitudinal direction.
(3) The surface reforming device for a steel slab according to (2), wherein the additive element supply device is installed between a pair of conductive segment containers.
(4) The apparatus for modifying a surface layer of a steel slab according to any one of (1) to (3), which has a function of moving a conductive segment.
(5) The steel layer slab surface layer reforming apparatus according to any one of (1) to (4), wherein a plasma heating apparatus capable of supplying an additional element is installed instead of the additional element supply apparatus.
It is.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention, as an apparatus for welding an additive element to a steel slab surface layer, melts the steel slab surface layer using induction heating and supplies the additive element to the steel slab surface layer using an additive element supply device. The present inventors have found an apparatus that can stably and reliably produce a composite steel material by installing a conductive segment container having a cooling function on the inner side without generating droplets and leaking. This will be described in detail below.
[0007]
In this invention, the induction heating coil arrange | positioned so that a steel slab can go around is used as an apparatus which fuse | melts the steel slab surface layer. The induction heating coil melts the surface layer portion of the slab. The additive element is supplied using an apparatus for supplying the additive element to the melting portion. As the additive element supply device, a wire, a sheet, or the like is used. Here, a pure metal or an alloy thereof may be used as the additive element, and these are hereinafter collectively referred to as an additive element.
[0008]
For example, a slab obtained by a continuous casting machine is transported to a melting treatment site after being cut and heated by an induction coil arranged so as to circulate around the slab, and a wire or sheet is used for a molten part of the slab surface layer. An additive element or an alloy thereof is added and welded. The induction coil creates a stable melted part surface by pressing the melted part toward the inner surface by electromagnetic force in the slab surface melted part, and then cooled again and solidifies.
[0009]
In addition, when an additive element is added to the slab surface layer melting portion and welded, it is preferable to prevent the slab from being oxidized. Therefore, as shown in FIG. 1, the induction coil 3 has an inert gas atmosphere (for example, argon) in the chamber. , Nitrogen, etc.) is preferable. In order to prevent the oxidation more reliably, it can be melt-modified by containing about 2% by volume of hydrogen in an inert gas atmosphere. It is preferable that a hydrogen supply facility or the like is provided.
Here, the principle of generation of electromagnetic force by the induction coil is shown in FIG. Due to the interaction between the magnetic field 15 generated by the induction coil 3 and the current induced in the slab, which is the conductor 14, an electromagnetic force acts on the melted portion. This electromagnetic force has an action of compressing the melted portion called pinch force, and contributes to stabilization of the surface of the melted portion.
[0010]
However, such a static equilibrium alone is not always sufficient, and in order to contribute to the stabilization of the surface of the melted part, in the present invention, a conductive material having a cooling function as shown in FIG. The sex segment container is installed inside the induction heating coil 3 as shown in FIGS. 1 and 2 and further has a gap between the segments. Here, the principle of the conductive segment will be explained. When there is no gap between the segments as shown in FIG. 4A, an induced current 23 is generated with respect to the coil current 22, so that the magnetic field is almost canceled. On the other hand, in the case of FIG. 4B, since there is a gap (slit) 24 between the segments 20, the induced current 23 in each segment is generated in a closed loop, so the magnetic field in each segment is canceled, A magnetic field generated by the coil current 22 can be generated.
[0011]
Such a gap is formed by connecting a plurality of single segments in parallel, and may be formed by sandwiching a mica plate or the like between each segment, and each segment has one or more through slits. A thing may be used. The gap between the segments is not particularly specified, but is usually 0.3 mm to 3 mm. The lower limit is determined from the limit of the thickness of the insulating material when the insulating material is used, and the upper limit is a value determined since it is difficult to keep the magnetic field uniform when it exceeds 3 mm.
[0012]
The action of the conductive segment container having a cooling function effectively applies a high-frequency magnetic field to the slab surface layer, and at the same time, when the surface of the melted part is disturbed due to variations in the slab structure and temperature fluctuations, The conductive segment container having a cooling function causes instantaneous solidification of the contact part when it comes into contact with the molten part molten metal, and immediately after that it is pushed back again by the strong electromagnetic force to cause remelting, resulting in stable The molten state can be continued.
As the conductive segment container having a cooling function, a water-cooled container is usually used, and a material made of copper or a copper alloy is generally used.
[0013]
Steel slabs are usually manufactured by continuous casting. The case where the device of the present invention is applied when using continuous casting will be described below.
First, the case where the apparatus of the present invention is installed when the end of the continuous casting machine, that is, the slab after continuous casting is moving horizontally will be described. In this case, in the vertical bending type continuous casting machine having a general curved mold or a vertical portion over several m below the mold, the slab generally has a horizontal portion after being bent back and before being gas cut. Place in this part. The induction coil is arranged around the slab. In the case of this method, the upper part of the slab is easily processed because dripping due to gravity does not occur even if the surface part of the slab is melted by heating with an induction coil. Further, the melted portion at the bottom of the slab is held by the action of electromagnetic force based on the principle shown in FIG. 3, and it is possible to prevent the surface shape after dripping or re-solidification due to gravity. This processing can also be performed one side at a time by reversing 180 degrees using a slab reversing device. The slab end can be processed by reversing ± 90 degrees using the slab reversing device.
[0014]
Furthermore, the case where the apparatus of the present invention is applied in the continuous casting machine, that is, when the slab is moving vertically will be described. In the continuous casting machine, the slab out of the mold is heated by the induction coil in the secondary cooling zone. The induction coil is held by the electromagnetic force of the melting part, and the molten part is cooled again and solidified after passing through the lower induction coil without dropping by gravity. Here, since the melted portion of the slab is more likely to drip on the lower side of the melted part due to the action of gravity, the lower part of the melted part is stronger on the induction coil by installing the lower coil near the slab than the upper coil It is preferable because electromagnetic force can be generated to prevent the melted portion from leaking.
[0015]
Next, the conductive segment containers are usually arranged in pairs in the slab longitudinal direction. With such an arrangement, the melted portion of the slab between the conductive segment containers is a stable surface layer portion, and by adding an additive element to this, a surface quality modified slab of good quality Can be manufactured.
Accordingly, by installing the additive element supply device 2 between the pair of conductive segment containers, the addition of the pure metal or alloy as the additive element can be performed on the stable surface layer portion, which is effective. is there.
[0016]
Moreover, what has the function to which an electroconductive segment can move is preferable. That is, since the coil is usually a fixed size and the slab changes in width at any time, in order to enjoy the above-described stable holding effect even when the width changes, the conductive segment is moved, The clearance can be set to a desired value. A specific example of this is shown in FIG. 5, but when the width of the slab 5 changes, the conductive segments 20 on a pair of sides of the rectangular slab so that the clearance with the slab becomes constant. The stable holding effect can be enjoyed by moving. Also, it can be set to any clearance depending on the steel type and processing conditions.
Examples of the device having a function of moving the conductive segment include a device having a structure in which the short side is moved in a lump with a hydraulic cylinder, for example.
[0017]
In addition, a case where induction heating and plasma heating are performed in combination will be described. The slab 5 that has been continuously cast by the continuous casting machine 1 is cut and transported to a melting treatment field, heated by an induction coil 3 as shown in FIG. 1, and further replaced with an additive element supply device 2 to install a plasma device. Then, by supplying the additive element or its alloy to the plasma, the additive element or its alloy is added and welded to the slab surface layer melting portion.
Although the induction coil alone can melt the surface layer portion of the slab, the combined use of plasma can also melt the surface layer portion of the slab even by heating with plasma, which has the effect of reducing the load on the induction coil. For example, the induction coil can be used as a preheating function and a compression function of a melting part by generating a pinch force, and plasma can be used as a melting function of a slab surface layer and an additional element supply function.
[0018]
When heating and melting with a plasma device, the additive element or its alloy is in the form of powder and is generally blown into the plasma, whereas when an induction heating device and a plasma heating device are used in combination, Has the advantage that it can be carried out regardless of the shape of the additive element or its alloy.
In addition, as a component of the additive element, carbon, silicon, manganese, phosphorus, sulfur, nickel, chromium, molybdenum, copper, gold, aluminum, magnesium, rare earth metal, etc. are used to change the characteristics of the steel material. Can be mentioned.
[0019]
The additive element may be added as a pure metal or as an alloy. A plurality may be mixed and added according to the purpose.
Examples of the alloy of the additive element include a compound of the additive element component and oxygen or nitrogen in addition to the above-described alloy of a plurality of component elements.
The alloy of the additive element is not particularly limited as long as it is a multi-component alloy of the additive element, but ferromanganese, ferronickel, ferroline, and other iron alloys are usually used.
Further, the compound of the additive element component and nitrogen is, for example, iron nitride, and the compound of the additive element component and oxygen is, for example, magnesium oxide.
[0020]
As described above, by using the apparatus of the present invention, it is possible to obtain a surface-modified composite steel slab of low-cost steel having both the properties of steel having different surface properties and internal properties.
Further, by processing the above-mentioned surface layer-modified composite steel material slab, a low-cost product having the characteristics of steel having different surface layer and internal properties such as a thin plate, a thick steel plate, a shaped steel, and a steel pipe can be obtained.
[0021]
【Example】
(Example 1)
Using an apparatus as shown in FIG. 1, the surface layer portion of a continuous cast slab having an inner size of 1510 mm × 260 mm, a width of 1500 mm, and a thickness of 250 mm was melt-modified.
The clearance between the continuously cast slab and the water-cooled conductive segment container was 5 mm. Here, the water-cooled conductive segment container is formed by connecting a plurality of segments having a thickness of 20 mm and a circumferential direction of 20 mm in parallel, and the mica plate is sandwiched between the segments so that the distance between the segments is 1 mm. The thing of length 10cm was used.
The segment containers were arranged and fixed in pairs with a clearance of 1 cm in the longitudinal direction. An induction coil having a clearance of 1 cm and a length of 5 cm was installed outside the segment container. A 40 kHz high frequency power source was connected to the coil.
[0022]
Using this equipment, the low-carbon aluminum killed slab was previously held at 800 ° C. in a heating furnace, then treated with a moving speed of 1 m / min while applying 2 MW of power to the power source, and nickel preheated to 800 ° C. was 1 The addition was made with the aim of adding mass%. As a result, it was confirmed that 3 mm of the slab surface layer was melted almost uniformly, and 0.95 to 1.05 mass% of nickel could be deposited.
[0023]
(Example 2)
In the apparatus as shown in FIG. 5, the surface layer portion of a continuous cast slab having an inner dimension of 1510 mm × 260 mm, a width of 1000 mm, and a thickness of 250 mm was melt-modified.
The clearance between the continuously cast slab and the water-cooled conductive segment container was 5 mm in the slab thickness direction. A movable short-side water-cooled conductive segment block is arranged in the width direction, and the clearance is set so that the clearance is 5 mm on one side.
The water-cooled conductive segment container on the long side is the same as in Example 1, with a plurality of segments having a thickness of 20 mm and a circumferential direction of 20 mm connected in parallel. The mica plate is attached to each segment so that the distance between the segments is 1 mm. A 10 cm long one sandwiched between them was used.
The segment containers were arranged and fixed in pairs with a clearance of 1 cm in the longitudinal direction. An induction coil having a clearance of 1 cm and a length of 5 cm was installed outside the segment container. A 16 kHz high frequency power source was connected to the coil.
[0024]
Using this device, the low-carbon aluminum killed slab was previously held at 800 ° C. in a heating furnace, then treated with a moving speed of 1 m / min while applying 3 MW of power to the power source, and nickel preheated to 800 ° C. was 1 The addition was made with the aim of adding mass%. As a result, it was confirmed that 5 mm of the slab surface layer was melted almost uniformly and 0.95 to 1.05 mass% nickel could be deposited.
[0025]
【The invention's effect】
As described above, if the apparatus of the present invention is used, it is possible to stably carry out surface layer reforming of steel slabs, and to obtain surface quality modified slabs of good quality and processed products thereof. Become.
[Brief description of the drawings]
FIG. 1 shows the configuration of an apparatus according to the present invention.
FIG. 2 is a configuration of the apparatus of the present invention (detailed view of a melting part).
FIG. 3 is an explanatory diagram of the principle.
FIG. 4 shows the principle of a conductive segment.
FIG. 5 shows the configuration of the apparatus according to the present invention when width change is involved.
[Explanation of symbols]
1: Continuous casting machine 2: Element addition device 3: Electromagnetic induction coil 4: Support roll 5: Slab 6: Container for creating an atmosphere containing argon and about 2% hydrogen 7: Solidification part 8: Molten part 9: Not yet Solidification part 10: Continuous drawing or movement 11: Coil current 12: AC current 13: Time 14: Electrical conductor 15: Magnetic field 16: Unmelted heating part 17: Part enriched with specific components 18: Direction of electromagnetic force And strength 19: static iron pressure due to gravity 20: conductive segment 21: conductor 22: coil current 23: induction current 24: slit

Claims (5)

鋼鋳片を周回するように配置された誘導加熱コイルと、該コイルの内側に設置された冷却機能を有する導電性セグメント容器と、添加元素供給装置からなる鋼鋳片の表層改質装置であって、該導電性セグメント間に間隙を有することを特徴とする鋼鋳片の表層改質装置。A steel slab surface layer reformer comprising an induction heating coil arranged to circulate around a steel slab, a conductive segment container having a cooling function installed inside the coil, and an additive element supply device. An apparatus for reforming the surface layer of a steel slab characterized by having a gap between the conductive segments. 導電性セグメント容器が鋳片長手方向に一対に配置されたことを特徴とする請求項1に記載の鋼鋳片の表層改質装置。2. The steel slab surface layer reforming apparatus according to claim 1, wherein a pair of conductive segment containers are arranged in the slab longitudinal direction. 添加元素供給装置が一対に配置された導電性セグメント容器間に設置されたことを特徴とする請求項2に記載の鋼鋳片の表層改質装置。The apparatus for reforming a surface layer of a steel slab according to claim 2, wherein the additive element supply device is installed between a pair of conductive segment containers. 導電性セグメントを移動させる機能を有することを特徴とする請求項1〜3いずれかに記載の鋼鋳片の表層改質装置。The surface layer reforming apparatus for steel slabs according to any one of claims 1 to 3, which has a function of moving a conductive segment. 添加元素供給装置に替えて、添加元素供給可能なプラズマ加熱装置を設置したことを特徴とする請求項1〜4いずれかに記載の鋼鋳片の表層改質装置。5. The steel slab surface layer reforming apparatus according to claim 1, wherein a plasma heating apparatus capable of supplying the additive element is installed in place of the additive element supply apparatus.
JP2002367198A 2002-12-18 2002-12-18 Steel slab surface reformer Expired - Fee Related JP3771900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367198A JP3771900B2 (en) 2002-12-18 2002-12-18 Steel slab surface reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367198A JP3771900B2 (en) 2002-12-18 2002-12-18 Steel slab surface reformer

Publications (2)

Publication Number Publication Date
JP2004195514A JP2004195514A (en) 2004-07-15
JP3771900B2 true JP3771900B2 (en) 2006-04-26

Family

ID=32764174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367198A Expired - Fee Related JP3771900B2 (en) 2002-12-18 2002-12-18 Steel slab surface reformer

Country Status (1)

Country Link
JP (1) JP3771900B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932533B2 (en) * 2007-02-27 2012-05-16 新日本製鐵株式会社 Steel slab surface modification method, surface-modified steel slab and processed product
JP5239628B2 (en) * 2007-08-27 2013-07-17 新日鐵住金株式会社 Heat treatment apparatus and heat treatment method for continuous cast slab
JP5014947B2 (en) * 2007-10-19 2012-08-29 新日本製鐵株式会社 Surface layer melt processing apparatus and surface layer melt processing start method
JP5031537B2 (en) * 2007-12-07 2012-09-19 新日本製鐵株式会社 Plasma surface heating apparatus and plasma surface heating method for continuous cast slab

Also Published As

Publication number Publication date
JP2004195514A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US2528758A (en) Gas shielded induction fusion welding process
JP3771900B2 (en) Steel slab surface reformer
JP3902544B2 (en) Steel slab surface modification method, modified slab and processed product
JP3771899B2 (en) Method for surface modification of steel slab containing copper, modified slab and processed product
EP0572681B1 (en) Double roll type method and apparatus for continuously casting thin sheets
JP2007098399A (en) Method for producing composite steel material, composite steel material and rail steel obtained by using the same
US4376881A (en) Method of electroslag welding with a plate electrode
US5963579A (en) Method of heating a molten metal in a continuous casting tundish using a plasma torch, and tundish for its implementation
JP5730738B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP4734073B2 (en) Manufacturing method of hot dip galvanized steel
JP2010058145A (en) Method for reforming surface layer of cast steel billet
JP5131008B2 (en) Surface melting processing equipment for cast steel pieces
EP2944397B1 (en) Continuous casting method for ingot produced from titanium or titanium alloy
JP2007024396A (en) Induction heating melting furnace
JPH04124235A (en) Manufacture of graphite-containing copper or copper alloy
JPS6150065B2 (en)
JPH0683888B2 (en) Pressure casting equipment
JP2008114282A (en) Apparatus and method for surface treatment of cast steel billet
JP4102353B2 (en) Method for melting surface layer of ferromagnetic metal material
JP4161680B2 (en) Method for producing medium carbon steel continuous cast slab
JP2005305533A (en) Dressing method for steel cast slab
CN109136787A (en) A kind of Fe-based amorphous band and preparation method thereof
JPH03274382A (en) Vacuum arc melting
US20140202654A1 (en) Continuous casting equipment for titanium or titanium alloy slab
JPH07188795A (en) Electroslag melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R151 Written notification of patent or utility model registration

Ref document number: 3771900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees