JP2005305533A - Dressing method for steel cast slab - Google Patents

Dressing method for steel cast slab Download PDF

Info

Publication number
JP2005305533A
JP2005305533A JP2004129410A JP2004129410A JP2005305533A JP 2005305533 A JP2005305533 A JP 2005305533A JP 2004129410 A JP2004129410 A JP 2004129410A JP 2004129410 A JP2004129410 A JP 2004129410A JP 2005305533 A JP2005305533 A JP 2005305533A
Authority
JP
Japan
Prior art keywords
slab
surface layer
inert gas
cooling
steel slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129410A
Other languages
Japanese (ja)
Inventor
Takehiko Fuji
健彦 藤
Yasuo Maruki
保雄 丸木
Jun Tanaka
純 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004129410A priority Critical patent/JP2005305533A/en
Publication of JP2005305533A publication Critical patent/JP2005305533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dressing method for a steel cast slab, by which the crystal-grain size of the slab is made small by making the solidified structure of the slab as fine as possible after subjecting the slab to a melt-dressing treatment, so that surface cracking and the like in rolling are prevented and thus a cast slab excellent in surface characteristics is obtained. <P>SOLUTION: The dressing method for a steel cast slab restores defects in a surface layer of the steel cast slab by melting the surface layer of the slab with either of induction heating and plasma heating or both of them. In the dressing method, an inert gas is blown to a molten pool in the surface layer of the slab just after the melt treatment, and thus the molten pool is cooled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼の連続鋳造鋳片の手入れ方法、特に、誘導加熱及びプラズマ加熱の少なくとも一方を利用して行う手入れ方法に関するものである。   The present invention relates to a method for maintaining a continuous cast slab of steel, and particularly to a method for maintaining using at least one of induction heating and plasma heating.

通常、連続鋳造により鋳造されてくる鋼鋳片の手入れ方法としては、溶削火口による鋳片表面の全面或いは部分スカーフィングが知られているが、(特許文献1)に示すように、プラズマアークによるスラブの表面溶融手入れ方法の提案もなされている。この(特許文献1)では、プラズマアークを鋳片幅方向に外部電磁力を用いて扁平な円弧状の往復運動させ、移動するステンレススラブの表面を一定幅にわたって溶融手入れする方法が開示されている。
特開昭54−142154号公報
Normally, as a method of cleaning a steel slab cast by continuous casting, the entire surface or partial scarfing of the slab surface by a cutting crater is known, but as shown in (Patent Document 1), a plasma arc is known. Proposal has also been made for a method of surface melting care for slabs. This (Patent Document 1) discloses a method in which a plasma arc is reciprocated in a flat arc shape using an external electromagnetic force in the slab width direction, and the surface of a moving stainless steel slab is melted and maintained over a certain width. .
JP 54-142154 A

上記の(特許文献1)では、プラズマアークによって溶融し再凝固した部分は、溶け込み深さの良好な均一性が認められたとされている。しかしながら、この方法ではその狙いとする溶け込み深さの均一度はある程度達成されたが、単なる溶融再凝固処理だけでは、その表面の微小割れの発生を充分には抑制することは困難であった。特に、現在のように厳格な表面品質特性が要求される連続鋳造鋳片については、満足できる程度の表面性状は得られず、その改善が強く要望されていた。
本発明の課題は、このような要求に応えるためになされたもので、鋼鋳片の溶融手入れ処理後の凝固組織をできるだけ微細化して、結晶粒のサイズを小さくし、圧延時の表面割れ等を防止して表面性状の優れた鋳片を得ることができる鋼鋳片の手入れ方法を提供することにある。
In the above (Patent Document 1), it is said that good uniformity of the penetration depth is recognized in the portion melted and re-solidified by the plasma arc. However, with this method, the targeted uniformity of penetration depth has been achieved to some extent, but it has been difficult to sufficiently suppress the occurrence of microcracks on the surface with only melt resolidification treatment. In particular, for continuous cast slabs that require strict surface quality characteristics as at present, satisfactory surface properties cannot be obtained, and there has been a strong demand for improvement.
The object of the present invention was made in order to meet such a demand, and as much as possible, the solidification structure after the melt care treatment of the steel slab is made as fine as possible, the size of the crystal grains is reduced, the surface cracks during rolling, etc. An object of the present invention is to provide a method for caring for a steel slab that can prevent slabs and obtain a slab having excellent surface properties.

上記課題を達成するための本発明に係る鋼鋳片の手入れ方法は、鋼鋳片の表層を誘導加熱、プラズマ加熱のいずれか一方又は双方により溶融させ、鋼鋳片表層の欠陥を修復する鋼鋳片の手入れ方法において、前記表層の溶融処理直後の溶融プールに、不活性ガスの吹付け、ロール接触のいずれか一方又は双方により冷却することを特徴とする。これによって、溶融部を急速に冷却凝固させることができ、その凝固組織を小さくし、結晶粒のサイズを微細化することが可能となる。
上記の方法において、溶融処理後の冷却は、2℃/sec以上の冷却速度で行うこと、及び不活性ガスを吹付けた溶融部の過熱度を10℃以下、さらに望ましくは5℃以下にすることが好ましい。さらに、不活性ガスとしてはHeガスが、かつ、その吹付け量は10リットル/分/m以上であることが望ましい。さらにまた、不活性ガス雰囲気中に1〜10容量%の水素を含有させることも効果的である。
The steel slab care method according to the present invention for achieving the above-mentioned object is a method of repairing defects in a steel slab surface layer by melting the surface layer of the steel slab by one or both of induction heating and plasma heating. The slab care method is characterized in that the molten pool immediately after the surface layer is melted is cooled by one or both of spraying an inert gas and roll contact. As a result, the melted portion can be rapidly cooled and solidified, the solidified structure can be reduced, and the crystal grains can be miniaturized.
In the above method, the cooling after the melting treatment is performed at a cooling rate of 2 ° C./sec or more, and the degree of superheating of the melted portion sprayed with the inert gas is 10 ° C. or less, more preferably 5 ° C. or less. It is preferable. Furthermore, it is desirable that He gas is used as the inert gas, and the spraying amount is 10 liters / minute / m 2 or more. It is also effective to contain 1 to 10% by volume of hydrogen in the inert gas atmosphere.

本発明に係る手入れ方法によれば、鋼鋳片の溶融手入れ処理後の凝固組織をできるだけ微細化して、結晶粒のサイズを小さくし、圧延時の表面割れ等を防止して表面性状の優れた鋳片を得ることができる。   According to the care method according to the present invention, the solidification structure after the melt care treatment of the steel slab is made as fine as possible, the size of the crystal grains is reduced, the surface cracking during rolling is prevented, and the surface properties are excellent. A slab can be obtained.

以下、本発明を最良の実施形態に基づいて説明する。
鋼の鋳片表層を溶融させる方法としては、誘導加熱単独、プラズマ加熱単独、これら誘導加熱とプラズマ加熱の併用のいずれかを選択すれば良い。いずれかを選択するには、鋼鋳片の種類やサイズ、処理時間等の他の条件を考慮して最適な手段を選べば良い。
誘導加熱単独で行う場合は、連続鋳造機で得られた鋳片は、切断後、溶融処理場に搬送され、図1に示すように、鋳片1を周回するように配置された誘導コイル2により加熱され、表層部が溶融される。図2の詳細図に示す如く、誘導コイル2は鋳片表層溶融部3で電磁力により溶融部分を内面に向って押圧することにより安定した溶融部表面を作り、その後再度雰囲気中で冷却され凝固する。図において、4は鋳片1のサポートロール、6は未溶融の加熱部、7は磁場、8は溶融後再凝固した凝固部を示している。
Hereinafter, the present invention will be described based on the best embodiment.
As a method for melting the steel slab surface layer, any one of induction heating alone, plasma heating alone, or a combination of induction heating and plasma heating may be selected. In order to select one of them, an optimum means may be selected in consideration of other conditions such as the type and size of the steel slab and the processing time.
In the case of performing induction heating alone, the slab obtained by the continuous casting machine is transported to the melting processing place after cutting, and as shown in FIG. 1, the induction coil 2 arranged so as to go around the slab 1. The surface layer part is melted by heating. As shown in the detailed view of FIG. 2, the induction coil 2 forms a stable molten portion surface by pressing the molten portion toward the inner surface by electromagnetic force in the slab surface layer molten portion 3, and then cooled again in the atmosphere and solidified. To do. In the figure, 4 is a support roll of the slab 1, 6 is an unmelted heating part, 7 is a magnetic field, and 8 is a solidified part that has been re-solidified after melting.

本発明ではこの冷却の際に、溶融部3の酸化を抑制しつつ冷却を促進するために、不活性ガスを該溶融部に吹付ける。図1、2における5が溶融部3を指向する不活性ガス吹付けノズルである。この不活性ガスの吹付けにより、鋳片表層の溶融部温度を液相線温度(鉄は他の成分を含むため、融点のように1つの温度では溶融状態が決まらず、凝固が始まる温度を固相線温度、全て液体となる温度を液相線温度と称する)よりも僅かに高い温度に保持し、処理後に急速に冷却凝固させることにより凝固組織を小さくでき、結晶粒のサイズを微細化することにより、圧延時の表面割れの防止等圧延材の表面性状を良好にするこことが可能となる。なお、不活性ガス吹き付けノズル5は、図1の実線の如く鉛直方向でも、破線で示す角度を付けて配置しても、いずれでもよい。   In this invention, in this cooling, in order to accelerate | stimulate cooling, suppressing the oxidation of the fusion | melting part 3, an inert gas is sprayed on this fusion | melting part. In FIG. 1 and FIG. 2, reference numeral 5 denotes an inert gas spray nozzle directed toward the melting portion 3. By blowing this inert gas, the melting part temperature of the slab surface is changed to the liquidus temperature (Since iron contains other components, the melting state is not determined at one temperature, such as the melting point, and the temperature at which solidification begins. The solidus temperature is maintained at a temperature slightly higher than the liquidus temperature), and the solidification structure can be reduced by rapidly cooling and solidifying after processing, thereby reducing the size of the crystal grains. By doing so, it becomes possible to improve the surface properties of the rolled material, such as prevention of surface cracks during rolling. The inert gas blowing nozzle 5 may be arranged in the vertical direction as shown by the solid line in FIG. 1 or at an angle shown by the broken line.

ここで、誘導コイルによる電磁力の発生原理を図3に示す。誘導コイル2が発生する磁場7と、電気導体である鋳片1に誘導した電流の相互作用により、溶融部には電磁力が作用し、この電磁力はピンチ力と呼ばれる溶融部を内面側に圧縮する作用があり、溶融部表面の安定化に寄与する。なお図3において、9はコイル電流、10は交流電流、11は時間を表わす。   Here, the principle of generation of electromagnetic force by the induction coil is shown in FIG. Due to the interaction between the magnetic field 7 generated by the induction coil 2 and the current induced in the slab 1 which is an electric conductor, an electromagnetic force acts on the melted portion, and this electromagnetic force causes the melted portion called a pinch force to move to the inner surface side. There is an action to compress, contributing to stabilization of the surface of the melted part. In FIG. 3, 9 represents a coil current, 10 represents an alternating current, and 11 represents time.

また、プラズマ単独で行う場合は、プラズマは一般に軸対称な形をしているため、連続的に鋳片の表面を処理するには、プラズマトーチを鋳片幅方向に走査させる方法や、先の(特許文献1)に記載した、プラズマを鋳片幅方向に電磁力を使って扁平な往復運動させる方法などを採用することができる。図4に示すように、連続鋳造機で得られた鋳片1は、切断後、溶融処理場に搬送され、プラズマトーチ12により鋳片表層を溶融修復する。その後再度冷却され凝固する。なお、プラズマ単独の場合は鋳片の上面だけを溶融させる。
このプラズマによる方法でも、ノズル5により不活性ガスを溶融部3に吹付けることにより、鋳片表層の溶融部温度を液相線温度(鉄は他の成分を含むため、融点のように1つの温度では溶融状態が決まらず、凝固が始まる温度を固相線温度、全て液体となる温度を液相線温度と称する)よりも僅かに高い温度に保持し、処理後に急速に冷却凝固させることにより凝固組織を小さくでき、結晶粒のサイズを微細化することにより、圧延時の表面割れ抑制等圧延材の表面性状を良好にするこことが可能となる。
In addition, when plasma is used alone, since the plasma is generally axisymmetric, in order to continuously treat the surface of the slab, a method of scanning the plasma torch in the slab width direction, The method described in (Patent Document 1) can be employed, for example, a flat reciprocating motion of plasma using electromagnetic force in the slab width direction. As shown in FIG. 4, the slab 1 obtained by the continuous casting machine is transferred to the melting processing place after cutting, and the slab surface layer is melted and repaired by the plasma torch 12. Then it is cooled again and solidifies. In the case of plasma alone, only the upper surface of the slab is melted.
Also in this plasma method, by blowing an inert gas to the melting part 3 by the nozzle 5, the melting part temperature of the slab surface layer is reduced to the liquidus temperature (Since iron contains other components, the melting point is The temperature does not determine the melted state, the temperature at which solidification begins is called the solidus temperature, and the temperature at which it becomes all liquid is called slightly higher than the liquidus temperature). By reducing the solidification structure and reducing the size of the crystal grains, it is possible to improve the surface properties of the rolled material, such as suppressing surface cracking during rolling.

更に、本発明では上述した誘導加熱とプラズマ加熱を併用する形態も採用できる。この併用方式では、例えば、最初は誘導加熱にて鋳片表層を一定温度まで加熱した後、次いでプラズマ加熱によって目標温度まで加熱して鋳片表層を溶融するようにした方式が望ましい。勿論、この併用方式の場合にも、不活性ガスを溶融部に吹付けることにより、鋳片表層の溶融部温度を液相線温度よりも僅かに高い温度に保持し、処理後に急速に冷却凝固させることにより凝固組織を小さくでき、結晶粒のサイズを微細化することにより、圧延時の表面割れ抑制等圧延材の表面性状を良好にするこことが可能となる。溶融部は、鋳片表層全面でも良く、また明らかに表面状態から手入れが必要と判る一部分でも良い。その深さは、3mmから5mm程度である。   Furthermore, in the present invention, a mode in which the above-described induction heating and plasma heating are used together can be employed. In this combined method, for example, a method in which the slab surface layer is first heated to a certain temperature by induction heating and then heated to a target temperature by plasma heating to melt the slab surface layer is desirable. Of course, even in this combined system, the molten part temperature of the slab surface layer is kept at a temperature slightly higher than the liquidus temperature by spraying an inert gas on the molten part, and rapidly cooled and solidified after processing. Thus, the solidified structure can be reduced, and by reducing the size of the crystal grains, it is possible to improve the surface properties of the rolled material, such as suppressing surface cracking during rolling. The melted portion may be the entire surface of the cast slab, or may be a portion that clearly needs to be maintained from the surface state. The depth is about 3 mm to 5 mm.

このように本発明においては、鋳片の溶融処理直後の溶融プールに不活性ガスを吹き付けて急速に冷却することで、凝固組織をできるだけ小さくし、表面性状を良好にすることを狙いとしている。そのために本発明において採用する冷却速度は2℃/sec以上とすることが好ましい。これ未満の冷却速度では、急冷にはならず凝固組織を小さくすることができにくい。冷却速度の上限は特に規定するものではなく、適宜設定すれば良い。また、本発明における急冷後の凝固組織の樹枝状結晶間隔にして、大体2次枝間隔で100μm以下の組織を目標としている。これを超える粒径では目的とする表面性状が得られない。   As described above, the present invention aims to make the solidified structure as small as possible and improve the surface properties by spraying an inert gas on the molten pool immediately after the slab melting process and rapidly cooling the molten pool. Therefore, the cooling rate employed in the present invention is preferably 2 ° C./sec or more. If the cooling rate is less than this, it is difficult to make the solidified structure small without rapid cooling. The upper limit of the cooling rate is not particularly defined and may be set as appropriate. In the present invention, the interval between the dendritic crystals of the solidified structure after rapid cooling is set to a structure having a secondary branch interval of 100 μm or less. If the particle size exceeds this, the desired surface properties cannot be obtained.

また、不活性ガスを溶融部に吹付けることにより、鋳片表層の溶融部温度を液相線温度よりも僅かに高い温度に維持するとしているが、具体的には溶融部を過熱度で10℃以下、さらに好ましくは5℃以下に維持すれば、凝固組織を小さくすることができる。
更に、より確実に酸化を防止しつつ冷却するためには、不活性ガス雰囲気中に1〜10容量%、好適には約2容量%程度の水素を含有させ、溶融改質させることが好ましい。なお、不活性ガスとしてはヘリウム、アルゴンなどを用いることが考えられるが、熱伝導率の良好なヘリウムが好適である。なお、不活性ガスの吹付け量としては、10リットル/分/m以上とすることが望ましい。不活性ガスの吹付け量の上限は特に規定するものではなく、適宜設定すれば良い。
In addition, by blowing an inert gas to the melted part, the melted part temperature of the slab surface layer is maintained at a temperature slightly higher than the liquidus temperature. If the temperature is maintained at not higher than 5 ° C., more preferably not higher than 5 ° C., the solidified structure can be reduced.
Furthermore, in order to perform cooling while preventing oxidation more reliably, it is preferable that 1 to 10% by volume, preferably about 2% by volume, of hydrogen is contained in the inert gas atmosphere and melt reformed. In addition, although helium, argon, etc. can be used as an inert gas, helium with favorable thermal conductivity is suitable. The amount of inert gas sprayed is preferably 10 liters / minute / m 2 or more. The upper limit of the inert gas spray amount is not particularly defined and may be set as appropriate.

なお、上記した本発明においては、鋳片表層の溶融部を急冷する手段として、不活性ガス吹付け手段を例示して説明したが、本発明はこれに限ることなく、溶融処理直後に直接冷却ロールに接触させる手段により、溶融部を冷却することも可能である。場合によっては、ロール冷却単独でも、或いは不活性ガス吹付けと併用することもできる。このロール冷却手段としては、例えば、ロール本体内部を任意の冷却媒体(冷却水)を供給・排出可能な構造にしておき、溶融処理位置の直後の位置にロールを進退自在に配置しておき、溶融部に接触させて急冷する。この場合において、上述した冷却速度及び過熱度の条件を達成し得るようにすることが重要である。   In the above-described present invention, the inert gas spraying means is exemplified and explained as the means for rapidly cooling the melted portion of the slab surface layer. However, the present invention is not limited to this, and the cooling is performed immediately after the melting process. It is also possible to cool the melted part by means of bringing it into contact with the roll. In some cases, roll cooling alone or in combination with inert gas spraying can be used. As this roll cooling means, for example, the inside of the roll body has a structure capable of supplying and discharging an arbitrary cooling medium (cooling water), and the roll is disposed so as to freely advance and retreat at a position immediately after the melting processing position, Quickly cool by contacting the melted part. In this case, it is important to be able to achieve the cooling rate and superheat conditions described above.

幅1500mm、厚み250mm、長さ10mの中炭アルミキルド鋼の連続鋳造鋳片の上面3mmの溶融修復処理を行った。この鋼鋳片の液相線温度は約1500℃であった。また、溶融処理は下記の条件によりプラズマ加熱により実施した。
[プラズマ加熱条件]
鋳片には既に鋳造中の変態により、表面に微小な割れが処理前に認められたが、溶融処理により修復された。この溶融処理の際に、溶融部にヘリウムガスを10リットル/分/mで吹付けた場合と吹付けない場合について、加熱炉に送られ1200℃に2時間保定された後の熱間圧延材の表面疵の個数を比較した。なお、ヘリウムガスを吹付けた場合の溶融部の温度は1505℃に保持した。吹付けない場合の溶融部温度は1515℃であった。その結果、溶融処理による欠陥数は、ガス冷却制御により吹付けない場合の1/10以下に減少していたことが認められた。
A melt repair treatment was performed on the upper surface 3 mm of a continuous cast slab of medium-carbon aluminum killed steel having a width of 1500 mm, a thickness of 250 mm, and a length of 10 m. The liquidus temperature of this steel slab was about 1500 ° C. Further, the melting treatment was performed by plasma heating under the following conditions.
[Plasma heating conditions]
Due to the transformation during casting, the surface of the slab was found to have minute cracks on the surface before the treatment, but it was repaired by the melting treatment. During this melting treatment, hot rolling after being sent to a heating furnace and held at 1200 ° C. for 2 hours, when helium gas is sprayed at 10 liter / min / m 2 on the melting part The number of surface defects of the material was compared. Note that the temperature of the melted part when helium gas was sprayed was maintained at 1505 ° C. The melt temperature when not sprayed was 1515 ° C. As a result, it was recognized that the number of defects due to the melting treatment was reduced to 1/10 or less of the case where no spraying was performed by gas cooling control.

本発明に係る鋼鋳片の手入れ方法を誘導加熱にて行った場合の概略模式図。The schematic diagram at the time of performing the care method of the steel slab which concerns on this invention by induction heating. 図1における鋼鋳片の溶融部の詳細を示す拡大図。The enlarged view which shows the detail of the fusion | melting part of the steel slab in FIG. 誘導加熱における誘導コイルによる電磁力の発生原理を示す説明図。Explanatory drawing which shows the generation principle of the electromagnetic force by the induction coil in induction heating. 本発明に係る鋼鋳片の手入れ方法をプラズマ加熱にて行った場合の概略模式図。The schematic schematic diagram at the time of performing the care method of the steel slab which concerns on this invention by plasma heating.

符号の説明Explanation of symbols

1 鋳片 2 誘導コイル
3 溶融部 4 サポートロール
5 不活性ガス吹付ノズル 6 未溶融の加熱部
7 磁場 8 凝固部
9 コイル電流 10 交流電流
11 時間 12 プラズマトーチ
DESCRIPTION OF SYMBOLS 1 Cast piece 2 Induction coil 3 Melting part 4 Support roll 5 Inert gas spray nozzle 6 Unmelted heating part 7 Magnetic field 8 Solidification part 9 Coil current 10 AC current 11 hours 12 Plasma torch

Claims (5)

鋼鋳片の表層を誘導加熱、プラズマ加熱のいずれか一方又は双方により溶融させ、鋼鋳片表層の欠陥を修復する鋼鋳片の手入れ方法において、前記表層の溶融処理直後の溶融プールに、不活性ガスの吹付け、ロール接触のいずれか一方又は双方により冷却することを特徴とする鋼鋳片の手入れ方法。   In the method of cleaning a steel slab in which the surface layer of the steel slab is melted by one or both of induction heating and plasma heating to repair defects in the steel slab surface layer, the surface of the steel slab is inadequate in the molten pool immediately after the surface layer melting treatment. A method of cleaning a steel slab characterized by cooling by either or both of spraying of active gas and roll contact. 溶融処理後の冷却は、2℃/sec以上の冷却速度で行うことを特徴とする請求項1記載の手入れ方法。   The cooling method according to claim 1, wherein the cooling after the melting treatment is performed at a cooling rate of 2 ° C./sec or more. 不活性ガスを吹付けた溶融部の過熱度を10℃以下にしたことを特徴とする請求項1又は2記載の手入れ方法。   The care method according to claim 1 or 2, wherein the degree of superheat of the melted part sprayed with inert gas is set to 10 ° C or less. 不活性ガスは、Heガスであり、その吹付け量は10リットル/分/m以上であることを特徴とする請求項1〜3のいずれか1項記載の手入れ方法。 The maintenance method according to any one of claims 1 to 3, wherein the inert gas is He gas, and a spray amount thereof is 10 liters / minute / m 2 or more. 不活性ガス雰囲気中に1〜10容量%の水素を含有させることを特徴とする請求項1〜4のいずれか1項記載の手入れ方法。   The care method according to any one of claims 1 to 4, wherein 1 to 10% by volume of hydrogen is contained in an inert gas atmosphere.
JP2004129410A 2004-04-26 2004-04-26 Dressing method for steel cast slab Pending JP2005305533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129410A JP2005305533A (en) 2004-04-26 2004-04-26 Dressing method for steel cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129410A JP2005305533A (en) 2004-04-26 2004-04-26 Dressing method for steel cast slab

Publications (1)

Publication Number Publication Date
JP2005305533A true JP2005305533A (en) 2005-11-04

Family

ID=35434885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129410A Pending JP2005305533A (en) 2004-04-26 2004-04-26 Dressing method for steel cast slab

Country Status (1)

Country Link
JP (1) JP2005305533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114284A (en) * 2006-11-08 2008-05-22 Nippon Steel Corp Apparatus and method for surface treatment of cast steel billet
JP2008208425A (en) * 2007-02-27 2008-09-11 Nippon Steel Corp Method for reforming surface layer of steel slab, surface-reformed steel slab, and worked product
KR101185215B1 (en) * 2009-06-26 2012-09-21 현대제철 주식회사 Multi scarfing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114284A (en) * 2006-11-08 2008-05-22 Nippon Steel Corp Apparatus and method for surface treatment of cast steel billet
JP2008208425A (en) * 2007-02-27 2008-09-11 Nippon Steel Corp Method for reforming surface layer of steel slab, surface-reformed steel slab, and worked product
KR101185215B1 (en) * 2009-06-26 2012-09-21 현대제철 주식회사 Multi scarfing apparatus

Similar Documents

Publication Publication Date Title
JP4414983B2 (en) Titanium material manufacturing method and hot rolling material
CN108817712B (en) Magnetic control hot wire swinging laser welding device, method and application
CN105382408B (en) A kind of electroslag welding restorative procedure for anode steel claw head
CN113798786A (en) Preparation method of bimetal composite board
JP2005305533A (en) Dressing method for steel cast slab
JP2007098399A (en) Method for producing composite steel material, composite steel material and rail steel obtained by using the same
JP3771899B2 (en) Method for surface modification of steel slab containing copper, modified slab and processed product
CN113798632B (en) Forming method for arc fuse additive manufacturing
CN113814563B (en) Method and device for improving corrosion resistance of MIG welding Cr-Ni series stainless steel
JPH10314908A (en) Method for cleaning surface of continuously cast slab and device therefor
JP2004195512A (en) Surface layer reforming method for steel cast slab, reformed cast slab, and processed product
JP5131008B2 (en) Surface melting processing equipment for cast steel pieces
JP3811094B2 (en) Multilayer material manufacturing method
JP6452037B2 (en) Casting method and casting apparatus
JP2018187657A (en) Method for joining billet in continuous hot rolling
JP2861836B2 (en) Laser welding method for ferritic stainless steel
JP3771900B2 (en) Steel slab surface reformer
US4884625A (en) Method of the plasma jet remelting of a surface layer of a flat metal work having parallel side edges and apparatus for carrying out the method
CN110273151B (en) Method for plasma cladding of bainite steel on surface of high-carbon steel
CN1221036A (en) Method for hardening surface of roller and leveller roll and hardening equipment
JPH11170020A (en) Method for cleaning surface of continuously cast thin slab
JPS5844905A (en) Continuous melt casting and rolling method for active metal
JP5263095B2 (en) Manufacturing method and continuous casting equipment of continuous cast slab
KR20090050188A (en) Method for eliminating surface defects of slab in continuously casting facilty
JP2007169672A (en) Method for recycling titanium scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Effective date: 20090119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224