JP3771899B2 - Method for surface modification of steel slab containing copper, modified slab and processed product - Google Patents
Method for surface modification of steel slab containing copper, modified slab and processed product Download PDFInfo
- Publication number
- JP3771899B2 JP3771899B2 JP2002367197A JP2002367197A JP3771899B2 JP 3771899 B2 JP3771899 B2 JP 3771899B2 JP 2002367197 A JP2002367197 A JP 2002367197A JP 2002367197 A JP2002367197 A JP 2002367197A JP 3771899 B2 JP3771899 B2 JP 3771899B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- steel
- surface layer
- pure metal
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 65
- 239000010959 steel Substances 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 53
- 229910052802 copper Inorganic materials 0.000 title claims description 38
- 239000010949 copper Substances 0.000 title claims description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 29
- 230000004048 modification Effects 0.000 title description 3
- 238000012986 modification Methods 0.000 title description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 86
- 238000010438 heat treatment Methods 0.000 claims description 48
- 229910052759 nickel Inorganic materials 0.000 claims description 46
- 230000006698 induction Effects 0.000 claims description 44
- 239000002344 surface layer Substances 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 239000000956 alloy Substances 0.000 claims description 27
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 4
- 238000002407 reforming Methods 0.000 claims description 2
- 238000009749 continuous casting Methods 0.000 description 29
- 238000002844 melting Methods 0.000 description 29
- 230000008018 melting Effects 0.000 description 29
- 238000007711 solidification Methods 0.000 description 10
- 230000005484 gravity Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Continuous Casting (AREA)
- Coating By Spraying Or Casting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、銅を含有する鋼の連続鋳造鋳片の表層改質方法、およびそれを用いて得られる改質鋳片および加工製品に関する。
【0002】
【従来の技術】
鋼は、銅を含むと熱間加工性が著しく阻害され、通常の鋼の製造工程である連続鋳造、再加熱、熱間圧延において表面に割れを発生する。これは、連続鋳造もしくは再加熱、熱間圧延時に鋼が雰囲気中の酸素にさらされて酸化する際に、鋼の中への銅の溶解度が低く、かつ銅の融点が低いために酸化鉄と鋼の間に液体状態で存在し、さらにこの液体の銅が鋼の結晶粒界に侵入し、界面強度を低下させるため割れに至るとされることが、非特許文献1に開示されている。
また、錫は銅の鋼中への溶解度を下げることにより、銅による割れの現象を促進してしまうことから、錫単独では問題となりにくいが、銅と併せて存在すると問題になることが非特許文献2に開示されている。
【0003】
この現象を防止するためには、銅が鋼の精錬の工程において除去できない元素であることから、銅を鋼中に混入させないようにするか、もしくは銅の鋼中への溶解度を上げる元素であるニッケルを添加する方法が知られている。
しかしながら、循環型社会となり銅を多く含むスクラップが多量に使用される現在では、銅は不可避的に混入し、鉱石からつくった鉄により希釈しても次第に累積し、徐々にニッケルを添加し、無害化する必要性が高まってきている。しかし、一方で、ニッケルは稀少で高価な元素でもあり、製造コストが高くなる問題を抱えている。
以上のことから、発明者らは、連続鋳造する際に、2種類の溶鋼を同時に鋳造する方法(特許文献1参照)や潤滑材内にニッケルを混入させる方法(特許文献2参照)などにより、鋳片表層のみニッケルを添加することにより、安価に処理する方法を開示している。
【0004】
【非特許文献1】
「Material Transaction」Vol.43,No.3,(2002)PP.292-300
【非特許文献2】
「ふぇらむ」Vol.7,(2002)No.4,P18-22
【特許文献1】
特開昭63−108947号公報
【特許文献2】
特開平07−26109号公報
【0005】
【発明が解決しようとする課題】
しかし、前者の特許文献1の方法では、2種類の溶鋼を準備するために製造コストが高くなること、後者の特許文献の方法では、後に鋳片の内部となる部分もまだ凝固しないうちに添加するので、表層のみに添加することが難しく、添加厚みの安定や、成分下限を満足することが難しかった。
本発明は、銅を含有する鋼の鋳片表層を安価に確実に改質し、熱間加工時の割れの発生を防止することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、
(1) 銅を含有する鋼鋳片の表層を誘導加熱、プラズマ加熱のいずれか一方または双方により溶融させ、溶融した鋼鋳片の表層部分に、ニッケルを含む純金属もしくは合金を添加することを特徴とする鋼鋳片の表層改質方法。
(2) 溶融した鋼鋳片の表層部分に、下式を満足する量のニッケルを含む純金属もしくは合金を添加することを特徴とする(1)に記載の鋼鋳片の表層改質方法。
[%Cu]+8×[%Sn]<α×[%Ni]
[%Cu]>0
[%Sn]≧0
α>0
ここで、[%Cu]、[%Sn]、[%Ni]は、鋼中の各元素の含有率の質量%を示す。
(3) 少なくとも誘導加熱を用いる場合、誘導加熱により発生する磁場の向きを、鋳片鋳造方向となるように発生させ、溶融部分を電磁力で保持することを特徴とする(1)または(2)に記載の鋼鋳片の表層改質方法。
(4) 少なくともプラズマ加熱を用いる場合、ニッケルを含む純金属もしくは合金を、プラズマ内に供給し、加熱または溶融してから、鋼の溶融した部分に供給することを特徴とする(1)〜(3)いずれかに記載の鋼鋳片の表層改質方法。
(5) 誘導加熱、プラズマ加熱の双方を用いる場合、誘導加熱により鋳片表層と併せてニッケルを含む添加純金属または合金を予熱し、その後プラズマ加熱により該添加純金属または合金を溶融合金化させることを特徴とする(1)または(2)に記載の鋼鋳片の表層改質方法。
(6) (1)〜(5)いずれかに記載の方法により得られる表層改質鋼鋳片。
(7) (6)に記載の表層改質鋼鋳片を加工することにより得られる加工製品。
【0007】
【発明の実施の形態】
本発明は、銅を含有する鋼の鋳片表層に、銅の鋼中への溶解度を上げる元素であるニッケルを溶着させる方法として、誘導加熱、プラズマ加熱のいずれか一方または双方を用いて銅を含有する鋼の鋳片表層を溶融させ、そこへニッケルを含む純金属もしくは合金を添加することで、鋳片表層を安価に確実に改質できることを見出した。以下に詳細に説明する。
【0008】
本発明で対象とする銅を含有する鋼の鋳片について、その表層部分の厚さは、酸化膜の厚さ以上であれば良く、特に規定するものではないが、通常は0.5〜5mm程度である。これは、0.5mm未満の酸化膜はあまり存在しないこと、また5mm超の場合は酸化膜の厚みに対して必要以上に添加を行うことになることが、その理由である。また上記鋳片は連続鋳造により製造されたものが多い。
銅を含有する鋼の鋳片表層を溶融させる方法として、誘導加熱単独、プラズマ加熱単独、誘導加熱とプラズマ加熱の併用のいずれを用いても良い。
【0009】
誘導加熱単独で行う場合は、ニッケルを含む純金属もしくは合金を、ワイヤーやシートの形で鋳片表層溶融部に添加できる。具体的には、連続鋳造機で得られた鋳片は、切断後、溶融処理場に輸送され、鋳片を周回するように配置された誘導コイルにより加熱され、鋳片表層溶融部にワイヤーやシートを用いてニッケルを含む純金属もしくは合金を添加して溶着される。誘導コイルは鋳片表層溶融部で電磁力により溶融部分を内面に向かって電磁力によって押さえつけることにより安定した溶融部表面を作り、その後再度冷却され凝固する。
【0010】
この方法によると、鋳片表層の溶融部温度を液相線温度(鉄は他の成分を含むため、融点のように1つの温度では溶融状態が決まらず、凝固が始まる温度を固相線温度、全て液体となる温度を液相線温度と呼ぶ)よりもわずかに高い温度に保持し、添加後に急速に冷却凝固させることにより凝固組織を小さくでき、結晶粒のサイズを小さくすることにより、銅が鋼の結晶粒界へ侵入することで起こる強度低下という悪影響を抑制できるという利点がある。
【0011】
また、鋳片表層溶融部にニッケルを含む純金属もしくは合金を添加して溶着させる場合、鋳片の酸化を防止することが好ましいため、誘導コイルはチャンバー内で不活性ガス雰囲気(例えばアルゴン、窒素等)で溶融改質するのが好ましく、さらにより確実に酸化を防止するためには、不活性ガス雰囲気中に約2容量%程度の水素を含んで溶融改質することが好ましい。
ここで、誘導コイルによる電磁力の力の発生原理を図3に示す。誘導コイルが発生する磁場と、導体である鋳片に誘導した電流の相互作用により、溶融部には電磁力が作用する。この電磁力はピンチ力と呼ばれる溶融部を圧縮する作用があり、溶融部表面の安定化に寄与する。
【0012】
次に連続鋳造機端、すなわち連続鋳造後の鋳片が水平に移動している際に、本願発明方法を適用する場合について説明する。この場合、鋳片は一般の湾曲型もしくは垂直部を鋳型下数mにわたって有する垂直曲げ型連鋳機において、一般には曲げ戻しを受けたあと、ガスカットされる前に水平部を有することから、この部分に配置する。誘導コイルは鋳片を周回するように配置されている。この方式の場合、図6、7に示す様に鋳片上部は誘導コイルによる加熱により鋳片表層部が溶融しても、重力による滴下が起こらないため、容易に処理される。また鋳片下部の溶融部は、図3に示す原理に基づいた電磁力の作用により保持され、重力による滴下や再凝固後の表面形状が悪化することを防止できる。この処理は、ガスカット後に鋳片反転装置を用いて180度反転させることで、片面づつ処理することもできる。鋳片端部については、上記鋳片反転装置を用いて±90度反転させることで、処理することができる。
【0013】
さらに連続鋳造機内、すなわち鋳片が垂直に移動している際に、本発明方法を適用する場合について説明する。連続鋳造機内において、鋳型を出た鋳片は、2次冷却帯内において、誘導コイルにより加熱される。誘導コイルは溶融部の電磁力による保持を受けて、溶融部分が重力により滴下することなく、下部の誘導コイルを通過後に再度冷却され凝固する。ここで、鋳片溶融部分は溶融部の下部側が重力の作用によってより滴下しやすくなるため、誘導コイルは図5に示す様に、上部コイルよりは下部コイルを鋳片近くに設置することで、溶融部の下部側がより強い電磁力を発生して溶融部が漏れることを防止できるため好ましい。
【0014】
また、プラズマ加熱単独で行う場合は、プラズマ内にニッケルを含む純金属もしくは合金を供給し、鋼の溶融した部分に供給することで鋳片表層溶融部に添加できる。プラズマは一般に軸対称な形をしているため、連続的に鋳片の表面を処理するには、プラズマトーチを鋳片幅方向にスキャンさせる方法か、特開昭54−1421545号公報のプラズマを鋳片幅方向に電磁力を使って扁平な往復運動させる方法等を用いることができる。
【0015】
連続鋳造機で得られた鋳片は、切断後、溶融処理場に輸送され、ニッケルを含む純金属もしくは合金をプラズマに供給することで、プラズマで鋳片表層を溶融しつつ、ニッケルを含む純金属もしくは合金を供給し、鋼の溶融した部分に供給することで、溶着される。その後再度冷却され凝固する。
【0016】
この方法でも、鋳片表層の溶融部温度を液相線温度(鉄は他の成分を含むため、融点のように1つの温度では溶融状態が決まらず、凝固が始まる温度を固相線温度、全て液体となる温度を液相線温度と呼ぶ)よりもわずかに高い温度に保持し、添加後に急速に冷却凝固させることにより凝固組織を小さくでき、結晶粒のサイズを小さくすることにより、銅が鋼の結晶粒界へ侵入することで起こる強度低下という悪影響を抑制できるという利点がある。
また、鋳片表層溶融部にニッケルを含む純金属もしくは合金を添加して溶着させる場合、鋳片の酸化を防止することが好ましいため、チャンバー内のガス雰囲気は上記と同様であることが好ましい。
【0017】
次に連続鋳造機端、すなわち連続鋳造後の鋳片が水平に移動している際に、本発明方法を適用する場合について説明する。この場合、鋳片は一般の湾曲型もしくは垂直部を鋳型下数mにわたって有する垂直曲げ型連鋳機において、一般には曲げ戻しを受けたあと、ガスカットされる前に水平部を有することから、この部分に配置する。この方式の場合、誘導コイルを用いた場合の様に電磁力の力で溶融部を保持することができないため、水平処理で上面側のみの処理をまず行い、ガスカット後に鋳片を180度反転して処理するなどの対応をすることが必要になる。また鋳片端部については、±90度反転させることで、処理することができる。
【0018】
さらに、誘導加熱とプラズマ加熱を併用して行う場合について、図1〜4に基づいて説明する。
連続鋳造機1で連続鋳造を完了した鋳片5は、切断後、溶融処理場に輸送され、図1のように誘導コイル3により加熱され、さらにニッケルを含む純金属もしくは合金をプラズマ2に供給することで、鋳片表層溶融部にニッケルを含む純金属もしくは合金を添加して溶着させる。誘導コイル3は鋳片表層溶融部8で電磁力によるより溶融部分を内面に向かって電磁力によって押さえつけることにより安定した溶融部表面を作り、その後再度冷却され凝固する。
【0019】
この様に上記方法を併用した場合でも、鋳片表層への熱負荷が従来技術よりも小さくできるため、得られる表層改質鋳片の溶融部温度を液相線温度(鉄は他の成分を含むため、融点のように1つの温度では溶融状態が決まらず、凝固が始まる温度を固相線温度、全て液体となる温度を液相線温度と呼ぶ)よりもわずかに高い温度に保持し、添加後に急速に冷却凝固させることにより凝固組織を小さくでき、結晶粒のサイズを小さくすることにより、銅が鋼の結晶粒界へ侵入することで起こる強度低下という悪影響を抑制できるという利点がある。
また、鋳片表層溶融部にニッケルを含む純金属もしくは合金を添加して溶着させる場合、鋳片の酸化を防止することが好ましいため、チャンバー内のガス雰囲気は上記と同様であることが好ましい。さらに、誘導コイルによる電磁力は先に記載している通り、作用する。
【0020】
次に連続鋳造機端、すなわち連続鋳造後の鋳片が水平に移動している際に、本発明方法を適用する場合について説明する。この場合、鋳片は一般の湾曲型もしくは垂直部を鋳型下数mにわたって有する垂直曲げ型連鋳機において、一般には曲げ戻しを受けたあと、ガスカットされる前に水平部を有することから、この部分に配置する。誘導コイルは鋳片を周回するように配置されており、プラズマも上下側端に配置されている。この方式の場合、図2に示す様に鋳片上部は誘導コイルによる加熱により鋳片表層部が溶融しても、重力による滴下が起こらないため、容易に処理される。また鋳片下部の溶融部は、図3に示す原理に基づいた電磁力の作用により保持され、重力による滴下や再凝固後の表面形状が悪化することを防止できる。この処理は、ガスカット後に鋳片反転装置を用いて180度反転させることで、片面づつ処理することもできる。鋳片端部については、上記鋳片反転装置を用いて±90度反転させることで、処理することができる。
【0021】
さらに連続鋳造機内、すなわち鋳片が垂直に移動している際に、本発明方法を適用する場合について説明する。連続鋳造機内において、鋳型を出た鋳片は、2次冷却帯内において、誘導コイルにより加熱され、さらにニッケルを含む純金属もしくは合金をプラズマ2に供給することで、鋳片表層溶融部にニッケルを含む純金属もしくは合金を添加して溶着させる。誘導コイルは溶融部の電磁力による保持を受けて、溶融部分が重力により滴下することなく、下部の誘導コイルを通過後に再度冷却され凝固する。ここで、鋳片溶融部分は溶融部の下部側が重力の作用によってより滴下しやすくなるため、誘導コイルは図5に示す様に、上部コイルよりは下部コイルを鋳片近くに設置することで、溶融部の下部側がより強い電磁力を発生して溶融部が漏れることを防止できるため好ましい。
【0022】
次に、溶融した鋼鋳片の表層部分には、下式を満足する量のニッケルを含む純金属もしくは合金を添加することが好ましい。
[%Cu]+8×[%Sn]<α×[%Ni]
[%Cu]>0
[%Sn]≧0
α>0
ここで、[%Cu]、[%Sn]、[%Ni]は、鋼中の各元素の含有率の質量%を示す。
αは鋳造条件、加熱及び圧延条件等に応じて生じる割れの発生頻度や割れの程度が、管理指標より下回るように、適宜好適な値を設定すれば良い。また、αの上限値も特に規定するものではなく、コストを考慮して好適な値を設定すれば良い。この様な点から、通常αは0.5〜1.0程度である。
【0023】
また、誘導加熱、プラズマ加熱の双方を併用する場合の別の形態として、誘導加熱により鋳片表層と併せてワイヤーやシートの形で鋳片表層部に添加したニッケルを含む添加純金属または合金を予熱し、その後プラズマ加熱により該添加純金属または合金を溶融合金化させる方法を用いても良い。
これは、誘導加熱は単に予熱機能として使用し、その後のプラズマ加熱でニッケルを含む添加純金属または合金を溶融合金化させるものであり、プラズマで一般に加熱溶融するにはニッケル含有金属の形状がパウダー状であり、プラズマ内に吹き込むのが一般的であるのに対し、この方法の場合には添加純金属もしくは合金の形状にかかわらず実施できるという利点がある。
【0024】
上記方法により得られた表層改質鋼鋳片は、連続鋳造もしくは再加熱、熱間圧延時に鋼が雰囲気中の酸素にさらされて酸化した際に、銅が酸化鉄と鋼の間に液体状態で存在し、さらにこの液体の銅が鋼の結晶粒界に侵入し、界面強度を低下して起こる割れを防止できるものである。
従って、上記の表層改質鋼鋳片を加工することにより得られる加工製品について、割れのないものが得られる。加工製品とは薄板、厚板等の鋼板、形鋼、鋼管等が挙げられるが、通常の鉄鋼プロセスで鋳片を加工して得られる鉄鋼製品すべてを対象とする。また、熱延コイル等の半製品も含まれる。
【0025】
【実施例】
(実施例1)
図1、2に示すような誘導加熱およびプラズマ加熱を鋳片が水平な状態で併用する方法を用いて、鋳片カット後に溶融改質処理を行った。ニッケル添加用としてニッケル合金を用い、プラズマに供給することで行った。
銅0.25質量%、錫0.02質量%を含む幅1500mm、厚さ250mm、長さ10mの連続鋳造鋳片の表層3mmを両面について溶融処理を行い、さらに鋳片端部も溶融処理し、ニッケルを0.5質量%添加処理した。
鋳片にはすでに銅により脆化した割れが処理前に見られたが、溶融処理により修復された。改質した鋳片は、加熱炉におくられ1200℃に2時間保定された後、熱間圧延を施した。得られた圧延材には通常見られる割れはなく良好な状態にあった。
【0026】
(実施例2)
実施例1と同じ鋳片について、図1、2に示す方法を用いて、連続鋳造機端で同一条件で溶融処理およびニッケル添加を行ったところ、実施例1と同じく良好な状態を得た。
【0027】
(実施例3)
図4、5に示すような誘導加熱およびプラズマ加熱を鋳片が垂直な状態で併用する方法を用いて、連続鋳造機内で溶融改質処理する装置を用いて、銅0.3質量%を含む幅2000mm、厚さ250mmの連続鋳造鋳片の表層3mmを両面について溶融処理を行い、さらに鋳片端部も溶融処理し、ニッケルを0.3質量%添加処理した。
機端で観察した鋳片には割れもなく、また加熱炉におくられ1250℃に2時間保定された後、熱間圧延を施した。得られた圧延材には銅を含むがニッケルを添加していない通常見られる割れはなく良好な状態にあった。
【0028】
(実施例4)
実施例1と同じ鋳片について、図6、7に示すような誘導加熱を鋳片が水平な状態で行う方法を用いて、連続鋳造機端で同一条件で溶融処理を行い、ワイヤーで鋳片表層溶融部にニッケル添加を行ったところ、実施例1と同じく良好な状態を得た。
【0029】
【発明の効果】
以上説明したように、本発明の方法を用いれば、銅を含有する鋼の連続鋳造及び熱間加工時の割れを安価で確実に防止でき、さらに表面改質時の溶鋼の過熱度を低く抑えて再凝固の速度を速くできるため、鋼の凝固組織及び結晶の粒径を小さくでき、良好な品質の鋼が得られることを可能とする。
【図面の簡単な説明】
【図1】本発明の方法の構成の一例(鋳片切断後あるいは連鋳機端での処理)を示す断面模式図。
【図2】本発明の方法の構成を示すもので、図1の処理部分詳細図。
【図3】本発明方法の原理の説明図。
【図4】本発明の方法の構成の他の例(連鋳機内処理)を示す断面模式図。
【図5】本発明の方法の構成(連鋳機内処理)および力のバランスの説明図(図4の処理部分詳細図)。
【図6】誘導加熱のみ用いる本発明の方法の構成例(鋳片切断後あるいは連鋳機端での処理)を示す断面模式図。
【図7】誘導加熱のみ用いる本発明の方法の構成(図6の処理部分詳細図)。
【符号の説明】
1:連続鋳造機
2:元素を溶融添加する機能を保有したプラズマ
3:電磁誘導コイル
4:サポートロール
5:鋳片
6:不活性ガス雰囲気をつくる容器
7:凝固部
8:溶融した部分
9:未凝固部
10:連続引抜もしくは移動方向
11:コイル電流
12:交流電流
13:時間
14:電気伝導体
15:磁場
16:未溶融の加熱部
17:ニッケルが富化された部分
18:電磁力の方向と強さ
19:重力(静鉄圧)の方向と強さ
20:添加元素を含む線材状原料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface layer modification method for a continuous cast slab of steel containing copper, and a modified slab and a processed product obtained using the method.
[0002]
[Prior art]
When steel contains copper, hot workability is remarkably hindered, and cracks occur on the surface in continuous casting, reheating, and hot rolling, which are ordinary steel manufacturing processes. This is because when steel is oxidized by being exposed to oxygen in the atmosphere during continuous casting or reheating and hot rolling, the solubility of copper in the steel is low and the melting point of copper is low. It is disclosed in Non-Patent Document 1 that it exists in a liquid state between steels, and further, this liquid copper penetrates into the grain boundaries of the steel and leads to cracking in order to reduce the interface strength.
In addition, tin promotes the phenomenon of cracking by copper by lowering the solubility of copper in steel, so tin alone is unlikely to be a problem, but it is not a patent when present together with copper. It is disclosed in
[0003]
In order to prevent this phenomenon, copper is an element that cannot be removed in the steel refining process, so it is an element that prevents copper from being mixed into the steel or increases the solubility of copper in steel. A method of adding nickel is known.
However, in the current recycling society where a large amount of scrap containing a large amount of copper is used, copper is inevitably mixed, and even when diluted with iron made from ore, it gradually accumulates, gradually adding nickel, and harmless. There is a growing need for However, on the other hand, nickel is a rare and expensive element, and has a problem that the manufacturing cost increases.
From the above, the inventors, when continuously cast, by a method of casting two types of molten steel simultaneously (see Patent Document 1), a method of mixing nickel into the lubricant (see Patent Document 2), etc., It discloses a method of processing at low cost by adding nickel only to the slab surface layer.
[0004]
[Non-Patent Document 1]
`` Material Transaction '' Vol. 43, No. 3, (2002) PP.292-300
[Non-Patent Document 2]
"Feramu" Vol.7, (2002) No.4, P18-22
[Patent Document 1]
JP 63-108947 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 07-26109
[Problems to be solved by the invention]
However, in the former method of Patent Document 1, the manufacturing cost is high because two types of molten steel are prepared, and in the latter method of Patent Document, the portion that later becomes the inside of the slab is added before solidifying yet. Therefore, it was difficult to add only to the surface layer, and it was difficult to stabilize the addition thickness and satisfy the lower limit of the components.
An object of the present invention is to reliably and inexpensively modify the slab surface layer of steel containing copper and prevent the occurrence of cracks during hot working.
[0006]
[Means for Solving the Problems]
The present invention
(1) The surface layer of a steel slab containing copper is melted by one or both of induction heating and plasma heating, and a pure metal or alloy containing nickel is added to the surface layer part of the molten steel slab. A method for modifying the surface layer of a steel slab, which is characterized.
(2) The method for modifying the surface layer of a steel slab according to (1), wherein a pure metal or alloy containing nickel in an amount satisfying the following formula is added to a surface layer portion of the molten steel slab.
[% Cu] + 8 × [% Sn] <α × [% Ni]
[% Cu]> 0
[% Sn] ≧ 0
α> 0
Here, [% Cu], [% Sn], and [% Ni] indicate mass% of the content of each element in the steel.
(3) At least when induction heating is used, the direction of the magnetic field generated by induction heating is generated so as to be in the slab casting direction, and the molten portion is held by electromagnetic force (1) or (2 The method for modifying the surface layer of a steel slab as described in 1).
(4) When using at least plasma heating, pure metal or alloy containing nickel is supplied into the plasma, heated or melted, and then supplied to the molten portion of steel (1) to ( 3) The method for modifying the surface layer of a steel slab according to any one of the above.
(5) When both induction heating and plasma heating are used, the additive pure metal or alloy containing nickel is preheated together with the slab surface layer by induction heating, and then the additive pure metal or alloy is melt-alloyed by plasma heating. The method for modifying the surface layer of a steel slab according to (1) or (2), wherein:
(6) A surface-modified steel slab obtained by the method according to any one of (1) to (5).
(7) A processed product obtained by processing the surface-modified steel cast according to (6).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as a method of depositing nickel, which is an element for increasing the solubility of copper in steel, on the slab surface of steel containing copper, copper is used by using either or both of induction heating and plasma heating. It has been found that the slab surface layer can be reliably and inexpensively modified by melting the slab surface layer of the contained steel and adding a pure metal or alloy containing nickel thereto. This will be described in detail below.
[0008]
For the steel slab containing copper, which is the subject of the present invention, the thickness of the surface layer portion may be equal to or greater than the thickness of the oxide film and is not particularly specified, but is usually 0.5 to 5 mm. Degree. This is because there are not many oxide films less than 0.5 mm, and in the case of more than 5 mm, addition is more than necessary with respect to the thickness of the oxide film. In many cases, the slab is manufactured by continuous casting.
As a method for melting the slab surface layer of steel containing copper, any of induction heating alone, plasma heating alone, or a combination of induction heating and plasma heating may be used.
[0009]
In the case of performing induction heating alone, a pure metal or alloy containing nickel can be added to the slab surface layer melting portion in the form of a wire or a sheet. Specifically, the slab obtained by a continuous casting machine is transported to a melting treatment site after cutting, heated by an induction coil arranged so as to circulate around the slab, and wire or A pure metal or alloy containing nickel is added and welded using a sheet. The induction coil creates a stable melted part surface by pressing the melted part toward the inner surface by electromagnetic force in the slab surface melted part, and then cooled again and solidifies.
[0010]
According to this method, the melting part temperature of the slab surface layer is set to the liquidus temperature (iron contains other components, so the melting state is not determined at one temperature such as the melting point, and the temperature at which solidification starts is the solidus temperature. , The temperature at which it becomes all liquid is called slightly higher than the liquidus temperature), the solidification structure can be reduced by rapidly cooling and solidifying after addition, and the size of the crystal grains can be reduced by reducing the size of the crystal grains. There is an advantage that the adverse effect of strength reduction caused by entering the grain boundary of steel can be suppressed.
[0011]
In addition, when a pure metal or alloy containing nickel is added and welded to the molten portion of the slab surface layer, it is preferable to prevent oxidation of the slab, so that the induction coil has an inert gas atmosphere (for example, argon, nitrogen) in the chamber. Etc.), and in order to prevent the oxidation more reliably, it is preferable to melt and modify the inert gas atmosphere to contain about 2% by volume of hydrogen.
Here, the principle of generation of electromagnetic force by the induction coil is shown in FIG. Due to the interaction between the magnetic field generated by the induction coil and the current induced in the slab, which is a conductor, an electromagnetic force acts on the melted portion. This electromagnetic force has an action of compressing the melted portion called pinch force, and contributes to stabilization of the surface of the melted portion.
[0012]
Next, the case where the method of the present invention is applied when the end of the continuous casting machine, that is, the slab after continuous casting is moving horizontally will be described. In this case, in the vertical bending type continuous casting machine having a general curved mold or a vertical portion over several m below the mold, the slab generally has a horizontal portion after being bent back and before being gas cut. Place in this part. The induction coil is arranged around the slab. In the case of this method, as shown in FIGS. 6 and 7, the upper part of the slab is easily treated because dripping due to gravity does not occur even if the surface part of the slab is melted by heating with an induction coil. Further, the melted portion at the bottom of the slab is held by the action of electromagnetic force based on the principle shown in FIG. 3, and it is possible to prevent the surface shape after dripping or re-solidification due to gravity. This processing can be performed one side at a time by reversing 180 degrees using a slab reversing device after gas cutting. The slab end can be processed by reversing ± 90 degrees using the slab reversing device.
[0013]
Further, the case where the method of the present invention is applied in the continuous casting machine, that is, when the slab is moving vertically will be described. In the continuous casting machine, the slab out of the mold is heated by the induction coil in the secondary cooling zone. The induction coil is held by the electromagnetic force of the melting part, and the molten part is cooled again and solidified after passing through the lower induction coil without dropping by gravity. Here, the slab melted part is more likely to drop by the action of gravity on the lower side of the melted part, so that the induction coil is installed near the slab rather than the upper coil, as shown in FIG. It is preferable because the lower side of the melting part can generate a stronger electromagnetic force and prevent the melting part from leaking.
[0014]
In addition, when plasma heating alone is performed, pure metal or an alloy containing nickel is supplied into the plasma, and is supplied to the molten portion of the steel so that it can be added to the slab surface layer melting portion. Since the plasma is generally axisymmetric, in order to continuously treat the surface of the slab, the plasma torch is scanned in the width direction of the slab, or the plasma disclosed in Japanese Patent Application Laid-Open No. 54-1421545 is used. A flat reciprocating method using electromagnetic force in the slab width direction can be used.
[0015]
The slab obtained by the continuous casting machine is transported to a melting treatment site after cutting, and a pure metal or nickel containing nickel is supplied to the plasma, thereby melting the slab surface layer with the plasma and pure nickel containing nickel. It is welded by supplying a metal or alloy and supplying it to the molten part of steel. Then it is cooled again and solidifies.
[0016]
Also in this method, the melting part temperature of the slab surface layer is set to the liquidus temperature (iron contains other components, so the melting state is not determined at one temperature like the melting point, and the temperature at which solidification starts is the solidus temperature, All liquid temperatures are called liquidus temperatures), and the solidification structure can be reduced by rapidly cooling and solidifying after addition, and by reducing the size of the crystal grains, There is an advantage that it is possible to suppress the adverse effect of strength reduction caused by entering the grain boundaries of steel.
In addition, when a pure metal or alloy containing nickel is added and welded to the molten portion of the slab surface layer, it is preferable to prevent oxidation of the slab, and therefore the gas atmosphere in the chamber is preferably the same as described above.
[0017]
Next, the case where the method of the present invention is applied when the end of the continuous casting machine, that is, the slab after continuous casting is moving horizontally will be described. In this case, in the vertical bending type continuous casting machine having a general curved mold or a vertical portion over several m below the mold, the slab generally has a horizontal portion after being bent back and before being gas cut. Place in this part. In the case of this method, the melting part cannot be held by the force of electromagnetic force as in the case of using an induction coil. Therefore, only the upper surface side is processed first by horizontal processing, and the slab is inverted 180 degrees after gas cutting. It is necessary to take measures such as processing. The slab end can be processed by reversing ± 90 degrees.
[0018]
Further, a case where induction heating and plasma heating are performed in combination will be described with reference to FIGS.
The
[0019]
Even when the above method is used in combination, the heat load on the slab surface layer can be made smaller than in the prior art. Therefore, the melting state is not determined at one temperature, such as the melting point, the temperature at which solidification begins is called the solidus temperature, and the temperature at which it becomes all liquid is called the liquidus temperature). By rapidly cooling and solidifying after the addition, the solidified structure can be reduced, and by reducing the size of the crystal grains, there is an advantage that the adverse effect of strength reduction caused by the penetration of copper into the crystal grain boundaries of steel can be suppressed.
In addition, when a pure metal or alloy containing nickel is added and welded to the molten portion of the slab surface layer, it is preferable to prevent oxidation of the slab, and therefore the gas atmosphere in the chamber is preferably the same as described above. Furthermore, the electromagnetic force due to the induction coil acts as described above.
[0020]
Next, the case where the method of the present invention is applied when the end of the continuous casting machine, that is, the slab after continuous casting is moving horizontally will be described. In this case, in the vertical bending type continuous casting machine having a general curved mold or a vertical portion over several m below the mold, the slab generally has a horizontal portion after being bent back and before being gas cut. Place in this part. The induction coil is arranged so as to go around the slab, and the plasma is also arranged at the upper and lower side ends. In the case of this method, as shown in FIG. 2, the upper part of the slab is easily treated because dripping due to gravity does not occur even if the surface part of the slab is melted by heating with an induction coil. Further, the melted portion at the bottom of the slab is held by the action of electromagnetic force based on the principle shown in FIG. 3, and it is possible to prevent the surface shape after dripping or re-solidification due to gravity. This processing can be performed one side at a time by reversing 180 degrees using a slab reversing device after gas cutting. The slab end can be processed by reversing ± 90 degrees using the slab reversing device.
[0021]
Further, the case where the method of the present invention is applied in the continuous casting machine, that is, when the slab is moving vertically will be described. In the continuous casting machine, the slab out of the mold is heated by the induction coil in the secondary cooling zone, and further pure metal or alloy containing nickel is supplied to the
[0022]
Next, it is preferable to add a pure metal or alloy containing nickel in an amount satisfying the following formula to the surface layer portion of the molten steel slab.
[% Cu] + 8 × [% Sn] <α × [% Ni]
[% Cu]> 0
[% Sn] ≧ 0
α> 0
Here, [% Cu], [% Sn], and [% Ni] indicate mass% of the content of each element in the steel.
α may be set to a suitable value so that the frequency of occurrence of cracks and the degree of cracking caused by casting conditions, heating and rolling conditions, etc. are lower than the control index. Further, the upper limit value of α is not particularly specified, and a suitable value may be set in consideration of cost. From such points, α is usually about 0.5 to 1.0.
[0023]
Moreover, as another form in the case of using both induction heating and plasma heating, an added pure metal or alloy containing nickel added to the slab surface layer part in the form of a wire or a sheet together with the slab surface layer by induction heating is used. A method of preheating, and then melting the added pure metal or alloy by plasma heating may be used.
In this method, induction heating is simply used as a preheating function, and the added pure metal or alloy containing nickel is melt-alloyed by subsequent plasma heating. In general, the shape of nickel-containing metal is powder for heating and melting with plasma. However, this method has the advantage that it can be carried out regardless of the shape of the added pure metal or alloy.
[0024]
The surface layer modified steel slab obtained by the above method is in a liquid state between the iron oxide and the steel when the steel is oxidized by exposure to oxygen in the atmosphere during continuous casting or reheating and hot rolling. Further, this liquid copper penetrates into the grain boundaries of the steel, and it is possible to prevent cracks caused by lowering the interface strength.
Therefore, the processed product obtained by processing the above-mentioned surface layer-modified steel slab can be obtained without cracking. Processed products include steel plates such as thin plates and thick plates, shaped steels, steel pipes, etc., but all steel products obtained by processing slabs in a normal steel process are targeted. Also included are semi-finished products such as hot rolled coils.
[0025]
【Example】
(Example 1)
The melt modification treatment was performed after the slab cut using a method in which induction heating and plasma heating as shown in FIGS. A nickel alloy was used for nickel addition and was supplied to plasma.
The
The slab had already been cracked before it was embrittled by copper, but was repaired by the melting process. The modified slab was placed in a heating furnace and held at 1200 ° C. for 2 hours, and then subjected to hot rolling. The obtained rolled material was in a good state with no cracks usually observed.
[0026]
(Example 2)
About the same slab as Example 1, when the melt processing and nickel addition were performed on the continuous casting machine end on the same conditions using the method shown to FIG. 1, 2, the same favorable state as Example 1 was obtained.
[0027]
(Example 3)
Using a method in which induction heating and plasma heating as shown in FIGS. 4 and 5 are used together in a state where the slab is vertical, using an apparatus for melt reforming treatment in a continuous casting machine, containing 0.3% by mass of copper The surface layer of 3 mm of a continuous cast slab having a width of 2000 mm and a thickness of 250 mm was melted on both sides, and the end of the slab was also melted, and 0.3 mass% nickel was added.
The slab observed at the machine end had no cracks and was placed in a heating furnace and maintained at 1250 ° C. for 2 hours, and then hot rolled. The obtained rolled material contained copper but was in a good state with no cracks usually seen without adding nickel.
[0028]
(Example 4)
For the same slab as in Example 1, using the method of performing induction heating as shown in FIGS. 6 and 7 with the slab in a horizontal state, the slab is melted under the same conditions at the end of the continuous casting machine, and the slab is made of wire. When nickel was added to the melted surface layer, the same good state as in Example 1 was obtained.
[0029]
【The invention's effect】
As described above, by using the method of the present invention, cracking during continuous casting and hot working of steel containing copper can be reliably prevented at a low cost, and the degree of superheat of molten steel during surface modification is kept low. Since the re-solidification speed can be increased, the solidification structure of the steel and the grain size of the crystal can be reduced, and it becomes possible to obtain a steel of good quality.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a method of the present invention (after slab cutting or treatment at the end of a continuous casting machine).
2 shows a configuration of the method of the present invention and is a detailed view of a processing portion of FIG.
FIG. 3 is an explanatory diagram of the principle of the method of the present invention.
FIG. 4 is a schematic cross-sectional view showing another example of the configuration of the method of the present invention (treatment in a continuous casting machine).
FIG. 5 is an explanatory diagram of the configuration of the method of the present invention (process in the continuous casting machine) and the balance of force (detailed processing portion of FIG. 4).
FIG. 6 is a schematic cross-sectional view showing a configuration example of the method of the present invention using only induction heating (processing after cutting a slab or at the end of a continuous casting machine).
7 is a configuration of the method of the present invention using only induction heating (detailed processing portion of FIG. 6).
[Explanation of symbols]
1: Continuous casting machine 2: Plasma having a function of melting and adding elements 3: Electromagnetic induction coil 4: Support roll 5: Cast slab 6: Container for creating an inert gas atmosphere 7: Solidification part 8: Molten part 9: Unsolidified part 10: Continuous drawing or moving direction 11: Coil current 12: AC current 13: Time 14: Electrical conductor 15: Magnetic field 16: Unmelted heating part 17: Nickel-enriched part 18: Electromagnetic force Direction and strength 19: Gravity (static iron pressure) direction and strength 20: Wire-like material containing additive elements
Claims (7)
[%Cu]+8×[%Sn]<α×[%Ni]
[%Cu]>0
[%Sn]≧0
α>0
ここで、[%Cu]、[%Sn]、[%Ni]は、鋼中の各元素の含有率の質量%を示す。The method for reforming the surface layer of a steel slab according to claim 1, wherein a pure metal or alloy containing nickel in an amount satisfying the following formula is added to the surface layer portion of the molten steel slab.
[% Cu] + 8 × [% Sn] <α × [% Ni]
[% Cu]> 0
[% Sn] ≧ 0
α> 0
Here, [% Cu], [% Sn], and [% Ni] indicate mass% of the content of each element in the steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002367197A JP3771899B2 (en) | 2002-12-18 | 2002-12-18 | Method for surface modification of steel slab containing copper, modified slab and processed product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002367197A JP3771899B2 (en) | 2002-12-18 | 2002-12-18 | Method for surface modification of steel slab containing copper, modified slab and processed product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004195513A JP2004195513A (en) | 2004-07-15 |
JP3771899B2 true JP3771899B2 (en) | 2006-04-26 |
Family
ID=32764173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002367197A Expired - Fee Related JP3771899B2 (en) | 2002-12-18 | 2002-12-18 | Method for surface modification of steel slab containing copper, modified slab and processed product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3771899B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4548715B2 (en) * | 2004-08-25 | 2010-09-22 | 新日本製鐵株式会社 | Method for melting surface layer of metal material |
JP4932533B2 (en) * | 2007-02-27 | 2012-05-16 | 新日本製鐵株式会社 | Steel slab surface modification method, surface-modified steel slab and processed product |
JP5014947B2 (en) * | 2007-10-19 | 2012-08-29 | 新日本製鐵株式会社 | Surface layer melt processing apparatus and surface layer melt processing start method |
JP5131008B2 (en) * | 2008-04-18 | 2013-01-30 | 新日鐵住金株式会社 | Surface melting processing equipment for cast steel pieces |
JP5020910B2 (en) * | 2008-09-03 | 2012-09-05 | 新日本製鐵株式会社 | Method for surface modification of steel slab |
JP5068716B2 (en) * | 2008-09-03 | 2012-11-07 | 新日本製鐵株式会社 | Method for surface modification of steel slab |
JP5454132B2 (en) * | 2008-12-26 | 2014-03-26 | 新日鐵住金株式会社 | Surface melting method, surface modified steel slab, processed product |
JP5299100B2 (en) * | 2009-06-08 | 2013-09-25 | 新日鐵住金株式会社 | Method for producing multilayer steel sheet with excellent corrosion resistance |
-
2002
- 2002-12-18 JP JP2002367197A patent/JP3771899B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004195513A (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109112319B (en) | Slag for nuclear-grade stainless steel electroslag remelting and method for electroslag remelting by using slag | |
EP2039444A1 (en) | Process for manufacturing copper alloy wire rod and copper alloy wire rod | |
JP4787986B2 (en) | Copper alloy and manufacturing method thereof | |
JP5137642B2 (en) | Method for producing copper or copper alloy wire and copper or copper alloy wire | |
WO2014163087A1 (en) | Titanium cast piece for hot rolling use, and method for producing same | |
JP6404356B2 (en) | Soft high silicon steel sheet and method for producing the same | |
MX2014012730A (en) | Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability. | |
JP3771899B2 (en) | Method for surface modification of steel slab containing copper, modified slab and processed product | |
JP3680818B2 (en) | Magnesium alloy sheet manufacturing method and apparatus | |
JP2024535133A (en) | High strength electromagnetic shielding copper alloy and its manufacturing method | |
CN110423904B (en) | Method for preparing Ni-Cr-Co-Fe-Mn high-entropy alloy by electron beam melting, homogenization and purification | |
JP3902544B2 (en) | Steel slab surface modification method, modified slab and processed product | |
JP6788611B2 (en) | Mold flux, continuous casting method using it, and slabs produced by this | |
JP4197717B2 (en) | Copper alloy plate for electrical and electronic parts with excellent plating properties | |
JP4734073B2 (en) | Manufacturing method of hot dip galvanized steel | |
JP3771900B2 (en) | Steel slab surface reformer | |
KR102175426B1 (en) | High strength and high conductivity copper alloy and manufacturing method thereof | |
CN109797348B (en) | Production process of high-strength plate spring | |
EP3202953A1 (en) | Titanium slab for hot rolling, and production method therefor | |
JP4299719B2 (en) | Manufacturing method and processed product of steel material with partially different components | |
JP2024142615A (en) | Soft magnetic steel sheet and its manufacturing method | |
JPH08120366A (en) | Method for continuously casting titanium cast slab | |
JP3126256B2 (en) | Method for continuous casting of Cu-containing steel and its slab, method for producing Cu-containing steel sheet and its steel sheet | |
JPH04289136A (en) | Production of steel product | |
JP4466335B2 (en) | Steel continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060210 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3771899 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140217 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |