JP4161680B2 - Method for producing medium carbon steel continuous cast slab - Google Patents

Method for producing medium carbon steel continuous cast slab Download PDF

Info

Publication number
JP4161680B2
JP4161680B2 JP2002309292A JP2002309292A JP4161680B2 JP 4161680 B2 JP4161680 B2 JP 4161680B2 JP 2002309292 A JP2002309292 A JP 2002309292A JP 2002309292 A JP2002309292 A JP 2002309292A JP 4161680 B2 JP4161680 B2 JP 4161680B2
Authority
JP
Japan
Prior art keywords
carbon
mold
slab
powder
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002309292A
Other languages
Japanese (ja)
Other versions
JP2004141919A (en
Inventor
幸雄 高橋
公治 山口
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002309292A priority Critical patent/JP4161680B2/en
Publication of JP2004141919A publication Critical patent/JP2004141919A/en
Application granted granted Critical
Publication of JP4161680B2 publication Critical patent/JP4161680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭素含有量が0.08〜0.16質量%の範囲にある中炭素鋼の連続鋳造において不可避であった鋳片表面の縦割れの抑制と製品品質の向上に関する。
【0002】
【従来の技術】
炭素含有量が0.08〜0.16質量%の範囲にある中炭素鋼の連続鋳造において、鋳造時に鋳片表面に縦割れが発生しやすいことは周知の事項となっている。
この縦割れの発生機構については従来より種々の研究がなされており、中炭素鋼では炭素含有量が0.08〜0.16質量%と包晶変態域にあるため、凝固過程における変態応力により凝固シェルが不均一に成長することが原因であると考えられている。この凝固シェルの不均一成長は、鋳型内の初期抜熱量と相関があるので、緩冷却することや鋳型と凝固シェル間のエアギャップの解消、さらには鋳型と凝固シェル間のパウダー層厚さを均一化すること等により抑制できることが知られている。
【0003】
中炭素鋼の連続鋳造における縦割れを防止する方法としては、たとえば特開平5-208249号公報に開示されているように、鋳型内での溶鋼の単位体積あたりの抜熱量を 2.4×105 kJ/m3 以下となるようにモールドパウダーのブレークポイントを適切に選択する、すなわち断熱性の高いモールドパウダーを採用することによって、鋳型内を緩冷却とする方法がある。
【0004】
しかしながらこの方法においては、鋳型と鋳片間に介在するパウダー層のうち、液相部分の厚さを十分に確保できないため潤滑不足となるので、ブレークアウトが発生しやすいという問題がある。
別の縦割れ防止方法としては、特開2000-254762 号公報に開示されているように、鋳型の長辺側の冷却板内に温度センサを水平方向に挿入できる複数の温度センサ挿入孔と、金属製の棒を冷却板の下端から上方に挿入可能な複数の棒挿入孔を備えた鋳型を用い、 温度センサの測定値から導かれる熱流束に応じて金属製の棒の冷却板内の挿入深さを調整し、熱流束を鋳片幅方向で均一化する方法がある。
【0005】
この方法によれば、凝固シェル厚さを鋳片幅方向で均一にすることができるので、鋳片の縦割れを防止できるとしている。
しかしながらこの方法では、鋳型の熱抵抗を調整して凝固シェル厚さを均一にできたとしても、鋳型と鋳片間に介在するパウダー層厚が一定とならない場合が発生するので、鋳片表面が平滑とはならず、この状態で鋳片表面に応力が作用した場合には、応力分布が不均一となり縦割れが発生しやすくなる。さらに特殊な鋳型が必要であることに加え、多数本の金属製の棒の制御装置が必要であることなどから、設備コストの上昇が無視できない。
【0006】
さらに別の縦割れ防止方法としては、特開平7-116782号公報に開示されているように、鋳型表面に鋳造方向に向かって複数の円形の穴を列状に設けた鋳型を用い、凝固シェルを不均一に成長させて凝固シェルの変形歪みを分散させる方法がある。
この方法は、中炭素鋼等の割れやすい鋳片を製造するために専用の鋳型を用いる方法であり、他の鋼種の製造に際しては鋳型の交換作業を考慮しなければならず、生産性を阻害するという問題が残る。
【0007】
【特許文献1】
特開平5-208249号公報
【特許文献2】
特開2000-254762 号公報
【特許文献3】
特開平7-116782号公報
【0008】
【発明が解決しようとする課題】
本発明は上記のような問題を解消するべく、凝固シェルの炭素含有量が包晶変態域を回避するように鋳型内で炭素源を添加調整し、縦割れのない中炭素鋼の連続鋳造鋳片の製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、包晶変態域にある中炭素鋼の連続鋳造時における特有の問題点である鋳片の表面割れ防止について種々の検討を加えた結果、凝固シェルの包晶変態域を回避する方法に着目した。すなわち、連続鋳造用鋳型内の上部のいわゆるメニスカス近傍において凝固シェルの形成が開始されるので、鋳型内上部から溶鋼とは別に炭素含有溶鉄を添加供給することにより、凝固シェルの炭素濃度を鋳片内層側よりも高くできること、さらには凝固シェルの炭素濃度を包晶変態域以上まで高めると凝固シェルの変形量が小さくなり、鋳片の表面割れ防止に有効であることを見出した。
【0010】
なお、鋳型上部から添加する炭素源としては、高炭素のモールドパウダーを用いた場合でも浸炭が可能であるが、鋳型内溶鋼による加熱,溶融といった工程が加わるため、浸炭挙動が安定せず、凝固シェルの炭素濃度が鋳片幅方向で不均一となり、前述の炭素含有溶鉄を添加供給する方法と比較すると、鋳片の表面割れ防止効果は不十分であった。
【0011】
さらに鋳片表層部の炭素濃度の増加が圧延後の鋼板の機械的特性に及ぼす影響について検討を行なった。鋳片の厚みは通常 200〜300mm 程度であるのに対して、炭素濃度の濃化層厚は鋳片で約10mmである。このような鋳片を圧延して、例えば厚さ2mmの鋼板にする場合、圧延時の圧下率が非常に大きいため、鋼板における炭素濃度の濃化層厚は 0.1mm以下となるので、炭素濃度の増加量が 0.1%程度であれば鋼板の機械的特性に与える影響は無視できることが明らかとなった。
【0012】
すなわち本発明は、炭素含有量が0.08〜0.16質量%の範囲の溶鋼を連続鋳造して厚みが 200 300mm の連続鋳造鋳片を製造するに際して、炭素粉と鉄粉を充填した金属管を誘導加熱溶解し、得られた溶鉄を耐火材管を経由して連続鋳造機鋳型内に連続的に添加することにより、表層から内部に向けて少なくとも 10mm までの範囲の鋳片表層部の炭素濃度を前記炭素濃度範囲以上に高めることを特徴とする中炭素鋼連続鋳造鋳片の製造方法である。
【0013】
【発明の実施の形態】
図1は、本発明の方法を実現するのに好適な設備構成の概略を示す断面図である。連続鋳造用鋳型1の内側には、溶鋼供給用の浸漬ノズル2を設置する。また前記した連続鋳造用鋳型1の外側には、電磁石3を設置する。さらに、誘導加熱コイル4内に炭素粉と鉄粉を充填した金属管5を供給し、炭素を含有する溶鉄8を連続的に得る装置を付帯する。この溶鉄8は、耐火材管7を経由して連続鋳造用鋳型1内に供給される。
【0014】
本発明では、合金成分である炭素を鉄粉とともに溶解して溶融銑として溶鋼中に供給するので、炭素は直ちに溶鋼中に溶解,拡散する。したがって固体の合金ワイヤをそのまま添加する場合のような、ワイヤの周囲に鋳型内溶鋼が凝固して、ワイヤの溶解を妨げたり、鋳片品質欠陥となることがない。
また連続鋳造用鋳型1内溶鋼の凝固シェル6の炭素濃度を中炭素鋼組成よりも高めるために、その分の炭素を鉄合金で供給しようとすると、炭素含有量が4質量%以上のいわゆる銑鉄の組成としなくてはならない。銑鉄は極めて硬く、ワイヤに加工することも連続的に供給することも困難である。そこで本発明では、金属管(軟鋼がもっとも好ましい)からなる外皮の中に鉄粉と炭素粉を混合したものを充填してワイヤ状にしたものを用いる。
【0015】
内部にスラグ形成成分の粉体や合金材を内包するワイヤは、フラックスコアドワイヤとして溶接材料として多用されており、このフラックスコアドワイヤの製造技術を用いれば本発明に使用するワイヤは容易に製造することができる。また、本発明でワイヤを誘導加熱コイル4の内側の空間に連続的に送給する装置も、フラックスコアドワイヤの送給装置を用いることができる。
【0016】
浸漬ノズル2は、連続鋳造用鋳型1上部に添加される炭素含有溶鉄と連続鋳造用鋳型1溶鋼との攪拌混合、および鋳片内層への溶鋼供給を行なうために、下方と側壁に開口してあるタイプを使用することが望ましい。
電磁石3は静磁場を印加できるタイプであり、炭素含有溶鉄の連続鋳造用鋳型1下方への流入を抑制し、凝固シェル6への炭素の添加歩留りを向上させることが可能となる。すなわち鋳片内層の炭素ピックアップの抑制と誘導加熱コイル4による炭素粉と鉄粉を充填した金属管5の溶解速度を必要最低限に抑える意味で有効である。
【0017】
炭素粉と鉄粉を充填した金属管5を誘導加熱コイル4内に送給するに際しては、ワイヤドラム,ワイヤフィーダー等を用いて連続的に行なえることに加え、送給速度を自在に調整できるようにすることが望ましい。これは、凝固シェル6の炭素濃度の増加量を、溶鋼中炭素濃度や連続鋳造用鋳型1サイズ,鋳造速度等の変更に対応できるようにするためである。
【0018】
【実施例】
連続鋳造用鋳型1として長辺側400mm ,短辺側100mm のものを用い、 表1に示す中炭素鋼の連続鋳造を行ない、縦割れの発生状況について調査した。
【0019】
【表1】

Figure 0004161680
【0020】
鋳造条件として、鋳造速度を 1.6m/min ,炭素粉と鉄粉を充填した金属管5の送給速度は凝固シェル6の炭素濃度が0.17質量%となるように調整した。同時に、炭素粉と鉄粉を充填した金属管5の送給速度に応じて誘導加熱コイル4の電力も調節した。なお炭素粉と鉄粉を充填した金属管5としては、外径9mmのフラックスコアドワイヤを使用し、 4質量%黒鉛−鉄粉の混合フラックスを内装したものを用いた。
【0021】
鋳造後の鋳片表面を観察し、縦割れの長さと本数を測定した。この結果、縦割れの発生は皆無であった。
なお比較例として、実施例と同様の設備と方法にしたがうが、炭素粉と鉄粉を含有するフラックスを充填した金属管5の送給を行なわず、中炭素鋼の連続鋳造を実施した。
【0022】
この結果、長さ20cm以上の縦割れが2本,微小縦割れが多数散在することを確認した。
【0023】
【発明の効果】
本発明によれば、中炭素鋼の連続鋳造において発生していた鋳片表面の縦割れの発生を大幅に減少させることが可能となる。
【図面の簡単な説明】
【図1】本発明を適用するのに好適な設備構成の概略を示す断面図である。
【符号の説明】
1 連続鋳造用鋳型
2 浸漬ノズル
3 電磁石
4 誘導加熱コイル
5 金属管
6 凝固シェル
7 耐火材管
8 溶鉄[0001]
BACKGROUND OF THE INVENTION
The present invention relates to suppression of vertical cracks on the slab surface and improvement of product quality, which are inevitable in continuous casting of medium carbon steel having a carbon content in the range of 0.08 to 0.16% by mass.
[0002]
[Prior art]
In the continuous casting of medium carbon steel having a carbon content in the range of 0.08 to 0.16% by mass, it is a well-known matter that vertical cracks are likely to occur on the slab surface during casting.
Various studies have been conducted on the mechanism of the occurrence of this vertical crack. Medium carbon steel has a carbon content of 0.08 to 0.16% by mass and is in the peritectic transformation region. It is thought to be caused by uniform growth. This non-uniform growth of the solidified shell correlates with the initial heat removal in the mold, so slow cooling, elimination of the air gap between the mold and the solidified shell, and further the thickness of the powder layer between the mold and the solidified shell. It is known that it can be suppressed by making it uniform.
[0003]
As a method for preventing vertical cracks in continuous casting of medium carbon steel, for example, as disclosed in Japanese Patent Laid-Open No. 5-208249, the heat removal amount per unit volume of molten steel in a mold is set to 2.4 × 10 5 kJ. There is a method of slowly cooling the inside of the mold by appropriately selecting the break point of the mold powder so as to be not more than / m 3, that is, by adopting a mold powder having high heat insulation.
[0004]
However, this method has a problem that breakout is likely to occur because the powder layer interposed between the mold and the slab cannot sufficiently secure the thickness of the liquid phase portion, resulting in insufficient lubrication.
As another method for preventing vertical cracking, as disclosed in JP 2000-254762 A, a plurality of temperature sensor insertion holes into which the temperature sensor can be inserted horizontally in the cooling plate on the long side of the mold, Insert a metal rod into the cooling plate according to the heat flux derived from the measured value of the temperature sensor, using a mold with a plurality of rod insertion holes into which the metal rod can be inserted upward from the lower end of the cooling plate. There is a method of adjusting the depth and making the heat flux uniform in the slab width direction.
[0005]
According to this method, since the thickness of the solidified shell can be made uniform in the slab width direction, vertical cracking of the slab can be prevented.
However, in this method, even if the thermal resistance of the mold is adjusted to make the solidified shell thickness uniform, the thickness of the powder layer interposed between the mold and the slab may not be constant. If the stress is not applied to the slab surface in this state, the stress distribution becomes non-uniform and vertical cracks are likely to occur. Furthermore, in addition to the need for a special mold, a control device for a large number of metal rods is necessary, so an increase in equipment cost cannot be ignored.
[0006]
As another method for preventing vertical cracks, as disclosed in Japanese Patent Application Laid-Open No.7-116782, a solidified shell is used by using a mold in which a plurality of circular holes are provided in a row in the casting direction on the mold surface. There is a method in which the deformation strain of the solidified shell is dispersed by growing the layer nonuniformly.
This method uses a special mold to produce a fragile slab such as medium carbon steel. When producing other types of steel, the replacement work of the mold must be taken into account, impairing productivity. The problem remains.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-208249 [Patent Document 2]
JP 2000-254762 A [Patent Document 3]
Japanese Patent Laid-Open No. 7-116782
[Problems to be solved by the invention]
In order to solve the above problems, the present invention adds and adjusts the carbon source in the mold so that the carbon content of the solidified shell avoids the peritectic transformation region, and continuously casts medium carbon steel without vertical cracks. It aims at providing the manufacturing method of a piece .
[0009]
[Means for Solving the Problems]
As a result of various investigations on the prevention of surface cracks in the slab, which is a particular problem during continuous casting of medium carbon steel in the peritectic transformation region, the present inventors have avoided the peritectic transformation region of the solidified shell. Focused on how to do. That is, since the formation of a solidified shell is started in the vicinity of a so-called meniscus in the upper part of the continuous casting mold, the carbon concentration of the solidified shell is adjusted to a slab by adding and supplying molten iron containing carbon separately from the molten steel from the upper part of the mold. It has been found that it can be made higher than that of the inner layer side, and further, if the carbon concentration of the solidified shell is increased to a peritectic transformation region or more, the amount of deformation of the solidified shell is reduced, which is effective in preventing surface cracks in the slab.
[0010]
The carbon source added from the upper part of the mold can be carburized even when high carbon mold powder is used. However, the process of heating and melting with molten steel in the mold is added. The carbon concentration of the shell became non-uniform in the slab width direction, and the surface cracking prevention effect of the slab was insufficient as compared with the above-described method of adding and supplying molten iron containing carbon.
[0011]
Furthermore, the effect of increasing the carbon concentration in the slab surface layer on the mechanical properties of the steel sheet after rolling was investigated. The thickness of the slab is usually about 200 to 300 mm, whereas the thickened layer thickness of the carbon concentration is about 10 mm for the slab. When such a slab is rolled into a steel plate having a thickness of 2 mm, for example, the reduction ratio during rolling is very large, and therefore the thickness of the concentrated carbon layer in the steel plate is 0.1 mm or less. It is clear that the effect on the mechanical properties of the steel sheet is negligible if the amount of increase is about 0.1%.
[0012]
That is, the present invention provides, in-carbon content thickness by continuous casting of molten steel in the range of from 0.08 to 0.16% by weight to produce a continuously cast slab of 200 ~ 300 mm, the metal tube filled with carbon powder and iron powder Carbon concentration in the slab surface layer in the range of at least 10mm from the surface layer to the inside by continuously adding the molten iron obtained by induction heating and melting into the continuous casting machine mold via the refractory tube Is increased to the carbon concentration range or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view schematically showing an equipment configuration suitable for realizing the method of the present invention. An immersion nozzle 2 for supplying molten steel is installed inside the continuous casting mold 1. An electromagnet 3 is installed outside the continuous casting mold 1 described above. Further, a metal tube 5 filled with carbon powder and iron powder is supplied into the induction heating coil 4 and an apparatus for continuously obtaining molten iron 8 containing carbon is attached. The molten iron 8 is supplied into the continuous casting mold 1 via the refractory material pipe 7.
[0014]
In the present invention, carbon, which is an alloy component, is melted together with iron powder and supplied as molten iron into the molten steel, so that the carbon is immediately dissolved and diffused in the molten steel. Therefore, the molten steel in the mold does not solidify around the wire as in the case where the solid alloy wire is added as it is, and the melting of the wire is not hindered or the slab quality defect does not occur.
Further, in order to increase the carbon concentration of the solidified shell 6 of the molten steel in the continuous casting mold 1 over that of the medium carbon steel, if so much carbon is supplied as an iron alloy, so-called pig iron having a carbon content of 4 mass% or more. The composition must be Pig iron is extremely hard and difficult to process into a wire or continuously supply. Therefore, in the present invention, the outer shell made of a metal tube (soft steel is most preferable) filled with a mixture of iron powder and carbon powder into a wire shape is used.
[0015]
Wires containing slag-forming component powders and alloy materials are widely used as welding materials as flux-cored wires, and the wire used in the present invention can be easily obtained by using this flux-cored wire manufacturing technology. Can be manufactured. In addition, the apparatus for continuously feeding the wire to the space inside the induction heating coil 4 in the present invention can also use a flux cored wire feeding apparatus.
[0016]
The immersion nozzle 2 is opened at the lower side and the side wall in order to stir and mix the molten iron containing carbon added to the upper part of the continuous casting mold 1 and the molten steel 1 to the continuous casting mold 1 and supply molten steel to the inner layer of the slab. It is desirable to use a certain type.
The electromagnet 3 is a type to which a static magnetic field can be applied, suppresses the inflow of molten iron containing carbon into the continuous casting mold 1 and improves the yield of carbon addition to the solidified shell 6. That is, it is effective in terms of suppressing the carbon pickup in the slab inner layer and suppressing the melting rate of the metal tube 5 filled with carbon powder and iron powder by the induction heating coil 4 to the minimum necessary.
[0017]
When feeding the metal tube 5 filled with carbon powder and iron powder into the induction heating coil 4, in addition to being able to perform continuously using a wire drum, a wire feeder, etc., the feeding speed can be freely adjusted. It is desirable to do so. This is because the amount of increase in the carbon concentration of the solidified shell 6 can be adapted to changes in the carbon concentration in molten steel, the size of the continuous casting mold 1, the casting speed, and the like.
[0018]
【Example】
Using a continuous casting mold 1 having a long side of 400 mm and a short side of 100 mm, the medium carbon steel shown in Table 1 was continuously cast and the occurrence of vertical cracks was investigated.
[0019]
[Table 1]
Figure 0004161680
[0020]
As casting conditions, the casting speed was adjusted to 1.6 m / min, and the feeding speed of the metal tube 5 filled with carbon powder and iron powder was adjusted so that the carbon concentration of the solidified shell 6 was 0.17 mass%. At the same time, the power of the induction heating coil 4 was also adjusted according to the feeding speed of the metal tube 5 filled with carbon powder and iron powder. As the metal tube 5 filled with carbon powder and iron powder, a flux cored wire having an outer diameter of 9 mm was used, and a mixed flux of 4 mass% graphite-iron powder was used.
[0021]
The slab surface after casting was observed, and the length and number of vertical cracks were measured. As a result, no vertical cracks occurred.
As a comparative example, the same equipment and method as in the example were followed, but continuous feeding of medium carbon steel was carried out without feeding the metal tube 5 filled with a flux containing carbon powder and iron powder.
[0022]
As a result, it was confirmed that there were two vertical cracks with a length of 20 cm or more, and many fine vertical cracks were scattered.
[0023]
【The invention's effect】
According to the present invention, it is possible to significantly reduce the occurrence of vertical cracks on the surface of a slab, which has occurred in continuous casting of medium carbon steel.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an equipment configuration suitable for applying the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold for continuous casting 2 Immersion nozzle 3 Electromagnet 4 Induction heating coil 5 Metal pipe 6 Solidified shell 7 Refractory material pipe 8 Molten iron

Claims (1)

炭素含有量が0.08〜0.16質量%の範囲の溶鋼を連続鋳造して厚みが 200 300mm の連続鋳造鋳片を製造するに際して、炭素粉と鉄粉を充填した金属管を誘導加熱溶解し、得られた溶鉄を耐火材管を経由して連続鋳造機鋳型内に連続的に添加することにより、表層から内部に向けて少なくとも 10mm までの範囲の鋳片表層部の炭素濃度を前記炭素濃度範囲以上に高めることを特徴とする中炭素鋼連続鋳造鋳片の製造方法。When continuously casting molten steel with a carbon content in the range of 0.08 to 0.16 mass% to produce a continuous cast slab with a thickness of 200 to 300 mm , a metal tube filled with carbon powder and iron powder is induction-heated and melted. By continuously adding the molten iron into the continuous casting machine mold via the refractory tube, the carbon concentration of the slab surface layer in the range of at least 10 mm from the surface layer to the inside is equal to or more than the carbon concentration range. A method for producing a medium carbon steel continuous cast slab characterized by comprising:
JP2002309292A 2002-10-24 2002-10-24 Method for producing medium carbon steel continuous cast slab Expired - Fee Related JP4161680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309292A JP4161680B2 (en) 2002-10-24 2002-10-24 Method for producing medium carbon steel continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309292A JP4161680B2 (en) 2002-10-24 2002-10-24 Method for producing medium carbon steel continuous cast slab

Publications (2)

Publication Number Publication Date
JP2004141919A JP2004141919A (en) 2004-05-20
JP4161680B2 true JP4161680B2 (en) 2008-10-08

Family

ID=32455160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309292A Expired - Fee Related JP4161680B2 (en) 2002-10-24 2002-10-24 Method for producing medium carbon steel continuous cast slab

Country Status (1)

Country Link
JP (1) JP4161680B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749027B1 (en) * 2006-06-23 2007-08-13 주식회사 포스코 Continuous casting machine and method using molten mold flux
KR100822412B1 (en) 2006-10-26 2008-04-16 주식회사 포스코 Supplying apparatus of mold flux for continuous casting

Also Published As

Publication number Publication date
JP2004141919A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4656088B2 (en) Continuous casting slab of steel having equiaxed dendrite on surface layer and method for continuous casting
JP7167646B2 (en) Method of adding alloy to molten steel
JP6264524B1 (en) Steel continuous casting method
JP4161680B2 (en) Method for producing medium carbon steel continuous cast slab
JP4548483B2 (en) Casting method for molten alloy
JP2010131635A (en) Die-cast molding method for iron and die-cast molded body
JP3902544B2 (en) Steel slab surface modification method, modified slab and processed product
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP3771899B2 (en) Method for surface modification of steel slab containing copper, modified slab and processed product
US4220191A (en) Method of continuously casting steel
JP3456311B2 (en) Continuous casting method of multilayer slab
JP4770616B2 (en) Method for continuous casting of molten metal and immersion lance for continuous casting
JP4844376B2 (en) Method for continuous casting of molten metal
JP3283746B2 (en) Continuous casting mold
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JP7406073B2 (en) Manufacturing method for titanium ingots
JPH0399757A (en) Twin roll type strip continuous casting method
JP7406074B2 (en) Titanium ingot manufacturing method and titanium ingot manufacturing mold
JPS60152349A (en) Casting method of terminal billet in continuous casting
JP2012228722A (en) Melting furnace for smelting metal
JP7068628B2 (en) Casting method
JP4216636B2 (en) Continuous casting method and continuous casting apparatus
JPH10180423A (en) Method for continuously casting thin plate
JPWO2020071488A1 (en) Manufacturing method of thin-walled slabs
JP2021079397A (en) Manufacturing method of titanium ingot, and mold for manufacturing titanium ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees