JPH0983436A - Optical space communication equipment - Google Patents

Optical space communication equipment

Info

Publication number
JPH0983436A
JPH0983436A JP7255610A JP25561095A JPH0983436A JP H0983436 A JPH0983436 A JP H0983436A JP 7255610 A JP7255610 A JP 7255610A JP 25561095 A JP25561095 A JP 25561095A JP H0983436 A JPH0983436 A JP H0983436A
Authority
JP
Japan
Prior art keywords
light beam
angle
angular error
noise amount
observed noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7255610A
Other languages
Japanese (ja)
Other versions
JP3368118B2 (en
Inventor
Takehide Hamuro
毅英 羽室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25561095A priority Critical patent/JP3368118B2/en
Publication of JPH0983436A publication Critical patent/JPH0983436A/en
Application granted granted Critical
Publication of JP3368118B2 publication Critical patent/JP3368118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Selective Calling Equipment (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic tracking device minimizing vibration of itself and an angular error of an optical beam caused by observed noise. SOLUTION: An optical beam angular error caused by vibration included in an output signal of an angular error detection means 46 is mostly low frequency components of several tens of Hz or below and the angular error caused by observed noise has almost uniform frequency component from a low frequency to several hundreds Hz. An observed noise amount measurement circuit 52 eliminates the components of several tens Hz or below by using a high pass filter from an output signal of the angular error detection means, squares and averages it by using a low pass filter with a proper time constant so as to estimate the observed noise amount in real time. A system control circuit 53 estimates the optical beam angle fluctuation caused by the vibration of the equipment based on the difference from the observed noise amount estimated to be square of the output signal of the angular error detection means and an optimum transfer function of a controller 51 minimizing the angular error between the transmission optical beam and the reception optical beam is decided in real time based on the estimated value and the estimate value of observed noise amount and automatic adjustment is made to the value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ビームを大気中
に伝播させて遠距離間で通信を行う光空間通信装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical space communication device for propagating a light beam into the atmosphere and performing communication over a long distance.

【0002】[0002]

【従来の技術】一般に、光ビームを利用した光通信方式
は高速かつ大容量の通信が可能であり、特に伝送路を自
由空間とする光空間通信は光ファイバ等の有線通信に比
べて可搬性に富み、簡便に通信路を開設することができ
るという特長がある。簡便に使用できかつ信頼性を良く
するためには、設置時の方向調節を容易に行うことが可
能で、通信中に光ビームが相手側装置から外れないよう
に角度補正が可能な自動追尾機構が有効である。
2. Description of the Related Art Generally, an optical communication system using a light beam is capable of high-speed and large-capacity communication, and in particular, optical space communication using a transmission path as a free space is more portable than wired communication such as optical fiber. It is rich and easy to set up communication channels. In order to be easy to use and to improve reliability, it is possible to easily adjust the direction during installation, and an automatic tracking mechanism that can correct the angle so that the light beam does not come off from the other device during communication. Is effective.

【0003】図3は自動追尾機構を有する従来の光空間
通信装置の構成図を示し、装置を対向して設置するとき
に、視準用スコープ1を覗いて手動により相手側装置と
の方向調節を行う。自動追尾スタートスイッチ2を押す
と入力端子3から電気信号が入力され、増幅器4を介し
て発光素子5で光信号となり、フォーカス可変のコリメ
ートレンズ6、偏光ビームスプリッタ7を経て可動ミラ
ー8で反射され、レンズ9、10から送信光ビームとし
て投光される。
FIG. 3 is a block diagram of a conventional optical space communication device having an automatic tracking mechanism. When the devices are installed facing each other, the direction of the other device is manually adjusted by looking into the collimation scope 1. To do. When the automatic tracking start switch 2 is pressed, an electric signal is input from the input terminal 3, becomes an optical signal at the light emitting element 5 via the amplifier 4, and is reflected by the movable mirror 8 via the focus variable collimating lens 6 and the polarization beam splitter 7. , Is transmitted as a transmission light beam from the lenses 9 and 10.

【0004】コリメートレンズ6はアクチュエータ11
により駆動されるようになっており、システム制御回路
12により、距離設定器13からの相手側装置との通信
距離情報に基づいてアクチュエータ11を駆動し、これ
によって送信光ビームが所定の拡り角となるように、コ
リメートレンズ6が光軸方向に移動してフォーカスが調
節される。
The collimating lens 6 is an actuator 11
The system control circuit 12 drives the actuator 11 based on the communication distance information from the distance setter 13 to the partner device, whereby the transmission light beam has a predetermined spread angle. The collimator lens 6 moves in the optical axis direction so that the focus is adjusted.

【0005】相手側装置からの受信光ビームはレンズ1
0に入射し、レンズ9、可動ミラー8を通って偏光ビー
ムスプリッタ7で反射され、部分反射ミラー14で反射
された本信号がレンズ15を介して受光素子16に受光
され、増幅器17を介して出力端子18から電気信号と
して出力される。
The received light beam from the other device is the lens 1
The present signal, which is incident on 0, is reflected by the polarization beam splitter 7 through the lens 9 and the movable mirror 8, and is reflected by the partial reflection mirror 14, is received by the light receiving element 16 through the lens 15, and is transmitted through the amplifier 17. The electric signal is output from the output terminal 18.

【0006】一方、部分反射ミラー14を透過した一部
の受信ビームは、レンズ19を介して4分割受光素子2
0に集光する。4分割受光素子20のそれぞれの出力を
比較することにより求めた受信光スポット位置から、送
信光ビームと受信光ビームの光軸のなす角度、即ち自動
追尾誤差角が演算され、その角度誤差信号はコントロー
ラ21に送られる。コントローラ21は可動ミラー制御
回路22に角度誤差を0とするように指令値を送る。可
動ミラー制御回路22はアクチュエータ23を駆動し、
可動ミラー8の角度が調節される。可動ミラー8の角度
はその近傍に設けられたセンサ24により検出され可動
ミラー制御回路22にフィードバックされており、可動
ミラー制御回路22はコントローラ21からの指令値に
対応した角度に可動ミラー8を制御することができる。
On the other hand, a part of the reception beam transmitted through the partial reflection mirror 14 passes through the lens 19 and is divided into four light receiving elements 2.
Focus on 0. The angle formed by the optical axes of the transmission light beam and the reception light beam, that is, the automatic tracking error angle is calculated from the reception light spot position obtained by comparing the respective outputs of the four-division light receiving element 20, and the angle error signal is It is sent to the controller 21. The controller 21 sends a command value to the movable mirror control circuit 22 so that the angle error becomes zero. The movable mirror control circuit 22 drives the actuator 23,
The angle of the movable mirror 8 is adjusted. The angle of the movable mirror 8 is detected by a sensor 24 provided in the vicinity thereof and fed back to the movable mirror control circuit 22, and the movable mirror control circuit 22 controls the movable mirror 8 to an angle corresponding to a command value from the controller 21. can do.

【0007】4分割受光素子20の中心にスポットがあ
るときに、送信光の光軸の角度と受信光の光軸の角度と
が一致するように、つまり送信光ビームの方向が相手側
装置の方向と一致するように、発光素子5の位置を調節
しておく。ここで、装置が傾いて受信光の光軸の角度が
変わり、4分割受光素子20上のスポット位置が中心か
らずれた場合には、直ちに可動ミラー8が動いてスポッ
ト位置を中心に戻す方向に光軸の角度が修正される。こ
のような自動追尾動作により、送信光ビーム方向が常に
相手側装置の方向に保たれて、双方向通信を行うことが
できる。
When there is a spot at the center of the four-division light receiving element 20, the angle of the optical axis of the transmitted light and the angle of the optical axis of the received light coincide with each other, that is, the direction of the transmitted light beam of the other device. The position of the light emitting element 5 is adjusted so as to match the direction. Here, when the device tilts and the angle of the optical axis of the received light changes and the spot position on the four-division light receiving element 20 deviates from the center, the movable mirror 8 immediately moves to return the spot position to the center. The angle of the optical axis is corrected. By such an automatic tracking operation, the transmission light beam direction is always kept in the direction of the partner device, and bidirectional communication can be performed.

【0008】図4はこの自動追尾制御系の簡略化したフ
ィードバックループ図を示している。ここで、Xは装置
の振動による光ビーム角度変動、Yは送信光ビームと受
信光ビームの角度誤差、Nはシンチレーション等により
生ずる観測ノイズ、Gは制御対象の伝達関数、Kはコン
トローラ21の伝達関数であり、 Y={1/(1+GK)}・X+{GK/(1+GK)}・N の関係がある。
FIG. 4 shows a simplified feedback loop diagram of this automatic tracking control system. Here, X is the fluctuation of the light beam angle due to the vibration of the device, Y is the angular error between the transmission light beam and the reception light beam, N is the observation noise caused by scintillation, G is the transfer function of the controlled object, and K is the transfer of the controller 21. It is a function, and there is a relation of Y = {1 / (1 + GK)} · X + {GK / (1 + GK)} · N.

【0009】[0009]

【発明が解決しようとする課題】自動追尾の目的はコン
トローラ21の適性を適切に設定し、前述のように可動
ミラー8の角度を調節することにより、送信光ビームと
受信光ビームの角度誤差を打消すこと、つまり前述の角
度誤差Yを可能な限り小さくすることである。先ず、角
度変動Xに依存する第1項の{1/(1+GK)}・Xを
小さくするためには、自動追尾制御系が安定である限り
伝達関数Kを大きくすればよい。しかし、そうすると第
2項の{GK/(1+GK)}・Nが大きくなり、観測ノ
イズNの影響を大きく受けてしまう。逆に、観測ノイズ
Nに依存する第2項を小さくするため伝達関数Kを小さ
くすると、今度は第1項が大きくなり、装置の振動によ
る角度変化に追従し難くなってしまう。従って、ある時
刻において、角度誤差Yを最小とする最適な伝達関数K
が存在する。
The purpose of automatic tracking is to appropriately set the suitability of the controller 21 and adjust the angle of the movable mirror 8 as described above, so that the angular error between the transmitted light beam and the received light beam can be reduced. It is to cancel, that is, to make the above-mentioned angle error Y as small as possible. First, in order to reduce the first term {1 / (1 + GK)} · X that depends on the angular fluctuation X, the transfer function K may be increased as long as the automatic tracking control system is stable. However, if so, {GK / (1 + GK)} · N of the second term becomes large, and the influence of the observation noise N is large. On the contrary, if the transfer function K is reduced in order to reduce the second term that depends on the observation noise N, then the first term becomes larger and it becomes difficult to follow the angle change due to the vibration of the device. Therefore, at a certain time, the optimum transfer function K that minimizes the angular error Y is obtained.
Exists.

【0010】しかしながら上記の従来例では、時間と共
に徐々に変化する装置の振動による光ビーム角度変動X
と観測ノイズNの量に適応して、コントローラの特性を
常に最適化することができないという問題が生ずる。
However, in the above-mentioned conventional example, the light beam angle variation X due to the vibration of the device which changes gradually with time
The problem arises that the characteristics of the controller cannot always be optimized by adapting to the amount of observation noise N.

【0011】即ち、角度変動X、観測ノイズNの量は装
置が設置される場所の振動条件や、風雨、その他の気象
条件により徐々に変化してゆく量であるため、送信光ビ
ームと受信光ビームの角度誤差を最小とするコントロー
ラの特性も角度変動X及び観測ノイズNの量に対応して
変化することになる。しかし、従来例では角度変動X、
観測ノイズNが加算されて測定される角度誤差検出手段
の出力信号から角度変動X、観測ノイズNを分離してそ
れらの量を測定する手段を有していないため、定時間で
コントローラの特性を適切に変化させ、送信光ビームと
受信光ビームの角度誤差を最小とするような自動追尾を
実現できないという欠点がある。
That is, the amounts of the angle fluctuation X and the observation noise N gradually change depending on the vibration condition of the place where the device is installed, wind and rain, and other weather conditions. The characteristics of the controller that minimizes the angular error of the beam will also change in accordance with the amount of angular fluctuation X and observation noise N. However, in the conventional example, the angle variation X,
Since there is no means for separating the angle fluctuation X and the observation noise N from the output signal of the angle error detecting means that is measured by adding the observation noise N and measuring the quantities thereof, the characteristics of the controller can be measured at a constant time. There is a drawback in that it is not possible to realize automatic tracking that appropriately changes the angle and minimizes the angular error between the transmitted light beam and the received light beam.

【0012】本発明の目的は、上述の問題点を解消し、
角度変動X及び観測ノイズNの量の変化に適応して実時
間でコントローラ特性を最適に変化させることで、装置
の設置場所の振動や、気象条件が変化しても送信光ビー
ムと受信光ビームの角度誤差を最小とする自動追尾機能
を有する光空間通信装置を提供することにある。
The object of the present invention is to solve the above-mentioned problems,
By optimally changing the controller characteristics in real time by adapting to changes in the amount of angular fluctuation X and observation noise N, the transmitted light beam and the received light beam can be changed even when the installation location of the device or weather conditions change. It is an object of the present invention to provide an optical space communication device having an automatic tracking function that minimizes the angle error of.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
本出願に係る発明は、自由空間に光ビームを伝播させて
通信を行う光空間通信装置において、送信光のビーム角
度を調節する光ビーム角度調節手段と、送信光ビームと
受信光ビームの角度誤差を検出する角度誤差検出手段
と、該角度誤差検出手段からの信号を処理し前記光ビー
ム角度調節手段に指令信号を出力するコントローラとか
ら成る自動追尾機能と、前記角度誤差検出手段からの信
号を基に観測ノイズ量を推定する観測ノイズ量測定手段
と、推定された観測ノイズ量と前記角度誤差検出手段か
らの信号を基に最適なコントローラの特性を演算し、実
時間で前記最適値にコントローラ特性を調節する制御手
段とを有することを特徴とする。
In order to achieve the above-mentioned object, the invention according to the present application is an optical space communication device for propagating a light beam in free space for communication, and an optical beam for adjusting the beam angle of transmitted light. From angle adjusting means, angle error detecting means for detecting an angle error between the transmitted light beam and the received light beam, and a controller for processing a signal from the angle error detecting means and outputting a command signal to the light beam angle adjusting means. An automatic tracking function consisting of, an observation noise amount measuring means for estimating an observation noise amount based on a signal from the angle error detecting means, and an optimal observation noise amount and an optimum signal based on the signal from the angle error detecting means. And a control means for calculating the characteristics of the controller and adjusting the controller characteristics to the optimum value in real time.

【0014】[0014]

【発明の実施の形態】本発明を図1、図2に図示の実施
例に基づいて詳細に説明する。図1は本実施例の構成図
を示し、送信信号入力端子30の出力は増幅器31を介
して、半導体レーザー等の発光素子32に接続され、発
光素子32の前方には、送信光ビームの拡り角を変更す
るためにフォーカスが可変のコリメートレンズ33、紙
面に平行偏波面を有する光を透過し紙面に垂直な偏波面
を有する光を反射する偏光ビームスプリッタ34、受信
光強度を放射方向に調節するための全方向に自在に動か
すことができる可動ミラー35が順次に配列されてお
り、可動ミラー35の反射方向には光ビームを送受信す
るレンズ36、37が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows the configuration of this embodiment. The output of a transmission signal input terminal 30 is connected to a light emitting element 32 such as a semiconductor laser via an amplifier 31, and a transmission light beam spreads in front of the light emitting element 32. The collimator lens 33 whose focus is variable in order to change the tilt angle, the polarization beam splitter 34 which transmits the light having the plane of polarization parallel to the paper surface and reflects the light having the plane of polarization perpendicular to the paper surface, the intensity of the received light in the radiation direction Movable mirrors 35 that can be freely moved in all directions for adjustment are sequentially arranged, and lenses 36 and 37 for transmitting and receiving a light beam are arranged in the reflection direction of the movable mirror 35.

【0015】コリメートレンズ33はコリメートレンズ
駆動用アクチュエータ38により駆動され、可動ミラー
35は可動ミラー駆動用アクチュエータ39により駆動
されるようになっており、可動ミラー35の付近には可
動ミラー角度センサ40が設けられている。可動ミラー
角度センサ40の出力は可動ミラー制御回路41に接続
され、これらの可動ミラー35、駆動用アクチュエータ
38、可動ミラー角度センサ40、可動ミラー制御回路
41により、光ビーム角度調節手段42が構成されてい
る。
The collimator lens 33 is driven by a collimator lens driving actuator 38, the movable mirror 35 is driven by a movable mirror driving actuator 39, and a movable mirror angle sensor 40 is provided near the movable mirror 35. It is provided. The output of the movable mirror angle sensor 40 is connected to a movable mirror control circuit 41, and the movable mirror 35, the driving actuator 38, the movable mirror angle sensor 40, and the movable mirror control circuit 41 constitute a light beam angle adjusting means 42. ing.

【0016】偏光ビームスプリッタ34の反射方向に
は、部分反射ミラー43、レンズ44、4分割されたホ
トダイオードから成る4分割受光素子45が順次に配列
されており、レンズ44、4分割受光素子45により角
度誤差検出手段46が構成されている。また、部分反射
ミラー43の反射方向には、レンズ47、アバランシェ
ホトダイオードやPINホトダイオード等から成る受光
素子48が配置されている。受光素子48の出力は増幅
器49を介して受信信号出力端子50に接続されてい
る。
In the reflection direction of the polarization beam splitter 34, a partial reflection mirror 43, a lens 44, and a four-division light-receiving element 45 composed of four-division photodiodes are sequentially arranged. The angle error detecting means 46 is configured. A lens 47 and a light receiving element 48 including an avalanche photodiode and a PIN photodiode are arranged in the reflection direction of the partial reflection mirror 43. The output of the light receiving element 48 is connected to the reception signal output terminal 50 via the amplifier 49.

【0017】4分割受光素子45の出力は、コントロー
ラ51、観測ノイズ量推定回路52及びシステム制御回
路53に接続されている。また、コントローラ51の出
力は可動ミラー制御回路41に接続され、観測ノイズ量
推定回路52の出力はシステム制御回路53に接続され
ている。更に、相手側装置との通信距離情報を設定する
距離設定器54、自動追尾スタートスイッチ55の出力
はシステム制御回路53に接続され、システム制御回路
53の出力はコリメートレンズ駆動用アクチュエータ3
8及びコントローラ51に接続されている。
The output of the four-division light receiving element 45 is connected to the controller 51, the observed noise amount estimation circuit 52 and the system control circuit 53. The output of the controller 51 is connected to the movable mirror control circuit 41, and the output of the observation noise amount estimation circuit 52 is connected to the system control circuit 53. Furthermore, the outputs of the distance setter 54 and the automatic tracking start switch 55 for setting the communication distance information with the partner device are connected to the system control circuit 53, and the output of the system control circuit 53 is the collimator lens driving actuator 3.
8 and the controller 51.

【0018】また、装置には送受信光の光軸と平行方向
に光軸を有する視準スコープ56が付設されており、視
準スコープ56によって相手側装置を観察することによ
り方向調節ができるようになっている。
Further, the apparatus is provided with a collimating scope 56 having an optical axis parallel to the optical axis of the transmitted / received light, so that the direction can be adjusted by observing the partner's apparatus with the collimating scope 56. Has become.

【0019】先ず、装置を設置する際に行う最初の調節
において、可動ミラー35を中心付近の初期位置に固定
し、視準用スコープ56により相手側装置を観察しなが
ら、自動追尾動作が可能な状態まで手動により方向調節
を行い、その後に自動追尾スタートスイッチ55を押し
て自動追尾動作を入力する。
First, in the first adjustment performed when the device is installed, the movable mirror 35 is fixed at the initial position near the center, and the automatic tracking operation is possible while observing the other device with the collimating scope 56. The direction is manually adjusted up to and then the automatic tracking start switch 55 is pressed to input the automatic tracking operation.

【0020】送信信号入力端子30から送信信号が入力
され、増幅器31を介して発光素子32が駆動されて強
度変調された光信号を発生する。この光信号は紙面に水
平方向に偏光しているので偏光ビームスプリッタ34を
透過し、可動ミラー35で反射され、レンズ36、37
により送信光ビームとなって相手側装置に向けて投光さ
れる。
A transmission signal is input from the transmission signal input terminal 30, and the light emitting element 32 is driven through the amplifier 31 to generate an intensity-modulated optical signal. Since this optical signal is polarized in the horizontal direction on the paper surface, it passes through the polarization beam splitter 34, is reflected by the movable mirror 35, and is reflected by the lenses 36, 37.
As a result, it becomes a transmission light beam and is projected toward the partner device.

【0021】一方、相手側装置から送られてきた受信光
ビームはレンズ37に入射し、レンズ36を通って可動
ミラー35で反射され、この光は紙面に垂直方向に偏光
しているので、偏光ビームスプリッタ34の貼り合わせ
面で反射され、部分反射ミラー43へ進み、殆どの光は
部分反射ミラー43に反射されて、レンズ47を介して
受光素子48に受光される。この光は受光素子45にお
いて電気信号に変換されて増幅器49で所定のレベルに
なり、受信信号出力端子50から本信号として出力され
る。
On the other hand, the received light beam sent from the other device enters the lens 37, passes through the lens 36 and is reflected by the movable mirror 35, and this light is polarized in the direction perpendicular to the plane of the drawing. The light is reflected by the bonding surface of the beam splitter 34, proceeds to the partial reflection mirror 43, and most of the light is reflected by the partial reflection mirror 43 and received by the light receiving element 48 via the lens 47. This light is converted into an electric signal in the light receiving element 45, reaches a predetermined level in the amplifier 49, and is output as the main signal from the reception signal output terminal 50.

【0022】また、部分反射ミラー43を透過した一部
の光は、角度誤差検出手段46のレンズ44を介して4
分割受光素子45に集光され、4分割受光素子45のそ
れぞれの出力を比較することにより求めた受信光スポッ
ト位置から、装置の光軸に対する受信光の成す角度が分
かり、これによって放射方向の受信光強度を知ることが
でき、送信光ビームと受信光ビームの角度誤差が演算さ
れ、その角度誤差信号はコントローラ51に送られる。
Further, a part of the light transmitted through the partial reflection mirror 43 passes through the lens 44 of the angle error detecting means 46 and is
The angle formed by the received light with respect to the optical axis of the device is known from the position of the received light spot which is focused on the divided light receiving element 45 and is obtained by comparing the respective outputs of the four-divided light receiving element 45. The light intensity can be known, the angle error between the transmission light beam and the reception light beam is calculated, and the angle error signal is sent to the controller 51.

【0023】コントローラ51は光ビーム角度調節手段
42の可動ミラー制御回路41に角度誤差を0とするよ
うに指令値を送る。可動ミラー制御回路41は駆動用ア
クチュエータ39を駆動して可動ミラー35の角度を調
節し、送信光ビームと受信光ビームの角度誤差を修正す
る自動追尾動作を行う。可動ミラー35の角度はその近
傍に設けられた可動ミラー角度センサ40により検出さ
れ、可動ミラー制御回路41にフィードバックされてお
り、可動ミラー制御回路41はコントローラ51からの
指令値に対応した角度に可動ミラー35を制御すること
ができる。
The controller 51 sends a command value to the movable mirror control circuit 41 of the light beam angle adjusting means 42 so that the angle error becomes zero. The movable mirror control circuit 41 drives the driving actuator 39 to adjust the angle of the movable mirror 35, and performs an automatic tracking operation for correcting the angular error between the transmitted light beam and the received light beam. The angle of the movable mirror 35 is detected by a movable mirror angle sensor 40 provided in the vicinity thereof and is fed back to a movable mirror control circuit 41, and the movable mirror control circuit 41 is movable to an angle corresponding to a command value from a controller 51. The mirror 35 can be controlled.

【0024】本実施例では、更にコントローラ51の特
性を実時間で最適化するため、次のような動作が行われ
る。先ず、図2に示すように角度誤差検出手段46の出
力信号に含まれる装置の振動による光ビーム角度誤差A
は、数10Hz以下の低周波成分が大部分を占め、観測
ノイズNによる角度誤差Bは低周波数から数100Hz
までほぼ均一な周波数成分を持っている。そこで、観測
ノイズ量測定回路52において、角度誤差検出手段46
の出力信号からハイパスフィルタにより数10Hz以下
の成分を除去し、その後に2乗し、適当な時定数のロー
パスフィルタにより平均化すれば、これはほぼ観測ノイ
ズ量を実時間で推定したものと見做すことができる。
In the present embodiment, the following operation is performed in order to further optimize the characteristics of the controller 51 in real time. First, as shown in FIG. 2, the light beam angle error A due to the vibration of the device included in the output signal of the angle error detecting means 46.
Is dominated by low frequency components of several tens of Hz or less, and the angular error B due to the observation noise N is several hundreds of Hz from low frequencies.
It has almost uniform frequency components. Therefore, in the observation noise amount measuring circuit 52, the angle error detecting means 46
If a high-pass filter removes components of several tens of Hz or less from the output signal of, then squares it, and averages it with a low-pass filter with an appropriate time constant, it is estimated that the observed noise amount is estimated in real time. It can be changed.

【0025】次に、システム制御回路53において、角
度誤差検出手段46の出力信号の2乗と前述のようにし
て推定された観測ノイズ量の差を求めることで、装置の
振動による光ビーム角度変動量が推定され、この推定値
と前述の観測ノイズ量の推定値を基に、送信光ビームと
受信光ビームの角度誤差を最小とするコントローラ51
の最適な伝達関数Kが実時間で決定され、コントローラ
51の伝達関数はその値に自動調節される。
Next, in the system control circuit 53, the difference between the square of the output signal of the angle error detecting means 46 and the observation noise amount estimated as described above is obtained, and the light beam angle fluctuation due to the vibration of the apparatus is obtained. The controller 51 that minimizes the angular error between the transmission light beam and the reception light beam based on this estimation value and the above-described estimation value of the observed noise amount.
The optimum transfer function K of is determined in real time, and the transfer function of the controller 51 is automatically adjusted to that value.

【0026】具体的には、演算時間を短縮するため、装
置の振動による光ビームの角度変動Xと観測ノイズNを
それぞれ予想される範囲で数通りに分類しておき、両者
の組合わせにより得られる全ての場合に対応して、最適
なコントローラ51の伝達関数Kを予め計算し記憶して
おく。そして、システム制御回路53は入力される推定
量を基に使用するコントローラ51の伝達関数Kを選択
し、コントローラ51の特性を適切に切換えてゆくとい
う動作を行う。
Specifically, in order to reduce the calculation time, the angular fluctuation X of the light beam due to the vibration of the device and the observation noise N are classified into several types within the respective expected ranges, and the combination is obtained. The optimum transfer function K of the controller 51 is calculated and stored in advance for all the possible cases. Then, the system control circuit 53 performs an operation of selecting the transfer function K of the controller 51 to be used based on the input estimated amount and appropriately switching the characteristics of the controller 51.

【0027】一例として、或る時刻において、装置の設
置場所の振動は小さいが、シンチレーションが激しくな
り観測ノイズNにより生ずる送信光ビームと受信光ビー
ムの角度誤差が、装置の振動により生ずる送信光ビーム
と受信光ビームの角度誤差よりも大きくなる場合には、
コントローラの伝達関数Kが小さい特性に切換えられ、
制御帯域幅を狭めることで、観測ノイズNの影響が少な
くなるような自動追尾が行われる。
As an example, at a certain time, the vibration of the installation location of the device is small, but the scintillation becomes severe and the angular error between the transmitted light beam and the received light beam caused by the observation noise N causes the transmitted light beam caused by the vibration of the device. And if it becomes larger than the angular error of the received light beam,
The transfer function K of the controller is switched to a small characteristic,
By narrowing the control bandwidth, automatic tracking is performed so that the influence of the observation noise N is reduced.

【0028】このように本実施例においては、コントロ
ーラを適切な特性に切換えてゆくことで、送信光ビーム
と受信光ビームの角度誤差を最小とすることができる。
As described above, in the present embodiment, the angle error between the transmission light beam and the reception light beam can be minimized by switching the controller to an appropriate characteristic.

【0029】[0029]

【発明の効果】以上説明したように本発明に係る光空間
通信装置は、時間と共に徐々に変化する装置の振動によ
る光ビーム角度変動と観測ノイズ量に適応して実時間で
コントローラ特性を適切に変化させることにより、装置
の設置場所の振動や気象条件が変化しても送信光ビーム
と受信光ビームの角度誤差が常に最小となるように自動
追尾が働き安定な双方向光通信が実現できる。
As described above, the optical space communication device according to the present invention adapts the controller characteristics in real time by adapting to the fluctuation of the light beam angle and the amount of observed noise due to the vibration of the device which changes gradually with time. By changing it, automatic tracking works and stable bidirectional optical communication can be realized so that the angular error between the transmitted light beam and the received light beam is always minimized even if the vibration of the installation location of the device or the weather conditions change.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment.

【図2】角度誤差検出手段の出力信号に含まれる装置の
振動による入射ビーム角度変動と観測ノイズの周波数成
分の説明図である。
FIG. 2 is an explanatory diagram of the incident beam angle fluctuation due to the vibration of the apparatus and the frequency component of the observation noise included in the output signal of the angle error detecting means.

【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【図4】自動追尾制御系のフィードバックループ図であ
る。
FIG. 4 is a feedback loop diagram of an automatic tracking control system.

【符号の説明】[Explanation of symbols]

32 発光素子 33 コリメートレンズ 34 偏光ビームスプリッタ 35 可動ミラー 40 可動ミラー角度センサ 41 可動ミラー制御回路 42 光ビーム角度調節手段 45 4分割受光素子 46 角度誤差検出手段 48 受光素子 51 コントローラ 52 観測ノイズ量測定回路 53 システム制御回路 32 light emitting element 33 collimating lens 34 polarizing beam splitter 35 movable mirror 40 movable mirror angle sensor 41 movable mirror control circuit 42 light beam angle adjusting means 45 four-division light receiving element 46 angle error detecting means 48 light receiving element 51 controller 52 observation noise amount measuring circuit 53 System control circuit

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04Q 9/00 311 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H04Q 9/00 311

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 自由空間に光ビームを伝播させて通信を
行う光空間通信装置において、送信光のビーム角度を調
節する光ビーム角度調節手段と、送信光ビームと受信光
ビームの角度誤差を検出する角度誤差検出手段と、該角
度誤差検出手段からの信号を処理し前記光ビーム角度調
節手段に指令信号を出力するコントローラとから成る自
動追尾機能と、前記角度誤差検出手段からの信号を基に
観測ノイズ量を推定する観測ノイズ量測定手段と、推定
された観測ノイズ量と前記角度誤差検出手段からの信号
を基に最適なコントローラの特性を演算し、実時間で前
記最適値にコントローラ特性を調節する制御手段とを有
することを特徴とする光空間通信装置。
1. An optical space communication device for propagating a light beam in free space for communication, and a light beam angle adjusting means for adjusting a beam angle of transmitted light, and detecting an angular error between the transmitted light beam and the received light beam. Based on the signal from the angle error detecting means, and an automatic tracking function consisting of an angle error detecting means and a controller for processing a signal from the angle error detecting means and outputting a command signal to the light beam angle adjusting means. An observation noise amount measuring means for estimating the observation noise amount, an optimum controller characteristic is calculated based on the estimated observation noise amount and a signal from the angle error detecting means, and the controller characteristic is set to the optimum value in real time. An optical space communication device, comprising: an adjusting control unit.
JP25561095A 1995-09-07 1995-09-07 Optical space communication device Expired - Fee Related JP3368118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25561095A JP3368118B2 (en) 1995-09-07 1995-09-07 Optical space communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25561095A JP3368118B2 (en) 1995-09-07 1995-09-07 Optical space communication device

Publications (2)

Publication Number Publication Date
JPH0983436A true JPH0983436A (en) 1997-03-28
JP3368118B2 JP3368118B2 (en) 2003-01-20

Family

ID=17281137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25561095A Expired - Fee Related JP3368118B2 (en) 1995-09-07 1995-09-07 Optical space communication device

Country Status (1)

Country Link
JP (1) JP3368118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701093B1 (en) 1998-07-17 2004-03-02 Pentax Precision Co., Ltd. Integral transmitter-receiver optical communication apparatus and a crosstalk preventive device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701093B1 (en) 1998-07-17 2004-03-02 Pentax Precision Co., Ltd. Integral transmitter-receiver optical communication apparatus and a crosstalk preventive device therefor

Also Published As

Publication number Publication date
JP3368118B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US5627669A (en) Optical transmitter-receiver
EP0653852B1 (en) Free space optical communication system
US7346282B2 (en) Optical-transmission-space determining apparatus and optical-space transmission apparatus
KR100811883B1 (en) Optical arrangement method and device
US11405106B2 (en) Setup for receiving an optical data signal
EP0911996B1 (en) Optical space communication apparatus
JPH05181086A (en) Optical spatial transmitter
US6968133B2 (en) Optical free-space communication apparatus
JP2000068934A (en) Optical communication device mounted on satellite
JP2001203641A (en) Spatial light transmission unit
JP3368118B2 (en) Optical space communication device
JP3263263B2 (en) Optical space communication device
US6693703B2 (en) Distance measuring device and method for adjusting photodetection unit of distance measuring device
JPH08204644A (en) Optical space transmitter and its optical axis alignment method
JP4508352B2 (en) Optical space transmission system
JP2001223644A (en) Inter-satellite connection method and system
US10520360B1 (en) Automated power-in-the-bucket measurement apparatus for large aperture laser systems
JP3206993B2 (en) Bidirectional optical space transmission equipment
JPH08223117A (en) Optical space transmission equipment
JP2552325Y2 (en) Lightwave ranging device
JP3192359B2 (en) Space optical communication equipment
JPH11215062A (en) Optical spatial communication equipment
JPH08149076A (en) Optical space communication device
US20030016420A1 (en) Method and apparatus for aligning a light beam onto an optical fiber core
JPH07312578A (en) Optical space transmitter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees