JP2000068934A - Optical communication device mounted on satellite - Google Patents

Optical communication device mounted on satellite

Info

Publication number
JP2000068934A
JP2000068934A JP10237771A JP23777198A JP2000068934A JP 2000068934 A JP2000068934 A JP 2000068934A JP 10237771 A JP10237771 A JP 10237771A JP 23777198 A JP23777198 A JP 23777198A JP 2000068934 A JP2000068934 A JP 2000068934A
Authority
JP
Japan
Prior art keywords
optical
optical signal
signal
satellite
communication device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10237771A
Other languages
Japanese (ja)
Inventor
Yukiharu Shimizu
行晴 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10237771A priority Critical patent/JP2000068934A/en
Publication of JP2000068934A publication Critical patent/JP2000068934A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain optical communication whose communication performance is enhanced by using an optical signal whose received intensity is maximized at all times independently of fluctuation in air and whose wave front has no fluctuation. SOLUTION: A CCD sensor 9 detects part of an optical signal (a) that is caught by an optical antenna 1 and whose wave front has fluctuation, the signal is fed back to a compensation circuit 15 to control a focus adjustment device 2. Thus, a focus (b) of the optical signal (a) is controlled to maximize the received intensity on the CCD sensor 9. An optical mirror drive circuit 5 modifies a compensation optical mirror 4 to correct a wave front curvature attended with the movement of the focus (b) based on a cross reference table according to a relative equation between the maximum light receiving intensity and the wave front curvature. A precision capture tracing sensor 12 detects fluctuation in a very weak reception optical axis due to the effect of air and the compensation optical mirror drive circuit 5 corrects it by deforming the compensation optical mirror 4. Thus, an optical receiver 14 receives an optical signal with the maximum intensity and whose wave front is flat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工衛星と地上局
との間で光通信を行う衛星搭載用光通信機器に関し、特
に微弱な光信号でも高精度な通信を行うことの出来る光
通信機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication device mounted on a satellite for performing optical communication between an artificial satellite and a ground station, and particularly to an optical communication device capable of performing highly accurate communication even with a weak optical signal. About.

【0002】[0002]

【従来の技術】衛星搭載用光学系装置の技術を応用した
衛星搭載用光通信機器が広く利用されている。この光学
系装置の技術は、例えば特開平3ー248118号公報
に開示されているように、集光レンズと対向クサビガラ
スを用いることにより、温度変動に拘わらず、受光セン
サ部に対して精度良く焦点調整を行うことが出来るよう
にしたものである。すなわち、大気の温度変化をバイメ
タルなどの温度検出素子で検出し、この温度検出素子に
よって対向クサビガラスの一方の移動量を調整すること
により、温度変動によって生じる焦点距離のずれや収差
の補正を行うものである。これによって、常に受光セン
サ部に光の焦点が来るように制御することが出来る。こ
のような技術を光通信機器に用いれば、温度変動を補償
して精度の高い光通信を行うことが出来る。
2. Description of the Related Art Satellite-mounted optical communication equipment to which the technology of a satellite-mounted optical system is applied is widely used. The technology of this optical system device is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-248118. The focus adjustment can be performed. That is, the temperature change of the atmosphere is detected by a temperature detecting element such as a bimetal, and the shift amount of one of the opposed wedge glasses is adjusted by the temperature detecting element, thereby correcting the focal length shift and aberration caused by the temperature fluctuation. Things. As a result, it is possible to control so that the light is always focused on the light receiving sensor unit. If such a technique is used for an optical communication device, highly accurate optical communication can be performed by compensating for temperature fluctuations.

【0003】[0003]

【発明が解決しようとする課題】ところが、衛星と地上
局との間で光通信を行う場合、上述のような温度変動の
要因以外に、空間伝搬の媒体である大気密度のムラによ
って光通信に障害が生じる。すなわち、大気密度の濃淡
によって光の屈折率が変化し、これによって光の波面が
揺らぎとなってあらわれる。この結果、光波面に歪みを
生じて光の捕捉追尾誤差が大きくなり、結果として通信
エラーを引き起こす原因となり、高精度な光通信を行う
ことが出来なくなる。また、光波面の歪みを補正するた
めに、光波面の揺らぎに応じて反射面の形状を変形させ
る補償光学ミラーを追加しても、光波面の大きな揺らぎ
しか補正することが出来ない。すなわち、光検出器の検
出感度以下の微弱な光信号の場合は波面の揺らぎを検出
することが出来ないため、光波面の歪みを完全に補正す
ることが出来ない。このため、微弱な光信号に対しては
高精度な光通信を行うことが出来ないなどの問題があ
る。
However, when optical communication is performed between a satellite and a ground station, the optical communication is not performed due to the unevenness of the air density, which is a medium for space propagation, in addition to the above-mentioned factors of temperature fluctuation. Failure occurs. That is, the refractive index of light changes depending on the density of the atmospheric density, and as a result, the wavefront of light appears as fluctuation. As a result, the optical wavefront is distorted, and the error in capturing and tracking the light increases. As a result, a communication error is caused, and high-precision optical communication cannot be performed. Further, even if an adaptive optics mirror that changes the shape of the reflecting surface in accordance with the fluctuation of the light wavefront is added to correct the distortion of the light wavefront, only a large fluctuation of the light wavefront can be corrected. That is, in the case of a weak optical signal having a sensitivity equal to or lower than the detection sensitivity of the photodetector, the fluctuation of the wavefront cannot be detected, and thus the distortion of the light wavefront cannot be completely corrected. For this reason, there is a problem that high-precision optical communication cannot be performed for a weak optical signal.

【0004】本発明は上記事情に鑑みてなされたもので
あり、その目的は、光信号の受光強度を高め、且つ微弱
な光信号であっても、大気の揺らぎによる影響を補正し
て光の捕捉追尾を行うことが出来るようにし、もって、
高精度な光通信を行うことの出来る衛星搭載用光通信機
器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to increase the light receiving intensity of an optical signal and to correct the influence of atmospheric fluctuation even if the optical signal is weak. To be able to perform capture and tracking,
An object of the present invention is to provide a satellite-mounted optical communication device capable of performing highly accurate optical communication.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、光アンテナが捕捉した光信号を、光学系装置により
受信して、所定の光通信を行う衛星搭載用光通信機器に
おいて、光信号の強度を検出する第1の検出手段と、第
1の検出手段の出力を受け、前記光信号のピーク受光強
度が最大値となるように、前記光信号の焦点距離を制御
する焦点調整手段と、焦点調整手段が制御した焦点距離
の移動に基づいて変化する前記光信号の波面曲率を補正
する光波面曲率補正手段とを備えたことを特徴とする。
According to a first aspect of the present invention, there is provided an optical communication device for mounting on a satellite for receiving an optical signal captured by an optical antenna by an optical system device and performing predetermined optical communication. First detecting means for detecting the intensity of the signal, and focus adjusting means for receiving the output of the first detecting means and controlling the focal length of the optical signal so that the peak received light intensity of the optical signal has a maximum value. And an optical wavefront curvature correction unit that corrects the wavefront curvature of the optical signal that changes based on the movement of the focal length controlled by the focus adjustment unit.

【0006】請求項2に記載の発明は、請求項1に記載
の衛星搭載用光通信機器において、焦点調整手段を、第
1の検出手段の出力に基づいて前記光信号の焦点距離を
制御するための駆動信号を生成する補償回路と、該補償
回路で生成された駆動信号によって光信号の焦点距離を
制御する焦点調節機構とから構成したことを特徴とす
る。
According to a second aspect of the present invention, in the optical communication device mounted on a satellite according to the first aspect, the focus adjusting means controls the focal length of the optical signal based on the output of the first detecting means. And a focus adjusting mechanism for controlling the focal length of the optical signal by the drive signal generated by the compensation circuit.

【0007】請求項3に記載の発明は、請求項1または
2に記載の衛星搭載用光通信機器において、光波面曲率
補正手段を、第1の検出手段の出力を受け、予め設定さ
れている光信号のピーク受光強度と波面曲率との対応関
係に基づいて駆動信号を生成する生成手段と、この生成
手段の出力に従って鏡面を微小区間毎に変位させる補償
光学ミラーと、から構成したことを特徴とする。請求項
4に記載の発明は、請求項1〜3のいずれかの項に記載
の衛星搭載用光通信機器において、受信信号の受信光軸
のズレを検出する第2の検出手段と、この第2の検出手
段の出力を受け、受信光軸のズレを補正する補正手段と
を設けたことを特徴とする。
According to a third aspect of the present invention, in the optical communication device mounted on a satellite according to the first or second aspect, the light wavefront curvature correcting means is set in advance in response to an output of the first detecting means. Generating means for generating a drive signal based on the correspondence between the peak received light intensity of the optical signal and the wavefront curvature, and a compensating optical mirror for displacing the mirror surface for each minute section according to the output of the generating means. And According to a fourth aspect of the present invention, in the optical communication device mounted on a satellite according to any one of the first to third aspects, a second detecting means for detecting a deviation of a reception optical axis of a received signal, And a correction means for receiving the output of the second detection means and correcting the deviation of the receiving optical axis.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は、本発明の一実施の
形態の衛星搭載用光通信機器の構成図である。また、こ
の図は光信号の流れも示している。図において、光アン
テナ1は、図示しない地上局からの光信号を受信するア
ンテナである。この光アンテナ1は、主反射鏡1ー1に
入射した光を副反射鏡1ー2で折り返すことにより、短
い鏡筒で長い焦点距離が得られるように構成されたカセ
グレン光学系が用いられている。このようなカセグレン
光学系アンテナを用いることによって光信号の損失を少
なくすることが出来る。また、焦点調整機構2は、対向
する2つのクサビ形ガラスの傾斜面を摺動自在に接触さ
せた構造になっており、少なくとも一方のクサビ形ガラ
スをスライドさせることによって、このクサビ形ガラス
を通過する光の焦点距離を可変することが出来る。レン
ズ3及びレンズ18は、焦点又は光源より発散した光か
ら平行ビームを作るためのコリメート用レンズである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a satellite-mounted optical communication device according to an embodiment of the present invention. This figure also shows the flow of the optical signal. In the figure, an optical antenna 1 is an antenna that receives an optical signal from a ground station (not shown). The optical antenna 1 uses a Cassegrain optical system configured to obtain a long focal length with a short lens barrel by turning light incident on the main reflecting mirror 1-1 by the sub-reflecting mirror 1-2. I have. By using such a Cassegrain optical system antenna, loss of an optical signal can be reduced. The focus adjusting mechanism 2 has a structure in which two inclined wedge-shaped glass pieces are slidably contacted with each other, and at least one of the wedge-shaped glass pieces slides through the wedge-shaped glass piece. The focal length of the light to be emitted can be varied. The lens 3 and the lens 18 are collimating lenses for forming a parallel beam from light diverging from a focal point or a light source.

【0009】補償光学ミラー4は、反射面の形状を微小
領域毎に任意の形状に可変することの出来る形状可変鏡
である。すなわち、入射光の波面の揺らぎに応じて、補
償光学ミラー4の反射面の形状を変形させ、波面の揺ら
いだ入射光をこの反射面で反射させることにより波面を
平坦に揃えることが出来るようになっている。この補償
光学ミラー4には、その裏面に、印加電圧に比例して変
位するピエゾ圧電素子から成るアクチュエータが微小区
分毎に多数配列されている。また、補償光学ミラー駆動
回路5は、波面の揺らぎに比例した信号をフィードバッ
クして生成した印加電圧によって、補償光学ミラー4の
変形量を可変させる制御回路である。ビームスプリッタ
6、ビームスプリッタ7及びビームスプリッタ10は、
1つの光束を任意の比率で2つの光束に分割する装置で
ある。また、レンズ8、レンズ11及びレンズ13は、
それぞれ、ビームスプリッタ7及びビームスプリッタ1
0で分割された光束を集光させるための集光レンズであ
る。
The adaptive optical mirror 4 is a shape variable mirror capable of changing the shape of the reflection surface to an arbitrary shape for each minute area. That is, according to the fluctuation of the wavefront of the incident light, the shape of the reflection surface of the adaptive optical mirror 4 is deformed, and the wavefront whose fluctuation is reflected is reflected by the reflection surface so that the wavefront can be made flat. Has become. On the back surface of the compensating optical mirror 4, a large number of actuators each composed of a piezo piezoelectric element displaced in proportion to an applied voltage are arranged for each minute section. The adaptive optics mirror driving circuit 5 is a control circuit that varies the amount of deformation of the adaptive optics mirror 4 by an applied voltage generated by feeding back a signal proportional to the fluctuation of the wavefront. The beam splitter 6, the beam splitter 7, and the beam splitter 10
This is a device that divides one light beam into two light beams at an arbitrary ratio. The lens 8, the lens 11, and the lens 13
Beam splitter 7 and beam splitter 1 respectively
It is a condenser lens for condensing the light beam divided by zero.

【0010】粗捕捉追尾センサ9は、CCD(Charge C
oupled Device=電荷結合素子)などで構成されてお
り、光アンテナ1に入射された光信号の一部を受け、こ
のCCDセンサ9に投影される受光強度のピーク値を検
出するセンサである。また、精捕捉追尾センサ12は、
四象限センサ(QD)などで構成されており、光アンテ
ナ1に入射された光信号の光軸のズレを高精度に検出し
て、補償光学ミラー4を補正変形させるフィードバック
量を決定するためのセンサである。この精捕捉追尾セン
サ12は、1点の周りに90度間隔で配置された4つの
検出素子から構成される受光センサであり、各検出素子
出力から、センサ上に照射された光のスポット位置を検
出する機能を有している。光受信器14は、光アンテナ
1が受信した地上局の光信号を、低雑音且つ高利得で受
信することの出来る受信器である。この光受信器14は
光に対する応答を速くするために、アバランシェフォト
ダイオード(APD)等で構成されている。
The coarse capturing and tracking sensor 9 is a CCD (Charge C).
Oupled Device (charge coupled device) is a sensor that receives a part of the optical signal incident on the optical antenna 1 and detects the peak value of the received light intensity projected on the CCD sensor 9. In addition, the fine capture tracking sensor 12
It is constituted by a four-quadrant sensor (QD) or the like, and detects a deviation of an optical axis of an optical signal incident on the optical antenna 1 with high accuracy and determines a feedback amount for correcting and deforming the adaptive optical mirror 4. It is a sensor. The fine capture and tracking sensor 12 is a light receiving sensor composed of four detection elements arranged at 90-degree intervals around one point. From the output of each detection element, the spot position of light applied to the sensor is determined. It has a function to detect. The optical receiver 14 is a receiver that can receive the optical signal of the ground station received by the optical antenna 1 with low noise and high gain. The optical receiver 14 is constituted by an avalanche photodiode (APD) or the like in order to increase the response to light.

【0011】また、補償回路15は、粗捕捉追尾センサ
(CCD)9からのフィードバック信号に基づいて、焦
点調節機構2のクサビ形ガラスをスライドさせて焦点距
離を可変させるための制御回路である。また、精捕捉追
尾処理部16は、精捕捉追尾センサ12及び補償回路1
5からの制御信号に基づいて、補償光学ミラー駆動回路
5が補償光学ミラー4に印加する電圧を決定する。ま
た、光送信器17は、光信号を発光するレーザダイオー
ド(LD)等によって構成されている。光行差補正機構
(PAM)19は、通信相手との光行差を補正する機構
である。この機構19は次の目的で設けられている。す
なわち、相対的に速度差があるもの同士で通信を行う場
合に、光が伝搬する間に相対的な位置関係が変わる。そ
のため、送信開始時のターゲットの方向から通信ビーム
のポインティング角度を予めずらしておく必要がある。
このズレ角度が光行差であり、これを補正する機構が光
行差補正機構19である。この実施形態では、通信ビー
ムの方向を変えるものとして圧電アクチュエータを用い
ている。
The compensation circuit 15 is a control circuit for varying the focal length by sliding the wedge-shaped glass of the focus adjustment mechanism 2 based on a feedback signal from the coarse capturing and tracking sensor (CCD) 9. The precise capture and tracking processing unit 16 includes the fine capture and tracking sensor 12 and the compensation circuit 1.
The adaptive optics mirror driving circuit 5 determines a voltage to be applied to the adaptive optics mirror 4 based on the control signal from the control optical mirror 5. The optical transmitter 17 includes a laser diode (LD) that emits an optical signal. The optical path difference correction mechanism (PAM) 19 is a mechanism for correcting an optical path difference with a communication partner. This mechanism 19 is provided for the following purpose. That is, when communication is performed between devices having relatively different speeds, the relative positional relationship changes while light propagates. Therefore, it is necessary to previously shift the pointing angle of the communication beam from the direction of the target at the start of transmission.
The deviation angle is the optical path difference, and the mechanism for correcting this is the optical path difference correction mechanism 19. In this embodiment, a piezoelectric actuator is used to change the direction of the communication beam.

【0012】次に、図1の衛星搭載用光通信機器の動作
を光信号の流れに従って説明する。光アンテナ1には、
大気の影響によって波面の揺らいだ光信号aが入射さ
れ、この光信号aはカセグレン光学系(主反射鏡1ー1
及び副反射鏡1ー2)によって、焦点調節機構(クサビ
形ガラス)2を通過した近傍で焦点bを結ぶ。そして、
この焦点bから発散した光信号はレンズ3によって平行
ビームの光信号cに変換され補償光学ミラー(形状可変
鏡)4に入射する。さらに、補償光学ミラー4を反射し
た光信号dはビームスプリッタ6を通過し、ビームスプ
リッタ7によって分割され、一部が粗・光検出信号iと
なって、レンズ8で集光されて粗捕捉追尾センサ(CC
D)9に投射される。
Next, the operation of the satellite-mounted optical communication device shown in FIG. 1 will be described in accordance with the flow of optical signals. In the optical antenna 1,
An optical signal a whose wavefront fluctuates due to the influence of the atmosphere is incident, and this optical signal a is transmitted to a Cassegrain optical system (main reflecting mirror 1-1).
A focal point b is formed by the sub-reflecting mirror 1-2) near the focus adjusting mechanism (wedge-shaped glass) 2. And
The optical signal diverging from the focal point b is converted into a parallel beam optical signal c by the lens 3 and is incident on the compensation optical mirror (shape variable mirror) 4. Further, the optical signal d reflected by the compensating optical mirror 4 passes through the beam splitter 6, is split by the beam splitter 7, and a part of the signal becomes a coarse / light detection signal i, which is condensed by the lens 8 and coarsely captured and tracked. Sensor (CC
D) Projected on 9.

【0013】そして、CCD9に投射される光信号(す
なわち粗・光検出信号i)のピーク受光強度が最大値と
なるように、CCD9は補償回路15及び焦点調節機構
2とによってフィードバック系を構成する。すなわち、
大気の揺らぎによってCCD9上のピーク受光強度は時
間と共に変化するので、CCD9は受光した粗・光検出
信号iに比例する信号xを補償回路15にフィードバッ
クし、補償回路15によって焦点調節機構2を制御す
る。これによって、焦点調節機構2はクサビ形ガラスを
スライドさせて、受信した光信号aの焦点bを自動調節
してCCD9に投射される受光信号(すなわち粗・光検
出信号i)のピーク受光強度が最大となるように制御が
行われる。
The CCD 9 constitutes a feedback system by the compensating circuit 15 and the focus adjusting mechanism 2 so that the peak received light intensity of the light signal (that is, the coarse / light detection signal i) projected on the CCD 9 becomes the maximum value. . That is,
Since the peak light receiving intensity on the CCD 9 changes with time due to the fluctuation of the atmosphere, the CCD 9 feeds back a signal x proportional to the received coarse / light detection signal i to the compensation circuit 15, and controls the focus adjustment mechanism 2 by the compensation circuit 15. I do. Thereby, the focus adjusting mechanism 2 slides the wedge-shaped glass, automatically adjusts the focus b of the received optical signal a, and increases the peak received light intensity of the received light signal (that is, the coarse / light detection signal i) projected on the CCD 9. Control is performed so as to be the maximum.

【0014】このとき、焦点bの移動に伴って補償光学
ミラー4に入射する光信号cの波面曲率が変化するの
で、補償回路15で焦点bの位置に対する波面曲率を推
定して、補償光学ミラー駆動回路5により補償光学ミラ
ー4の鏡面を変形させて波面曲率を補正する制御が行わ
れる。すなわち、CCD9のピーク受光強度iが最大と
なるように焦点bを調整すると、そのときのピーク受光
強度iと光アンテナ1に入射する光信号aの波面曲率ρ
との関係は次式の(数1)で表される。
At this time, since the wavefront curvature of the optical signal c incident on the compensating optical mirror 4 changes with the movement of the focal point b, the compensating circuit 15 estimates the wavefront curvature with respect to the position of the focal point b, and The drive circuit 5 performs control to correct the wavefront curvature by deforming the mirror surface of the adaptive optical mirror 4. That is, when the focal point b is adjusted so that the peak received light intensity i of the CCD 9 becomes maximum, the peak received light intensity i at that time and the wavefront curvature ρ of the optical signal a incident on the optical antenna 1 are obtained.
Is expressed by the following equation (Equation 1).

【0015】[0015]

【数1】 (Equation 1)

【0016】そこで、予め、この(数1)により波面曲
率ρとピーク受光強度iとの関係を計算して、補償回路
15に参照テーブルとして備えておく。そして、補償回
路15がそれぞれのピーク受光強度iに対する波面曲率
ρを読み出して、精捕捉追尾処理部16を介して補償光
学ミラー駆動回路5に波面曲率ρに相当する制御信号を
送る。そして、この制御信号によって、補償光学ミラー
駆動回路5は所定の印加電圧を生成し、補償光学ミラー
4の圧電素子アクチュエータを微小区間毎に変位させ
る。これによって、補償光学ミラー4の鏡面が変位して
平坦性の高い反射光分布を作ることが出来る。すなわ
ち、補償光学ミラー4によって、入射する光信号cの波
面曲率の変動分を補正して波面が平坦な光信号dを反射
する。これにより、光信号dは波面が平坦な光信号とな
る。この光信号は、ビームスプリッタ7で再び分割さ
れ、一部は前述の粗・光検出信号iとなるが、他は光信
号jとして送出される。
Therefore, the relationship between the wavefront curvature ρ and the peak received light intensity i is calculated in advance by using the above (Equation 1), and is provided in the compensation circuit 15 as a reference table. Then, the compensating circuit 15 reads out the wavefront curvature ρ for each peak received light intensity i, and sends a control signal corresponding to the wavefront curvature ρ to the adaptive optics mirror driving circuit 5 via the fine acquisition tracking processing unit 16. Then, in accordance with the control signal, the adaptive optics mirror driving circuit 5 generates a predetermined applied voltage, and displaces the piezoelectric element actuator of the adaptive optics mirror 4 for each minute section. As a result, the mirror surface of the adaptive optical mirror 4 is displaced, so that a reflected light distribution with high flatness can be created. That is, the compensation optical mirror 4 corrects the fluctuation of the wavefront curvature of the incident optical signal c and reflects the optical signal d having a flat wavefront. Thus, the optical signal d becomes an optical signal having a flat wavefront. This optical signal is split again by the beam splitter 7, and a part of the signal is the coarse / light detection signal i described above, and the other is transmitted as an optical signal j.

【0017】そして、この光信号jはさらにビームスプ
リッタ19で分割され、一部が精・光検出信号kとして
レンズ11で集光されて精捕捉追尾センサ(四象限セン
サ)12に検出信号として投射される。この精捕捉追尾
センサ12は、波面精度に起因する受光スポットのズレ
を検出し、検出結果を精捕捉追尾処理部16へ出力す
る。精捕捉追尾処理部16は、精捕捉追尾センサ12の
出力を受け、補償光学ミラー駆動回路5を介して補償光
学ミラー4を駆動して上述したズレ(すなわち、受信光
軸のズレ)を補正する。一方、ビームスプリッタ10を
通過した光信号は、レンズ13で集光されて光受信器
(アバランシェフォトダイオード)14に入射され、所
定の受信処理が行われる。アバランシェフォトダイオー
ドによる光受信器14は、受光強度が高く且つ波面が平
坦な光信号を、低雑音且つ高利得で、極めて速い応答で
受信することが出来る。
The optical signal j is further divided by a beam splitter 19, and a part of the optical signal j is condensed by a lens 11 as a fine / light detection signal k and projected as a detection signal on a fine capture and tracking sensor (four-quadrant sensor) 12. Is done. The fine capturing and tracking sensor 12 detects a deviation of the light receiving spot caused by the wavefront accuracy, and outputs a detection result to the fine capturing and tracking processing unit 16. The fine capture and tracking processing unit 16 receives the output of the fine capture and tracking sensor 12, drives the compensating optical mirror 4 via the adaptive optical mirror driving circuit 5, and corrects the above-described deviation (that is, the deviation of the receiving optical axis). . On the other hand, the optical signal that has passed through the beam splitter 10 is condensed by a lens 13 and is incident on an optical receiver (avalanche photodiode) 14, where predetermined reception processing is performed. The optical receiver 14 using an avalanche photodiode can receive an optical signal having a high received light intensity and a flat wavefront with low noise and high gain in an extremely fast response.

【0018】このように、上記の実施形態においては、
粗捕捉追尾センサ9、補償回路15、焦点調整機構2の
フィードバックループによって光信号のピーク強度が最
大になるように調整が行われ、粗捕捉追尾センサ9、補
償回路15、補償光学ミラー駆動回路5、補償光学ミラ
ー4のフィードバックループによって波面曲率の歪が補
正され、また、精捕捉追尾センサ12、精捕捉追尾処理
部16、補償光学ミラー駆動回路5、補償光学ミラー4
のフィードバックループによって受信光軸の補正が行わ
れる。これにより、衛星ー地上局間の光通信において、
常に最大受光強度であり、且つ大気の影響を受けない光
信号を受信することができ、高い通信精度の衛星搭載用
光通信機器を実現することが出来る。
Thus, in the above embodiment,
Adjustment is performed by the feedback loop of the coarse capture tracking sensor 9, the compensation circuit 15, and the focus adjustment mechanism 2 so that the peak intensity of the optical signal is maximized. The coarse capture tracking sensor 9, the compensation circuit 15, and the compensating optical mirror driving circuit 5 The distortion of the wavefront curvature is corrected by the feedback loop of the compensating optical mirror 4, and the precise capturing and tracking sensor 12, the fine capturing and tracking processing unit 16, the adaptive optical mirror driving circuit 5, and the adaptive optical mirror 4
The correction of the receiving optical axis is performed by the feedback loop described above. As a result, in optical communications between satellites and ground stations,
An optical signal which is always at the maximum light receiving intensity and is not affected by the atmosphere can be received, and an optical communication device mounted on a satellite with high communication accuracy can be realized.

【0019】以上述べた実施の形態は本発明を説明する
ための一例であり、本発明は、上記の実施の形態に限定
されるものではなく、発明の要旨の範囲で種々の変形が
可能である。例えば、焦点調節機構としてクサビ形ガラ
ス以外の光学素子を用いることも出来る。なお、マイク
ロレンズアレーを用いて大気のゆらぎの影響を補償する
機能を実現することも出来るが、この場合は、粗捕捉追
尾センサ、精捕捉追尾センサ以外に波面モニタ用のセン
サを必要とする。これに対し、上記実施形態では、粗捕
捉追尾センサが兼用可能であり、構成を簡素化すること
が出来る。
The embodiment described above is an example for describing the present invention, and the present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention. is there. For example, an optical element other than the wedge-shaped glass can be used as the focus adjustment mechanism. Note that a function of compensating for the effects of atmospheric turbulence can be realized using a microlens array, but in this case, a sensor for wavefront monitoring is required in addition to the coarse capture tracking sensor and the fine capture tracking sensor. On the other hand, in the above-described embodiment, the coarse capturing and tracking sensor can also be used, and the configuration can be simplified.

【0020】[0020]

【発明の効果】以上説明したように、本発明の衛星搭載
用光通信機器によれば、衛星と地上局との通信におい
て、大気の揺らぎによる影響を抑えることが可能とな
り、これにより、通信性能を一段と向上させることがで
きる。特に、微弱な光信号に対してもこれを効率よく増
幅して検出し、僅かな波面の揺らぎでも補正することが
出来るので、通信効率のよい衛星搭載用光通信機器を提
供することが出来る。また、微弱な光信号でも通信可能
なため、送信機器の出力パワーを小さくすることが出
来、経済的効果も期待出来る。
As described above, according to the optical communication device mounted on a satellite according to the present invention, it is possible to suppress the influence of the fluctuation of the atmosphere in the communication between the satellite and the ground station. Can be further improved. In particular, even a weak optical signal can be efficiently amplified and detected, and even a small fluctuation of the wavefront can be corrected, so that a satellite-mounted optical communication device with high communication efficiency can be provided. Also, since communication is possible even with a weak optical signal, the output power of the transmitting device can be reduced, and an economic effect can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態の衛星搭載用光通信機
器の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a satellite-mounted optical communication device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…光アンテナ(カセグレン系)、2…焦点調整機構
(クサビ形ガラス)、3、18…レンズ(コリメート
用)、4…補償光学ミラー(形状可変鏡)、5…補償光
学ミラー駆動回路、6、7、10…ビームスプリッタ
(BS)、8、11、13…レンズ(集光用)、9…粗
捕捉追尾センサ(CCD)、12…精捕捉追尾センサ
(四象限センサ)、14…光受信器(アバランシェフォ
トダイオード)、15…補償回路、16…精捕捉追尾処
理部、17…光送信器(レーザダイオード)、19…光
行差補正機構
DESCRIPTION OF SYMBOLS 1 ... Optical antenna (Cassegrain type), 2 ... Focus adjustment mechanism (wedge-shaped glass), 3, 18 ... Lens (for collimation), 4 ... Compensating optical mirror (shape variable mirror), 5 ... Compensating optical mirror driving circuit, 6 , 7, 10 ... Beam splitter (BS), 8, 11, 13 ... Lens (for focusing), 9 ... Coarse capture tracking sensor (CCD), 12 ... Fine capture tracking sensor (four quadrant sensor), 14 ... Optical reception (Avalanche photodiode), 15: compensating circuit, 16: precise acquisition and tracking processing unit, 17: optical transmitter (laser diode), 19: optical line difference correction mechanism

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光アンテナが捕捉した光信号を、光学系
装置により受信して、所定の光通信を行う衛星搭載用光
通信機器において、 前記光信号の強度を検出する第1の検出手段と、 前記第1の検出手段の出力を受け、前記光信号のピーク
受光強度が最大値となるように、前記光信号の焦点距離
を制御する焦点調整手段と、 前記焦点調整手段が制御した焦点距離の移動に基づいて
変化する前記光信号の波面曲率を補正する光波面曲率補
正手段と、 を備えたことを特徴とする衛星搭載用光通信機器。
1. An optical communication device mounted on a satellite for receiving an optical signal captured by an optical antenna by an optical system device and performing predetermined optical communication, wherein: a first detecting means for detecting the intensity of the optical signal; A focus adjustment unit that receives an output of the first detection unit and controls a focal length of the optical signal so that a peak received light intensity of the optical signal becomes a maximum value; a focal length controlled by the focus adjustment unit And an optical wavefront curvature correction means for correcting the wavefront curvature of the optical signal that changes based on the movement of the optical signal.
【請求項2】 前記焦点調整手段は、前記第1の検出手
段の出力に基づいて前記光信号の焦点距離を制御するた
めの駆動信号を生成する補償回路と、該補償回路で生成
された駆動信号によって光信号の焦点距離を制御する焦
点調節機構とからなることを特徴とする請求項1に記載
の衛星搭載用光通信機器。
2. A compensation circuit for producing a drive signal for controlling a focal length of the optical signal based on an output of the first detection means, wherein the focus adjustment means comprises: The optical communication device for mounting on a satellite according to claim 1, further comprising a focus adjustment mechanism that controls a focal length of the optical signal by a signal.
【請求項3】 前記光波面曲率補正手段は、前記第1の
検出手段の出力を受け、予め設定されている光信号のピ
ーク受光強度と波面曲率との対応関係に基づいて駆動信
号を生成する生成手段と、 前記生成手段の出力に従って鏡面を微小区間毎に変位さ
せる補償光学ミラーと、 から構成されていることを特徴とする請求項1または請
求項2に記載の衛星搭載用光通信機器。
3. The light wavefront curvature correction means receives the output of the first detection means and generates a drive signal based on a predetermined relationship between the peak light receiving intensity of the optical signal and the wavefront curvature. The satellite-mounted optical communication device according to claim 1, further comprising: a generation unit; and an adaptive optical mirror that displaces a mirror surface for each minute section according to an output of the generation unit.
【請求項4】 前記光信号の受信光軸のズレを検出する
第2の検出手段と、 前記第2の検出手段の出力を受け、前記受信光軸のズレ
を補正する補正手段と、 を具備することを特徴とする請求項1〜請求項3のいず
れかの項に記載の衛星搭載用光通信機器。
4. A second detecting means for detecting a deviation of a receiving optical axis of the optical signal, and a correcting means for receiving an output of the second detecting means and correcting the deviation of the receiving optical axis. The satellite-mounted optical communication device according to any one of claims 1 to 3, wherein:
JP10237771A 1998-08-24 1998-08-24 Optical communication device mounted on satellite Pending JP2000068934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10237771A JP2000068934A (en) 1998-08-24 1998-08-24 Optical communication device mounted on satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10237771A JP2000068934A (en) 1998-08-24 1998-08-24 Optical communication device mounted on satellite

Publications (1)

Publication Number Publication Date
JP2000068934A true JP2000068934A (en) 2000-03-03

Family

ID=17020203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10237771A Pending JP2000068934A (en) 1998-08-24 1998-08-24 Optical communication device mounted on satellite

Country Status (1)

Country Link
JP (1) JP2000068934A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505529A (en) * 2000-07-28 2004-02-19 テラビーム・コーポレーション System and method for using holographic optical elements in a wireless telecommunications system receiver
US7365832B2 (en) 2003-09-19 2008-04-29 Nec Corporation Laser range finder
CN100454790C (en) * 2006-04-28 2009-01-21 哈尔滨工业大学 All optical satellite communication network route terminal
JP2009053699A (en) * 2000-12-07 2009-03-12 Fujitsu Ltd Controlling apparatus and controlling method of optical signal switching device
JP2011503565A (en) * 2007-11-13 2011-01-27 テールズ Device for measuring defects in an imaging device comprising two optoelectronic sensors
WO2014041839A1 (en) * 2012-09-14 2014-03-20 日本電気株式会社 Wavefront compensation device and wavefront compensation method
JP2016225883A (en) * 2015-06-01 2016-12-28 三菱電機株式会社 Spatial optical communication device
JP2017526287A (en) * 2014-08-20 2017-09-07 レイセオン カンパニー Apparatus and method for reducing signal fading due to atmospheric turbulence
WO2018139357A1 (en) * 2017-01-27 2018-08-02 国立研究開発法人情報通信研究機構 Spatial optical communication device and method
JP2020504918A (en) * 2016-10-21 2020-02-13 エアバス・ディフェンス・アンド・スペース・エスアーエス A system that combines imaging and laser communication
US11092800B2 (en) 2017-05-19 2021-08-17 Kawasaki Jukogyo Kabushiki Kaisha Adaptive optical apparatus, optical system, and optical wavefront compensation method
WO2021250895A1 (en) * 2020-06-12 2021-12-16 日本電信電話株式会社 Optical wireless communication system and optical wireless communication method
WO2022137878A1 (en) * 2020-12-24 2022-06-30 三菱重工業株式会社 Laser tracking device
US11469820B2 (en) 2017-05-19 2022-10-11 Kawasaki Jukogyo Kabushiki Kaisha Adaptive optical apparatus, optical system, and optical wavefront compensation method
CN115276801A (en) * 2022-09-19 2022-11-01 西安空间无线电技术研究所 Satellite laser communication link light spot tracking compensation method and signal transmission method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505529A (en) * 2000-07-28 2004-02-19 テラビーム・コーポレーション System and method for using holographic optical elements in a wireless telecommunications system receiver
JP2009053699A (en) * 2000-12-07 2009-03-12 Fujitsu Ltd Controlling apparatus and controlling method of optical signal switching device
JP4549413B2 (en) * 2000-12-07 2010-09-22 富士通株式会社 Control apparatus and control method for optical signal exchanger
US7365832B2 (en) 2003-09-19 2008-04-29 Nec Corporation Laser range finder
CN100454790C (en) * 2006-04-28 2009-01-21 哈尔滨工业大学 All optical satellite communication network route terminal
JP2011503565A (en) * 2007-11-13 2011-01-27 テールズ Device for measuring defects in an imaging device comprising two optoelectronic sensors
WO2014041839A1 (en) * 2012-09-14 2014-03-20 日本電気株式会社 Wavefront compensation device and wavefront compensation method
JPWO2014041839A1 (en) * 2012-09-14 2016-08-18 日本電気株式会社 Optical wavefront compensation apparatus and optical wavefront compensation method
JP2017526287A (en) * 2014-08-20 2017-09-07 レイセオン カンパニー Apparatus and method for reducing signal fading due to atmospheric turbulence
JP2016225883A (en) * 2015-06-01 2016-12-28 三菱電機株式会社 Spatial optical communication device
JP2020504918A (en) * 2016-10-21 2020-02-13 エアバス・ディフェンス・アンド・スペース・エスアーエス A system that combines imaging and laser communication
WO2018139357A1 (en) * 2017-01-27 2018-08-02 国立研究開発法人情報通信研究機構 Spatial optical communication device and method
JP2018121281A (en) * 2017-01-27 2018-08-02 国立研究開発法人情報通信研究機構 Spatial optical communication device and method
US10819429B2 (en) 2017-01-27 2020-10-27 National Institute Of Information And Communications Technology Free-space optical communication apparatus and method
US11092800B2 (en) 2017-05-19 2021-08-17 Kawasaki Jukogyo Kabushiki Kaisha Adaptive optical apparatus, optical system, and optical wavefront compensation method
US11469820B2 (en) 2017-05-19 2022-10-11 Kawasaki Jukogyo Kabushiki Kaisha Adaptive optical apparatus, optical system, and optical wavefront compensation method
WO2021250895A1 (en) * 2020-06-12 2021-12-16 日本電信電話株式会社 Optical wireless communication system and optical wireless communication method
JP7473838B2 (en) 2020-06-12 2024-04-24 日本電信電話株式会社 Optical wireless communication system and optical wireless communication method
WO2022137878A1 (en) * 2020-12-24 2022-06-30 三菱重工業株式会社 Laser tracking device
US11953598B2 (en) 2020-12-24 2024-04-09 Mitsubishi Heavy Industries, Ltd. Laser tracking device
CN115276801A (en) * 2022-09-19 2022-11-01 西安空间无线电技术研究所 Satellite laser communication link light spot tracking compensation method and signal transmission method
CN115276801B (en) * 2022-09-19 2022-12-23 西安空间无线电技术研究所 Satellite laser communication link light spot tracking compensation method and signal transmission method

Similar Documents

Publication Publication Date Title
US10684359B2 (en) Long range LiDAR system and method for compensating the effect of scanner motion
US5465170A (en) Alignment adjusting system for use in optical system of optical transceiver
JP2000068934A (en) Optical communication device mounted on satellite
US6091528A (en) Optical communication system of space propagation type
CN110187349B (en) Ranging and positioning system based on satellite-based quantum satellite
US7920794B1 (en) Free space optical communication
US11405106B2 (en) Setup for receiving an optical data signal
EP0977070B1 (en) Telescope with shared optical path for an optical communication terminal
US10859348B1 (en) System for active telescope alignment, focus and beam control
JP6385312B2 (en) Spatial optical communication device
US11909439B2 (en) Wavefront sensor with inner detector and outer detector
CN113552725A (en) Laser beam coaxial co-wave surface control system and method
CN110500919B (en) Laser defense system and method for rapid high-precision focusing
CN106405825B (en) Adaptive laser far field power density control device
CN111123536A (en) Laser emission optical axis correcting device based on double detectors
CN110864587A (en) Seeker aiming positioning method and aiming positioning system
US6618177B1 (en) Light space-transmission device
CN109194402A (en) The coherent tracking and boresight error compensation system of space optical communication
WO2014122909A1 (en) Light receiving device, optical space communication device, and optical space communication method
JP2011185567A (en) High output laser irradiation device
JP2001203641A (en) Spatial light transmission unit
JP2012060499A (en) Optical wireless communication apparatus
WO2018128118A1 (en) Optical communication device
CN112526531B (en) Dual-view-field infrared imaging system with multi-target laser ranging function
JPH06337355A (en) Optical communication optical device