WO2014122909A1 - Light receiving device, optical space communication device, and optical space communication method - Google Patents

Light receiving device, optical space communication device, and optical space communication method Download PDF

Info

Publication number
WO2014122909A1
WO2014122909A1 PCT/JP2014/000541 JP2014000541W WO2014122909A1 WO 2014122909 A1 WO2014122909 A1 WO 2014122909A1 JP 2014000541 W JP2014000541 W JP 2014000541W WO 2014122909 A1 WO2014122909 A1 WO 2014122909A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light beam
light
incident
optical fiber
Prior art date
Application number
PCT/JP2014/000541
Other languages
French (fr)
Japanese (ja)
Inventor
柳田 美穂
孝史 石川
想 西村
青木 一彦
賢司 田上
貴裕 戸泉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014560676A priority Critical patent/JPWO2014122909A1/en
Publication of WO2014122909A1 publication Critical patent/WO2014122909A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission

Definitions

  • the present invention relates to a light receiving device, an optical space communication device, and an optical space communication method.
  • optical space communication capable of higher-speed communication instead of radio wave communication for the above-described information transmission means.
  • the optical satellite communication experimental satellite "Kirari" succeeded in the world for the first time in the space optical communication between satellites.
  • optical space communication has advantages such as high secrecy due to high beam directivity and low interference between lines. Therefore, optical space communication plays a major role as a large-capacity information transmission means such as information transmission from satellite to ground, information transmission from aircraft to ground, and information transmission from satellite to aircraft, ships, vehicles, etc. Is expected.
  • the optical antenna that receives the light beam is driven to capture and track the light beam in order to reliably collect the received substantially plane wave light beam on the optical fiber. It is necessary to maintain this state with high accuracy. In this case, for example, movement of the moving body, posture change during flight of the aircraft, turbulent flow in the vicinity, atmospheric fluctuation, and the like are factors that hinder acquisition and tracking.
  • the antenna directivity error, the control error of a fine capture tracking mechanism (FPM: Fine Pointing Mechanism) that causes the light beam to enter the optical fiber, and the like are factors that hinder capture tracking.
  • the optical coupling efficiency is the ratio of the light beam incident on the optical fiber out of the light beam.
  • Patent Document 1 describes an optical system that suppresses fluctuations in optical coupling efficiency by mechanical control.
  • the optical system described in Patent Document 1 even when there is a possibility of causing a positional deviation in a direction perpendicular to the optical axis and a focus positional deviation in the optical axis direction depending on the incident condition of incident light, each deviation is quickly corrected. The stable optical coupling state is maintained.
  • Patent Document 2 describes a spatial light receiver that suppresses fluctuations in optical coupling efficiency by an optical configuration.
  • the spatial light receiving device described in Patent Document 2 includes a deflecting device that guides incident light in a certain direction even when there is a change in the incident direction within a certain range when the spatial light propagation signal is incident on the light receiving device. ing.
  • the light emitted from the deflecting device is collected by the condensing device, enters the optical fiber, and is guided to the optical signal device as an optical signal.
  • Patent Document 3 describes an optical transmission module that suppresses fluctuations in optical power and prevents fluctuations in optical power in an optical transmission module.
  • the optical transmission module described in Patent Document 3 includes a laser diode that emits laser light, a lens that collects the laser light, and a fiber ferrule that includes a fiber core that receives the laser light emitted from the lens. . Further, the optical transmission module described in Patent Document 3 includes the lens itself, a stop provided in front of the lens, or after the lens.
  • Patent Document 4 describes an optical coupling module in which a semiconductor laser, a condenser lens, and an optical fiber are integrated.
  • the incident end surface of the optical fiber is shifted to the front side surface or the rear side in the laser beam traveling direction with respect to the beam waist position of the laser beam emitted from the semiconductor laser and collected by the condenser lens. Yes.
  • tracking feedback control is performed to eliminate a positional deviation between the beam diameter center and the fiber core diameter center in a direction orthogonal to the optical axis using, for example, a galvano mirror.
  • focus feedback control for eliminating the focus position shift in the optical axis direction is performed.
  • the positional deviation between the center of the beam diameter in the direction perpendicular to the optical axis and the center of the fiber core diameter is called a tracking error
  • the focal positional deviation in the optical axis direction is called a focus error.
  • the focus position detection means can keep the focus error within the depth of focus range and maintain an optimal focus state.
  • incident light that passes through the atmosphere while capturing and tracking a moving object is incident
  • the angle variation of the incident light is so severe that tracking errors are suppressed even if tracking feedback control is performed using a galvanometer mirror. It becomes difficult.
  • the processing and assembly accuracy of the optical module is increased, it is difficult to eliminate the tracking error to a level that does not cause a problem as the received light power fluctuation, and the fluctuation in the received light power remains even when the focus error is eliminated.
  • incident light having a different incident direction can be converted into light in a predetermined direction by making light incident on the optical fiber through the deflecting device. For this reason, even if the incident direction of incident light changes, the utilization efficiency of the received light can be improved.
  • a deflecting device is applied to an optical space communication device, the optical system becomes large and complicated.
  • the deviation between the center of the aperture through which the light emitted from the fixed laser diode passes and the center of the lens should be sufficiently smaller than the allowable value in question. Can do. For this reason, for example, in the optical transmission module described in Patent Document 3, fluctuations in optical coupling efficiency can be suppressed.
  • the light source is not fixed, for example, consider the case of receiving light transmitted from a moving body and propagating light into the atmosphere. In this case, the deviation between the center of the incident light beam while capturing and tracking and the center of the lens focused on the fiber is much larger than the deviation between the center of the aperture and the center of the lens that can be achieved with the optical transmission module. Become. For this reason, when receiving the light transmitted from the moving body, the received light power fluctuates greatly even if a diaphragm is used as in this optical transmission module.
  • the optical fiber output can be controlled to about 1 mW to 6 mW, for example, without changing the operating current of the semiconductor laser.
  • This optical coupling module shifts the incident end face of the optical fiber forward or backward in the direction of travel of the beam with respect to the laser beam waist position in order to receive the laser beam with appropriate power.
  • the optical coupling module tilts the central axis of the core of the optical fiber with respect to the propagation direction of the laser beam in order to receive the laser beam with an appropriate power.
  • Patent Document 4 describes the effects of optical fiber positional deviation and angular deviation with respect to a laser beam emitted from a semiconductor laser in order to receive light with an appropriate power, that is, to suppress the received light power.
  • An object of the present invention is to provide a light receiving device, an optical space communication device, and an optical space communication method.
  • the light-receiving device includes: A light receiving device for receiving a substantially plane wave light beam, Condensing means for condensing the received light beam; An optical fiber for entering the light beam collected by the light collecting means, The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken.
  • the incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
  • An optical space communication device provides: A light receiving device according to the first aspect of the present invention; Control means for controlling the incident angle of the light beam incident on the light receiving device; and The position of the incident end of the optical fiber is defined based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing means controlled by the control means.
  • An optical space communication method includes: An optical space communication apparatus comprising: a light collecting unit that collects a substantially plane wave light beam; and an optical fiber that receives the light beam collected by the light collecting unit; and a light receiving device that receives the light beam.
  • the incident end of the optical fiber is arranged at a position that maintains a predetermined level or more.
  • the incident end of the optical fiber is arranged outside the range of the focal depth of the light converging means, it is possible to reduce the amount of fluctuation in the received light power caused by the angular deviation of the light beam. For this reason, even when the light beam transmitted from the moving body is incident while being captured and tracked, it is possible to suppress the occurrence of a communication error due to the angular deviation of the incident light beam without increasing the size of the optical system.
  • FIG. 1 is a diagram showing a basic configuration of a light receiving device according to the present embodiment.
  • the light receiving device according to the present embodiment is a light receiving device that receives a light beam emitted from a communication partner.
  • the light receiving device 1 includes a condensing unit 11 and an optical fiber 12.
  • the condensing unit 11 and the optical fiber 12 are positioned so that a light beam of a parallel light beam (substantially plane wave light beam) is incident in parallel to the optical axis.
  • the condensing means 11 condenses the received light beam.
  • a state in which a light beam incident along the optical axis of the light collecting unit 11 from the left side is refracted in the light collecting unit 11 and condensed on the right side of the light collecting unit 11 is indicated by a dotted line.
  • a light beam condensed by the condensing means 11 is incident on and guided to the optical fiber 12.
  • a convex lens or a concave mirror is used for the condensing means 11. In the present embodiment, a case where a convex lens is used as the light collecting means 11 will be described.
  • the point where the light beam of the parallel light beam is refracted by the condensing means 11 and condensed on the optical axis becomes the focal point.
  • the optical fiber 12 receives and propagates the light beam incident from the condensing means 11.
  • the optical fiber 12 includes a core 12a and a clad 12b surrounding the core 12a.
  • the light beam propagates through the core 12a.
  • the incident end of the core 12 a is the incident end 12 c of the optical fiber 12.
  • the substantially plane wave light beam incident on the condensing means 11 is condensed and incident on the core 12 a from the incident end 12 c of the optical fiber 12.
  • the optical fiber 12 guides the light beam condensed by the condensing means 11.
  • the ratio of the light beam incident on the optical fiber 12 out of the light beam that has passed through the condensing means 11 is called optical coupling efficiency.
  • the optical coupling efficiency at the maximum optical coupling efficiency is defined as 0 [dB].
  • the optical coupling efficiency is maximized under the following conditions. For example, consider a case where a light beam is incident on the light collecting means 11 at an angle parallel to the optical axis. In this case, by making the central axis of the optical fiber 12 (the central axis of the core 12a) coincide with the optical axis of the condensing means 11, the incident end 12c of the optical fiber 12 is coincident with the focal point of the condensing means 11. The optical coupling efficiency is maximized. For this reason, in a general light receiving device, the incident end of the optical fiber is arranged at the focal position.
  • the optical coupling efficiency is almost the maximum even within the focal depth range.
  • the following description is given focusing on the point where the optical coupling efficiency is maximized, but the present invention is not limited to this.
  • the incident direction of the light beam may fluctuate. is there.
  • the incidence of the light beam from the oblique direction with respect to the optical axis is called an angular deviation.
  • the incident angle of the light beam with respect to the optical axis of the condensing means 11 is defined here as an angle deviation amount ⁇ .
  • the incident end 12c of the optical fiber 12 is shifted from the focal point in the optical axis direction (the direction away from the light collecting means 11). More specifically, the incident end 12c of the optical fiber 12 is out of the range of the focal depth of the condensing unit 11 with respect to the optical axis direction of the condensing unit 11 and is in a range where the incident angle of the light beam can be taken. It is arranged at a position where the optical coupling efficiency of the light beam incident on the core 12a of the fiber 12 maintains a predetermined level or more.
  • FIG. 3 shows an example of a characteristic graph showing the relationship between the angle shift of the light receiving device and the optical coupling efficiency.
  • the solid line indicates the relationship between the angle deviation and the optical coupling efficiency in the case of a light receiving device in which the incident end of the optical fiber is not offset from the focal point (hereinafter, no offset).
  • the relationship between the angle deviation and the optical coupling efficiency when the incident end 12c of the optical fiber 12 corresponding to the light receiving device 1 according to the present embodiment is offset (hereinafter referred to as offset) is indicated by a broken line. .
  • offset the relationship between the angle deviation and the optical coupling efficiency when the incident end 12c of the optical fiber 12 corresponding to the light receiving device 1 according to the present embodiment is offset
  • the optical coupling efficiency is high when there is no offset, and the light when there is an offset (the light receiving device 1 of the present embodiment). The coupling efficiency is low.
  • the optical coupling efficiency is lowered with or without the offset.
  • the fluctuation amount (decrease amount) of the optical coupling efficiency differs depending on whether or not there is an offset.
  • the fluctuation amount of the optical coupling efficiency is large when there is no offset and small when there is an offset.
  • the minimum level L of the optical coupling efficiency necessary for accurate signal reception is indicated by a one-dot chain line, and the limit value ⁇ MAX of the range that the incident angle of the light beam can take is indicated by the two-dot chain line. ing.
  • the optical coupling efficiency with an offset is higher than the optical coupling efficiency without an offset within a range that the incident angle of the light beam can take.
  • the optical coupling efficiency without offset is at a minimum level L or less, but the optical coupling efficiency with an offset is kept at the minimum level L or more.
  • the incident end 12c of the optical fiber 12 is outside the range of the focal depth of the condensing unit 11 with respect to the optical axis direction of the condensing unit 11, and the incident angle of the light beam is
  • the optical coupling efficiency of the light beam incident on the core 12a of the optical fiber 12 is arranged at a position that maintains a predetermined level (for example, the minimum level L) or more within a possible range. For this reason, even when the angular deviation of the light beam occurs, high optical coupling efficiency can be obtained, and the amount of change in the optical coupling efficiency when the angular deviation occurs can be reduced. That is, high optical coupling efficiency can be maintained regardless of the angular deviation.
  • the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core of the optical fiber is 0 at the incident end of the optical fiber with respect to the optical axis direction of the condensing means. It is arranged at a position where the optical coupling efficiency is higher in at least a part of the possible range of the incident angle of the light beam than the position.
  • the light receiving device has the same configuration as the light receiving device 1 according to the first embodiment described above (see FIG. 1), the same reference numerals are given and description thereof is omitted.
  • the position of the incident end 12c of the optical fiber 12, that is, the value of the offset amount x shown in FIG. 2 is calculated based on the relationship between the angle deviation amount ⁇ and the optical coupling efficiency.
  • the offset amount x is the amount of movement when the optical fiber 12 is shifted in the optical axis direction with reference to the focal point, as shown in FIG.
  • the offset amount x when the optical fiber 12 moves away from the light collecting means 11 is set to a positive value.
  • the offset amount x when the optical fiber 12 moves so as to approach the condensing means 11 is set to a negative value. Note that the sign of the offset amount x may be set arbitrarily.
  • FIG. 4 shows a characteristic graph showing the relationship between the angle deviation amount ⁇ and the optical coupling efficiency.
  • the minimum level of optical coupling efficiency necessary for accurate signal reception is indicated by a one-dot chain line, and levels L1 and L2 determined when the receiving device 1 belongs to different communication systems are shown. Yes. Further, in FIG. 4, the limit value ⁇ max of the range that the incident angle of the light beam can take is indicated by a two-dot chain line.
  • the offset amount x is desirably 2.0 mm, and when the minimum level of optical coupling efficiency is L2, the offset amount x is 1. 0.0 mm is desirable.
  • the optical beam direction of the light collecting unit is greater than the position where the optical coupling efficiency is maximum when the incident angle of the light beam incident on the core of the optical fiber is 0 with respect to the optical axis direction of the condensing unit.
  • the incident end of the optical fiber is arranged at a position where the fluctuation amount of the optical coupling efficiency becomes small within the range where the incident angle can be taken.
  • the light receiving device has the same configuration as the light receiving device 1 according to the first and second embodiments described above (see FIG. 1), the same reference numerals are given and description thereof is omitted.
  • the position of the incident end 12c of the optical fiber 12, that is, the value of the offset amount x shown in FIG. 2 is calculated based on the relationship between the angle deviation amount ⁇ and the variation amount of the optical coupling efficiency.
  • FIG. 5 shows an example of a characteristic graph showing the fluctuation amount of the optical coupling efficiency due to the angle shift.
  • the incident end 12c of the optical fiber 12 is disposed at an outer position. Specifically, with respect to the optical axis direction of the condensing means 11, the light beam is more than the position (focal point) at which the optical coupling efficiency becomes maximum when the incident angle of the light beam incident on the core 12a of the optical fiber 12 is zero.
  • the incident end 12c of the optical fiber 12 is disposed at a position where the fluctuation amount of the optical coupling efficiency becomes small within a range that the incident angle can take.
  • the space optical communication apparatus is a communication apparatus that performs space optical communication by transmitting and receiving a substantially plane wave light beam to and from a mobile communication apparatus that is a communication partner. As shown in FIG.
  • the optical space communication apparatus 100 includes a coarse capture tracking mechanism (CPM: Coarse Pointing Mechanism) 2, an optical antenna (Optical Antenna) 3, a fine capture tracking mechanism (FPM) 4, a beam.
  • CPM Coarse Pointing Mechanism
  • FPM fine capture tracking mechanism
  • a splitter Beam Splitter
  • CAS coarse acquisition and tracking sensor
  • FPS fine acquisition and tracking sensor
  • controller 8 a light receiving device 1 'are provided.
  • the coarse acquisition and tracking mechanism 2 is a mechanism for acquiring and tracking a communication partner based on a light beam (dotted line in the figure) transmitted by the communication partner, and is used together with the coarse acquisition and tracking sensor 6.
  • the coarse capturing and tracking mechanism 2 includes an opening (not shown) through which the light beam is incident, a biaxial gimbal (Gimbal) that drives the opening in a predetermined direction, and a light beam that is incident from the opening. And a mirror that reflects toward the screen.
  • a part of the light beam incident on the coarse acquisition and tracking mechanism 2 is guided to the coarse acquisition and tracking sensor 6 through the optical antenna 3, the fine acquisition and tracking mechanism 4, and the beam splitter 5 (51).
  • the coarse acquisition and tracking sensor 6 detects the position of the communication partner and the distance from the communication partner.
  • the coarse acquisition tracking mechanism 2 performs a process of adjusting the position and angle with the communication partner based on a control signal (broken line in the figure) generated by the control unit 8 based on the detection result of the coarse acquisition tracking sensor 6. . By this processing, the light beam is roughly captured and tracked.
  • the coarse acquisition and tracking mechanism 2 may further include a rotation angle sensor such as a resolver that detects the attitude of the biaxial gimbal, and may control the attitude of the biaxial gimbal by the output of those sensors.
  • a rotation angle sensor such as a resolver that detects the attitude of the biaxial gimbal, and may control the attitude of the biaxial gimbal by the output of those sensors.
  • the optical antenna 3 reduces the light beam emitted from the coarse capture and tracking mechanism 2 to a predetermined size.
  • the optical antenna 3 is an optical system that guides the reduced light beam to the fine capture and tracking mechanism 4.
  • the optical antenna 3 is configured by combining a lens, a mirror, and the like, for example.
  • the fine capture and tracking mechanism 4 is a mechanism that captures and tracks the light beam emitted by the communication partner, and is used together with the fine capture and tracking sensor 7.
  • the fine capturing and tracking mechanism 4 includes a mirror, a holding unit that holds the mirror, and an electromagnetic driving unit that drives the mirror, which are not shown.
  • the mirror reflects the incident light beam.
  • the holding unit is configured by a resilient member such as a spring, for example.
  • the electromagnetic drive unit is configured by various actuators such as a VCM (Voice Coil Motor), a piezoelectric element, a servo motor, and a linear motor.
  • the fine capture tracking sensor 7 detects the incident angle of the light beam incident on the light receiving device 1 ′.
  • the fine capture tracking mechanism 4 efficiently introduces the light beam emitted by the communication partner into the light receiving device 1 ′ based on the control signal generated by the control unit 8 based on the detection result of the fine capture tracking sensor 7.
  • a process for adjusting the position and angle is performed.
  • the fine acquisition and tracking mechanism 4 adjusts the incident angle of the light beam incident on the light receiving device 1 ′ by driving the mirror by the electromagnetic driving unit and changing the tilt of the mirror.
  • the fine capture and tracking mechanism 4 may further include an angle sensor such as an overcurrent sensor or an optical sensor that measures the tilt of the mirror. In this case, the angle of the mirror is controlled based on the output of the angle sensor.
  • an angle sensor such as an overcurrent sensor or an optical sensor that measures the tilt of the mirror. In this case, the angle of the mirror is controlled based on the output of the angle sensor.
  • the beam splitter 5 is an optical component in which two right angle prisms are bonded together and a dielectric multilayer film or a metal film is applied to the joint surface.
  • the beam splitter 5 reflects a part of the incident light beam and transmits a part thereof.
  • a beam splitter in which two right-angle prisms are bonded together is adopted.
  • the present invention is not limited to this.
  • a plate-type beam splitter may be adopted.
  • the optical space communication apparatus 100 includes a beam splitter 51 and a beam splitter 52 as the beam splitter 5.
  • the beam splitter 51 branches the light beam that has passed through the fine capture and tracking mechanism 4 into a light beam that travels toward the coarse capture and tracking sensor 6 and a light beam that travels toward the light receiving device 1.
  • the beam splitter 52 branches the light beam that has passed through the fine capture and tracking mechanism 4 to the fine capture and tracking sensor 7 and the light receiving device 1 '.
  • the coarse acquisition and tracking sensor 6 is a position sensor that detects the position of the communication partner based on the received light beam.
  • the coarse acquisition and tracking sensor 6 detects the posture information of the communication partner based on the position of the light beam in the plane irradiated on the receiving surface.
  • the attitude information of the communication partner detected by the coarse acquisition and tracking sensor 6 is transmitted to the control unit 8.
  • a quadrant PD (Photodiode) sensor, a PD sensor array, or the like can be employed as the coarse acquisition tracking sensor 6.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the fine capture tracking sensor 7 detects the incident angle of the light beam incident on the light receiving device 1 ′ based on the received light beam. Information on the incident angle of the light beam detected by the fine capture tracking sensor 7 is transmitted to the control unit 8.
  • the fine capture tracking sensor 7 for example, a quadrant PD sensor, a PD sensor array, a CMOS image sensor, a CCD image sensor, or the like can be used in the same manner as the coarse capture tracking sensor 6.
  • the control unit 8 generates a control signal for causing the space optical communication apparatus 100 to perform space optical communication and a control signal for performing acquisition and tracking processing. For example, the control unit 8 generates a control signal for driving the biaxial gimbal of the coarse acquisition tracking mechanism 2 based on the posture information detected by the coarse acquisition tracking sensor 6 and the resolver of the coarse acquisition tracking mechanism 2 and also fine acquisition. A control signal for driving the VCM of the tracking sensor 7 is generated.
  • the light receiving device 1 receives the light beam emitted by the communication partner and performs optical space communication (reception of transmission information) in the same manner as the light receiving device 1 according to the first to third embodiments described above.
  • the light receiving device 1 ′ includes a condensing unit 11, an optical fiber 12, a photoelectric conversion element 13, and a housing 14 that houses these components.
  • the photoelectric conversion element 13 is an element that converts a light beam into an electrical signal.
  • a photodiode can be used as the photoelectric conversion element 13.
  • the photoelectric conversion element 13 outputs an electrical signal having an output value corresponding to the amount of light beam guided by the optical fiber 12.
  • the condensing unit 11 condenses the incident substantially plane wave light beam.
  • the optical fiber 12 guides the light beam condensed by the condensing unit 11.
  • the photoelectric conversion element 13 converts transmission information included in the light beam guided by the optical fiber 12 into an electrical signal.
  • the incident end 12 c of the optical fiber 12 has an offset as in the light receiving device 1 described above.
  • the position of the incident end 12c of the optical fiber 12 is defined based on the possible range of the incident angle. Therefore, in the light receiving device 1 ′, even when the angle deviation of the light beam occurs due to the control error of the control means, the decrease in the optical coupling efficiency is suppressed and the optical coupling efficiency is kept high.
  • the optical beam and the control unit are used to regulate the light beam incident on the light receiving unit 1 ′.
  • the control unit When the above control error occurs, the light beam may enter the light receiving device 1 ′ in an oblique direction. Therefore, in the light receiving device 1 ′, the incident end 12 c of the optical fiber 12 is disposed outside the range of the focal depth of the light collecting unit 11. That is, the incident end 12c of the optical fiber 12 is disposed at a position calculated based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing unit 11 controlled by the control unit. Thereby, even if the angle deviation of a light beam arises, the fluctuation
  • the condensing unit 11 controlled by the control unit that controls the incident angle of the light beam incident on the light receiving device 1 ′.
  • the position of the incident end 12c of the optical fiber 12 is defined based on the possible range of the incident angle of the light beam with respect to the optical axis. Specifically, with respect to the optical axis direction of the condensing means 11, the incident angle of the light beam is greater than the position where the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core 12a of the optical fiber 12 is zero.
  • the incident end 12c of the optical fiber 12 is disposed at a position where the optical coupling efficiency is high in at least a part of the possible range.
  • the offset amount x can be calculated based on the fluctuation amount of the optical coupling efficiency, the control accuracy of the coarse acquisition tracking system, the control accuracy of the fine acquisition tracking system, and the like.
  • the quantity x is preferably 2 mm.
  • the offset amount x is 1 mm. Is desirable.
  • the space optical communication apparatus has the same configuration as that of the space optical communication apparatus 100 (see FIG. 6) described above, and the same reference numerals are given and description thereof is omitted.
  • the incident end 12 c of the optical fiber 12 is arranged at a position having an offset from the focal point in the optical axis direction.
  • the offset amount x can be calculated based on the relationship between the received light power or the error rate of the communication system and the angular deviation. For example, as shown in FIG. 9, when the optical coupling efficiency allowed by the communication system is high and the minimum level is L81 or more, the offset amount x is desirably 2 mm. When the minimum level required for the optical coupling efficiency is L82 or more, the offset amount x may be 1 mm.
  • the optical space communication apparatus 100 of this embodiment receives the light beam by the rough acquisition tracking mechanism 2 and is incident on the optical antenna 3, the optical space communication apparatus 100 drives the optical antenna 3 with a biaxial gimbal.
  • the moving body may be captured and tracked, and the light beam may be guided to the fine capture and tracking mechanism 4.
  • the coarse acquisition tracking sensor 6 may be placed not at the fine acquisition tracking mechanism 4 but at the position where the light beam immediately after the coarse acquisition tracking mechanism 2 is separated by the beam splitter 5.
  • the present invention is not limited to this.
  • the present invention may be applied to communication between optical space communication devices 100 that are attached to a fixed structure such as an outdoor building but may vibrate due to wind or the like.
  • the characteristic graph demonstrated in the said embodiment was calculated
  • Wavelength of light beam 1.55 ⁇ m Diameter of the core 12a of the optical fiber 12: 30 ⁇ m
  • Focal length 56mm
  • Rayleigh length 0.46mm
  • the Rayleigh length is a depth of focus when incident light is regarded as a Gaussian beam.
  • a light receiving device for receiving a substantially plane wave light beam, Condensing means for condensing the received light beam; An optical fiber for entering the light beam collected by the light collecting means, The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken.
  • a light receiving device in which an incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
  • Appendix 4 The light receiving device according to any one of appendices 1 to 3, and Control means for controlling the incident angle of the light beam incident on the light receiving device; and An optical space communication apparatus in which the position of the incident end of the optical fiber is defined based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing means controlled by the control means.
  • Appendix 5 The optical space communication apparatus according to appendix 4, wherein a position of an incident end of the optical fiber is defined based on the optical coupling efficiency allowed by a communication system that transmits and receives the light beam or a variation amount of the optical coupling efficiency.
  • An optical space communication apparatus comprising: a light collecting unit that collects a substantially plane wave light beam; and an optical fiber that receives the light beam collected by the light collecting unit; and a light receiving device that receives the light beam.
  • a light collecting unit that collects a substantially plane wave light beam
  • an optical fiber that receives the light beam collected by the light collecting unit
  • a light receiving device that receives the light beam.
  • Condensing means 12 Optical fiber 12a Core 12b Cladding 12c Incident end 13 of optical fiber Photoelectric conversion element 14 Housing 2 Coarse capture tracking mechanism (CPM) 3 Optical antenna 4 Fine capture and tracking mechanism (FPM) 5, 51, 52 Beam splitter 6 Coarse acquisition tracking sensor (CAS) 7 Fine capture and tracking sensor (FPS) 8 Control unit 100 Optical space communication device x Offset amount ⁇ Angle deviation amount

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

[Problem] To provide a light receiving device, an optical space communication device, and an optical space communication method whereby the incidence of communication errors due to angle misalignment of an incident light beam are suppressed without increasing the size of an optical system, even when a light beam sent from a moving body is incident while being acquired and tracked. [Solution] A light receiving device (1) has a light condensing means (11) for condensing a received substantially plane-wave light beam, and an optical fiber (12) on which the light beam condensed by the light condensing means (11) is incident, and an incidence end (12c) of the optical fiber (12) is disposed in a position where the optical coupling efficiency of the light beam incident on a core (12a) of the optical fiber (12) is kept equal to or higher than a predetermined level in an allowable range for the incidence angle of the light beam and outside the range of the depth of focus of the light condensing means (11) in relation to the optical axis direction of the light condensing means (11).

Description

受光装置、光空間通信装置及び光空間通信方法Light receiving device, optical space communication device, and optical space communication method
 本発明は、受光装置、光空間通信装置及び光空間通信方法に関する。 The present invention relates to a light receiving device, an optical space communication device, and an optical space communication method.
 衛星や航空機等の移動体に搭載される観測機器で取得された情報は、何らかの情報伝達手段を用いて、例えば地上等に伝達される。近年、観測機器は、高性能化しており、取得される情報量が多くなっている。このため、上述の情報伝達手段についても、電波通信に代えて、より高速な通信が可能な光空間通信を用いることが提唱されている。2006年には、光衛星通信実験衛星「きらり」が衛星間の光空間通信に世界で初めて成功している。光空間通信には、高速性に加えて高いビーム指向性がもたらす高秘匿性、回線間の低干渉性などの長所がある。そのため、光空間通信は、衛星から地上への情報伝達、航空機から地上への情報伝達、及び衛星から航空機・船舶・車両などへの情報伝達等の大容量の情報伝達手段として大きな役割を担うことが期待されている。 Information acquired by an observation device mounted on a mobile object such as a satellite or an aircraft is transmitted to, for example, the ground using some information transmission means. In recent years, the performance of observation equipment has increased, and the amount of information acquired has increased. For this reason, it has been proposed to use optical space communication capable of higher-speed communication instead of radio wave communication for the above-described information transmission means. In 2006, the optical satellite communication experimental satellite "Kirari" succeeded in the world for the first time in the space optical communication between satellites. In addition to high speed, optical space communication has advantages such as high secrecy due to high beam directivity and low interference between lines. Therefore, optical space communication plays a major role as a large-capacity information transmission means such as information transmission from satellite to ground, information transmission from aircraft to ground, and information transmission from satellite to aircraft, ships, vehicles, etc. Is expected.
 ところが、光空間通信には幾つかの課題も残されている。移動体から送出される光ビームを受信する場合には、受信した略平面波の光ビームを光ファイバに確実に集光するために、光ビームを受光する光アンテナを駆動して光ビームを捕捉追尾した状態を高精度に維持する必要がある。この場合、例えば、移動体の移動、航空機等の飛行中の姿勢変動、近傍の乱流、及び大気ゆらぎ等が捕捉追尾を妨げる要因となる。他にも、アンテナの指向誤差、光ビームを光ファイバに入射させる精捕捉追尾機構(FPM:Fine Pointing Mechanism)の制御誤差等が捕捉追尾を妨げる要因となる。これらの要因により、入射した光ビームのビーム径中心と、光ファイバのコアの中心との間にずれが発生し、光結合効率が変動(低下)する。光結合効率とは、光ビームのうち光ファイバに入射される光ビームの割合である。光結合効率が低下すると、通信エラーが発生する頻度が高くなる。 However, some problems remain in optical space communications. When receiving a light beam transmitted from a moving body, the optical antenna that receives the light beam is driven to capture and track the light beam in order to reliably collect the received substantially plane wave light beam on the optical fiber. It is necessary to maintain this state with high accuracy. In this case, for example, movement of the moving body, posture change during flight of the aircraft, turbulent flow in the vicinity, atmospheric fluctuation, and the like are factors that hinder acquisition and tracking. In addition, the antenna directivity error, the control error of a fine capture tracking mechanism (FPM: Fine Pointing Mechanism) that causes the light beam to enter the optical fiber, and the like are factors that hinder capture tracking. Due to these factors, a deviation occurs between the center of the diameter of the incident light beam and the center of the core of the optical fiber, and the optical coupling efficiency fluctuates (decreases). The optical coupling efficiency is the ratio of the light beam incident on the optical fiber out of the light beam. When the optical coupling efficiency decreases, the frequency of occurrence of communication errors increases.
 光結合効率の変動を抑える技術には、機構的な制御によるものと光学的な構成によるものがある。例えば、下記特許文献1には、光結合効率の変動を機構的な制御により抑制する光学システムが記載されている。この特許文献1に記載の光学システムは、入射光の入射条件により、光軸に直交する方向の位置ずれと光軸方向のピント位置ずれを起こす可能性がある場合にも、それぞれのずれを迅速に解消して安定した光結合状態を維持している。 ∙ There are two types of technologies for suppressing fluctuations in optical coupling efficiency: mechanical control and optical configuration. For example, Patent Document 1 below describes an optical system that suppresses fluctuations in optical coupling efficiency by mechanical control. In the optical system described in Patent Document 1, even when there is a possibility of causing a positional deviation in a direction perpendicular to the optical axis and a focus positional deviation in the optical axis direction depending on the incident condition of incident light, each deviation is quickly corrected. The stable optical coupling state is maintained.
 また、特許文献2には、光学的な構成により光結合効率の変動を抑える空間光受信装置が記載されている。この特許文献2に記載の空間光受信装置は、光空間伝搬信号を受光装置に入射する際に、ある範囲の入射方向の変動があった場合でも入射光を一定の方向に導く偏向装置を備えている。該偏向装置から出射した光は、集光装置で集光され、光ファイバに入射し、光信号として光信号装置に導かれる。 Also, Patent Document 2 describes a spatial light receiver that suppresses fluctuations in optical coupling efficiency by an optical configuration. The spatial light receiving device described in Patent Document 2 includes a deflecting device that guides incident light in a certain direction even when there is a change in the incident direction within a certain range when the spatial light propagation signal is incident on the light receiving device. ing. The light emitted from the deflecting device is collected by the condensing device, enters the optical fiber, and is guided to the optical signal device as an optical signal.
 また、特許文献3には、光伝送モジュールにおいて、熱膨張による光パワーの変動を抑え、光パワーの変動を防止する光伝送モジュールが記載されている。この特許文献3に記載の光伝送モジュールは、レーザ光を放射するレーザダイオードと、レーザ光を集光するためのレンズと、レンズから出射されたレーザ光を入射するファイバコアを有するファイバフェルールを備える。さらに、この特許文献3に記載の光伝送モジュールは、レンズ自身、レンズの前、又はレンズの後に設けられた絞りとを備える。 Patent Document 3 describes an optical transmission module that suppresses fluctuations in optical power and prevents fluctuations in optical power in an optical transmission module. The optical transmission module described in Patent Document 3 includes a laser diode that emits laser light, a lens that collects the laser light, and a fiber ferrule that includes a fiber core that receives the laser light emitted from the lens. . Further, the optical transmission module described in Patent Document 3 includes the lens itself, a stop provided in front of the lens, or after the lens.
 また、特許文献4には、半導体レーザと集光レンズと光ファイバとが一体化されてなる光結合モジュールが記載されている。この光結合モジュールでは、半導体レーザから出射され集光レンズで集光されたレーザビームのビームウエスト位置に対して、光ファイバの入射端面を、レーザビームの進行方向の前方側面又は後方側にずらしている。 Patent Document 4 describes an optical coupling module in which a semiconductor laser, a condenser lens, and an optical fiber are integrated. In this optical coupling module, the incident end surface of the optical fiber is shifted to the front side surface or the rear side in the laser beam traveling direction with respect to the beam waist position of the laser beam emitted from the semiconductor laser and collected by the condenser lens. Yes.
特開2007-079387号公報Japanese Patent Laid-Open No. 2007-079387 特開2008-233179号公報JP 2008-233179A 特許第3950779号公報Japanese Patent No. 39507779 特開平09-318851号公報JP 09-318851 A
 特許文献1に記載の光学システムでは、例えばガルバノミラーを用いて光軸に直交する方向のビーム径中心とファイバコア径中心との位置ずれを解消するトラッキングフィードバック制御が行われる。さらに、特許文献1に記載の光学システムでは、光軸方向のピント位置ずれを解消するフォーカスフィードバック制御が行われる。光軸に直交する方向のビーム径中心とファイバコア径中心との位置ずれはトラッキングエラーと呼ばれ、光軸方向のピント位置ずれはフォーカスエラーと呼ばれる。このとき、フォーカスフィードバック制御では、トラッキングエラーがあってもピント位置検出手段によって検出精度に影響をあたえることなくフォーカスエラーを検出する。そしてピント位置検出手段によって、フォーカスエラーが焦点深度の範囲に収め、最適なフォーカス状態を維持することができる。しかし、移動体を捕捉追尾しながら大気中を通過する入射光を入射する場合には、入射光の角度変動が激しいため、ガルバノミラーを用いてトラッキングフィードバック制御を行っても、トラッキングエラーを抑制するのが困難になる。光モジュールの加工組立精度を高めても受光パワー変動として問題にならないレベルまでトラッキングエラーを解消することは困難であり、フォーカスエラーが解消した状態でも受光パワーの変動は残存する。 In the optical system described in Patent Document 1, tracking feedback control is performed to eliminate a positional deviation between the beam diameter center and the fiber core diameter center in a direction orthogonal to the optical axis using, for example, a galvano mirror. Furthermore, in the optical system described in Patent Document 1, focus feedback control for eliminating the focus position shift in the optical axis direction is performed. The positional deviation between the center of the beam diameter in the direction perpendicular to the optical axis and the center of the fiber core diameter is called a tracking error, and the focal positional deviation in the optical axis direction is called a focus error. At this time, in the focus feedback control, even if there is a tracking error, the focus error is detected by the focus position detection means without affecting the detection accuracy. The focus position detection means can keep the focus error within the depth of focus range and maintain an optimal focus state. However, when incident light that passes through the atmosphere while capturing and tracking a moving object is incident, the angle variation of the incident light is so severe that tracking errors are suppressed even if tracking feedback control is performed using a galvanometer mirror. It becomes difficult. Even if the processing and assembly accuracy of the optical module is increased, it is difficult to eliminate the tracking error to a level that does not cause a problem as the received light power fluctuation, and the fluctuation in the received light power remains even when the focus error is eliminated.
 また、例えば、特許文献2に記載の空間光受光装置では、偏向装置を通して光ファイバに光を入射することにより入射方向の異なる入射光を予め決められた方向の光に変換することができる。このため、入射光の入射方向が変化しても受光した光の利用効率を高めることができる。しかし、光空間通信装置に偏向装置を適用すると、光学系が大型化、複雑化してしまう。 Also, for example, in the spatial light receiving device described in Patent Document 2, incident light having a different incident direction can be converted into light in a predetermined direction by making light incident on the optical fiber through the deflecting device. For this reason, even if the incident direction of incident light changes, the utilization efficiency of the received light can be improved. However, when a deflecting device is applied to an optical space communication device, the optical system becomes large and complicated.
 また、通常の光モジュールの加工組立精度であれば、固定されたレーザダイオードからの出射光が通過する絞りの中心とレンズの中心とのずれを、問題となる許容値より小さい値に十分収めることができる。このため、例えば、特許文献3に記載の光伝送モジュールでは、光結合効率の変動を抑えることができる。一方、光源が固定されていない場合、例えば、移動体から送出され大気中に光を伝搬する光を受信する場合を考える。この場合には、捕捉追尾しながら入射する光ビームの中心とファイバに集光するレンズの中心とのずれは、光伝送モジュールで達成できる絞りの中心とレンズの中心とのずれよりもはるかに大きくなる。このため、移動体から送出された光を受信する場合には、この光伝送モジュールのように絞りを用いても、受光パワーは大きく変動する。 If the processing accuracy of the normal optical module is sufficient, the deviation between the center of the aperture through which the light emitted from the fixed laser diode passes and the center of the lens should be sufficiently smaller than the allowable value in question. Can do. For this reason, for example, in the optical transmission module described in Patent Document 3, fluctuations in optical coupling efficiency can be suppressed. On the other hand, when the light source is not fixed, for example, consider the case of receiving light transmitted from a moving body and propagating light into the atmosphere. In this case, the deviation between the center of the incident light beam while capturing and tracking and the center of the lens focused on the fiber is much larger than the deviation between the center of the aperture and the center of the lens that can be achieved with the optical transmission module. Become. For this reason, when receiving the light transmitted from the moving body, the received light power fluctuates greatly even if a diaphragm is used as in this optical transmission module.
 また、特許文献4記載の光結合モジュールでは、半導体レーザの動作電流を変動させることなく光ファイバ出力を例えば1mW~6mW程度に制御することができる。この光結合モジュールは、レーザビームを適正なパワーで受光するために、光ファイバの入射端面を、レーザビームウエスト位置に対してビームの進行方向の前方側又は後方側にシフトさせる。他にも、この光結合モジュールはレーザビームを適正なパワーで受光するために、光ファイバのコアの中心軸をレーザビームの伝播方向に対して傾斜させる。これに関連して、特許文献4には、適正なパワーで受光するために、すなわち、受光パワーを抑制するために、半導体レーザから出射されたレーザビームに対する光ファイバの位置ずれ、角度ずれの影響を計算したデータが開示されている。しかしながら、これらのデータから、移動体から入射する光の入射角度の変動による影響及び対応策を勘案することはできない。例えば、移動体から出射された光ビームであること、大気ゆらぎが存在することに伴うチルト角の変動範囲、光ファイバの配置位置、及び光結合効率の変動のいずれかの相関関係に関するデータについては特許文献4には、一切開示されていない。発光素子が構成要素に含まれていない光空間通信装置では、角度ずれの範囲と光結合効率の変動量とを勘案しなければ、光ファイバの位置を決めるのは困難である。 Also, in the optical coupling module described in Patent Document 4, the optical fiber output can be controlled to about 1 mW to 6 mW, for example, without changing the operating current of the semiconductor laser. This optical coupling module shifts the incident end face of the optical fiber forward or backward in the direction of travel of the beam with respect to the laser beam waist position in order to receive the laser beam with appropriate power. In addition, the optical coupling module tilts the central axis of the core of the optical fiber with respect to the propagation direction of the laser beam in order to receive the laser beam with an appropriate power. In this regard, Patent Document 4 describes the effects of optical fiber positional deviation and angular deviation with respect to a laser beam emitted from a semiconductor laser in order to receive light with an appropriate power, that is, to suppress the received light power. The calculated data is disclosed. However, from these data, it is impossible to take into account the influence and countermeasures due to the change in the incident angle of the light incident from the moving body. For example, regarding data relating to any of the correlations among the light beam emitted from the moving object, the tilt angle variation range due to the presence of atmospheric fluctuations, the position of the optical fiber, and the variation in optical coupling efficiency Patent Document 4 does not disclose anything. In an optical space communication device in which a light emitting element is not included in the constituent elements, it is difficult to determine the position of the optical fiber without taking into consideration the range of angular deviation and the amount of fluctuation in optical coupling efficiency.
 本発明では、上記事情に鑑みてなされたものであり、移動体から送信される光ビームを捕捉追尾しながら入射する場合にも、光学系を大型化することなく、通信エラーの発生を抑制することができる受光装置、光空間通信装置及び光空間通信方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and suppresses the occurrence of communication errors without increasing the size of the optical system even when a light beam transmitted from a moving body is incident while being captured and tracked. An object of the present invention is to provide a light receiving device, an optical space communication device, and an optical space communication method.
 本発明の第1の観点に係る受光装置は、
 略平面波の光ビームを受光する受光装置であって、
 受光した光ビームを集光する集光手段と、
 前記集光手段で集光された光ビームを入射する光ファイバと、を有し、
 前記集光手段の光軸方向に関して、前記集光手段の焦点深度の範囲外であって、前記光ビームの入射角度の取り得る範囲で前記光ファイバのコアに入射する前記光ビームの光結合効率が所定レベル以上を保つ位置に、前記光ファイバの入射端が配置されている。
The light-receiving device according to the first aspect of the present invention includes:
A light receiving device for receiving a substantially plane wave light beam,
Condensing means for condensing the received light beam;
An optical fiber for entering the light beam collected by the light collecting means,
The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken. The incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
 本発明の第2の観点に係る光空間通信装置は、
 上記本発明の第1の観点に係る受光装置と、
 前記受光装置に入射される光ビームの入射角度を制御する制御手段と、備え、
 前記制御手段により制御された前記集光手段の光軸に対する光ビームの入射角度の取り得る範囲に基づいて、前記光ファイバの入射端の位置が規定されている。
An optical space communication device according to a second aspect of the present invention provides:
A light receiving device according to the first aspect of the present invention;
Control means for controlling the incident angle of the light beam incident on the light receiving device; and
The position of the incident end of the optical fiber is defined based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing means controlled by the control means.
 本発明の第3の観点に係る光空間通信方法は、
 略平面波の光ビームを集光する集光手段と、前記集光手段で集光された光ビームを入射する光ファイバとを有し、前記光ビームを受光する受光装置を備えた光空間通信装置を用いた光空間通信方法において、
 前記集光手段の光軸方向に関して、前記集光手段の焦点深度の範囲外であって、前記光ビームの入射角度の取り得る範囲で前記光ファイバのコアに入射する前記光ビームの光結合効率が所定レベル以上を保つ位置に、前記光ファイバの入射端を配置している。
An optical space communication method according to a third aspect of the present invention includes:
An optical space communication apparatus comprising: a light collecting unit that collects a substantially plane wave light beam; and an optical fiber that receives the light beam collected by the light collecting unit; and a light receiving device that receives the light beam. In the optical space communication method using
The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken. The incident end of the optical fiber is arranged at a position that maintains a predetermined level or more.
 本発明によれば、集光手段の焦点深度の範囲外に光ファイバの入射端が配置されることにより、光ビームの角度ずれに起因する受光パワーの変動量を小さくすることが可能になる。このため、移動体から送信される光ビームを捕捉追尾しながら入射する場合にも、光学系を大型化することなく、入射する光ビームの角度ずれによる通信エラーの発生を抑制することができる。 According to the present invention, since the incident end of the optical fiber is arranged outside the range of the focal depth of the light converging means, it is possible to reduce the amount of fluctuation in the received light power caused by the angular deviation of the light beam. For this reason, even when the light beam transmitted from the moving body is incident while being captured and tracked, it is possible to suppress the occurrence of a communication error due to the angular deviation of the incident light beam without increasing the size of the optical system.
本発明の第1の実施の形態に係る受光装置の基本構成を示す図である。It is a figure which shows the basic composition of the light-receiving device which concerns on the 1st Embodiment of this invention. 角度ずれ量θとオフセット量xを示す説明図である。It is explanatory drawing which shows angle deviation | shift amount (theta) and offset amount x. 角度ずれ量θと光結合効率との関係を示す特性グラフである。It is a characteristic graph which shows the relationship between angle shift | offset | difference amount (theta) and optical coupling efficiency. 本発明の第2の実施の形態に係る受光装置における角度ずれ量θと光結合効率との関係を示す特性グラフである。It is a characteristic graph which shows the relationship between angle shift | offset | difference amount (theta) and optical coupling efficiency in the light-receiving device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る受光装置における角度ずれ量θと、角度ずれ量θに対する光結合効率の変動量を示す特性グラフである。It is a characteristic graph which shows the variation | change_quantity of optical coupling efficiency with respect to angle deviation | shift amount (theta) in the light-receiving device which concerns on the 3rd Embodiment of this invention, and angle deviation | shift amount (theta). 本発明の第4の実施の形態に係る光空間通信装置の基本構成を示す図である。It is a figure which shows the basic composition of the optical space communication apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る受光装置の基本構成を示す図である。It is a figure which shows the basic composition of the light-receiving device which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る受光装置における角度ずれ量θと光結合効率との関係を示す特性グラフである。It is a characteristic graph which shows the relationship between angle shift | offset | difference amount (theta) and optical coupling efficiency in the light-receiving device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る受光装置における角度ずれ量θと光結合効率との関係を示す特性グラフである。It is a characteristic graph which shows the relationship between angle shift | offset | difference amount (theta) and optical coupling efficiency in the light-receiving device which concerns on the 5th Embodiment of this invention.
 以下、本発明を実施するための形態について図面を参照して詳細に説明する。なお、図中、同一または同等の部分には同一の符号を付す。
[第1の実施の形態]
 まず、図1を参照して本発明の第1の実施の形態に係る受光装置について説明する。図1は、本実施の形態に係る受光装置の基本構成を示す図である。本実施の形態に係る受光装置は、通信相手が出射した光ビームを受光する受光装置である。この受光装置1は、図1に示すように、集光手段11と光ファイバ12とを備える。これら集光手段11及び光ファイバ12は、平行光束の光ビーム(略平面波の光ビーム)が光軸に平行に入射するように位置決めされている。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent parts are denoted by the same reference numerals.
[First Embodiment]
First, a light receiving device according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a basic configuration of a light receiving device according to the present embodiment. The light receiving device according to the present embodiment is a light receiving device that receives a light beam emitted from a communication partner. As shown in FIG. 1, the light receiving device 1 includes a condensing unit 11 and an optical fiber 12. The condensing unit 11 and the optical fiber 12 are positioned so that a light beam of a parallel light beam (substantially plane wave light beam) is incident in parallel to the optical axis.
 集光手段11は、受光した光ビームを集光する。図1では、左側から集光手段11の光軸に沿って入射した光ビームが、集光手段11内で屈折し、集光手段11の右側で集光する様子が点線で示されている。光ファイバ12には、集光手段11により集光された光ビームが入射され導光される。集光手段11には、例えば、凸レンズや凹面ミラーが用いられる。なお、本実施の形態では、集光手段11として凸レンズを用いた場合について説明する。 The condensing means 11 condenses the received light beam. In FIG. 1, a state in which a light beam incident along the optical axis of the light collecting unit 11 from the left side is refracted in the light collecting unit 11 and condensed on the right side of the light collecting unit 11 is indicated by a dotted line. A light beam condensed by the condensing means 11 is incident on and guided to the optical fiber 12. For the condensing means 11, for example, a convex lens or a concave mirror is used. In the present embodiment, a case where a convex lens is used as the light collecting means 11 will be described.
 平行光束の光ビームが、集光手段11で屈折して、その光軸上で集光する点が焦点となる。ある物点から出た光が集光手段11を経て焦点に結像する場合、集光手段11の光軸方向には、焦点の前後に鮮明な像を結び得る状態、すなわちピントが合った状態となる範囲がある。この範囲の両限界間の距離は焦点深度と呼ばれる。 The point where the light beam of the parallel light beam is refracted by the condensing means 11 and condensed on the optical axis becomes the focal point. When light emitted from a certain object is focused on the focal point through the condensing unit 11, a state where a clear image can be formed before and after the focal point in the optical axis direction of the condensing unit 11, that is, a state in focus. There is a range. The distance between the limits of this range is called the depth of focus.
 光ファイバ12は、集光手段11から入射した光ビームを入射して伝搬させる。この光ファイバ12は、コア(core)12aと、コア12aを囲むクラッド(clad)12bとを備える。光ファイバ12では、コア12aを光ビームが伝搬する。なお、本実施の形態では、コア12aの入射端が、すなわち光ファイバ12の入射端12cである。 The optical fiber 12 receives and propagates the light beam incident from the condensing means 11. The optical fiber 12 includes a core 12a and a clad 12b surrounding the core 12a. In the optical fiber 12, the light beam propagates through the core 12a. In the present embodiment, the incident end of the core 12 a is the incident end 12 c of the optical fiber 12.
 上記の構成を有する受光装置1では、図1に示されるように、集光手段11に入射した略平面波の光ビームは、集光され、光ファイバ12の入射端12cからコア12aに入射する。光ファイバ12が集光手段11により集光された光ビームを導光する。集光手段11を通過した光ビームのうち、光ファイバ12に入射する光ビームの割合は光結合効率と呼ばれる。最大光結合効率となるときの光結合効率は0[dB]と定義される。 In the light receiving device 1 having the above configuration, as shown in FIG. 1, the substantially plane wave light beam incident on the condensing means 11 is condensed and incident on the core 12 a from the incident end 12 c of the optical fiber 12. The optical fiber 12 guides the light beam condensed by the condensing means 11. The ratio of the light beam incident on the optical fiber 12 out of the light beam that has passed through the condensing means 11 is called optical coupling efficiency. The optical coupling efficiency at the maximum optical coupling efficiency is defined as 0 [dB].
 一般的に、光結合効率は、以下の条件下において最大となる。例えば、光ビームが集光手段11に対して光軸に平行な角度で入射する場合を考える。この場合には、光ファイバ12の中心軸(コア12aの中心軸)を集光手段11の光軸と一致させるとともに、光ファイバ12の入射端12cを集光手段11の焦点と一致させることで、光結合効率が最大となる。そのため、一般的な受光装置では、光ファイバの入射端を焦点の位置に配置している。 Generally, the optical coupling efficiency is maximized under the following conditions. For example, consider a case where a light beam is incident on the light collecting means 11 at an angle parallel to the optical axis. In this case, by making the central axis of the optical fiber 12 (the central axis of the core 12a) coincide with the optical axis of the condensing means 11, the incident end 12c of the optical fiber 12 is coincident with the focal point of the condensing means 11. The optical coupling efficiency is maximized. For this reason, in a general light receiving device, the incident end of the optical fiber is arranged at the focal position.
 また、焦点深度の範囲内は、焦点とほぼ同等にピントが合った状態となるので、焦点深度の範囲内においても、光結合効率がほぼ最大となる。なお、本実施の形態においては、光結合効率が最大となる点を焦点として以下の説明を行うが、これには限定されない。 Also, since the focal depth is within the same range as the focal point, the optical coupling efficiency is almost the maximum even within the focal depth range. In the present embodiment, the following description is given focusing on the point where the optical coupling efficiency is maximized, but the present invention is not limited to this.
 ところが、集光手段11に入射する光ビームは、集光手段11の光軸に平行に入射するように集光手段11を位置決めした場合であっても、光ビームの入射方向が変動することがある。この光軸に対する斜め方向からの光ビームの入射は角度ずれと呼ばれる。図2に示すように、集光手段11の光軸に対する光ビームの入射角は角度ずれ量θとここで定義される。集光手段11の光軸と光ビームの入射角が一致し、角度ずれがない状態には、角度ずれ量θ=0[deg]となる。 However, even when the light collecting unit 11 is positioned so that the light beam incident on the light collecting unit 11 enters in parallel to the optical axis of the light collecting unit 11, the incident direction of the light beam may fluctuate. is there. The incidence of the light beam from the oblique direction with respect to the optical axis is called an angular deviation. As shown in FIG. 2, the incident angle of the light beam with respect to the optical axis of the condensing means 11 is defined here as an angle deviation amount θ. When the optical axis of the condensing means 11 and the incident angle of the light beam coincide with each other and there is no angular deviation, the angular deviation amount θ = 0 [deg].
 角度ずれによる光結合効率の変化について、図2を参照して説明する。図示されるように、集光手段11に斜め方向から光ビームが入射すると(図中、破線)、光ビームは、光ファイバ12の中心軸から外れた位置に集束する。その結果、トラッキングエラーが発生し、光結合効率の低下を引き起こし受光パワーが低下する。 The change of the optical coupling efficiency due to the angle shift will be described with reference to FIG. As shown in the figure, when a light beam is incident on the condensing means 11 from an oblique direction (broken line in the figure), the light beam is focused at a position deviating from the central axis of the optical fiber 12. As a result, a tracking error occurs, causing a reduction in optical coupling efficiency and a reduction in received light power.
 受光装置1では、光ファイバ12の入射端12cが、焦点から光軸方向(集光手段11から離れる方向)にシフトされている。より具体的には、光ファイバ12の入射端12cを、集光手段11の光軸方向に関して、集光手段11の焦点深度の範囲外であって、光ビームの入射角度の取り得る範囲で光ファイバ12のコア12aに入射する光ビームの光結合効率が所定レベル以上を保つ位置に配置されている。 In the light receiving device 1, the incident end 12c of the optical fiber 12 is shifted from the focal point in the optical axis direction (the direction away from the light collecting means 11). More specifically, the incident end 12c of the optical fiber 12 is out of the range of the focal depth of the condensing unit 11 with respect to the optical axis direction of the condensing unit 11 and is in a range where the incident angle of the light beam can be taken. It is arranged at a position where the optical coupling efficiency of the light beam incident on the core 12a of the fiber 12 maintains a predetermined level or more.
 本実施の形態に係る受光装置1、すなわち、光ファイバ12の入射端12cが焦点からオフセットされた受光装置1における、角度ずれ量θと光結合効率との関係について、図3を参照して説明する。図3には、受光装置の角度ずれと光結合効率との関係を示す特性グラフの一例が示されている。 The relationship between the angle shift amount θ and the optical coupling efficiency in the light receiving device 1 according to the present embodiment, that is, the light receiving device 1 in which the incident end 12c of the optical fiber 12 is offset from the focal point will be described with reference to FIG. To do. FIG. 3 shows an example of a characteristic graph showing the relationship between the angle shift of the light receiving device and the optical coupling efficiency.
 図3では、光ファイバの入射端を焦点からオフセットさせていない受光装置の場合(以下、オフセットなし)の角度ずれと光結合効率との関係が実線で示されている。一方、本実施の形態に係る受光装置1に相当する、光ファイバ12の入射端12cをオフセットさせた場合(以下、オフセットあり)の角度ずれと光結合効率との関係が破線で示されている。図示するように、角度ずれがない状態(角度ずれ量θ=0[deg])では、オフセットなしのときの光結合効率が高く、オフセットあり(本実施の形態の受光装置1)のときの光結合効率が低くなっている。 In FIG. 3, the solid line indicates the relationship between the angle deviation and the optical coupling efficiency in the case of a light receiving device in which the incident end of the optical fiber is not offset from the focal point (hereinafter, no offset). On the other hand, the relationship between the angle deviation and the optical coupling efficiency when the incident end 12c of the optical fiber 12 corresponding to the light receiving device 1 according to the present embodiment is offset (hereinafter referred to as offset) is indicated by a broken line. . As shown in the figure, in a state where there is no angular deviation (angle deviation amount θ = 0 [deg]), the optical coupling efficiency is high when there is no offset, and the light when there is an offset (the light receiving device 1 of the present embodiment). The coupling efficiency is low.
 角度ずれ量θの値を変化(大きく)させると、オフセットなし、オフセットありのいずれにおいても、光結合効率が低下する。このときの光結合効率の変動量(低下量)は、オフセットなし、オフセットありのそれぞれで異なる。光結合効率の変動量は、オフセットなしのときが大きく、オフセットありのときが小さい。 When the value of the angle deviation amount θ is changed (larger), the optical coupling efficiency is lowered with or without the offset. At this time, the fluctuation amount (decrease amount) of the optical coupling efficiency differs depending on whether or not there is an offset. The fluctuation amount of the optical coupling efficiency is large when there is no offset and small when there is an offset.
 換言すると、オフセットなしの場合、角度ずれがない状態(角度ずれ量θ=0[deg])では最大光結合効率となるが、角度ずれが生じることによって光結合効率が大幅に低下する。一方、オフセットありの場合、角度ずれがない状態では、光結合効率が最大光結合効率に達しないものの、角度ずれにより生じる光結合効率の低下は、ピントがあった状態(オフセットなしの場合)で角度ずれが生じた場合に比べて緩やかである。 In other words, when there is no offset, the maximum optical coupling efficiency is obtained in a state where there is no angular deviation (angle deviation amount θ = 0 [deg]), but the optical coupling efficiency is greatly reduced due to the angular deviation. On the other hand, in the case where there is an offset, the optical coupling efficiency does not reach the maximum optical coupling efficiency in the state where there is no angular deviation, but the decrease in the optical coupling efficiency caused by the angular deviation is in a state where there is focus (when there is no offset) It is more gradual than the case where the angle deviation occurs.
 図3では、信号の正確な受信に必要な光結合効率の最低レベルLが1点鎖線で示されており、光ビームの入射角度の取り得る範囲の限界値θMAXが2点鎖線で示されている。図3に示すように、光ビームの入射角度の取り得る範囲内において、オフセットありの光結合効率が、オフセットなしの光結合効率よりも高くなる領域ができる。光ビームの入射角度の取り得る範囲内において、オフセットなしの光結合効率は、最低レベルL以下となる領域があるが、オフセットありの光結合効率は、最低レベルL以上を保っている。 In FIG. 3, the minimum level L of the optical coupling efficiency necessary for accurate signal reception is indicated by a one-dot chain line, and the limit value θ MAX of the range that the incident angle of the light beam can take is indicated by the two-dot chain line. ing. As shown in FIG. 3, there is a region where the optical coupling efficiency with an offset is higher than the optical coupling efficiency without an offset within a range that the incident angle of the light beam can take. Within the possible range of the incident angle of the light beam, there is a region where the optical coupling efficiency without offset is at a minimum level L or less, but the optical coupling efficiency with an offset is kept at the minimum level L or more.
 このように、受光装置1によれば、光ファイバ12の入射端12cが、集光手段11の光軸方向に関して、集光手段11の焦点深度の範囲外であって、光ビームの入射角度の取り得る範囲で光ファイバ12のコア12aに入射する光ビームの光結合効率が所定レベル(例えば、上記最低レベルL)以上を保つ位置に配置されている。このため、光ビームの角度ずれが生じた場合であっても、高い光結合効率を得るとともに、角度ずれが生じた場合における光結合効率の変化量を低減させることができる。すなわち、角度ずれに関わらず、高い光結合効率を維持することができる。
[第2の実施の形態]
 次に、第2の実施の形態に係る受光装置について説明する。本実施の形態に係る受光装置は、光ファイバの入射端を、集光手段の光軸方向に関して、光ファイバのコアに入射する光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、光ビームの入射角度の取り得る範囲の少なくとも一部で、光結合効率が高くなる位置に配置している。
Thus, according to the light receiving device 1, the incident end 12c of the optical fiber 12 is outside the range of the focal depth of the condensing unit 11 with respect to the optical axis direction of the condensing unit 11, and the incident angle of the light beam is The optical coupling efficiency of the light beam incident on the core 12a of the optical fiber 12 is arranged at a position that maintains a predetermined level (for example, the minimum level L) or more within a possible range. For this reason, even when the angular deviation of the light beam occurs, high optical coupling efficiency can be obtained, and the amount of change in the optical coupling efficiency when the angular deviation occurs can be reduced. That is, high optical coupling efficiency can be maintained regardless of the angular deviation.
[Second Embodiment]
Next, a light receiving device according to a second embodiment will be described. In the light receiving device according to the present embodiment, the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core of the optical fiber is 0 at the incident end of the optical fiber with respect to the optical axis direction of the condensing means. It is arranged at a position where the optical coupling efficiency is higher in at least a part of the possible range of the incident angle of the light beam than the position.
 本実施の形態に係る受光装置は、上述した第1の実施の形態に係る受光装置1(図1参照)と同様の構成を有するため、同一符号を付して説明を省略する。本実施の形態では、光ファイバ12の入射端12cの位置、すなわち、図2に示されるオフセット量xの値が、角度ずれ量θと光結合効率との関係に基づいて算定される。 Since the light receiving device according to the present embodiment has the same configuration as the light receiving device 1 according to the first embodiment described above (see FIG. 1), the same reference numerals are given and description thereof is omitted. In the present embodiment, the position of the incident end 12c of the optical fiber 12, that is, the value of the offset amount x shown in FIG. 2 is calculated based on the relationship between the angle deviation amount θ and the optical coupling efficiency.
 オフセット量xとは、図2に示されるように、焦点を基準に光ファイバ12を光軸方向にシフトしたときの移動量である。光ファイバ12が集光手段11から離れるように移動したときのオフセット量xを正の値とする。一方、光ファイバ12が集光手段11に近づくように移動したときのオフセット量xを負の値とする。なお、オフセット量xの符号は任意に設定してもよい。 The offset amount x is the amount of movement when the optical fiber 12 is shifted in the optical axis direction with reference to the focal point, as shown in FIG. The offset amount x when the optical fiber 12 moves away from the light collecting means 11 is set to a positive value. On the other hand, the offset amount x when the optical fiber 12 moves so as to approach the condensing means 11 is set to a negative value. Note that the sign of the offset amount x may be set arbitrarily.
 図4には、角度ずれ量θと光結合効率との関係を示す特性グラフが示されている。図4では、オフセット量x=0mm(オフセットなし)の結果が実線で示され、オフセット量x=1mmの結果が破線で示され、オフセット量x=2mmの結果が点線で示される。 FIG. 4 shows a characteristic graph showing the relationship between the angle deviation amount θ and the optical coupling efficiency. In FIG. 4, the result of the offset amount x = 0 mm (no offset) is indicated by a solid line, the result of the offset amount x = 1 mm is indicated by a broken line, and the result of the offset amount x = 2 mm is indicated by a dotted line.
 図4に示すように、角度ずれがない状態(角度ずれ量θ=0[deg])では、オフセット量x=0のときの光結合効率が最も高く、オフセット量x=1mmのときの光結合効率が次に高く、オフセット量x=2mmのときの光結合効率が最も低い。すなわち、光結合効率とオフセット量xは反比例し、オフセット量xが大きくなるにつれて光結合効率が小さくなる。 As shown in FIG. 4, in a state where there is no angular deviation (angle deviation amount θ = 0 [deg]), the optical coupling efficiency is highest when the offset amount x = 0, and optical coupling when the offset amount x = 1 mm. The efficiency is the next highest, and the optical coupling efficiency is the lowest when the offset amount x = 2 mm. That is, the optical coupling efficiency and the offset amount x are inversely proportional, and the optical coupling efficiency decreases as the offset amount x increases.
 角度ずれ量θの値が変化(大きく)すると、オフセット量x=0mm,1mm,2mmのいずれにおいても、光結合効率が低下する。このときの光結合効率の変動量(低下量)は、オフセット量x=0mm,1mm,2mmのそれぞれで異なる。光結合効率の変動量は、オフセット量x=0mmのときが最も大きく、オフセット量x=1mmのときが次に大きく、オフセット量x=2mmのときが最も低い。 When the value of the angle deviation amount θ changes (increases), the optical coupling efficiency decreases in any of the offset amounts x = 0 mm, 1 mm, and 2 mm. The fluctuation amount (decrease amount) of the optical coupling efficiency at this time is different for each of the offset amounts x = 0 mm, 1 mm, and 2 mm. The fluctuation amount of the optical coupling efficiency is the largest when the offset amount x = 0 mm, the next largest when the offset amount x = 1 mm, and the smallest when the offset amount x = 2 mm.
 換言すると、オフセットなしの場合(オフセット量x=0mmの場合)、角度ずれがない状態(角度ずれ量θ=0[deg])では最大光結合効率となるが、角度ずれが生じることによって光結合効率が大幅に低下する。一方、オフセットありの場合(オフセット量x=1mm,2mmの場合)、角度ずれがない状態(角度ずれ量θ=0[deg])では、光結合効率が最大光結合効率に達しない。しかし、角度ずれにより生じる光結合効率の低下は、ピントがあった状態(オフセット量x=0mmの場合)で角度ずれが生じた場合に比べて緩やかである。これにより、上述したとおり、角度ずれが生じた場合(角度ずれ量θの値が大きくなった場合)には、光軸方向に関して、光ファイバ12の入射端12cの位置にオフセットを持たせたときの光結合効率が、オフセットを持たせなかったときの光結合効率よりも高くなる領域ができる。 In other words, when there is no offset (when the offset amount x = 0 mm), the maximum optical coupling efficiency is obtained when there is no angular deviation (angular deviation θ = 0 [deg]), but optical coupling occurs due to the angular deviation. Efficiency is greatly reduced. On the other hand, when there is an offset (when the offset amount x = 1 mm and 2 mm), the optical coupling efficiency does not reach the maximum optical coupling efficiency when there is no angular deviation (angular deviation amount θ = 0 [deg]). However, the decrease in optical coupling efficiency caused by the angle shift is more gradual than when the angle shift occurs in a focused state (when the offset amount x = 0 mm). As a result, as described above, when an angle deviation occurs (when the value of the angle deviation amount θ increases), when the position of the incident end 12c of the optical fiber 12 is offset with respect to the optical axis direction. The optical coupling efficiency is higher than the optical coupling efficiency when no offset is provided.
 図4では、信号の正確な受信に必要な光結合効率の最低レベルが1点鎖線で示されており、受信装置1がそれぞれ異なる通信システムに属する場合に定められるレベルL1、L2が示されている。また、図4では、光ビームの入射角度の取り得る範囲の限界値θmaxが2点鎖線で示されている。 In FIG. 4, the minimum level of optical coupling efficiency necessary for accurate signal reception is indicated by a one-dot chain line, and levels L1 and L2 determined when the receiving device 1 belongs to different communication systems are shown. Yes. Further, in FIG. 4, the limit value θ max of the range that the incident angle of the light beam can take is indicated by a two-dot chain line.
 図4に示す例では、光結合効率の最低レベルがL1である場合には、オフセット量xは2.0mmが望ましく、光結合効率の最低レベルがL2である場合には、オフセット量xは1.0mmが望ましい。 In the example shown in FIG. 4, when the minimum level of optical coupling efficiency is L1, the offset amount x is desirably 2.0 mm, and when the minimum level of optical coupling efficiency is L2, the offset amount x is 1. 0.0 mm is desirable.
 このように、オフセット量xを角度ずれ量θと光結合効率に基づいて算定することで、角度ずれが生じた場合にも、受光パワーの変動を小さくすることができるオフセット量xを算定することができる。
[第3の実施の形態]
 次に、第3の実施の形態に係る受光装置について説明する。本実施の形態に係る受光装置は、集光手段の光軸方向に関して、光ファイバのコアに入射する光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、光ビームの入射角度の取り得る範囲で、光結合効率の変動量が小さくなる位置に、光ファイバの入射端が配置されたものである。
In this way, by calculating the offset amount x based on the angle deviation amount θ and the optical coupling efficiency, the offset amount x that can reduce the fluctuation of the received light power even when the angle deviation occurs is calculated. Can do.
[Third Embodiment]
Next, a light receiving device according to a third embodiment will be described. In the light receiving device according to the present embodiment, the optical beam direction of the light collecting unit is greater than the position where the optical coupling efficiency is maximum when the incident angle of the light beam incident on the core of the optical fiber is 0 with respect to the optical axis direction of the condensing unit. The incident end of the optical fiber is arranged at a position where the fluctuation amount of the optical coupling efficiency becomes small within the range where the incident angle can be taken.
 本実施の形態に係る受光装置は、上述した第1,第2の実施の形態に係る受光装置1(図1参照)と同様の構成を有するため、同一符号を付して説明を省略する。本実施の形態では、光ファイバ12の入射端12cの位置、すなわち、図2に示すオフセット量xの値が、角度ずれ量θと光結合効率の変動量との関係に基づいて算定される。 Since the light receiving device according to the present embodiment has the same configuration as the light receiving device 1 according to the first and second embodiments described above (see FIG. 1), the same reference numerals are given and description thereof is omitted. In the present embodiment, the position of the incident end 12c of the optical fiber 12, that is, the value of the offset amount x shown in FIG. 2 is calculated based on the relationship between the angle deviation amount θ and the variation amount of the optical coupling efficiency.
 角度ずれ量θと、この角度ずれ量θに対する光結合効率の変化量との関係について、図5を参照して説明する。図5には、角度ずれに起因する光結合効率の変動量を示す特性グラフの一例が示されている。この図には、オフセット量x=0mm、1mm、2mmそれぞれの場合において、角度ずれがない状態を基準として、角度ずれ量θを推移させたときの(角度ずれが生じたことによる)光結合効率の変動量をプロットした結果が示されている。図5に示すように、オフセット量xを与えれば、角度ずれが生じた場合にも、受光パワーの変動を小さくすることができる。 The relationship between the angle deviation amount θ and the amount of change in optical coupling efficiency with respect to the angle deviation amount θ will be described with reference to FIG. FIG. 5 shows an example of a characteristic graph showing the fluctuation amount of the optical coupling efficiency due to the angle shift. This figure shows the optical coupling efficiency when the angle deviation amount θ is changed with respect to the state where there is no angle deviation in each of the offset amounts x = 0 mm, 1 mm, and 2 mm (due to the occurrence of the angle deviation). The result of plotting the amount of variation is shown. As shown in FIG. 5, if the offset amount x is given, the fluctuation of the received light power can be reduced even when the angular deviation occurs.
 そこで、受光装置1では、集光手段11の光軸方向に関して、光ファイバ12のコア12aに入射する光ビームの光結合効率が最大となる位置を基準とする集光手段11の焦点深度の範囲外の位置に光ファイバ12の入射端12cが配置される。具体的には、集光手段11の光軸方向に関して、光ファイバ12のコア12aに入射する光ビームの入射角度が0のときの光結合効率が最大となる位置(焦点)よりも、光ビームの入射角度の取り得る範囲で、光結合効率の変動量が小さくなる位置に、光ファイバ12の入射端12cが配置される。例えば、角度ずれ(角度ずれ量θ=0.03[deg])の範囲で光結合効率の変動量を6[dB]以内とするためにオフセット量xは1mmと算定される。 Therefore, in the light receiving device 1, the range of the depth of focus of the condensing unit 11 with respect to the position where the optical coupling efficiency of the light beam incident on the core 12a of the optical fiber 12 is maximized with respect to the optical axis direction of the condensing unit 11. The incident end 12c of the optical fiber 12 is disposed at an outer position. Specifically, with respect to the optical axis direction of the condensing means 11, the light beam is more than the position (focal point) at which the optical coupling efficiency becomes maximum when the incident angle of the light beam incident on the core 12a of the optical fiber 12 is zero. The incident end 12c of the optical fiber 12 is disposed at a position where the fluctuation amount of the optical coupling efficiency becomes small within a range that the incident angle can take. For example, the offset amount x is calculated to be 1 mm in order to make the fluctuation amount of the optical coupling efficiency within 6 [dB] within the range of the angle shift (angle shift amount θ = 0.03 [deg]).
 このように、オフセット量xの値を、角度ずれ量θと、この角度ずれ量θに対する光結合効率の変化量に基づいて決定することで、角度ずれが生じた場合にも、受光パワーの変動を小さくすることができる。
[第4の実施の形態]
 次に、第4の実施の形態に係る光空間通信装置について説明する。本実施の形態に係る光空間通信装置は、通信相手となる移動通信装置と相互に略平面波の光ビームを送受信して光空間通信を行う通信装置である。光空間通信装置100は、図6に示されるように、粗捕捉追尾機構(CPM:Coarse Pointing Mechanism)2、光アンテナ(Optical Antenna)3、精捕捉追尾機構(FPM:Fine Pointing Mechanism)4、ビームスプリッタ(Beam Splitter)5、粗捕捉追尾センサ(CAS:Coarse Acquisition sensor)6、精捕捉追尾センサ(FPS:Fine Pointing sensor)7、制御器8、及び受光装置1’を備える。
As described above, the value of the offset amount x is determined based on the amount of angular deviation θ and the amount of change in the optical coupling efficiency with respect to the amount of angular deviation θ, so that even if an angular deviation occurs, fluctuations in received light power Can be reduced.
[Fourth Embodiment]
Next, an optical space communication apparatus according to the fourth embodiment will be described. The space optical communication apparatus according to the present embodiment is a communication apparatus that performs space optical communication by transmitting and receiving a substantially plane wave light beam to and from a mobile communication apparatus that is a communication partner. As shown in FIG. 6, the optical space communication apparatus 100 includes a coarse capture tracking mechanism (CPM: Coarse Pointing Mechanism) 2, an optical antenna (Optical Antenna) 3, a fine capture tracking mechanism (FPM) 4, a beam. A splitter (Beam Splitter) 5, a coarse acquisition and tracking sensor (CAS) 6, a fine acquisition and tracking sensor (FPS) 7, a controller 8, and a light receiving device 1 'are provided.
 粗捕捉追尾機構2は、通信相手が送信した光ビーム(図中、点線)に基づいて通信相手を捕捉追尾する機構であり、粗捕捉追尾センサ6とともに用いられる。この粗捕捉追尾機構2は、いずれも図示しない、光ビームが入射する開口部と、開口部を所定の方向に駆動する二軸ジンバル(Gimbal)と、開口部から入射した光ビームを光アンテナ3に向かって反射させるミラーとを備える。 The coarse acquisition and tracking mechanism 2 is a mechanism for acquiring and tracking a communication partner based on a light beam (dotted line in the figure) transmitted by the communication partner, and is used together with the coarse acquisition and tracking sensor 6. The coarse capturing and tracking mechanism 2 includes an opening (not shown) through which the light beam is incident, a biaxial gimbal (Gimbal) that drives the opening in a predetermined direction, and a light beam that is incident from the opening. And a mirror that reflects toward the screen.
 粗捕捉追尾機構2に入射した光ビームの一部は、光アンテナ3、精捕捉追尾機構4、ビームスプリッタ5(51)を経て、粗捕捉追尾センサ6に導かれる。粗捕捉追尾センサ6は、通信相手の位置や、通信相手との距離を検出する。粗捕捉追尾機構2では、粗捕捉追尾センサ6の検出結果に基づいて制御部8において生成された制御信号(図中、破線)に基づいて、通信相手との位置、角度を調整する処理を行う。この処理により、光ビームの大まかな捕捉追尾が行われる。 A part of the light beam incident on the coarse acquisition and tracking mechanism 2 is guided to the coarse acquisition and tracking sensor 6 through the optical antenna 3, the fine acquisition and tracking mechanism 4, and the beam splitter 5 (51). The coarse acquisition and tracking sensor 6 detects the position of the communication partner and the distance from the communication partner. The coarse acquisition tracking mechanism 2 performs a process of adjusting the position and angle with the communication partner based on a control signal (broken line in the figure) generated by the control unit 8 based on the detection result of the coarse acquisition tracking sensor 6. . By this processing, the light beam is roughly captured and tracked.
 なお、粗捕捉追尾機構2は、二軸ジンバルの姿勢を検出するレゾルバ(Resolver)などの回転角センサをさらに備え、それらのセンサ出力によって、二軸ジンバルの姿勢を制御するようにしてもよい。 The coarse acquisition and tracking mechanism 2 may further include a rotation angle sensor such as a resolver that detects the attitude of the biaxial gimbal, and may control the attitude of the biaxial gimbal by the output of those sensors.
 光アンテナ3は、粗捕捉追尾機構2から照射された光ビームを所定の大きさに縮小する。光アンテナ3は、この縮小した光ビームを精捕捉追尾機構4に導光する光学系である。この光アンテナ3は、例えば、レンズやミラー等を組み合わせて構成される。 The optical antenna 3 reduces the light beam emitted from the coarse capture and tracking mechanism 2 to a predetermined size. The optical antenna 3 is an optical system that guides the reduced light beam to the fine capture and tracking mechanism 4. The optical antenna 3 is configured by combining a lens, a mirror, and the like, for example.
 精捕捉追尾機構4は、通信相手が出射した光ビームを捕捉追尾する機構であり、精捕捉追尾センサ7とともに用いられる。この精捕捉追尾機構4は、いずれも図示しない、ミラーと、このミラーを保持する保持部と、ミラーを駆動する電磁駆動部とを備える。ミラーは、入射した光ビームを反射する。保持部は、例えば、バネなどの弾力部材等により構成される。また、電磁駆動部は、例えば、VCM(Voice Coil Motor)、圧電素子、サーボモータ及びリニアモータ等の各種アクチュエータにより構成される。 The fine capture and tracking mechanism 4 is a mechanism that captures and tracks the light beam emitted by the communication partner, and is used together with the fine capture and tracking sensor 7. The fine capturing and tracking mechanism 4 includes a mirror, a holding unit that holds the mirror, and an electromagnetic driving unit that drives the mirror, which are not shown. The mirror reflects the incident light beam. The holding unit is configured by a resilient member such as a spring, for example. The electromagnetic drive unit is configured by various actuators such as a VCM (Voice Coil Motor), a piezoelectric element, a servo motor, and a linear motor.
 精捕捉追尾機構4に入射した光ビームの一部は、ビームスプリッタ5(51)、5(52)を経て、精捕捉追尾センサ7に導かれる。精捕捉追尾センサ7は、受光装置1’に入射される光ビームの入射角度を検出する。 Part of the light beam incident on the fine capture and tracking mechanism 4 is guided to the fine capture and tracking sensor 7 through the beam splitters 5 (51) and 5 (52). The fine capture tracking sensor 7 detects the incident angle of the light beam incident on the light receiving device 1 ′.
 精捕捉追尾機構4は、精捕捉追尾センサ7の検出結果に基づいて制御部8において生成された制御信号に基づいて、通信相手が出射した光ビームを受光装置1’内に効率的に導入するような位置、角度を調整する処理を行う。例えば、精捕捉追尾機構4は、電磁駆動部によりミラーを駆動して、ミラーのチルトを変化させることで、受光装置1’に入射する光ビームの入射角度を調整する。 The fine capture tracking mechanism 4 efficiently introduces the light beam emitted by the communication partner into the light receiving device 1 ′ based on the control signal generated by the control unit 8 based on the detection result of the fine capture tracking sensor 7. A process for adjusting the position and angle is performed. For example, the fine acquisition and tracking mechanism 4 adjusts the incident angle of the light beam incident on the light receiving device 1 ′ by driving the mirror by the electromagnetic driving unit and changing the tilt of the mirror.
 なお、精捕捉追尾機構4は、ミラーのチルトを測定する過電流センサ又は光学センサなどの角度センサをさらに備えるようにしてもよい。この場合には、角度センサの出力に基づいて、ミラーの角度が制御される。 The fine capture and tracking mechanism 4 may further include an angle sensor such as an overcurrent sensor or an optical sensor that measures the tilt of the mirror. In this case, the angle of the mirror is controlled based on the output of the angle sensor.
 ビームスプリッタ5は、直角プリズムを二つ貼り合わせ、接合面には誘電体多層膜や金属膜のコーティングを施した光学部品である。ビームスプリッタ5は、入射する光ビームの一部を反射させ一部は透過させる。なお、本実施の形態では、直角プリズムを二つ貼り合わせたビームスプリッタを採用したが、これには限定されず、例えば、プレート型のビームスプリッタを採用してもよい。 The beam splitter 5 is an optical component in which two right angle prisms are bonded together and a dielectric multilayer film or a metal film is applied to the joint surface. The beam splitter 5 reflects a part of the incident light beam and transmits a part thereof. In this embodiment, a beam splitter in which two right-angle prisms are bonded together is adopted. However, the present invention is not limited to this. For example, a plate-type beam splitter may be adopted.
 本実施の形態に係る光空間通信装置100は、ビームスプリッタ5として、ビームスプリッタ51と、ビームスプリッタ52とを備える。ビームスプリッタ51は、精捕捉追尾機構4を通過した光ビームを、粗捕捉追尾センサ6に向かう光ビームと受光装置1に向かう光ビームに分岐する。ビームスプリッタ52は、精捕捉追尾機構4を通過した光ビームを、精捕捉追尾センサ7と受光装置1’に分岐する。 The optical space communication apparatus 100 according to the present embodiment includes a beam splitter 51 and a beam splitter 52 as the beam splitter 5. The beam splitter 51 branches the light beam that has passed through the fine capture and tracking mechanism 4 into a light beam that travels toward the coarse capture and tracking sensor 6 and a light beam that travels toward the light receiving device 1. The beam splitter 52 branches the light beam that has passed through the fine capture and tracking mechanism 4 to the fine capture and tracking sensor 7 and the light receiving device 1 '.
 粗捕捉追尾センサ6は、受光した光ビームに基づいて通信相手の位置を検出する位置センサである。粗捕捉追尾センサ6は、受信面内に照射された平面内で光ビームの位置に基づいて通信相手の姿勢情報を検出する。粗捕捉追尾センサ6において検出された通信相手の姿勢情報は制御部8に送信される。この粗捕捉追尾センサ6として、例えば、4分割PD(Photodiode:フォトダイオード)センサ、PDセンサアレイ等を採用することができる。他にも、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、CCD(Charge Coupled Device)イメージセンサ等を採用することができる。 The coarse acquisition and tracking sensor 6 is a position sensor that detects the position of the communication partner based on the received light beam. The coarse acquisition and tracking sensor 6 detects the posture information of the communication partner based on the position of the light beam in the plane irradiated on the receiving surface. The attitude information of the communication partner detected by the coarse acquisition and tracking sensor 6 is transmitted to the control unit 8. For example, a quadrant PD (Photodiode) sensor, a PD sensor array, or the like can be employed as the coarse acquisition tracking sensor 6. In addition, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device) image sensor, or the like can be employed.
 精捕捉追尾センサ7は、受光した光ビームに基づいて受光装置1’に入射した光ビームの入射角を検出する。精捕捉追尾センサ7において検出された光ビームの入射角に関する情報は制御部8に送信される。精捕捉追尾センサ7として、上記粗捕捉追尾センサ6と同様に、例えば、4分割PDセンサ、PDセンサアレイ、CMOSイメージセンサ、CCDイメージセンサ等を採用することができる。 The fine capture tracking sensor 7 detects the incident angle of the light beam incident on the light receiving device 1 ′ based on the received light beam. Information on the incident angle of the light beam detected by the fine capture tracking sensor 7 is transmitted to the control unit 8. As the fine capture tracking sensor 7, for example, a quadrant PD sensor, a PD sensor array, a CMOS image sensor, a CCD image sensor, or the like can be used in the same manner as the coarse capture tracking sensor 6.
 制御部8は、光空間通信装置100に、光空間通信を行わせる制御信号、及び捕捉追尾処理を行わせる制御信号を生成する。制御部8は、例えば、粗捕捉追尾センサ6や粗捕捉追尾機構2のレゾルバにより検出された姿勢情報に基づいて粗捕捉追尾機構2の二軸ジンバルを駆動する制御信号を生成するとともに、精捕捉追尾センサ7のVCMを駆動する制御信号を生成する。 The control unit 8 generates a control signal for causing the space optical communication apparatus 100 to perform space optical communication and a control signal for performing acquisition and tracking processing. For example, the control unit 8 generates a control signal for driving the biaxial gimbal of the coarse acquisition tracking mechanism 2 based on the posture information detected by the coarse acquisition tracking sensor 6 and the resolver of the coarse acquisition tracking mechanism 2 and also fine acquisition. A control signal for driving the VCM of the tracking sensor 7 is generated.
 受光装置1’は、上述した第1~第3の実施の形態に係る受光装置1と同様に、通信相手が出射した光ビームを受光して光空間通信(伝達情報の受信)を行う。この受光装置1’は、図7に示すように、集光手段11と、光ファイバ12と、光電変換素子13と、これらの構成要素を収容する筐体14を備える。 The light receiving device 1 'receives the light beam emitted by the communication partner and performs optical space communication (reception of transmission information) in the same manner as the light receiving device 1 according to the first to third embodiments described above. As shown in FIG. 7, the light receiving device 1 ′ includes a condensing unit 11, an optical fiber 12, a photoelectric conversion element 13, and a housing 14 that houses these components.
 光電変換素子13は、光ビームを電気信号に変換する素子である。光電変換素子13として、例えば、フォトダイオードを用いることができる。この光電変換素子13は、光ファイバ12により導光された光ビームの光量に応じた出力値を有する電気信号を出力する。 The photoelectric conversion element 13 is an element that converts a light beam into an electrical signal. For example, a photodiode can be used as the photoelectric conversion element 13. The photoelectric conversion element 13 outputs an electrical signal having an output value corresponding to the amount of light beam guided by the optical fiber 12.
 上述した構成を有する受光装置1’では、集光手段11は、入射した略平面波の光ビームを集光する。光ファイバ12は、集光手段11により集光された光ビームを導光する。光電変換素子13は、光ファイバ12により導光された光ビームに含まれる伝達情報を電気信号に変換する。 In the light receiving device 1 ′ having the above-described configuration, the condensing unit 11 condenses the incident substantially plane wave light beam. The optical fiber 12 guides the light beam condensed by the condensing unit 11. The photoelectric conversion element 13 converts transmission information included in the light beam guided by the optical fiber 12 into an electrical signal.
 また、受光装置1’では、上述した受光装置1と同様に、光ファイバ12の入射端12cがオフセットを持っている。具体的には、粗捕捉追尾機構2、精捕捉追尾機構4、粗捕捉追尾センサ6、精捕捉追尾センサ7、制御器8からなる制御手段により制御された集光手段11の光軸に対する光ビームの入射角度の取り得る範囲に基づいて、光ファイバ12の入射端12cの位置が規定されている。そのため、受光装置1’では、制御手段の制御誤差により光ビームの角度ずれが生じた場合であっても、光結合効率の低下が抑制され、光結合効率が高く保持される。 Further, in the light receiving device 1 ′, the incident end 12 c of the optical fiber 12 has an offset as in the light receiving device 1 described above. Specifically, the light beam with respect to the optical axis of the condensing means 11 controlled by the control means comprising the coarse acquisition tracking mechanism 2, the fine acquisition tracking mechanism 4, the coarse acquisition tracking sensor 6, the fine acquisition tracking sensor 7, and the controller 8. The position of the incident end 12c of the optical fiber 12 is defined based on the possible range of the incident angle. Therefore, in the light receiving device 1 ′, even when the angle deviation of the light beam occurs due to the control error of the control means, the decrease in the optical coupling efficiency is suppressed and the optical coupling efficiency is kept high.
 本実施の形態に係る光空間通信装置100では、光学系や制御手段を用いて、受光部1’に入射する光ビームを規制しているが、通信相手が移動体である場合や、制御手段の制御誤差が生じた場合には、受光装置1’に対して斜め方向に光ビームが入射することがある。そこで、受光装置1’では、光ファイバ12の入射端12cは、集光手段11の焦点深度の範囲外に配置される。すなわち、光ファイバ12の入射端12cは、制御手段により制御された集光手段11の光軸に対する光ビームの入射角度の取り得る範囲に基づいて算定された位置に配置される。これにより、光ビームの角度ずれが生じた場合であっても、光結合効率の変動を抑制することができる。 In the optical space communication apparatus 100 according to the present embodiment, the optical beam and the control unit are used to regulate the light beam incident on the light receiving unit 1 ′. However, when the communication partner is a moving body, the control unit When the above control error occurs, the light beam may enter the light receiving device 1 ′ in an oblique direction. Therefore, in the light receiving device 1 ′, the incident end 12 c of the optical fiber 12 is disposed outside the range of the focal depth of the light collecting unit 11. That is, the incident end 12c of the optical fiber 12 is disposed at a position calculated based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing unit 11 controlled by the control unit. Thereby, even if the angle deviation of a light beam arises, the fluctuation | variation of optical coupling efficiency can be suppressed.
 このように、オフセット量xを角度ずれ量θと光結合効率に基づいて算定することで、受光装置1’に入射される光ビームの入射角度を制御する制御手段により制御された集光手段11の光軸に対する光ビームの入射角度の取り得る範囲に基づいて、光ファイバ12の入射端12cの位置が規定される。具体的には、集光手段11の光軸方向に関して、光ファイバ12のコア12aに入射する光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、光ビームの入射角度の取り得る範囲の少なくとも一部で、光結合効率が高くなる位置に、光ファイバ12の入射端12cが配置されている。すなわち、光結合効率の変動量と、粗捕捉追尾系の制御精度、または、精捕捉追尾系の制御精度などに基づいて、オフセット量xを算出することができる。 In this way, by calculating the offset amount x based on the angle deviation amount θ and the optical coupling efficiency, the condensing unit 11 controlled by the control unit that controls the incident angle of the light beam incident on the light receiving device 1 ′. The position of the incident end 12c of the optical fiber 12 is defined based on the possible range of the incident angle of the light beam with respect to the optical axis. Specifically, with respect to the optical axis direction of the condensing means 11, the incident angle of the light beam is greater than the position where the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core 12a of the optical fiber 12 is zero. The incident end 12c of the optical fiber 12 is disposed at a position where the optical coupling efficiency is high in at least a part of the possible range. In other words, the offset amount x can be calculated based on the fluctuation amount of the optical coupling efficiency, the control accuracy of the coarse acquisition tracking system, the control accuracy of the fine acquisition tracking system, and the like.
 例えば、図8に示すように、粗捕捉追尾系の制御精度、または、精捕捉追尾系の制御精度などに応じて求められる角度ずれ量θの最大値が、θ1MAXである場合には、オフセット量xは、2mmであるのが望ましい。しかし、粗捕捉追尾系の制御精度、または、精捕捉追尾系の制御精度などに応じて求められる角度ずれ量θの最大値が、θ2MAXである場合には、オフセット量xは、1mmであるのが望ましい。
[第5の実施の形態]
 次に、第5の実施の形態に係る光空間通信装置について説明する。本実施の形態に係る光空間通信装置は、光ビームを送受信する通信システムが許容する光結合効率又は光結合効率の変動量に基づいて、光ファイバ12の入射端12cの位置を規定したものである。
For example, as shown in FIG. 8, when the maximum value of the angle shift amount θ obtained according to the control accuracy of the coarse acquisition tracking system or the control accuracy of the fine acquisition tracking system is θ1 MAX , The quantity x is preferably 2 mm. However, when the maximum value of the angle shift amount θ obtained in accordance with the control accuracy of the coarse acquisition tracking system or the control accuracy of the fine acquisition tracking system is θ2 MAX , the offset amount x is 1 mm. Is desirable.
[Fifth Embodiment]
Next, an optical space communication apparatus according to the fifth embodiment will be described. The space optical communication apparatus according to the present embodiment defines the position of the incident end 12c of the optical fiber 12 based on the optical coupling efficiency or the variation amount of the optical coupling efficiency allowed by the communication system that transmits and receives the light beam. is there.
 本実施の形態に係る光空間通信装置は、上述した光空間通信装置100(図6参照)と同様の構成を備えたものであり同一符号を付して説明を省略する。本実施の形態では、受光装置1’において、光ファイバ12の入射端12cを、焦点から光軸方向にオフセットを持たせた位置に配置している。これにより、通信相手との通信状態が悪化した場合、すなわち、通信相手が移動体である場合や、粗捕捉追尾機構2や精捕捉追尾機構4の制御誤差が生じた場合にも、所定レベル以上の光結合効率が維持される。 The space optical communication apparatus according to the present embodiment has the same configuration as that of the space optical communication apparatus 100 (see FIG. 6) described above, and the same reference numerals are given and description thereof is omitted. In the present embodiment, in the light receiving device 1 ′, the incident end 12 c of the optical fiber 12 is arranged at a position having an offset from the focal point in the optical axis direction. Thereby, even when the communication state with the communication partner deteriorates, that is, when the communication partner is a mobile body, or when a control error of the coarse acquisition tracking mechanism 2 or the fine acquisition tracking mechanism 4 occurs, the predetermined level or more is exceeded. The optical coupling efficiency is maintained.
 このように、受光パワー又は通信システムのエラーレートと角度ずれとの関係に基づいて、オフセット量xを算出することができる。例えば、図9に示すように、通信システムが許容する光結合効率が高く、その最低レベルが、L81以上である場合には、オフセット量xは、2mmであるのが望ましい。また、光結合効率に求められる最低レベルが、L82以上である場合には、オフセット量xは、1mmでもよいことになる。 As described above, the offset amount x can be calculated based on the relationship between the received light power or the error rate of the communication system and the angular deviation. For example, as shown in FIG. 9, when the optical coupling efficiency allowed by the communication system is high and the minimum level is L81 or more, the offset amount x is desirably 2 mm. When the minimum level required for the optical coupling efficiency is L82 or more, the offset amount x may be 1 mm.
 なお、本実施形態の光空間通信装置100は、粗捕捉追尾機構2で光ビームを受けて光アンテナ3に入射しているが、光空間通信装置100は光アンテナ3を二軸ジンバルで駆動しながら移動体を捕捉追尾して精捕捉追尾機構4に光ビームを導くようにしてもよい。 In addition, although the optical space communication apparatus 100 of this embodiment receives the light beam by the rough acquisition tracking mechanism 2 and is incident on the optical antenna 3, the optical space communication apparatus 100 drives the optical antenna 3 with a biaxial gimbal. However, the moving body may be captured and tracked, and the light beam may be guided to the fine capture and tracking mechanism 4.
 また、粗捕捉追尾センサ6を、精捕捉追尾機構4の後ではなく、粗捕捉追尾機構2の直後の光ビームをビームスプリッタ5で分離した位置におくようにしてもよい。 Alternatively, the coarse acquisition tracking sensor 6 may be placed not at the fine acquisition tracking mechanism 4 but at the position where the light beam immediately after the coarse acquisition tracking mechanism 2 is separated by the beam splitter 5.
 また、上記実施の形態では、移動体と通信を行う場合について説明した。しかしながら、本発明はこれには、限られない。例えば、屋外のビルなど固定構造物に取り付けられているが風などにより振動する場合がある光空間通信装置100同士の通信に本発明を適用するようにしてもよい。 Further, in the above embodiment, the case where communication with a mobile unit is described. However, the present invention is not limited to this. For example, the present invention may be applied to communication between optical space communication devices 100 that are attached to a fixed structure such as an outdoor building but may vibrate due to wind or the like.
 なお、上記実施の形態で説明した特性グラフは、上記非特許文献1に記載の手法を用いた光学シミュレーションで求められたものである。本光学シミュレーションは、具体的には以下の条件を用いて行われた。 In addition, the characteristic graph demonstrated in the said embodiment was calculated | required by the optical simulation using the method of the said nonpatent literature 1. FIG. Specifically, this optical simulation was performed using the following conditions.
 光ビームの波長:1.55μm
 光ファイバ12のコア12aの直径:30μm
 焦点距離:56mm
 レイリー長:0.46mm
 なお、レイリー長とは、入射光をガウスビームとみなしたときの焦点深度である。
Wavelength of light beam: 1.55 μm
Diameter of the core 12a of the optical fiber 12: 30 μm
Focal length: 56mm
Rayleigh length: 0.46mm
The Rayleigh length is a depth of focus when incident light is regarded as a Gaussian beam.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態によって限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 上述した本実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 略平面波の光ビームを受光する受光装置であって、
 受光した光ビームを集光する集光手段と、
 前記集光手段で集光された光ビームを入射する光ファイバと、を有し、
 前記集光手段の光軸方向に関して、前記集光手段の焦点深度の範囲外であって、前記光ビームの入射角度の取り得る範囲で前記光ファイバのコアに入射する前記光ビームの光結合効率が所定レベル以上を保つ位置に、前記光ファイバの入射端が配置されている受光装置。
(付記2)
 前記集光手段の光軸方向に関して、前記光ファイバのコアに入射する前記光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、前記光ビームの入射角度の取り得る範囲の少なくとも一部で、前記光結合効率が高くなる位置に、前記光ファイバの入射端が配置されている付記1に記載の受光装置。
(付記3)
 前記集光手段の光軸方向に関して、前記光ファイバのコアに入射する前記光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、前記光ビームの入射角度の取り得る範囲で、前記光結合効率の変動量が小さくなる位置に、前記光ファイバの入射端が配置されている付記1に記載の受光装置。
(付記4)
 付記1乃至3のいずれか一つに記載の受光装置と、
 前記受光装置に入射される光ビームの入射角度を制御する制御手段と、備え、
 前記制御手段により制御された前記集光手段の光軸に対する光ビームの入射角度の取り得る範囲に基づいて、前記光ファイバの入射端の位置が規定されている光空間通信装置。
(付記5)
 前記光ビームを送受信する通信システムが許容する前記光結合効率又は前記光結合効率の変動量に基づいて、前記光ファイバの入射端の位置が規定されている付記4に記載の光空間通信装置。
(付記6)
 略平面波の光ビームを集光する集光手段と、前記集光手段で集光された光ビームを入射する光ファイバとを有し、前記光ビームを受光する受光装置を備えた光空間通信装置を用いた光空間通信方法において、
 前記集光手段の光軸方向に関して、前記集光手段の焦点深度の範囲外であって、前記光ビームの入射角度の取り得る範囲で前記光ファイバのコアに入射する前記光ビームの光結合効率が所定レベル以上を保つ位置に、前記光ファイバの入射端を配置する光空間通信方法。
Part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A light receiving device for receiving a substantially plane wave light beam,
Condensing means for condensing the received light beam;
An optical fiber for entering the light beam collected by the light collecting means,
The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken. A light receiving device in which an incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
(Appendix 2)
With respect to the optical axis direction of the condensing means, the range in which the incident angle of the light beam can take more than the position where the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core of the optical fiber is 0 The light receiving device according to supplementary note 1, wherein an incident end of the optical fiber is disposed at a position where at least part of the optical coupling efficiency is high.
(Appendix 3)
With respect to the optical axis direction of the condensing means, the range in which the incident angle of the light beam can take more than the position where the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core of the optical fiber is 0 The light receiving device according to supplementary note 1, wherein an incident end of the optical fiber is disposed at a position where the fluctuation amount of the optical coupling efficiency becomes small.
(Appendix 4)
The light receiving device according to any one of appendices 1 to 3, and
Control means for controlling the incident angle of the light beam incident on the light receiving device; and
An optical space communication apparatus in which the position of the incident end of the optical fiber is defined based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing means controlled by the control means.
(Appendix 5)
The optical space communication apparatus according to appendix 4, wherein a position of an incident end of the optical fiber is defined based on the optical coupling efficiency allowed by a communication system that transmits and receives the light beam or a variation amount of the optical coupling efficiency.
(Appendix 6)
An optical space communication apparatus comprising: a light collecting unit that collects a substantially plane wave light beam; and an optical fiber that receives the light beam collected by the light collecting unit; and a light receiving device that receives the light beam. In the optical space communication method using
The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken. An optical space communication method in which the incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
 この出願は、2013年2月6日に出願された日本出願特願2013-021739を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-021739 filed on Feb. 6, 2013, the entire disclosure of which is incorporated herein.
1,1’ 受光装置
11 集光手段
12 光ファイバ
12a コア
12b クラッド
12c 光ファイバの入射端
13 光電変換素子
14 筐体
2 粗捕捉追尾機構(CPM)
3 光アンテナ
4 精捕捉追尾機構(FPM)
5,51,52 ビームスプリッタ
6 粗捕捉追尾センサ(CAS)
7 精捕捉追尾センサ(FPS)
8 制御部
100 光空間通信装置
x オフセット量
θ 角度ずれ量
1, 1 'Light receiving device 11 Condensing means 12 Optical fiber 12a Core 12b Cladding 12c Incident end 13 of optical fiber Photoelectric conversion element 14 Housing 2 Coarse capture tracking mechanism (CPM)
3 Optical antenna 4 Fine capture and tracking mechanism (FPM)
5, 51, 52 Beam splitter 6 Coarse acquisition tracking sensor (CAS)
7 Fine capture and tracking sensor (FPS)
8 Control unit 100 Optical space communication device x Offset amount θ Angle deviation amount

Claims (6)

  1.  略平面波の光ビームを受光する受光装置であって、
     受光した光ビームを集光する集光手段と、
     前記集光手段で集光された光ビームを入射する光ファイバと、を有し、
     前記集光手段の光軸方向に関して、前記集光手段の焦点深度の範囲外であって、前記光ビームの入射角度の取り得る範囲で前記光ファイバのコアに入射する前記光ビームの光結合効率が所定レベル以上を保つ位置に、前記光ファイバの入射端が配置されている受光装置。
    A light receiving device for receiving a substantially plane wave light beam,
    Condensing means for condensing the received light beam;
    An optical fiber for entering the light beam collected by the light collecting means,
    The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken. A light receiving device in which an incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
  2.  前記集光手段の光軸方向に関して、前記光ファイバのコアに入射する前記光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、前記光ビームの入射角度の取り得る範囲の少なくとも一部で、前記光結合効率が高くなる位置に、前記光ファイバの入射端が配置されている請求項1に記載の受光装置。 With respect to the optical axis direction of the condensing means, the range in which the incident angle of the light beam can take more than the position where the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core of the optical fiber is 0 The light receiving device according to claim 1, wherein an incident end of the optical fiber is disposed at a position where at least part of the optical coupling efficiency is high.
  3.  前記集光手段の光軸方向に関して、前記光ファイバのコアに入射する前記光ビームの入射角度が0のときの光結合効率が最大となる位置よりも、前記光ビームの入射角度の取り得る範囲で、前記光結合効率の変動量が小さくなる位置に、前記光ファイバの入射端が配置されている請求項1に記載の受光装置。 With respect to the optical axis direction of the condensing means, the range in which the incident angle of the light beam can take more than the position where the optical coupling efficiency is maximized when the incident angle of the light beam incident on the core of the optical fiber is 0 The light receiving device according to claim 1, wherein an incident end of the optical fiber is disposed at a position where the fluctuation amount of the optical coupling efficiency becomes small.
  4.  請求項1乃至3のいずれか一項に記載の受光装置と、
     前記受光装置に入射される光ビームの入射角度を制御する制御手段と、を備え、
     前記制御手段により制御された前記集光手段の光軸に対する光ビームの入射角度の取り得る範囲に基づいて、前記光ファイバの入射端の位置が規定されている光空間通信装置。
    The light receiving device according to any one of claims 1 to 3,
    Control means for controlling the incident angle of the light beam incident on the light receiving device,
    An optical space communication apparatus in which the position of the incident end of the optical fiber is defined based on a possible range of the incident angle of the light beam with respect to the optical axis of the condensing means controlled by the control means.
  5.  前記光ビームを送受信する通信システムが許容する前記光結合効率又は前記光結合効率の変動量に基づいて、前記光ファイバの入射端の位置が規定されている請求項4に記載の光空間通信装置。 5. The optical space communication device according to claim 4, wherein a position of an incident end of the optical fiber is defined based on the optical coupling efficiency allowed by the communication system that transmits and receives the light beam or a variation amount of the optical coupling efficiency. .
  6.  略平面波の光ビームを集光する集光手段と、前記集光手段で集光された光ビームを入射する光ファイバとを有し、前記光ビームを受光する受光装置を備えた光空間通信装置を用いた光空間通信方法において、
     前記集光手段の光軸方向に関して、前記集光手段の焦点深度の範囲外であって、前記光ビームの入射角度の取り得る範囲で前記光ファイバのコアに入射する前記光ビームの光結合効率が所定レベル以上を保つ位置に、前記光ファイバの入射端を配置する光空間通信方法。
    An optical space communication apparatus comprising: a light collecting unit that collects a substantially plane wave light beam; and an optical fiber that receives the light beam collected by the light collecting unit; and a light receiving device that receives the light beam. In the optical space communication method using
    The optical coupling efficiency of the light beam incident on the core of the optical fiber outside the range of the focal depth of the light collecting means with respect to the optical axis direction of the light collecting means and within the range where the incident angle of the light beam can be taken. An optical space communication method in which the incident end of the optical fiber is disposed at a position where the optical fiber maintains a predetermined level or more.
PCT/JP2014/000541 2013-02-06 2014-02-03 Light receiving device, optical space communication device, and optical space communication method WO2014122909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560676A JPWO2014122909A1 (en) 2013-02-06 2014-02-03 Light receiving device, optical space communication device, and optical space communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-021739 2013-02-06
JP2013021739 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014122909A1 true WO2014122909A1 (en) 2014-08-14

Family

ID=51299509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000541 WO2014122909A1 (en) 2013-02-06 2014-02-03 Light receiving device, optical space communication device, and optical space communication method

Country Status (2)

Country Link
JP (1) JPWO2014122909A1 (en)
WO (1) WO2014122909A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119673A (en) * 2014-12-23 2016-06-30 テザト−スペースコム・ゲーエムベーハー・ウント・コー・カーゲー Satellite communication link
WO2017141854A1 (en) * 2016-02-16 2017-08-24 日本電気株式会社 Spatial optical communication system, spatial optical communication receiver, and spatial optical communication reception method
JP2018066888A (en) * 2016-10-20 2018-04-26 住友電気工業株式会社 Optical module
WO2020188766A1 (en) * 2019-03-19 2020-09-24 三菱電機株式会社 Spatial optical transmitter and spatial optical communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958405A (en) * 1982-09-29 1984-04-04 Toshiba Electric Equip Corp Natural lighting device
JPS59143115A (en) * 1983-02-04 1984-08-16 Tatsuta Electric Wire & Cable Co Ltd Condensing and transmitting system of sunbeam
JP3034190U (en) * 1996-07-30 1997-02-14 義典 浦 Daylighting device
JPH09318851A (en) * 1996-05-30 1997-12-12 Matsushita Electric Ind Co Ltd Optical coupling module, its production, and subcarrier multiplexing communication system
JP2002314487A (en) * 2001-04-16 2002-10-25 Telecommunication Advancement Organization Of Japan Free-space optical communications unit
JP2007079387A (en) * 2005-09-16 2007-03-29 Olympus Corp Optical coupler and optical system using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590083B2 (en) * 2000-10-11 2010-12-01 キヤノン株式会社 Optical space transmission equipment
US20030090765A1 (en) * 2001-11-09 2003-05-15 Neff Brian W. Free-space optical communication system
US9407363B2 (en) * 2009-07-16 2016-08-02 Nec Corporation Capturing device, capturing method, and capturing program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958405A (en) * 1982-09-29 1984-04-04 Toshiba Electric Equip Corp Natural lighting device
JPS59143115A (en) * 1983-02-04 1984-08-16 Tatsuta Electric Wire & Cable Co Ltd Condensing and transmitting system of sunbeam
JPH09318851A (en) * 1996-05-30 1997-12-12 Matsushita Electric Ind Co Ltd Optical coupling module, its production, and subcarrier multiplexing communication system
JP3034190U (en) * 1996-07-30 1997-02-14 義典 浦 Daylighting device
JP2002314487A (en) * 2001-04-16 2002-10-25 Telecommunication Advancement Organization Of Japan Free-space optical communications unit
JP2007079387A (en) * 2005-09-16 2007-03-29 Olympus Corp Optical coupler and optical system using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119673A (en) * 2014-12-23 2016-06-30 テザト−スペースコム・ゲーエムベーハー・ウント・コー・カーゲー Satellite communication link
WO2017141854A1 (en) * 2016-02-16 2017-08-24 日本電気株式会社 Spatial optical communication system, spatial optical communication receiver, and spatial optical communication reception method
JP2018066888A (en) * 2016-10-20 2018-04-26 住友電気工業株式会社 Optical module
WO2020188766A1 (en) * 2019-03-19 2020-09-24 三菱電機株式会社 Spatial optical transmitter and spatial optical communication system
JPWO2020188766A1 (en) * 2019-03-19 2021-09-13 三菱電機株式会社 Spatial optical transmitter and spatial optical communication system
US11496222B2 (en) 2019-03-19 2022-11-08 Mitsubishi Electric Corporation Spatial optical transmitter and spatial optical communication system

Also Published As

Publication number Publication date
JPWO2014122909A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US7920794B1 (en) Free space optical communication
US5465170A (en) Alignment adjusting system for use in optical system of optical transceiver
JP3859335B2 (en) Optical communication apparatus and optical communication system
JP6340902B2 (en) Manufacturing method of optical module
WO2014122909A1 (en) Light receiving device, optical space communication device, and optical space communication method
JP2013509614A (en) Expanded beam interface device and manufacturing method thereof
JP2020112811A (en) Method for manufacturing multichannel light-emitting module and multichannel light-emitting module
JP2006520491A (en) Small form factor all-polymer optical device with integrated dual beam path based on bending light with total reflection
US6462846B1 (en) Shared telescope optical communication terminal
WO2018058859A1 (en) Optical subassembly for an optical receiver, optical receiver and transceiver comprising the same, and methods of making and using the same
US11476936B2 (en) Point ahead offset angle for free space optical nodes
CN104539372A (en) Long-distance laser atmosphere communication receiving device with fast alignment function and communication method
JP2015210098A (en) Laser radar device
JP2000068934A (en) Optical communication device mounted on satellite
US20220132038A1 (en) Photographic apparatus and method of operating a photographic apparatus for jitter reduction
US20050237511A1 (en) Optical beam detection device and optical beam detection system using therewith
JP5674103B2 (en) Optical wireless communication device
JP5278890B2 (en) Light capture and tracking device
JPWO2018128118A1 (en) Optical communication device
JPWO2014148027A1 (en) Light control device, space optical communication device using the same, and light control method
EP0658987A1 (en) Optical space communication apparatus
US11394461B2 (en) Free space optical communication terminal with actuator system and optical relay system
KR100263506B1 (en) Optical communication system
KR101339886B1 (en) Free space optical communication module
JP2006094465A (en) Optical radio communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749027

Country of ref document: EP

Kind code of ref document: A1