JPH0982993A - Thin film processing apparatus - Google Patents

Thin film processing apparatus

Info

Publication number
JPH0982993A
JPH0982993A JP7236413A JP23641395A JPH0982993A JP H0982993 A JPH0982993 A JP H0982993A JP 7236413 A JP7236413 A JP 7236413A JP 23641395 A JP23641395 A JP 23641395A JP H0982993 A JPH0982993 A JP H0982993A
Authority
JP
Japan
Prior art keywords
substrate
thin film
roll
processing apparatus
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7236413A
Other languages
Japanese (ja)
Inventor
Kiyoo Saito
清雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7236413A priority Critical patent/JPH0982993A/en
Publication of JPH0982993A publication Critical patent/JPH0982993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to accurately detect the position of the edge of a board so as to continuously laser process the position of a predetermined distance from the edge of the board of a thin film formed on a flexible board at the time of conveying the board. SOLUTION: A board 1 is conveyed along the columnar surface of a position detecting roll 4 having a lower surface reflectivity than that of the vicinity of the edge of the board, and the position of the edge of the board is detected from the difference of the reflectivity by a reflection type photosensor 5. A laser beam 6 is moved in the lateral direction of the board corresponding to the detected position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、可とう性基板上に
形成した薄膜を基板をロールツーロール搬送しながら加
工する薄膜加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film processing apparatus for processing a thin film formed on a flexible substrate while transporting the substrate roll-to-roll.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成される非晶質半導体薄膜は、気相成長法で形成
できる為に、大面積化が容易であること、また、形成温
度が低いために樹脂フィルムの様な可とう性を有する基
板に形成できるという特徴を有している。前記非晶質半
導体を使用する代表的な薄膜素子として、薄膜太陽電池
がある。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo CVD can be formed by a vapor phase growth method, and thus it is easy to increase the area and the formation temperature is low. Therefore, it has a feature that it can be formed on a flexible substrate such as a resin film. A thin film solar cell is a typical thin film device using the amorphous semiconductor.

【0003】薄膜太陽電池は、結晶太陽電池に比べ、基
板内で容易に直列接続構造が形成できるという優れた特
徴を有している。特開平6−342924号公報で公知
の薄膜太陽電池の直列接続構造は、基板上の片面に第一
電極層、非晶質半導体層、第二電極層から成る薄膜太陽
電池積層体を、これと反対面に集電電極である第三電極
層を形成し、第三電極層を第一電極層および第二電極層
と基板に開けた孔を通して電気的に接続し、レーザ加工
法により薄膜太陽電池積層体および第三電極層を複数個
に分割して一つの単位太陽電池の第一電極層を隣接した
単位太陽電池の第二電極層と第三電極層を介して接続す
ることにより構成している。
The thin film solar cell has an excellent feature that a series connection structure can be easily formed in a substrate as compared with a crystalline solar cell. A series connection structure of thin-film solar cells known in Japanese Patent Laid-Open No. 6-342924 discloses a thin-film solar cell laminate including a first electrode layer, an amorphous semiconductor layer, and a second electrode layer on one surface of a substrate. A third electrode layer, which is a collector electrode, is formed on the opposite surface, and the third electrode layer is electrically connected to the first electrode layer and the second electrode layer through holes formed in the substrate, and a thin film solar cell is formed by a laser processing method. The laminated body and the third electrode layer are divided into a plurality of parts, and the first electrode layer of one unit solar cell is connected by connecting the second electrode layer and the third electrode layer of the adjacent unit solar cell. There is.

【0004】[0004]

【発明が解決しようとする課題】ロールツーロール搬送
する可とう性基板上の薄膜の分離加工は、ロールツーロ
ール搬送により一定速度で搬送される基板上の薄膜を巻
き出しロールと巻き取りロール間に位置するキヤンロー
ル上でレーザ加工することにより行い、基板搬送方向と
平行に薄膜を複数に分割している。薄膜の分割数は、キ
ヤンロール上に照射するレーザ光の数できまり、またパ
ターン幅は、レーザ光相互の間隔できまる。しかし、加
工位置は、基板縁部からの距離で決まっているため、基
板搬送方向と平行な加工を行うためには、基板縁部を連
続的に検出し、レーザ光出射位置を常に縁部と平行にな
るように制御する必要がある。
The separation of a thin film on a flexible substrate for roll-to-roll transportation is performed by unwinding the thin film on the substrate transported at a constant speed by roll-to-roll transportation between an unwinding roll and a winding roll. The thin film is divided into a plurality of pieces in parallel with the substrate transfer direction by performing laser processing on a can roll located at. The number of divisions of the thin film depends on the number of laser beams irradiated on the can roll, and the pattern width depends on the interval between the laser beams. However, since the processing position is determined by the distance from the substrate edge, in order to perform processing parallel to the substrate transport direction, the substrate edge is continuously detected and the laser light emission position is always set as the edge. It is necessary to control them so that they are parallel to each other.

【0005】従来は、この位置制御を巻だしロールとキ
ヤンロール間の空間において、透過型光センサーを用い
て基板の縁部検出をしていたが、基板に薄膜を高温形成
すると基板縁部がカールし、さらにこのカールの状態も
積層膜の種類や膜厚により変化するため、正確な基板端
部を検出できなかった。本発明の目的は、上述の問題を
解決し、基板縁部の位置を正確に検出し、縁部に平行に
加工できる薄膜素子製造装置を提供することにある。
In the past, this position control was performed by detecting the edge of the substrate using a transmission type optical sensor in the space between the unwinding roll and the can roll. However, when a thin film is formed on the substrate at a high temperature, the edge of the substrate curls. Further, since the curl state also changes depending on the type and film thickness of the laminated film, the accurate edge of the substrate cannot be detected. An object of the present invention is to solve the above-mentioned problems, and to provide a thin film element manufacturing apparatus capable of accurately detecting the position of the edge portion of a substrate and processing parallel to the edge portion.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、長手方向に搬送される可とう性基板の
表面上に形成された薄膜の基板縁部から所定の距離にあ
る個所を連続的に加工する薄膜加工装置において、搬送
過程中の基板に円柱面で接触して回動可能の位置検出ロ
ールが設置され、この位置検出ロールの表面反射率が基
板の縁部近傍の表面反射率より低く、位置検出ロールに
対向して表面反射率の差から基板縁部の位置を検出する
センサおよび検出された基板縁部位置に対応して基板の
幅方向に加工手段を移動させる駆動手段を備えたものと
する。可とう性の基板縁部近傍の表面反射率より低い表
面反射率を有する位置検出ロールの円柱面に沿って基板
が通る際に、対向するセンサによって表面反射率の差か
ら基板縁部の位置を検出できる。この位置検出は、基板
が位置検出ロール面上に巻き付いた状態で行われるの
で、カールの影響は少なく、正確である。そして、この
位置に対応して加工手段を基板幅方向に移動させれば、
基板縁部と平行にそれから所定の距離にある個所で薄膜
を連続的に加工できる。加工手段がレーザ光出射光学系
であることが有効である。レーザ光加工は加工精度が高
いので、それだけ加工位置を正確な設定する必要がある
のである。基板の少なくとも縁部付近の表面が金属膜で
覆われ、位置検出ロールの表面が非金属材料よりなるこ
とがよい。薄膜太陽電池のように可とう性基板全面に金
属電極層が被着されている場合、通常用いられる金属製
のロールを位置検出ロールに用いても反射率の差が得ら
れないので、表面が非金属材料で覆われたロールを用い
る。位置検出ロールの表面が加工の際に発生する塵を定
着させる粘着性材料により覆われたことがよい。加工塵
が粘着性材料に定着することにより、薄膜の表面に加工
塵が付着することによる支障がなくなる。位置検出ロー
ルの表面が、少なくとも表面層が粘着性材料よりなり、
基板に接触しながら移動可能のベルトにより覆われたこ
とがよい。これにより、基板に接触する粘着性材料は、
常に加工塵の付着しない新鮮な面をもつことになり、薄
膜面からの加工塵除去効果が増し、加工塵の基板への再
付着おおそれもない。さらに、ベルトが加工により発生
する塵を除去する洗浄槽を経て循環されることがよい。
これにより、加工塵の定着したベルト面から加工塵が除
去されて再使用することができる。ベルトが粘着性材料
よりなるフィルムを粘着性材料が剥離しやすい材料より
なるフィルム上に接着剤を用いて接着してなることもよ
い。これによって、ベルトを巻回したときも粘着性材料
によるベルト間の粘着がなくなる。
In order to achieve the above object, the present invention provides a thin film formed on the surface of a flexible substrate which is conveyed in the longitudinal direction at a predetermined distance from the substrate edge. In a thin film processing apparatus that continuously processes points, a position detection roll that is rotatable by making contact with the substrate being conveyed in a cylindrical surface is installed, and the surface reflectance of this position detection roll is near the edge of the substrate. A sensor that is lower than the surface reflectance and detects the position of the substrate edge portion from the difference in the surface reflectance facing the position detection roll, and moves the processing means in the width direction of the substrate corresponding to the detected substrate edge position. It shall be equipped with a drive means. When the substrate passes along the cylindrical surface of the position detection roll that has a surface reflectance lower than the surface reflectance near the flexible edge of the substrate, the position of the edge of the substrate is determined from the difference in surface reflectance by the facing sensor. Can be detected. Since this position detection is performed with the substrate wound around the position detection roll surface, the influence of curl is small and accurate. Then, if the processing means is moved in the substrate width direction corresponding to this position,
The thin film can be processed continuously parallel to the substrate edge and at a distance from it. It is effective that the processing means is a laser light emitting optical system. Since the laser beam processing has high processing accuracy, it is necessary to set the processing position accurately. It is preferable that at least the surface of the substrate near the edge is covered with a metal film, and the surface of the position detection roll is made of a non-metal material. When a metal electrode layer is coated on the entire surface of a flexible substrate such as a thin-film solar cell, the difference in reflectance cannot be obtained even if a commonly used metal roll is used as a position detection roll, so the surface is A roll covered with a non-metallic material is used. It is preferable that the surface of the position detection roll is covered with an adhesive material that fixes dust generated during processing. By fixing the processing dust to the adhesive material, there is no problem due to the processing dust adhering to the surface of the thin film. The surface of the position detection roll, at least the surface layer is made of an adhesive material,
It may be covered by a belt that is movable while contacting the substrate. As a result, the adhesive material that comes into contact with the substrate is
Since it always has a fresh surface on which the processing dust does not adhere, the effect of removing the processing dust from the thin film surface increases, and there is no risk of the processing dust reattaching to the substrate. Further, it is preferable that the belt is circulated through a cleaning tank that removes dust generated by processing.
As a result, the processing dust is removed from the belt surface on which the processing dust has been fixed, and the belt can be reused. The belt may be formed by adhering a film made of an adhesive material onto a film made of a material from which the adhesive material is easily peeled off by using an adhesive. This eliminates the adhesion between the belts due to the adhesive material when the belts are wound.

【0007】[0007]

【発明の実施の形態】本発明は、特に薄膜太陽電池の単
位太陽電池への分離のためにレーザ光加工によって行う
薄膜積層体あるいは電極膜のパターニングに有効に実施
できる。薄膜太陽電池の可とう性基板の全面に金属電極
膜が被着している場合、表面反射率の低いゴムを表面材
料とする位置検出ロールを用いる。位置検出ロールに加
工塵除去機能を持たせるときは、ロールの表面材料を粘
着ゴムとする。表面反射率の差より基板縁部の位置を検
出するセンサには、反射型の光センサを用いる。もちろ
ん、薄膜太陽電池の製造の際以外に行われる可とう性基
板上の薄膜加工においても同様に本発明は実施できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention can be effectively applied to patterning of a thin film laminate or an electrode film, which is carried out by laser light processing for separating a thin film solar cell into unit solar cells. When the metal electrode film is deposited on the entire surface of the flexible substrate of the thin-film solar cell, a position detection roll whose surface material is rubber having a low surface reflectance is used. When the position detection roll has the function of removing machining dust, the surface material of the roll is adhesive rubber. A reflective optical sensor is used as a sensor for detecting the position of the edge of the substrate based on the difference in surface reflectance. Of course, the present invention can be similarly applied to thin film processing on a flexible substrate, which is performed other than the production of the thin film solar cell.

【0008】[0008]

【実施例】以下、共通の部分に同一の符号を付した図を
引用して本発明の実施例について説明する。図1に示す
ロールツーロール搬送基板上の薄膜加工装置は、送り室
11、加工室12、巻き取り室13よりなる。可とう性
基板1は、送り室11のコア21上から巻きほぐされ、
アイドルロール22より方向を変え、矢印31に示すよ
うに駆動ロール23と押さえロール24の間を通して搬
送することにより、巻き取り室13のコア25に巻き取
られる。加工室12には、基板1を巻き付ける直径15
0mmのキヤンロール2、それに対向するレーザ光出射
光学系3、基板1の縁部位置を検出する位置検出ロール
4、それに対向する位置に固定された検出センサ5が収
容されている。位置検出ロール4はゴムよりなる低反射
率表面を有する。図2は基板1の平面図、図3は図2の
A−A線断面図である。基板1は、厚さ50μmの耐熱
性のあるポリイミドフィルムで、一方の主面上に第一電
極層31としての銀薄膜、光電変換層32としてのa−
Si膜、第二電極層33としての酸化インジウム膜を積
層し、他方の主面上に第三電極層34としての銀層を形
成したものである。そしてこの第三電極層34を第一電
極層31と接続するために直列接続孔35、第二電極層
33と接続するために10mm間隔の集電孔36が基板
に開けられている。この装置を用いて次のように作動さ
せた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which common portions are given the same reference numerals. The thin film processing apparatus on the roll-to-roll transfer substrate shown in FIG. 1 includes a feed chamber 11, a processing chamber 12, and a winding chamber 13. The flexible substrate 1 is unwound from the core 21 of the feed chamber 11,
By changing the direction from the idle roll 22 and transporting it between the driving roll 23 and the pressing roll 24 as shown by an arrow 31, the core 25 of the winding chamber 13 is wound. The processing chamber 12 has a diameter 15 around which the substrate 1 is wound.
A 0 mm can roll 2, a laser light emitting optical system 3 facing it, a position detection roll 4 for detecting the edge position of the substrate 1, and a detection sensor 5 fixed at a position facing it are housed. The position detection roll 4 has a low reflectance surface made of rubber. 2 is a plan view of the substrate 1, and FIG. 3 is a sectional view taken along the line AA of FIG. The substrate 1 is a heat-resistant polyimide film having a thickness of 50 μm, a silver thin film as the first electrode layer 31 and a- as the photoelectric conversion layer 32 on one main surface.
A Si film and an indium oxide film as the second electrode layer 33 are laminated, and a silver layer as the third electrode layer 34 is formed on the other main surface. A series connection hole 35 is formed in the substrate to connect the third electrode layer 34 to the first electrode layer 31, and a current collecting hole 36 is formed in the substrate at intervals of 10 mm to connect to the second electrode layer 33. This device was operated as follows.

【0009】図2に示すように、基板1の全面を覆う第
一電極層31上に、一定間隔で所定の外形の光電変換層
32、第二電極層33を積層してなる薄膜太陽電池10
が複数個形成されている。この基板1を薄膜太陽電池1
0の形成面を上にして巻かれたコア21上から実線で示
すように引き出し、コア25までのアイドルロール2
2、駆動ロール23および押さえロール24を用いて一
定速度でロールツーロール搬送した。弾性のある位置検
出ロール4の円柱面上に密着して通る基板1の縁部を、
基板1上の金属よりなる第一電極層31高反射率表面と
位置検出ロール4の低反射率表面との反射率の差から検
出センサ5で検知し、基板1の縁部のキヤンロール2の
表面上の所定の位置からの変位をセンサ5とリード線5
2で接続したセンサ信号処理部51を経て計測する。そ
して、その変位分だけ、送りねじ61の回転によりレー
ザ光源62と光ファイバ63で接続された出射光学系3
を基板1の搬送方向に直角に移動させたのち、レーザビ
ーム6により、矢印71方向に搬送される基板1上の第
二電極層33、光電変換層32、第一電極層31を加工
して直列接続孔35と集電孔36の間を通るパターニン
グライン7を形成する。このパターニングライン7によ
り、薄膜太陽電池10は単位太陽電池素子に分離され
る。次に、実線に示すように薄膜太陽電池10の形成面
を上にして巻き取られたコア25をコア21の位置に移
し点線のように引き出してロールツーロール搬送し、同
様にして基板縁部から所定の寸法だけ離れた位置で裏面
側の第三電極層を分離するパターニングラインを形成す
る。このパターニングラインが表面のパターニングライ
ン7と対向しない位置で直列接続孔35と集電孔36の
間を通るようにすれば、単位太陽電池素子の直列接続構
造ができ上がる。これらの太陽電池の搭載面は、点線で
示すように巻き取られたコア25では上となる。さら
に、直列接続された単位太陽電池間を基板1上で配線に
より接続し、可とう性基板1を適宜切断すれば、任意の
出力をもつ薄膜太陽電池モジュールを得ることができ
る。
As shown in FIG. 2, a thin-film solar cell 10 in which a photoelectric conversion layer 32 and a second electrode layer 33 each having a predetermined outer shape are laminated at regular intervals on a first electrode layer 31 covering the entire surface of a substrate 1.
Are formed in plural. This substrate 1 is a thin film solar cell 1
The idle roll 2 up to the core 25 is pulled out from the top of the core 21 wound with the formation surface of 0 upward as shown by the solid line.
2. Roll-to-roll conveyance was performed at a constant speed using the drive roll 23 and the press roll 24. The edge portion of the substrate 1 that closely passes on the cylindrical surface of the elastic position detection roll 4 is
The detection electrode 5 detects the difference in reflectance between the high-reflectance surface of the first electrode layer 31 made of metal on the substrate 1 and the low-reflectance surface of the position detection roll 4, and the surface of the can roll 2 at the edge of the substrate 1. The displacement from the upper predetermined position is detected by the sensor 5 and the lead wire 5.
Measurement is performed via the sensor signal processing unit 51 connected in 2. Then, the output optical system 3 connected by the laser light source 62 and the optical fiber 63 by the rotation of the feed screw 61 by the displacement.
Is moved at a right angle to the transport direction of the substrate 1, and then the second electrode layer 33, the photoelectric conversion layer 32, and the first electrode layer 31 on the substrate 1 transported in the direction of the arrow 71 are processed by the laser beam 6. The patterning line 7 passing between the series connection hole 35 and the current collection hole 36 is formed. The thin film solar cell 10 is divided into unit solar cell elements by the patterning line 7. Next, as shown by the solid line, the core 25 wound with the formation surface of the thin-film solar cell 10 facing upward is moved to the position of the core 21 and pulled out as indicated by the dotted line, and roll-to-roll conveyance is performed. A patterning line for separating the third electrode layer on the back surface side is formed at a position separated by a predetermined dimension from. If the patterning line passes between the series connection hole 35 and the current collection hole 36 at a position not facing the patterning line 7 on the surface, the series connection structure of the unit solar cell elements is completed. The mounting surface of these solar cells is on the core 25 wound as shown by the dotted line. Furthermore, if the unit solar cells connected in series are connected by wiring on the substrate 1 and the flexible substrate 1 is appropriately cut, a thin film solar cell module having an arbitrary output can be obtained.

【0010】図4はレーザ加工時に発生する加工塵を除
去する機構を付加した実施例を示す。ここで用いてる位
置検出ロール4は、図5に拡大して示すように、表面粘
着ゴム8で覆われている。この粘着ゴム8は低反射率表
面を形成すると共に、レーザ光6の照射により生ずる加
工塵を粘着して基板1の表面より除去する。しかし、こ
の実施例に用いる粘着性位置検出ロール4は、加工塵を
除去するために、粘着ゴム8が加工塵で覆われ粘着力が
劣化する。その結果、加工塵の除去不良や加工塵の絶縁
基板への再付着による薄膜分離抵抗の低下が問題とな
る。図6はその問題を解決した実施例を示す。
FIG. 4 shows an embodiment in which a mechanism for removing processing dust generated during laser processing is added. The position detection roll 4 used here is covered with a surface adhesive rubber 8 as shown in an enlarged view in FIG. The adhesive rubber 8 forms a low-reflectance surface, and also adheres the processing dust generated by the irradiation of the laser beam 6 to remove it from the surface of the substrate 1. However, in the adhesive position detection roll 4 used in this embodiment, the adhesive rubber 8 is covered with the processing dust in order to remove the processing dust, and the adhesive force is deteriorated. As a result, problems such as poor removal of processing dust and reduction of thin film separation resistance due to redeposition of processing dust on the insulating substrate become a problem. FIG. 6 shows an embodiment in which the problem is solved.

【0011】図6において、位置検出ロール4の表面
は、コア26上から巻きほぐされ、コア27上に巻き取
られる粘着性ベルト81で覆われている。粘着性ベルト
81は、図7に示すように粘着ゴム8よりなる粘着層が
ポリイミドフィルム82表面に接着剤83より接着され
たので、粘着ゴム8の常に清浄な粘着面が基板1の表面
に接して加工塵を除去する。こうして、上述の加工塵の
除去不良や加工塵の絶縁基板への再付着を防いだ。な
お、ポリイミドフィルム82には粘着ゴム8が接着しに
くいので、コア26あるいは27にベルト81を巻回し
たときにベルト相互が接着することがない。この実施例
に用いる粘着性ベルト81は一方向に搬送され、使い切
りである。図8に示す実施例では、この粘着性ベルト8
1を連続して使用できるようにした。
In FIG. 6, the surface of the position detection roll 4 is covered with an adhesive belt 81 which is unwound from the core 26 and wound onto the core 27. In the adhesive belt 81, as shown in FIG. 7, the adhesive layer made of the adhesive rubber 8 is adhered to the surface of the polyimide film 82 with the adhesive 83, so that the always clean adhesive surface of the adhesive rubber 8 contacts the surface of the substrate 1. To remove processing dust. In this way, the above-mentioned defective removal of the processing dust and the re-adhesion of the processing dust to the insulating substrate were prevented. Since the adhesive rubber 8 does not easily adhere to the polyimide film 82, the belts do not adhere to each other when the belt 81 is wound around the core 26 or 27. The adhesive belt 81 used in this embodiment is conveyed in one direction and is used up. In the embodiment shown in FIG. 8, this adhesive belt 8
1 can be continuously used.

【0012】図8において、粘着性ベルト81は、位置
検出ロール4と洗浄ロール28との間に張られている。
ロール4、28を回転することにより、加工塵の付着し
た粘着性ベルト81を洗浄槽9中のイソプロピルアルコ
ール系洗浄液91に浸け、超音波発振器92を用いた超
音波洗浄法によって、粘着性ベルト81に付着した加工
塵を除去する。その後に、乾燥部93で温風を吹きつけ
ることにより、粘着性ベルト81を乾燥させ、再度加工
塵の除去を行うというサイクル機構を設けた。この機構
により、加工塵の除去不良や加工塵の基板への再付着を
防ぐとともに、位置検出ロールの粘着部の再生を同時に
おこなった。
In FIG. 8, the adhesive belt 81 is stretched between the position detection roll 4 and the cleaning roll 28.
By rotating the rolls 4 and 28, the adhesive belt 81 on which the processing dust adheres is dipped in the isopropyl alcohol-based cleaning liquid 91 in the cleaning tank 9, and the adhesive belt 81 is ultrasonically cleaned using the ultrasonic oscillator 92. Removes the processing dust adhering to. After that, a cycle mechanism is provided in which the adhesive belt 81 is dried by blowing warm air in the drying unit 93 to remove the processing dust again. This mechanism prevents defective removal of processing dust and re-adhesion of processing dust to the substrate, and at the same time, the adhesive portion of the position detection roll is regenerated.

【0013】[0013]

【発明の効果】本発明によれば、基板よりも表面反射率
の低い位置検出ロール上で反射率の差から基板縁部の位
置を検出することにより、基板上に薄膜を高温形成した
ときに生ずる基板縁部のカールの問題を解決してロール
ツーロール搬送薄膜加工を高精度で行うことができるよ
うになった。また、位置検出ロールの表面に粘着性をも
たせて、位置検出と加工塵除去を一つのロールで行うこ
とにより、装置コストを低減するとともに、粘着性ベル
トの使用により加工塵による粘着性位置検出ロールの粘
着力劣化の対策も可能で、加工性能の信頼性を高めた。
According to the present invention, when a thin film is formed on a substrate at a high temperature by detecting the position of the edge of the substrate from the difference in reflectance on a position detection roll having a lower surface reflectance than the substrate. It has become possible to solve the problem of curling at the edge of the substrate that occurs and to perform roll-to-roll transfer thin film processing with high accuracy. Also, by making the surface of the position detection roll sticky and performing position detection and processing dust removal with one roll, the device cost is reduced and the adhesive position detection roll due to processing dust is used by using an adhesive belt. It is also possible to take measures against the deterioration of the adhesive strength of and improve the reliability of processing performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜加工装置の断面図FIG. 1 is a sectional view of a thin film processing apparatus according to an embodiment of the present invention.

【図2】本発明の実施例の薄膜加工装置で加工される薄
膜を形成した薄膜太陽電池基板の平面図
FIG. 2 is a plan view of a thin film solar cell substrate on which a thin film is formed by the thin film processing apparatus according to the embodiment of the present invention.

【図3】図2の基板A−A線断面図3 is a cross-sectional view taken along the line AA of FIG.

【図4】本発明の別の実施例の薄膜加工装置の断面図FIG. 4 is a sectional view of a thin film processing apparatus according to another embodiment of the present invention.

【図5】図4の装置に用いられている位置検出ロールの
拡大断面図
5 is an enlarged cross-sectional view of a position detection roll used in the apparatus of FIG.

【図6】本発明の他の実施例の薄膜加工装置の断面図FIG. 6 is a sectional view of a thin film processing apparatus according to another embodiment of the present invention.

【図7】図6の装置に用いられている粘着性ベルトの拡
大断面図
7 is an enlarged cross-sectional view of an adhesive belt used in the device of FIG.

【図8】本発明のさらに別の実施例の薄膜加工装置の断
面図
FIG. 8 is a sectional view of a thin film processing apparatus according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可とう性基板 2 キヤンロール 21、25、26、27 コア 23 駆動ロール 28 洗浄ロール 3 レーザ光出射光学系 31 第一電極層 32 光電変換層 33 第二電極層 34 第三電極層 4 位置検出ロール 5 検出センサ 6 レーザビーム 61 送りねじ 62 レーザ光源 7 パターニングライン 8 粘着ゴム 81 粘着性ベルト 9 洗浄槽 91 洗浄液 10 薄膜太陽電池 11 送り室 12 加工室 13 巻き取り室 1 flexible substrate 2 can roll 21, 25, 26, 27 core 23 drive roll 28 cleaning roll 3 laser light emitting optical system 31 first electrode layer 32 photoelectric conversion layer 33 second electrode layer 34 third electrode layer 4 position detection roll 5 Detection Sensor 6 Laser Beam 61 Feed Screw 62 Laser Light Source 7 Patterning Line 8 Adhesive Rubber 81 Adhesive Belt 9 Cleaning Tank 91 Cleaning Liquid 10 Thin Film Solar Cell 11 Feed Chamber 12 Processing Room 13 Winding Room

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】長手方向に搬送される可とう性基板の表面
上に形成された薄膜の基板縁部から所定の距離にある個
所を連続的に加工する薄膜加工装置において、搬送過程
中の基板に円柱面で接触して回動可能の位置検出ロール
が設置され、この位置検出ロールの表面反射率が基板の
縁部近傍の表面反射率より低く、位置検出ロールに対向
して表面反射率の差から基板縁部の位置を検出するセン
サおよび検出された基板縁部位置に対応して基板の幅方
向に加工手段を移動させる駆動手段を備えたことを特徴
とする薄膜加工装置。
1. A thin film processing apparatus for continuously processing a portion of a thin film formed on a surface of a flexible substrate transported in a longitudinal direction at a predetermined distance from a substrate edge portion, the substrate being transported. A position detection roll that is in contact with the cylindrical surface and is rotatable is installed, and the surface reflectance of this position detection roll is lower than the surface reflectance near the edge of the substrate. A thin film processing apparatus comprising: a sensor for detecting a position of a substrate edge portion based on a difference; and a driving means for moving the processing means in a width direction of the substrate corresponding to the detected substrate edge position.
【請求項2】加工手段がレーザ光出射光学系である請求
項1記載の薄膜加工装置。
2. The thin film processing apparatus according to claim 1, wherein the processing means is a laser light emitting optical system.
【請求項3】基板の少なくとも縁部付近の表面が金属膜
で覆われ、位置検出ロールの表面が非金属材料により覆
われた請求項1あるいは2記載の薄膜加工装置。
3. The thin film processing apparatus according to claim 1, wherein at least the surface of the substrate near the edge is covered with a metal film, and the surface of the position detection roll is covered with a non-metal material.
【請求項4】位置検出ロールの表面が加工の際に発生す
る塵を定着させる粘着性材料により覆われた請求項1な
いし3のいずれかに記載の薄膜加工装置。
4. The thin film processing apparatus according to claim 1, wherein the surface of the position detection roll is covered with an adhesive material that fixes dust generated during processing.
【請求項5】位置検出ロールの表面が、少なくとも表面
層が粘着性材料よりなり、基板に接触しながら移動可能
のベルトにより覆われた請求項4記載の薄膜加工装置。
5. The thin film processing apparatus according to claim 4, wherein at least the surface layer of the position detection roll is made of an adhesive material and is covered with a belt that is movable while contacting the substrate.
【請求項6】ベルトが加工により発生する塵を除去する
洗浄槽を経て循還される請求項5記載の薄膜加工装置。
6. The thin film processing apparatus according to claim 5, wherein the belt is circulated through a cleaning tank for removing dust generated by processing.
【請求項7】ベルトが粘着性材料よりなるフィルムを粘
着性材料が剥離しやすい材料よりなるフィルム上に接着
剤を用いて接着してなる請求項5あるいは6記載の薄膜
加工装置。
7. The thin film processing apparatus according to claim 5, wherein the belt is formed by adhering a film made of an adhesive material onto a film made of a material from which the adhesive material is easily peeled off by using an adhesive.
JP7236413A 1995-09-14 1995-09-14 Thin film processing apparatus Pending JPH0982993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236413A JPH0982993A (en) 1995-09-14 1995-09-14 Thin film processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236413A JPH0982993A (en) 1995-09-14 1995-09-14 Thin film processing apparatus

Publications (1)

Publication Number Publication Date
JPH0982993A true JPH0982993A (en) 1997-03-28

Family

ID=17000396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236413A Pending JPH0982993A (en) 1995-09-14 1995-09-14 Thin film processing apparatus

Country Status (1)

Country Link
JP (1) JPH0982993A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193308A (en) * 2005-01-17 2006-07-27 Hitachi Displays Ltd Method and device for stripping film
CN102569120A (en) * 2011-12-28 2012-07-11 苏州幸福新能源科技有限责任公司 Vertical detector of solar back panel
JP2017209687A (en) * 2016-05-23 2017-11-30 株式会社リコー Optical processing device
CN114653526A (en) * 2022-04-01 2022-06-24 南通厉秣纺织有限公司 Non-woven fabric production equipment with self-adaptation tectorial membrane packing function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193308A (en) * 2005-01-17 2006-07-27 Hitachi Displays Ltd Method and device for stripping film
CN102569120A (en) * 2011-12-28 2012-07-11 苏州幸福新能源科技有限责任公司 Vertical detector of solar back panel
CN102569120B (en) * 2011-12-28 2014-08-06 苏州幸福新能源科技有限责任公司 Vertical detector of solar back panel
JP2017209687A (en) * 2016-05-23 2017-11-30 株式会社リコー Optical processing device
CN114653526A (en) * 2022-04-01 2022-06-24 南通厉秣纺织有限公司 Non-woven fabric production equipment with self-adaptation tectorial membrane packing function
CN114653526B (en) * 2022-04-01 2023-10-20 湖北绿宇环保有限公司 Non-woven fabric production equipment with self-adaptive laminating and packaging functions

Similar Documents

Publication Publication Date Title
CN100550430C (en) Semiconductor device and manufacture method thereof
US20120034382A1 (en) Substrate support material useful for screen printing processes
WO2008047712A1 (en) Optical member adhering method, and apparatus using the method
JP4386929B2 (en) TAB tape carrier manufacturing method
JP4152574B2 (en) Thin film deposition method and semiconductor device manufacturing method
JP2003044119A (en) Work with id and its manufacturing method
CN113286665B (en) Slurry coating device
JP2831280B2 (en) Laser processing equipment
JPH0982993A (en) Thin film processing apparatus
JP2001089018A (en) Film peeling device
TWI341788B (en) Apparatus for and method of manufacturing photosensitive laminated body
JP2002126659A (en) Method and device for forming thin film pattern
JP3195123B2 (en) Photosensitive layer laminating method and apparatus
JP3687198B2 (en) Method for manufacturing thin film semiconductor device
JP3395152B2 (en) Film sticking method and apparatus
JP3956177B2 (en) Thin film solar cell manufacturing equipment
JP4086218B2 (en) Method for forming patterned thin film layer
JP2008140885A5 (en)
JP3835030B2 (en) Photoelectric conversion module manufacturing apparatus and manufacturing method
JP2956928B2 (en) Film tip processing method and apparatus in film sticking apparatus
JP2656746B2 (en) Semiconductor wafer sheet laminator and method of manufacturing semiconductor wafer
CN221092778U (en) Substrate production line
CN113795930A (en) Manufacturing system for thin-film solar cell device
JP2002167091A (en) Film processing device
JP3564938B2 (en) Method and apparatus for manufacturing thin-film solar cell