JPH0971471A - Silicon nitride sintered compact and its production - Google Patents

Silicon nitride sintered compact and its production

Info

Publication number
JPH0971471A
JPH0971471A JP7226685A JP22668595A JPH0971471A JP H0971471 A JPH0971471 A JP H0971471A JP 7226685 A JP7226685 A JP 7226685A JP 22668595 A JP22668595 A JP 22668595A JP H0971471 A JPH0971471 A JP H0971471A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
sintering aid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7226685A
Other languages
Japanese (ja)
Inventor
Masanori Katou
雅礼 加藤
Takayuki Fukazawa
孝幸 深澤
Yasuhiro Itsudo
康広 五戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7226685A priority Critical patent/JPH0971471A/en
Publication of JPH0971471A publication Critical patent/JPH0971471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a silicon nitride sintered compact excellent in oxidation resistance at high temperatures. SOLUTION: This silicon nitride sintered compact comprises a sintering assistant which is distributed in a surface layer part to 500μm depth from the surface of the silicon nitride sintered compact at a concentration of <=10% maximum value of that of an additive distributed in a part at >=500μm depth from the surface thereof. The sintered compact is formed from a silicon nitride powder prepared by blending the sintering assistant therein, covering the silicon nitride sintered compact with an inorganic oxide powder which is a solid at <=1,700 deg.C and capable of forming a compound with the sintering assistant and heating the covered silicon nitride sintered compact at 1,300-1,700 deg.C temperature for >=0.5hr. Thereby, the concentration of the sintering assistant in the surface layer part of the silicon nitride sintered compact is reduced and the oxidation resistance at high temperatures is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミック材料、
特に、強度、靭性などの機械的性質に優れ、且つ、耐酸
化性も有する窒化珪素焼結体に関するものである。
TECHNICAL FIELD The present invention relates to a ceramic material,
In particular, the present invention relates to a silicon nitride sintered body which has excellent mechanical properties such as strength and toughness and also has oxidation resistance.

【0002】[0002]

【従来の技術】従来、セラミック材料は、強度、絶縁
性、耐熱性等が必要とされる様々な分野において広く用
いられており、材料に対する要求が高度化するに従って
改良及び特殊化が成されている。
2. Description of the Related Art Conventionally, ceramic materials have been widely used in various fields in which strength, insulation, heat resistance, etc. are required, and have been improved and specialized as the demand for materials has become higher. There is.

【0003】各種セラミック材料の中で、窒化珪素材は
強度及び靭性が高く機械的特性に優れており、また耐熱
性も有しているため、機械部品として広く応用されてい
る。しかし、窒化珪素材の耐熱性は、1000℃程度ま
での温度に耐える程度のものであり、ガスタービン部品
のように1200℃以上の高温条件下で用いると、耐酸
化性及び耐食性が低下する。従って、このような分野に
適用するには不十分である。
Among various ceramic materials, a silicon nitride material has high strength and toughness, excellent mechanical properties, and also has heat resistance, so that it is widely applied as a mechanical component. However, the heat resistance of the silicon nitride material is such that it can withstand temperatures up to about 1000 ° C., and if it is used under high temperature conditions of 1200 ° C. or higher such as gas turbine parts, the oxidation resistance and corrosion resistance are reduced. Therefore, it is insufficient to be applied to such a field.

【0004】上述のような高温下での使用を可能とする
ために、特開昭61−55301号公報には、窒化珪素
材の表面にサイアロン(Si-Al-O-N )層を形成すること
が提案されている。サイアロンは、窒化珪素粉末とアル
ミナ粉末との混合粉末を焼結することによって形成さ
れ、アルミナはサイアロン中で窒化珪素に固溶するた
め、粒界相を殆ど形成しない。この結果、表面にサイア
ロン層を設けた窒化珪素材の耐酸化性は1500℃程度
まで維持される。しかしながら、このような方法で耐酸
化性を改善すると、材料全体としての強度が低下してし
まう。
In order to enable the use at high temperatures as described above, Japanese Patent Laid-Open No. 61-55301 discloses that a sialon (Si-Al-ON) layer is formed on the surface of a silicon nitride material. Proposed. Sialon is formed by sintering a mixed powder of silicon nitride powder and alumina powder, and alumina forms a solid solution with silicon nitride in sialon, so that it hardly forms a grain boundary phase. As a result, the oxidation resistance of the silicon nitride material provided with the sialon layer on the surface is maintained up to about 1500 ° C. However, if the oxidation resistance is improved by such a method, the strength of the material as a whole is lowered.

【0005】窒化珪素焼結体の高温における強度を改善
する方法として、特開平6−100387号公報には、
焼結助剤を含有する窒化珪素焼結体を酸素含有雰囲気下
で熱処理した後に、焼結体の表面層を除去することが提
案されている。しかし、この方法には焼結体の表面層を
除去する工程があるため、複雑な形状の焼結体に適用す
るのは困難であり、又、高温における耐酸化性も不十分
である。
As a method for improving the strength of a silicon nitride sintered body at high temperature, Japanese Patent Laid-Open No. 6-100387 discloses a method.
It has been proposed to remove the surface layer of the sintered body after heat-treating the silicon nitride sintered body containing the sintering aid in an oxygen-containing atmosphere. However, since this method has a step of removing the surface layer of the sintered body, it is difficult to apply it to a sintered body having a complicated shape, and the oxidation resistance at high temperature is insufficient.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
の窒化珪素材には、強度を有し且つ高温における耐酸化
性が十分なものが得られないという問題点があった。
As described above, the conventional silicon nitride material has a problem that it is not possible to obtain a material having strength and sufficient oxidation resistance at high temperature.

【0007】本発明は、この様な従来技術の課題を解決
するためになされたもので、高温における耐酸化性と強
度及び靭性とを保持し、且つ、あらゆる形状の製品に適
用可能な窒化珪素材及びその製造方法を提供することを
目的とするものである。
The present invention has been made in order to solve the problems of the prior art as described above, and retains the oxidation resistance at high temperature, strength and toughness, and is applicable to products of any shape. It is intended to provide a material and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、窒化珪素焼結
体を被覆粉末で覆って加熱処理すると好結果が得られる
ことを見いだし、本発明の窒化珪素焼結体及びその製造
方法を発明するに至った。
In order to achieve the above object, the inventors of the present invention have conducted extensive studies and found that good results can be obtained by covering a silicon nitride sintered body with a coating powder and performing heat treatment. The present invention has led to the invention of the silicon nitride sintered body of the present invention and a method of manufacturing the same.

【0009】本発明の窒化珪素焼結体は、イットリア、
アルミナ、スピネル、チタニア、ジルコニア及びハフニ
アから選ばれる焼結助剤を含有する窒化珪素焼結体であ
って、該窒化珪素焼結体の表面からの深さが500μm
迄の表層部に分布する該焼結助剤の濃度が、表面からの
深さが500μm以上である部分に分布する添加物の濃
度の最大値の10%以下であるものである。
The silicon nitride sintered body of the present invention is a yttria,
A silicon nitride sintered body containing a sintering aid selected from alumina, spinel, titania, zirconia, and hafnia, wherein the depth from the surface of the silicon nitride sintered body is 500 μm.
The concentration of the sintering aid distributed up to the surface layer portion is 10% or less of the maximum value of the concentration of the additive distributed in the portion where the depth from the surface is 500 μm or more.

【0010】又、本発明の窒化珪素焼結体の製造方法
は、焼結助剤を配合した窒化珪素粉末から窒化珪素焼結
体を形成する工程と、1700℃以下において固体であ
って該焼結助剤と化合物を形成し得る無機酸化物粉末で
該窒化珪素焼結体を覆い1300〜1700℃の温度に
0.5時間以上加熱して窒化珪素焼結体表層部の焼結助
剤濃度を減少させる工程とを有する。
Further, the method for producing a silicon nitride sintered body of the present invention comprises a step of forming a silicon nitride sintered body from a silicon nitride powder containing a sintering aid, and a step of forming the silicon nitride sintered body at 1700 ° C. The silicon nitride sintered body is covered with an inorganic oxide powder capable of forming a compound with a binder, and heated at a temperature of 1300 to 1700 ° C. for 0.5 hours or more, and the concentration of the sintering agent in the surface layer of the silicon nitride sintered body is increased. And the step of reducing.

【0011】[0011]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below.

【0012】窒化珪素は焼結性が悪く、窒化珪素単独で
焼結体を製造すると密なものが得られないため、通常、
焼結助剤として、アルミナ、イットリア等の酸化物を窒
化珪素粉末に添加して窒化珪素焼結体を製造する。この
ような焼結助剤は、特定の固溶体を形成しない限り、第
2成分として粒状の窒化珪素の粒界に存在する。
Since silicon nitride has poor sinterability, a dense body cannot be obtained when a sintered body is manufactured from silicon nitride alone.
An oxide such as alumina or yttria is added to the silicon nitride powder as a sintering aid to manufacture a silicon nitride sintered body. Such a sintering aid exists as a second component in the grain boundaries of granular silicon nitride unless a specific solid solution is formed.

【0013】しかし、焼結性を向上させるために必要な
焼結助剤は、一方で、窒化珪素焼結体の耐酸化性を低下
させる。但し、耐酸化性を低下させる原因となるのは焼
結助剤の全てではなく、焼結体表面近辺の粒界相にある
焼結助剤であり、これが高温下において外気から焼結体
内に浸入した酸素による窒化珪素の酸化あるいは腐食を
進行させる。従って、外気が浸入し易い焼結体表層部分
の焼結助剤の量が少なければ、高温下での焼結体の耐酸
化性を向上させることができる。つまり、窒化珪素焼結
体が緻密で且つ高温で優れた耐熱性を有するためには、
焼結体表層部、特に表面から深さ500μmまでの領域
における焼結助剤の濃度を約1%以下に減少させること
が肝要となる。
However, the sintering aid required for improving the sinterability, on the other hand, reduces the oxidation resistance of the silicon nitride sintered body. However, it is not all of the sintering aids that causes the oxidation resistance to decrease, but the sintering aids that are in the grain boundary phase near the surface of the sintered body. The oxidation or corrosion of silicon nitride due to the invading oxygen is promoted. Therefore, if the amount of the sintering aid in the surface layer portion of the sintered body that is easily penetrated by outside air is small, the oxidation resistance of the sintered body at high temperature can be improved. That is, in order for the silicon nitride sintered body to be dense and have excellent heat resistance at high temperatures,
It is important to reduce the concentration of the sintering aid to about 1% or less in the surface layer portion of the sintered body, particularly in the region from the surface to a depth of 500 μm.

【0014】通常の方法で窒化珪素焼結体を製造する
と、焼結助剤は焼結体全体に実質的に均一に分布する。
このような焼結体を加熱すると、特に1300℃以上の
温度に加熱すると、焼結体表面付近の粒界相の焼結助剤
が焼結体外部へ向かって移動、拡散する傾向が見られ
る。この移動の程度は、加熱温度や焼結助剤の種類によ
って異なり、中でもイットリアの移動量は他の焼結助剤
に比べて大きい。しかし、加熱による焼結助剤の移動量
は、焼結助剤濃度を上述のような程度に減少させられる
ほど大きくなく、しかも、酸素を含んだ雰囲気下で加熱
処理を行うと、雰囲気中の酸素が焼結体内に浸入して窒
化珪素マトリクスを酸化し、脆化する。
When a silicon nitride sintered body is manufactured by a usual method, the sintering aid is distributed substantially uniformly throughout the sintered body.
When such a sintered body is heated, particularly when heated to a temperature of 1300 ° C. or higher, the sintering aid of the grain boundary phase near the surface of the sintered body tends to move and diffuse toward the outside of the sintered body. . The degree of this movement depends on the heating temperature and the type of sintering aid, and among them, the amount of yttria movement is larger than that of other sintering aids. However, the moving amount of the sintering aid due to heating is not so large as to reduce the concentration of the sintering aid to the above-mentioned level, and furthermore, when the heat treatment is performed in an atmosphere containing oxygen, the amount of Oxygen penetrates into the sintered body and oxidizes the silicon nitride matrix, causing embrittlement.

【0015】これに対し、焼結体表面をアルミナ等の粉
末で被覆して加熱処理を行うと、焼結体内への酸素の浸
入による酸化の進行を減少させることができ、特に、焼
結助剤の種類に応じて特定の種類の粉末を被覆に用いる
と、焼結体表層部の焼結助剤濃度を格段に減少させるこ
とができる。これは、焼結体表面を覆う粉末と焼結助剤
とが化合物を形成することにより焼結助剤の移動が促進
されることによる。更に、焼結助剤の焼結体外への移動
は、アルミナ粉末の粒子間への物理的吸収によっても助
長され、加熱処理後に被覆粉末を除去すれば、焼結体外
に移動した焼結助剤は表面上に残存せず、表面層の焼結
助剤濃度が低い焼結体を容易に得ることができる。又、
加熱処理後の冷却によって焼結体内部へ焼結助剤が逆戻
りするのが防止される。
On the other hand, when the surface of the sintered body is covered with a powder of alumina or the like and subjected to heat treatment, the progress of oxidation due to the infiltration of oxygen into the sintered body can be reduced. If a powder of a specific type is used for coating depending on the type of the agent, the concentration of the sintering aid in the surface layer portion of the sintered body can be significantly reduced. This is because the powder covering the surface of the sintered body and the sintering aid form a compound, whereby the movement of the sintering aid is promoted. Further, the movement of the sintering aid to the outside of the sintered body is also promoted by the physical absorption between the particles of the alumina powder, and if the coating powder is removed after the heat treatment, the sintering assistant that has moved to the outside of the sintered body is removed. Does not remain on the surface, and a sintered body having a low concentration of the sintering aid in the surface layer can be easily obtained. or,
Cooling after the heat treatment prevents the sintering aid from returning to the inside of the sintered body.

【0016】従って、焼結助剤を窒化珪素粉末に配合し
た原料粉末を所望形状に圧粉成形し、焼結した後に、こ
の焼結体を被覆粉末中に埋め込み、加熱処理することに
より、表面部分の焼結助剤濃度の低い窒化珪素焼結体が
得られる。原料粉末の調製、圧粉成形及び焼結は、常法
に従って行うことで足りる。例えば、原料粉末の調製
は、焼結助剤及び窒化珪素粉末をボールミル中で混合す
ることによって行われる。使用する焼結助剤としては、
イットリア、マグネシア、スピネル、アルミナ、ジルコ
ニア、チタニア、ハフニア等の、IIA族元素酸化物、II
I A族元素酸化物IVA族元素酸化物及びIII B族元素酸
化物を用いることができ、中でもイットリアが好まし
く、焼結助剤としてイットリアとアルミナの組合せを用
い、被覆粉末としてアルミナを用いた場合、焼結体表層
部のイットリアの90%以上が容易に外部へ移動する。
この場合、イットリアにアルミナを0.5:1〜5:1
の割合で混合して焼結助剤として用いると特に好適な結
果が得られる。
Therefore, the raw material powder in which the sintering aid is mixed with the silicon nitride powder is compacted into a desired shape, sintered, and then the sintered body is embedded in the coating powder and heat-treated to obtain the surface. A silicon nitride sintered body having a low concentration of the sintering aid can be obtained. Preparation of the raw material powder, compaction molding and sintering may be performed according to a conventional method. For example, the raw material powder is prepared by mixing the sintering aid and the silicon nitride powder in a ball mill. As the sintering aid used,
IIA group element oxides such as yttria, magnesia, spinel, alumina, zirconia, titania, hafnia, II
Group IA element oxides Group VA element oxides and group IIIB element oxides can be used, among which yttria is preferable, when a combination of yttria and alumina is used as a sintering aid, and alumina is used as the coating powder. 90% or more of yttria in the surface layer of the sintered body easily moves to the outside.
In this case, yttria with alumina 0.5: 1 to 5: 1
Particularly preferable results can be obtained by mixing them at a ratio of and used as a sintering aid.

【0017】原料粉末への焼結助剤の配合量は、必要に
応じて適宜定められるが、一般的には、原料粉末総量の
3〜10重量%程度用いられる。窒化珪素粉末は、粒径
0.1〜5.0μm程度のものを使用するのが望まし
い。焼結助剤の粒径は0.05〜1.0μm程度のが好
ましい。粒径の小さすぎる粉末は取扱が難しく、又、大
きすぎるものを使用すると、表層部の焼結助剤を減少さ
せた後の焼結体の表面が粗く脆くなる。
The amount of the sintering aid compounded into the raw material powder is appropriately determined as needed, but generally it is used in an amount of about 3 to 10% by weight based on the total amount of the raw material powder. It is desirable to use a silicon nitride powder having a particle size of about 0.1 to 5.0 μm. The particle size of the sintering aid is preferably about 0.05 to 1.0 μm. A powder having a too small particle size is difficult to handle, and when a powder having an excessively large particle size is used, the surface of the sintered body after the sintering aid in the surface layer portion is reduced becomes rough and brittle.

【0018】圧粉成形は、原料粉末をモールド中に投入
してコールドプレス等によって圧粉して成形体とする。
得られた成形体を1600〜1800℃に加熱して焼結
することによって焼結体が得られる。より好ましくは、
20〜50MPa程度の圧力下で成形体を加圧焼結す
る。焼結は、窒素ガス等の非酸化性雰囲気中で行う。
In the compacting, the raw material powder is put into a mold and compacted by cold pressing or the like to obtain a compact.
A sintered compact is obtained by heating the obtained compact to 1600 to 1800 ° C. and sintering. More preferably,
The compact is pressure-sintered under a pressure of about 20 to 50 MPa. Sintering is performed in a non-oxidizing atmosphere such as nitrogen gas.

【0019】得られた焼結体は、被覆粉末中に埋め込
み、加熱処理を施す。被覆粉末は、アルミナ、イットリ
ア、マグネシア、チタニアのような焼結体の加熱処理温
度において溶融しない無機酸化物の粉末が使用され、こ
の中でも焼結助剤と化合物を形成するものを用いるのが
好ましい。このような化合物を形成する被覆粉末と焼結
助剤との組合せとしては、イットリアとアルミナ、アル
ミナとマグネシア、チタニアとジルコニア等が挙げられ
る。従って、例えばイットリア又はマグネシアを焼結助
剤として用いる場合にはアルミナを被覆粉末として用い
るのが適している。
The obtained sintered body is embedded in the coating powder and heat-treated. As the coating powder, a powder of an inorganic oxide that does not melt at the heat treatment temperature of the sintered body such as alumina, yttria, magnesia, and titania is used, and among these, it is preferable to use a powder that forms a compound with a sintering aid. . Examples of combinations of the coating powder and the sintering aid that form such a compound include yttria and alumina, alumina and magnesia, titania and zirconia, and the like. Therefore, for example, when yttria or magnesia is used as a sintering aid, it is suitable to use alumina as the coating powder.

【0020】焼結体の加熱時間が長いほど、又、加熱温
度が高いほど、焼結助剤の移動量が増加し、1300℃
以上の温度で0.5時間以上、好ましくは1時間以上加
熱すると高温での耐酸化性が十分向上した焼結体を得る
ことができる。但し、加熱温度が高すぎると被覆粉末が
焼結体に付着して除去できなくなる。例えば、アルミナ
粉末は1800℃以上になると、焼結体に付着し除去で
きなくなる。従って、加熱温度は好ましくは1300〜
1700℃、より好ましくは1500℃程度に設定す
る。被覆粉末は粒径0.1〜3.0μmのものを使用す
るのが好ましい。粒径の小さいものは取扱が難しく、粒
径の大きすぎるものは焼結体に十分に密接することがで
きない。焼結体は被覆粉末に囲まれるので大気には曝さ
れないが、加熱処理中の焼結体を酸化性雰囲気から確実
に遮弊するために、好ましくは窒素ガス等の非酸化性雰
囲気内、より好ましくは減圧した非酸化性雰囲気におい
て焼結体を被覆粉末に埋め込んで加熱処理を行う。酸化
性雰囲気内で加熱処理を行うと、焼結助剤が焼結体外へ
移動する前に焼結体表層部の窒化珪素の酸化が進行して
脆化する。又、焼結助剤の移動量も少なく、焼結体外へ
移動した焼結助剤は焼結体表面上にガラス質の膜を形成
する。
The longer the heating time of the sintered body and the higher the heating temperature, the more the amount of the sintering aid moved, resulting in 1300 ° C.
By heating at the above temperature for 0.5 hour or more, preferably 1 hour or more, a sintered body having sufficiently improved oxidation resistance at high temperature can be obtained. However, if the heating temperature is too high, the coating powder adheres to the sintered body and cannot be removed. For example, when the alumina powder becomes 1800 ° C. or higher, it adheres to the sintered body and cannot be removed. Therefore, the heating temperature is preferably 1300 to
The temperature is set to 1700 ° C, more preferably 1500 ° C. It is preferable to use a coating powder having a particle size of 0.1 to 3.0 μm. If the particle size is small, it is difficult to handle, and if the particle size is too large, it cannot be brought into close contact with the sintered body. Since the sintered body is surrounded by the coating powder and is not exposed to the atmosphere, it is preferable to use a non-oxidizing atmosphere such as nitrogen gas in order to surely prevent the sintered body from being oxidized from the oxidizing atmosphere. Preferably, the sintered body is embedded in the coating powder in a reduced pressure non-oxidizing atmosphere and heat treatment is performed. When the heat treatment is performed in an oxidizing atmosphere, the oxidation of silicon nitride in the surface layer of the sintered body progresses before the sintering aid moves to the outside of the sintered body, resulting in embrittlement. Further, the amount of the sintering aid that has moved is small, and the sintering aid that has moved out of the sintered body forms a glassy film on the surface of the sintered body.

【0021】加熱処理後の窒化珪素焼結体は、被覆粉末
から取り出し、被覆粉末の拭き取り作業の後に清浄な窒
化珪素焼結体が得られる。必要があれば、更に所望の形
状に加工してもよい。
The silicon nitride sintered body after the heat treatment is taken out from the coating powder, and a clean silicon nitride sintered body can be obtained after the wiping operation of the coating powder. If necessary, it may be further processed into a desired shape.

【0022】上述のような加熱処理によって、窒化珪素
焼結体の表面から深さ500μmまでの表層部における
焼結助剤の濃度を、内部における濃度の10%以下にま
で減少することができ、通常使用される量の焼結助剤を
含有する窒化珪素焼結体の加熱処理によって表層部の焼
結助剤の濃度を1%以下とすることができる。このよう
な焼結体は、1500℃程度の加熱下でも十分に耐酸化
性を有し、非常に緻密である。
By the heat treatment as described above, the concentration of the sintering aid in the surface layer portion from the surface of the silicon nitride sintered body to a depth of 500 μm can be reduced to 10% or less of the internal concentration, The concentration of the sintering aid in the surface layer portion can be reduced to 1% or less by the heat treatment of the silicon nitride sintered body containing the normally used amount of the sintering aid. Such a sintered body has sufficient oxidation resistance even under heating at about 1500 ° C. and is extremely dense.

【0023】[0023]

【実施例】以下、実施例及び比較例により、本発明をさ
らに詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0024】(実施例1)イットリア粉末(平均粒径
1.0μm)5重量%、アルミナ粉末(平均粒径0.0
5μm)2重量%及び窒化珪素粉末(平均粒径0.5μ
m)93重量%の混合物をボールミルを用いてよく攪拌
して原料粉末を調製した。
Example 1 Yttria powder (average particle size 1.0 μm) 5% by weight, alumina powder (average particle size 0.0
5 μm) 2% by weight and silicon nitride powder (average particle size 0.5 μ
m) A 93% by weight mixture was well stirred using a ball mill to prepare a raw material powder.

【0025】この原料粉末を、0.1MPaの減圧窒素
雰囲気中でカーボンモールド中に充填し、コールドプレ
スによって成形体を形成した。更に、カーボンモールド
中の成形体を、1800℃、プレス圧力30MPaのホ
ットプレスにより1時間加圧焼結して窒化珪素焼結体を
得た。
This raw material powder was filled in a carbon mold in a reduced pressure nitrogen atmosphere of 0.1 MPa, and a compact was formed by cold pressing. Further, the molded body in the carbon mold was pressure-sintered for 1 hour by hot pressing at 1800 ° C. and a pressing pressure of 30 MPa to obtain a silicon nitride sintered body.

【0026】他方、0.1MPaの減圧窒素雰囲気中
で、カーボン坩堝中にアルミナ粉末(平均粒径0.5μ
m)を充填し、このアルミナ粉末中に前述で得た焼結体
を埋め込み、1500℃で1時間加熱した。加熱後の焼
結体は、アルミナ粉末から取り出し、4mm×3mm×40
mmの試験片3つを切断加工した。この試験片の1つを用
いて、JIS 1601に従って3点曲げ試験を行い、
室温における強度を求めた。又、別の試験片を1300
℃の大気中で3点曲げ試験を行って高温での強度を求め
た。3つめの試験片は、1500℃の大気に1000時
間さらす耐酸化性試験を行い、試験片の酸化による重量
変化を測定した。これらの結果を表1に示す。
On the other hand, in a reduced pressure nitrogen atmosphere of 0.1 MPa, alumina powder (average particle size 0.5 μm) was placed in a carbon crucible.
m) was filled, and the sintered body obtained above was embedded in this alumina powder and heated at 1500 ° C. for 1 hour. The sintered body after heating is taken out from the alumina powder, 4 mm x 3 mm x 40
Three mm test pieces were cut. Using one of the test pieces, a three-point bending test is performed according to JIS 1601,
The strength at room temperature was determined. Also, another test piece 1300
A three-point bending test was performed in the atmosphere of ° C to determine the strength at high temperature. The third test piece was subjected to an oxidation resistance test in which it was exposed to the atmosphere of 1500 ° C. for 1000 hours, and the weight change due to the oxidation of the test piece was measured. Table 1 shows the results.

【0027】又、得られた窒化珪素焼結体の断面のイッ
トリア分布状態をEPMAで測定した。その結果から得
られる焼結体表面からの深さとイットリア濃度との関係
を図1中の線E1に示す。図1において、縦軸は、焼結
体中のイットリウム濃度の最大値に対する各深度におけ
るイットリウム濃度の比(イットリウム濃度比)を、横
軸は焼結体表面からの深さを示す。
Further, the yttria distribution state of the cross section of the obtained silicon nitride sintered body was measured by EPMA. The relationship between the depth from the surface of the sintered body and the yttria concentration obtained from the result is shown by the line E1 in FIG. In FIG. 1, the vertical axis represents the ratio of the yttrium concentration at each depth to the maximum yttrium concentration in the sintered body (yttrium concentration ratio), and the horizontal axis represents the depth from the surface of the sintered body.

【0028】(実施例2〜7、比較例1)焼結体の加熱
処理温度、加熱処理時間を表1に示すように変更して、
実施例1と同様の操作を繰り返し、窒化珪素焼結体の加
熱処理を行って試験片を得、試験片の強度、耐酸化試験
による重量変化及び焼結体断面のイットリア分布状態を
測定した。これらの結果を同様に、表1及び図1の線E
2〜6(実施例2〜6),C1(比較例1)に示す。
尚、実施例7では加熱処理後の焼結体表面に付着したア
ルミナ粉末が除去できず、測定はできなかった。
(Examples 2 to 7, Comparative Example 1) The heat treatment temperature and heat treatment time of the sintered body were changed as shown in Table 1,
The same operation as in Example 1 was repeated to obtain a test piece by subjecting the silicon nitride sintered body to heat treatment, and the strength of the test piece, the weight change by the oxidation resistance test, and the yttria distribution state of the cross section of the sintered body were measured. These results are also shown in Table 1 and line E of FIG.
2 to 6 (Examples 2 to 6) and C1 (Comparative Example 1).
In Example 7, the alumina powder adhering to the surface of the sintered body after the heat treatment could not be removed, and the measurement could not be performed.

【0029】(比較例2)実施例1と同様に窒化珪素焼
結体を作成し、アルミナ粉に埋め込まずに、大気中で1
500℃で1時間加熱した。加熱後の焼結体から、実施
例1と同様に試験片3つを切断加工し、常温及び高温に
おける強度、酸化における重量変化を測定した。又、焼
結体断面のイットリア分布状態をEPMAで測定した。
(Comparative Example 2) A silicon nitride sintered body was prepared in the same manner as in Example 1 and was not embedded in alumina powder,
Heated at 500 ° C. for 1 hour. From the sintered body after heating, three test pieces were cut and processed in the same manner as in Example 1, and the strength at normal temperature and high temperature and the weight change due to oxidation were measured. Moreover, the yttria distribution state of the cross section of the sintered body was measured by EPMA.

【0030】[0030]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 加熱処理 加熱処理後の焼結体 加熱時間 加熱温度 曲げ強度(MPa ) 酸化による重量 (hr) (℃) 常温 高温 変化(mg/cm2 ) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 1 1500 1140 630 0.8 実施例2 0.5 1500 1090 520 2.5 実施例3 0.3 1500 1100 340 7.8 実施例4 1 1200 1120 330 9.2 実施例5 1 1300 1100 580 1.8 実施例6 1 1700 1080 610 1.3 実施例7 1 1800 − − − 比較例1 − − 1120 310 10.7 比較例2 1 1500 1070 430 6.9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 図1から明らかなように、窒化珪素焼結体に加熱処理を
施すことによって焼結体表層部のイットリウム濃度が減
少することがわかる。即ち、焼結助剤が加熱処理によっ
て移動している。又、図1における表層部のイットリウ
ム濃度が低いほど焼結体試料片の酸化による重量変化が
小さく、耐酸化性が向上することが明らかであり、耐酸
化試験後の比較例1の試験片の表面は脆く破壊され易く
なっていた。
[Table 1] ------------------ Heat treatment Sintered body after heat treatment Heating time The heating temperature bending strength (MPa) weight by oxidation (hr) (℃) ambient temperature hot change (mg / cm 2) ------------------------- ---------- Example 1 1 1500 1140 630 0.8 Example 2 0.5 0.5 1500 1090 520 2.5 Example 3 0.3 1500 1500 100 340 7.8 Example 4 1 1200 1120 330 9.2 Example 5 1 1300 1100 580 1.8 Example 6 1 1700 1080 610 1.3 Example 7 1 1800 --- Comparative Example 1-1120 310 10.7 Comparative Example 2 1 1500 1070 430 6 . 9 −−−−−−−−−−−−−−−−−−− As is clear from FIG. 1, the yttrium concentration in the surface layer of the sintered body is reduced by subjecting the silicon nitride sintered body to the heat treatment. . That is, the sintering aid is moved by the heat treatment. Further, it is clear that the lower the yttrium concentration in the surface layer portion in FIG. 1, the smaller the change in weight of the sintered sample piece due to oxidation and the better the oxidation resistance. The surface was brittle and easily broken.

【0031】比較例2の加熱処理は、焼結助剤の濃度減
少が不十分であることがEPMA分析の結果から明らか
である。又、酸化による重量変化も、耐酸化性が十分と
は言い難い大きな値を示しており、比較例1に比べて重
量変化が小さいのは、加熱処理中に酸化が進んでいると
考えられる。
From the results of EPMA analysis, it is clear that the heat treatment of Comparative Example 2 does not sufficiently reduce the concentration of the sintering aid. Further, the weight change due to oxidation also shows a large value that is hardly said to be sufficient in oxidation resistance. The reason why the weight change is smaller than that in Comparative Example 1 is that oxidation is progressing during the heat treatment.

【0032】(実施例8)原料粉末として、イットリア
(平均粒径1.0μm)5重量%、マグネシア5重量%
及び窒化珪素粉末(平均粒径1.0μm)90重量%の
混合物を用いて、実施例1と同様に窒化珪素焼結体を製
造し、加熱処理を行って、試験片を切り出して、試験片
の強度、耐酸化試験による重量変化及び焼結体断面のマ
グネシウム分布状態を測定した。その結果、3点曲げ強
度は、常温において950MPa、1300℃で490
MPa、酸化による重量変化は1.7mg/cm2 であっ
た。又、焼結体表面から深さ500μm以内の表層部に
おけるマグネシウムの濃度は、深さ500μm以上の内
部における濃度の0.9%であった。
(Example 8) As raw material powder, yttria (average particle size 1.0 μm) 5% by weight, magnesia 5% by weight
And a silicon nitride powder (average particle size 1.0 μm) of 90% by weight were used to manufacture a silicon nitride sintered body in the same manner as in Example 1, and heat treatment was performed to cut out a test piece, The strength change, the weight change due to the oxidation resistance test, and the magnesium distribution state on the cross section of the sintered body were measured. As a result, the three-point bending strength was 950 MPa at room temperature and 490 at 1300 ° C.
MPa, weight change due to oxidation was 1.7 mg / cm 2 . Further, the concentration of magnesium in the surface layer portion within a depth of 500 μm from the surface of the sintered body was 0.9% of the concentration inside the depth of 500 μm or more.

【0033】上述のように、被覆粉末中での加熱処理に
より、焼結体表層部の焼結助剤濃度を減少させることが
でき、これによって窒化珪素焼結体の高温下での耐酸化
性が改善されることが明かである。
As described above, the heat treatment in the coating powder can reduce the concentration of the sintering aid in the surface layer portion of the sintered body, whereby the oxidation resistance of the silicon nitride sintered body at high temperature can be reduced. Is clearly improved.

【0034】[0034]

【発明の効果】以上説明したように、本発明の窒化珪素
焼結体は、高温における耐酸化性が優れたものであり、
高品質である。また、本発明の窒化珪素焼結体の製造方
法は、簡便で広範な用途に対応でき、その工業的価値は
極めて大である。
As described above, the silicon nitride sintered body of the present invention has excellent oxidation resistance at high temperatures,
It is of high quality. Further, the method for producing a silicon nitride sintered body of the present invention is simple and can be applied to a wide range of applications, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化珪素焼結体中のイットリウムの濃度分布を
示すグラフである。
FIG. 1 is a graph showing a concentration distribution of yttrium in a silicon nitride sintered body.

【符号の説明】[Explanation of symbols]

E1 実施例1 E2 実施例2 E3 実施例3 E4 実施例4 E5 実施例5 E6 実施例6 C1 比較例1 C2 比較例2 E1 Example 1 E2 Example 2 E3 Example 3 E4 Example 4 E5 Example 5 E6 Example 6 C1 Comparative Example 1 C2 Comparative Example 2

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イットリア、アルミナ、スピネル、チタ
ニア、ジルコニア及びハフニアから選ばれる焼結助剤を
含有する窒化珪素焼結体であって、該窒化珪素焼結体の
表面からの深さが500μm迄の表層部に分布する該焼
結助剤の濃度が、表面からの深さが500μm以上であ
る部分に分布する添加物の濃度の最大値の10%以下で
あることを特徴とする窒化珪素焼結体。
1. A silicon nitride sintered body containing a sintering aid selected from yttria, alumina, spinel, titania, zirconia and hafnia, wherein the depth from the surface of the silicon nitride sintered body is up to 500 μm. The concentration of the sintering aid distributed in the surface layer part of is not more than 10% of the maximum value of the concentration of the additive distributed in the part where the depth from the surface is 500 μm or more. Union.
【請求項2】 焼結助剤を配合した窒化珪素粉末から窒
化珪素焼結体を形成する工程と、1700℃以下におい
て固体であって該焼結助剤と化合物を形成し得る無機酸
化物粉末で該窒化珪素焼結体を覆い1300〜1700
℃の温度に0.5時間以上加熱して窒化珪素焼結体表層
部の焼結助剤濃度を減少させる工程とを有することを特
徴とする窒化珪素焼結体の製造方法。
2. A step of forming a silicon nitride sintered body from a silicon nitride powder containing a sintering aid, and an inorganic oxide powder which is solid at 1700 ° C. or lower and is capable of forming a compound with the sintering aid. And covering the silicon nitride sintered body with 1300 to 1700
A temperature of 0.5 ° C. or more for 0.5 hour or more to reduce the concentration of the sintering aid in the surface layer portion of the silicon nitride sintered body, the method for producing a silicon nitride sintered body.
JP7226685A 1995-09-04 1995-09-04 Silicon nitride sintered compact and its production Pending JPH0971471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226685A JPH0971471A (en) 1995-09-04 1995-09-04 Silicon nitride sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226685A JPH0971471A (en) 1995-09-04 1995-09-04 Silicon nitride sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH0971471A true JPH0971471A (en) 1997-03-18

Family

ID=16849056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226685A Pending JPH0971471A (en) 1995-09-04 1995-09-04 Silicon nitride sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0971471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195078A (en) * 2016-04-20 2017-10-26 日本特殊陶業株式会社 Ceramic heater and glow plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195078A (en) * 2016-04-20 2017-10-26 日本特殊陶業株式会社 Ceramic heater and glow plug

Similar Documents

Publication Publication Date Title
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JPH0971471A (en) Silicon nitride sintered compact and its production
JPS5950074A (en) Continuous casting refractories
WO2008045698A1 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
Kuk Woo et al. Fabrication and microstructural evaluation of ZrB 2/ZrC/Zr composites by liquid infiltration
JP2994637B2 (en) Silicon nitride sintered body with controlled microstructure of inner and outer layers and method for producing the same
HUT56460A (en) Method for obtaining complex oxidation reaction products, favourably superconductors
JPH09227228A (en) Low-temperature deterioration resistant zirconia material and its production
JP4963157B2 (en) Ceramic composite and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2742619B2 (en) Silicon nitride sintered body
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
Sazonova et al. Thermal stability of MoSi 2-SiC composites in air at temperatures of 1100–1400° C
JPH09255412A (en) Ceramic sintered compact and its production
JPH05238829A (en) Sintered silicone nitride ceramic
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPS63315508A (en) Regulation of silicon nitride powder
JPS62216968A (en) Manufacture of silicon nitride base sintered body
JPH0380149A (en) Production of alumina/zirconia sintered body
JPH0789767A (en) Production of silicon nitride sintered compact
JPH03141160A (en) Silicone nitride sintered compact

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622