JPH0971439A - Aspheric optical element and its production - Google Patents

Aspheric optical element and its production

Info

Publication number
JPH0971439A
JPH0971439A JP7255594A JP25559495A JPH0971439A JP H0971439 A JPH0971439 A JP H0971439A JP 7255594 A JP7255594 A JP 7255594A JP 25559495 A JP25559495 A JP 25559495A JP H0971439 A JPH0971439 A JP H0971439A
Authority
JP
Japan
Prior art keywords
aspherical
optical element
resin
manufacturing
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7255594A
Other languages
Japanese (ja)
Inventor
Masakane Aoki
真金 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7255594A priority Critical patent/JPH0971439A/en
Publication of JPH0971439A publication Critical patent/JPH0971439A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an aspheric optical element reduced in shape change with time, due to ambient temperature and humidity, of the aspherically shaped resin layer by sandwiching a photocurable resin in between a mold having shape inverted to a desired aspheric surface and an optical preformed material with similar shape to the above-mentioned shape followed by irradiating the resin with light and then further irradiating the resin with second light of higher energy. SOLUTION: As shown in the figure, the upper surface of a mold 3 represents a recessed aspheric surface 3a inverted to an aspheric surface 24.8mm in central radius of curvature. A polystyrene-based photocurable resin (nD=1.59) 2a is dripped onto the surface 3a, and an optical preformed material 1 as a glass lens consisting of SK2 (nD=1.607) is then placed on the resin. The interval between the lens 1 and the mold 3 is kept at a specified distance. The resin layer is then cured by being irradiated, through the glass lens 1, with ultraviolet light consisting mainly of g-rays (436nm) emitted from a high-pressure mercury lamp as a light source at a illuminance of 27mW/cm<2> for 2min followed by 2nd ultraviolet light of higher energy (310nm or so) at an illuminance of 20mW/cm<2> for 10min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カメラ、複写機、
レーザプリンタ等で用いられる非球面形状を有するレン
ズ素子に関し、特に光硬化性樹脂からなる非球面形状層
をレンズ基材上に接合して構成される樹脂接合型非球面
レンズに関するものである。
The present invention relates to a camera, a copying machine,
The present invention relates to a lens element having an aspherical shape used in a laser printer or the like, and particularly to a resin-bonded aspherical lens formed by bonding an aspherical shaped layer made of a photocurable resin on a lens base material.

【0002】[0002]

【従来の技術】従来から、各種光学機器において、レン
ズや反射鏡等の光学素子の高性能化、小型軽量化、低コ
スト化を図るために非球面を有する光学素子の使用が盛
んである。
2. Description of the Related Art Conventionally, in various optical devices, an optical element having an aspherical surface has been actively used in order to achieve high performance, small size, light weight, and low cost of optical elements such as lenses and reflecting mirrors.

【0003】このような非球面光学素子を低コストで作
成する方法として、球面ガラスレンズ表面に、光硬化性
樹脂による非球面形状層を接合した樹脂接合型非球面レ
ンズ(以下ハイブリッドレンズと記す)がある。この系
統の従来技術として、特開昭60―56544号公報で
開示されたもの(以下、従来技術1と記する)、あるい
は特開平6―298886号公報で開示されたもの(以
下、従来技術2と記する)がある。
As a method for producing such an aspherical optical element at low cost, a resin-bonded aspherical lens (hereinafter referred to as a hybrid lens) in which an aspherical layer made of a photocurable resin is bonded to the surface of a spherical glass lens. There is. As a conventional technique of this system, one disclosed in Japanese Patent Laid-Open No. 60-56544 (hereinafter referred to as Prior Art 1) or one disclosed in Japanese Patent Laid-Open No. 6-298886 (hereinafter referred to as Prior Art 2). There is).

【0004】これらのハイブリッドレンズでは、樹脂材
料からなる非球面形状層が、環境の温度・湿度等の影響
を受けて、材質変化するのを防ぐため、前記従来技術1
では、より耐候性の高い第2の光硬化性樹脂で非球面形
状層を被覆し、また前記従来技術2では、非球面形状層
を形成する光硬化性樹脂材料そのものの耐候性の向上が
試みられている。
In these hybrid lenses, in order to prevent the aspherical layer made of a resin material from changing its material under the influence of environmental temperature, humidity, etc.
Then, the second photocurable resin having higher weather resistance is coated on the aspherical surface layer, and in the prior art 2, an attempt is made to improve the weather resistance of the photocurable resin material itself forming the aspherical surface layer. Has been.

【0005】[0005]

【発明が解決しようとする課題】前記の従来技術1で
は、非球面形状層作成時の樹脂硬化に伴う収縮による形
状変化が低減され、また耐候性も上がるとされている
が、しかしながら無加熱の真空蒸着がなされるとの記載
からわかるように、耐熱性の向上までは図られていな
い。このため、非球面樹脂層上に、反射防止膜を成膜す
る際に、加熱ができないので、吸湿水分の追い出しがで
きずに密着性が低下したり、膜密度が低下して、緻密な
膜が成膜されずに、反射防止効果が低下するという問題
がある。
In the above-mentioned prior art 1, it is said that the shape change due to the shrinkage due to the resin curing at the time of forming the aspherical shape layer is reduced and the weather resistance is also improved, however, no heating is required. As can be seen from the description that vacuum deposition is performed, heat resistance has not been improved. For this reason, when the antireflection film is formed on the aspherical resin layer, heating cannot be performed, so that moisture absorption cannot be removed and adhesion is decreased, or the film density is decreased, resulting in a dense film. However, there is a problem that the antireflection effect is lowered without being formed.

【0006】また前記の従来技術2では、耐熱性の向上
や、傷やクラック発生を低減させるための耐磨耗性の向
上が図られているが、環境の温度・湿度の影響を受けて
の経時的な非球面樹脂層の形状安定性は充分とは言え
ず、まだ0.8〜1.8μm程度の非球面形状の変化が
発生している。この形状変化の値は、決して無視できる
ものではなく、非球面樹脂層の非球面形状が、上記の値
程度変化すると、例えば像面湾曲の増大や、コマ収差の
増大を引き起こし、レンズの結像性能が変動低下してし
まうという問題がある。
Further, in the above-mentioned prior art 2, the heat resistance is improved and the wear resistance for reducing the generation of scratches and cracks is improved, but it is affected by the temperature and humidity of the environment. The shape stability of the aspherical resin layer over time cannot be said to be sufficient, and the change in the aspherical shape of about 0.8 to 1.8 μm still occurs. The value of this shape change is by no means negligible. If the aspherical shape of the aspherical resin layer changes to the above value, for example, an increase in field curvature and an increase in coma will occur, resulting in an image formation of the lens. There is a problem that the performance fluctuates.

【0007】本発明は従来技術の有する前記課題を解決
するためになされたものであり、製造コストの大幅な上
昇を招くことなく、また入手し難い特殊な樹脂材料を用
いることもなく、ハイブリッドレンズの非球面形状樹脂
層の耐候性を向上させ、特にハイブリッドレンズの耐熱
性と形状安定性を向上させる非球面光学素子とその製造
方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and does not significantly increase the manufacturing cost, does not use a special resin material that is difficult to obtain, and does not use a hybrid lens. It is an object of the present invention to provide an aspherical optical element which improves the weather resistance of the aspherical resin layer, and particularly improves the heat resistance and shape stability of a hybrid lens, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】前記課題を実現するため
本発明に係る非球面光学素子の製造方法は、所望の非球
面と反転した形状を有する金型と、前記所望非球面に近
似する形状を有する光学母材との間に、光硬化性樹脂を
挟み、前記金型と前記光学母材間の間隔を所定間隔に保
持して、光照射することで、前記光学母材表面に所望の
非球面形状樹脂層を硬化形成する非球面光学素子の製造
方法において、前記光照射後、前記照射光よりもエネル
ギーの高い第2の照射光を前記光硬化性樹脂に照射する
ことを特徴とする。
In order to achieve the above-mentioned object, a method for manufacturing an aspherical optical element according to the present invention comprises a mold having a shape that is the inverse of a desired aspherical surface, and a shape that approximates the desired aspherical surface. A photocurable resin is sandwiched between the optical base material and the optical base material having a predetermined distance between the mold and the optical base material, and light irradiation is performed to obtain a desired optical base material surface. In the method for manufacturing an aspherical optical element in which an aspherical resin layer is cured and formed, the photocurable resin is irradiated with second irradiation light having higher energy than the irradiation light after the light irradiation. .

【0009】あるいは、前記の非球面光学素子の製造方
法において、前記第2の照射光は、前記光学母材を透過
させるものでなく、前記非球面球状樹脂層側から照射す
ることを特徴とする。あるいは、前記の非球面光学素子
の製造方法において、前記第2の光照射を減圧下で実施
することを特徴とする。あるいは、前記の非球面光学素
子の製造方法において、前記第2の光照射は、前記光硬
化性樹脂の加熱と同時に実施することを特徴とする。あ
るいは、本発明に係る非球面光学素子は、前記非球面形
状樹脂層上に、反射防止層を被覆したことを特徴とす
る。
Alternatively, in the method of manufacturing an aspherical optical element, the second irradiation light is not transmitted through the optical base material, but is irradiated from the aspherical spherical resin layer side. . Alternatively, in the method for manufacturing an aspherical optical element, the second light irradiation is performed under reduced pressure. Alternatively, in the method for manufacturing an aspherical optical element, the second light irradiation is performed simultaneously with heating the photocurable resin. Alternatively, the aspherical optical element according to the present invention is characterized in that the aspherical resin layer is coated with an antireflection layer.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施の形態であ
る実施例を、添付図面に基づいて説明する。 第1実施例 図1乃至図4は、本発明に係る非球面光学素子の製造方
法の第1実施例の工程を示す模式図である。本第1実施
例にあって、光学母材1はSK2(nD=1.607)
からなるガラスレンズであり、球面を有する凸メニスカ
スレンズで、直径28mm、凹面(R1)が36.8m
m、凸面(R2)が25.4mm、中心厚4.15mm
とした。図1で、金型3の上面には、中心曲率半径2
4.8mmの非球面を反転させた凹形状非球面3aが形
成され、この凹形状非球面3aにポリスチレン樹脂をベ
ースとする光硬化性樹脂(nD=1.59)2aを滴下
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. First Example FIGS. 1 to 4 are schematic views showing the steps of a first example of the method for manufacturing an aspherical optical element according to the present invention. In the first embodiment, the optical base material 1 is SK2 (nD = 1.607).
Is a convex meniscus lens having a spherical surface with a diameter of 28 mm and a concave surface (R1) of 36.8 m.
m, convex surface (R2) 25.4 mm, center thickness 4.15 mm
And In FIG. 1, the center radius of curvature 2 is on the upper surface of the mold 3.
A concave aspherical surface 3a is formed by inverting the 4.8 mm aspherical surface, and a photocurable resin (nD = 1.59) 2a based on polystyrene resin is dropped on the concave aspherical surface 3a.

【0011】次に、図2に示すように、この光硬化性樹
脂2aの上から、ガラスレンズ1を降下させ、ガラスレ
ンズ1と金型3との間隔を一定の間隔に保持する。この
時、光硬化性樹脂2aは、ガラスレンズ1と金型3の間
で拡がり、金型の凹形状非球面3aにならった凸型非球
面形状層2が形成される。この時の樹脂中心厚は0.3
6mmとなるようにした。続いて非球面形状層2を硬化
させるために、高圧水銀ランプを光源としたg線(43
6ナノメートル)を主成分とする紫外線4をガラスレン
ズ1越しに、27mW/平方cm照度で2分間照射し
た。
Next, as shown in FIG. 2, the glass lens 1 is lowered from above the photocurable resin 2a to keep the distance between the glass lens 1 and the mold 3 at a constant distance. At this time, the photocurable resin 2a spreads between the glass lens 1 and the mold 3 to form the convex aspherical surface layer 2 that follows the concave aspherical surface 3a of the mold. Resin center thickness at this time is 0.3
It was set to 6 mm. Then, in order to cure the aspherical layer 2, the g-line (43
Ultraviolet rays 4 whose main component is 6 nanometers) was irradiated through the glass lens 1 at an illuminance of 27 mW / square cm for 2 minutes.

【0012】続いて、本発明によるところの非球面形状
樹脂層2の耐熱性と形状安定性を向上させるために、図
3に示すように、前記紫外線4(436ナノメートル)
よりも短波長でエネルギーの高い波長310ナノメート
ル前後の第2の紫外線5を、20mW/平方cm照度で
10分間照射した。このような波長310ナノメートル
前後の紫外線以外にも、波長200ナノメートルから3
70ナノメートルまでの紫外線で効果があり、光源とし
ては、低圧水銀ランプ、メタルハライドランプ、キセノ
ン水銀ランプ等が適する。
Subsequently, in order to improve the heat resistance and shape stability of the aspherical resin layer 2 according to the present invention, as shown in FIG. 3, the ultraviolet rays 4 (436 nm) are used.
The second ultraviolet ray 5 having a shorter wavelength and a higher energy of about 310 nm is irradiated at a illuminance of 20 mW / square cm for 10 minutes. In addition to ultraviolet rays with a wavelength of around 310 nanometers, wavelengths from 200 nanometers to 3
It is effective with ultraviolet rays up to 70 nm, and low-pressure mercury lamps, metal halide lamps, xenon mercury lamps, etc. are suitable as light sources.

【0013】次に、図4に示すように、金型3からガラ
スレンズ1の表面に非球面形状樹脂層2が接合されたハ
イブリッドレンズ10を取り外す。このようにして作成
されたハイブリッドレンズ10では、先ず前記第1の紫
外線4により硬化した樹脂層2が、よりエネルギーの高
い第2の紫外線5に照らされることで、更に、硬化反応
が促進して、前記第1の紫外線4照射だけでは得られな
い、高い硬度を有する樹脂を形成することができる。こ
の結果、本発明によるハイブリッドレンズ10では非球
面形状樹脂層2の耐熱性が向上し、非球面形状樹脂層2
が環境の温度や湿度の影響を受けることによる経時的な
形状変化は、実用上無視し得る程度以下にすることがで
きる。また本発明に係る非球面光学素子の製造方法は、
光硬化性樹脂一般に適用することができる。
Next, as shown in FIG. 4, the hybrid lens 10 in which the aspherical resin layer 2 is bonded to the surface of the glass lens 1 is removed from the mold 3. In the hybrid lens 10 thus produced, the resin layer 2 cured by the first ultraviolet ray 4 is first exposed to the second ultraviolet ray 5 having higher energy, whereby the curing reaction is further promoted. Thus, it is possible to form a resin having a high hardness, which cannot be obtained only by irradiating the first ultraviolet ray 4. As a result, in the hybrid lens 10 according to the present invention, the heat resistance of the aspherical resin layer 2 is improved, and the aspherical resin layer 2 is improved.
The change in shape over time due to the influence of the temperature and humidity of the environment can be reduced to a level that is practically negligible. Further, the method for manufacturing an aspherical optical element according to the present invention,
It can be applied to photocurable resins in general.

【0014】第2実施例 本発明では、短波長紫外線の吸収の大きいガラスレンズ
を光学母材に用いても、耐熱性と形状安定性を向上させ
た非球面形状樹脂層を有するハイブリッドレンズを製造
することができる。図5乃至図8は、本発明に係る非球
面光学素子の製造方法の第2実施例の工程を示す模式図
である。本第2実施例では、ガラスレンズ11の硝材
は、先の第1実施例におけるガラスレンズ1より屈折率
は高いが、短波長紫外線の吸収度の大きいBaF12
(nD=1.639)とし、光硬化性樹脂12aも、先
の第1実施例より屈折率の高い樹脂(nD=1.63)
を用いている。本実施例の図6までは、第1実施例と同
じ工程であり、第1の紫外線4(g線436ナノメート
ル)の照射により、光硬化性樹脂からなる非球面形状層
12を硬化させる。
Second Embodiment In the present invention, a hybrid lens having an aspherical resin layer having improved heat resistance and shape stability is manufactured even if a glass lens having a large absorption of short wavelength ultraviolet rays is used as an optical base material. can do. 5 to 8 are schematic views showing the steps of the second embodiment of the method of manufacturing an aspherical optical element according to the present invention. In the second embodiment, the glass material of the glass lens 11 has a higher refractive index than the glass lens 1 in the first embodiment, but BaF12 having a high degree of absorption of short wavelength ultraviolet rays.
(ND = 1.639), and the photo-curable resin 12a also has a higher refractive index than that of the first embodiment (nD = 1.63).
Is used. The process up to FIG. 6 of this embodiment is the same as that of the first embodiment, and the aspherical layer 12 made of a photo-curable resin is cured by the irradiation of the first ultraviolet ray 4 (g line 436 nm).

【0015】次に図7において、ガラスレンズ11の表
面に非球面形状樹脂層12が接合された状態のハイブリ
ッドレンズ20を金型3より取り外す。続いて、図8に
おいて、ハイブリッドレンズ20の樹脂層12側から、
前記第1の紫外線4より短波長でエネルギーの高い波長
310ナノメートル前後の第2の紫外線5を照射する。
本実施例では、BaF12のように310ナノメートル
前後の波長の紫外線の透過率が極めて小さいガラスレン
ズを光学母材に選んだ場合でも、その表面に形成した非
球面形状樹脂層12の高耐熱化、形状の高安定化が図れ
る。これにより、ハイブリッドレンズの光学母材に用い
られる材料の制限を減らすことができる。
Next, referring to FIG. 7, the hybrid lens 20 in which the aspherical resin layer 12 is bonded to the surface of the glass lens 11 is removed from the mold 3. Then, in FIG. 8, from the resin layer 12 side of the hybrid lens 20,
A second ultraviolet ray 5 having a wavelength shorter than that of the first ultraviolet ray 4 and having a high energy of about 310 nm is irradiated.
In this embodiment, even if a glass lens such as BaF12 having a very small transmittance of ultraviolet rays having a wavelength of about 310 nm is selected as the optical base material, the aspherical resin layer 12 formed on the surface thereof has high heat resistance. The shape can be highly stabilized. This can reduce restrictions on the materials used for the optical base material of the hybrid lens.

【0016】第3実施例 図9は、本発明に係る非球面光学素子の製造方法の第3
実施例の工程の一部分を示す模式図である。本実施例に
おいては、前記第2実施例の図7まで同じ工程を施した
後、第1の紫外線4で硬化した非球面形状樹脂層12が
ガラスレンズ11に接合した状態のハイブリッドレンズ
20を石英窓6を有する減圧チャンバー7中に配置し、
真空ポンプにより排気して、約1Paの減圧状態にし
た。続いて、減圧状態を保ったまま、石英窓6を通し
て、第1の紫外線4より短波長でエネルギーの高い波長
310ナノメートル前後の第2の紫外線5を、光硬化性
樹脂からなる非球面形状層12に照射した。その後、減
圧チャンバー7中を大気圧まで戻し、ハイブリッドレン
ズ20を取り出す。本発明では減圧下で、第2の光照射
を行うので、第2の光照射による硬化反応時に、非球面
形状樹脂層12から発生するガスを効率よく除去するこ
とができ、非球面形状樹脂層12の高耐熱化、形状の高
安定化を、大気中で実施するよりも、更に促進させるこ
とができる。また、本実施例では大気中の水分の影響に
よる前記第2の光照射の効果のバラツキを減らす効果も
ある。
Third Embodiment FIG. 9 shows a third method of manufacturing an aspherical optical element according to the present invention.
It is a schematic diagram which shows a part of process of an Example. In this embodiment, after performing the same steps up to FIG. 7 of the second embodiment, the hybrid lens 20 in which the aspherical resin layer 12 cured by the first ultraviolet ray 4 is bonded to the glass lens 11 is made of quartz. Placed in a vacuum chamber 7 having a window 6,
It was evacuated by a vacuum pump and the pressure was reduced to about 1 Pa. Then, while maintaining the depressurized state, the second ultraviolet ray 5 having a wavelength shorter than the first ultraviolet ray 4 and having a higher energy of about 310 nm is passed through the quartz window 6 and the aspherical layer made of a photocurable resin. Irradiated 12. Then, the inside of the decompression chamber 7 is returned to atmospheric pressure, and the hybrid lens 20 is taken out. In the present invention, since the second light irradiation is performed under reduced pressure, the gas generated from the aspherical resin layer 12 can be efficiently removed during the curing reaction by the second light irradiation, and the aspherical resin layer The high heat resistance and the high stability of the shape of No. 12 can be further promoted as compared with the case of carrying out in the air. In addition, the present embodiment also has an effect of reducing variation in the effect of the second light irradiation due to the influence of moisture in the atmosphere.

【0017】第4実施例 図10乃至図12は、本発明に係る非球面光学素子の製
造方法の第4実施例の工程の一部分を示す模式図であ
る。本実施例では、前記第1乃至第3実施例において、
第2の紫外線4で光硬化性樹脂からなる非球面形状層2
を更に硬化する際に、赤外線8を用いて、前記非球面形
状層2を約摂氏90度に加熱している。なお図10中で
符号は前記第1実施例に準じているが、前記第2及び第
3実施例においても同様であり、よって図示を省略して
いる。図10、図11、図12は、各々先の実施例図
3、図8、図9の工程に対応している。本実施例では、
第2の光照射による硬化反応時に、非球面形状樹脂層を
加熱しているので、前記樹脂層の硬化反応が、加熱で加
速促進される。これにより前記樹脂層の高耐熱化、形状
の高安定化を一層図ることができる。尚、本実施例では
加熱手段として赤外線照射による加熱を示したが、レン
ズ保持治具にヒーターを組み込み、熱伝導による加熱を
行うものでもよい。
Fourth Embodiment FIGS. 10 to 12 are schematic views showing a part of the steps of a fourth embodiment of the method of manufacturing an aspherical optical element according to the present invention. In this embodiment, in the first to third embodiments,
Aspherical layer 2 made of a photocurable resin with the second ultraviolet ray 4
When further curing, the infrared ray 8 is used to heat the aspherical layer 2 to about 90 degrees Celsius. In FIG. 10, reference numerals are the same as those in the first embodiment, but the same applies to the second and third embodiments, and therefore the illustration is omitted. FIGS. 10, 11 and 12 correspond to the steps of FIGS. 3, 8 and 9 of the previous embodiment, respectively. In this embodiment,
Since the aspherical resin layer is heated during the curing reaction by the second light irradiation, the curing reaction of the resin layer is accelerated and accelerated by heating. This makes it possible to further improve the heat resistance and the shape of the resin layer. In this embodiment, heating by infrared irradiation is shown as the heating means, but a heater may be incorporated in the lens holding jig to perform heating by heat conduction.

【0018】第5実施例 図13は、本発明に係る非球面光学素子の一実施例の断
面模式図である。前記各請求項1、2、3、4に記載の
方法で作成されたハイブリッドレンズ10あるいは20
は、非球面形状樹脂層2あるいは12の耐熱性が従来に
比べて飛躍的に向上し、例えば第1実施例のポリスチレ
ン樹脂をベースとした光硬化性樹脂では、熱変形温度
が、約摂氏100度程度であったものが、前記第2の光
照射により、約摂氏200度前後まで向上した。この結
果、本発明の方法で作成されたハイブリッドレンズ10
あるいは20は反射防止層を、蒸着法、スパッタ法等で
成膜する際に、充分な加熱を施すことが可能となった。
図13は、このようにして加熱しながら、反射防止層3
0を非球面形状樹脂層2あるいは12上に形成した。こ
れにより、従来非球面形状樹脂層の耐熱性が劣るため
に、加熱ができず、効果的な反射防止層をつけることが
できなかったハイブリッドレンズにおいても、本発明に
より、効果的な反射防止層をつけることが可能になる。
Fifth Example FIG. 13 is a schematic sectional view of an example of the aspherical optical element according to the present invention. The hybrid lens 10 or 20 produced by the method according to each of the above claims 1, 2, 3, and 4.
Shows that the heat resistance of the aspherical resin layer 2 or 12 is dramatically improved as compared with the conventional one. For example, in the photocurable resin based on the polystyrene resin of the first embodiment, the heat distortion temperature is about 100 degrees Celsius. The degree of irradiation was improved to about 200 degrees Celsius by the second light irradiation. As a result, the hybrid lens 10 produced by the method of the present invention
Alternatively, in No. 20, sufficient heating can be performed when the antireflection layer is formed by the vapor deposition method, the sputtering method, or the like.
FIG. 13 shows that the antireflection layer 3 is heated while being heated in this manner.
0 was formed on the aspherical resin layer 2 or 12. As a result, even in a hybrid lens in which heating could not be performed and an effective antireflection layer could not be provided due to the poor heat resistance of the aspherical resin layer in the related art, the present invention provides an effective antireflection layer. Can be attached.

【0019】[0019]

【発明の効果】以上説明した様に、本発明に係る非球面
光学素子の製造方法においては、非球面形状層を成す光
効果性樹脂を第1の光照射によって硬化させた後、第1
の照射光よりエネルギーの大きい第2の光照射によっ
て、樹脂層の硬化反応が更に促進され、第1の光照射だ
けでは得られない高い硬度を有する樹脂層を簡便に得る
ことができる。これによりハイブリッドレンズの問題点
であった非球面形状樹脂層の環境温湿度による経時的な
形状変化を、実用上無視し得る程度に減少させることが
できる。また、本発明に係る非球面光学素子の製造方法
においては、第2の照射光を、光学母材を透過させるこ
となく、非球面形状層を成す光硬化性樹脂側から照射し
ているので、第2の照射光の吸収度の大きい光学母材で
あっても、使用することができ、ハイブリッドレンズ光
学母材に用いられる材料選択の自由度を増大させること
ができる。また、光学母材による第2の照射光の吸収を
回避できるので、光学母材への、第2照射光による損傷
のおそれを排除することができる。
As described above, in the method of manufacturing an aspherical optical element according to the present invention, after the photo-effect resin forming the aspherical shape layer is cured by the first light irradiation, the first
By the second light irradiation having energy higher than that of the irradiation light, the curing reaction of the resin layer is further promoted, and the resin layer having high hardness which cannot be obtained only by the first light irradiation can be easily obtained. As a result, it is possible to reduce the shape change of the aspherical resin layer with time due to the ambient temperature and humidity, which is a problem of the hybrid lens, to a practically negligible level. Further, in the method for manufacturing an aspherical optical element according to the present invention, since the second irradiation light is irradiated from the side of the photocurable resin forming the aspherical shape layer without passing through the optical base material, Even an optical base material having a high degree of absorption of the second irradiation light can be used, and the degree of freedom in selecting a material used for the hybrid lens optical base material can be increased. Further, since the absorption of the second irradiation light by the optical base material can be avoided, it is possible to eliminate the risk of damage to the optical base material by the second irradiation light.

【0020】さらに、本発明に係る非球面光学素子の製
造方法においては、第2の光照射を減圧下で実施してい
るので、非球面形状樹脂層から発生する水分を含むガス
を除去することができ、樹脂層の硬化を大気中よりも更
に促進させ、一層高耐熱化、形状の高安定化を図ること
ができる。また大気中水分の影響による第2の光照射に
よる硬化のバラツキを減らすことができる。さらに、本
発明に係る非球面光学素子の製造方法においては、第2
の光照射時に、同時に非球面形状樹脂層を加熱している
ので、樹脂層の硬化反応を一層促進することができ、樹
脂層の高耐熱化、形状の高安定化を一層図ることができ
る。
Further, in the method for manufacturing an aspherical optical element according to the present invention, since the second light irradiation is carried out under reduced pressure, the gas containing water generated from the aspherical resin layer is removed. It is possible to further accelerate the curing of the resin layer than in the atmosphere, and to further improve the heat resistance and the shape stability. In addition, it is possible to reduce the variation in curing due to the second light irradiation due to the influence of atmospheric moisture. Further, in the method for manufacturing an aspherical optical element according to the present invention,
Since the aspherical resin layer is simultaneously heated at the time of the light irradiation, the curing reaction of the resin layer can be further promoted, and the heat resistance and the shape of the resin layer can be further stabilized.

【0021】本発明に係る非球面光学素子においては、
非球面形状樹脂層が高耐熱化され、反射防止層の成膜の
際に加熱することができ、密着力の強い、緻密な反射防
止層のついた、ハイブリッドレンズを供給することがで
きる。このため、従来反射防止層をつけることが困難で
あったハイブリッドレンズの表面反射率を下げ、ゴース
ト、フレタ等の防止ができ、低コストで製品の性能向上
が実現でき、よってその産業上の効果は大きい。
In the aspherical optical element according to the present invention,
It is possible to provide a hybrid lens in which the aspherical resin layer has high heat resistance, can be heated when the antireflection layer is formed, and has a close adhesion and a precise antireflection layer. For this reason, it is possible to reduce the surface reflectance of the hybrid lens, which has been difficult to attach an antireflection layer in the past, and prevent ghost, fret, etc., and improve the performance of the product at low cost. Is big.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非球面光学素子の製造方法の第1
実施例の工程を示す模式図である。
FIG. 1 is a first method of manufacturing an aspherical optical element according to the present invention.
It is a schematic diagram which shows the process of an Example.

【図2】図1に続く工程の模式図である。FIG. 2 is a schematic diagram of a step following FIG.

【図3】図2に続く工程の模式図である。FIG. 3 is a schematic diagram of a process following the process of FIG.

【図4】図3に続く工程の模式図である。FIG. 4 is a schematic diagram of a process following the process of FIG.

【図5】本発明に係る非球面光学素子の製造方法の第2
実施例の工程を示す模式図である。
FIG. 5 is a second method of manufacturing an aspherical optical element according to the present invention.
It is a schematic diagram which shows the process of an Example.

【図6】図5に続く工程の模式図である。FIG. 6 is a schematic view of a step following the step of FIG.

【図7】図6に続く工程の模式図である。FIG. 7 is a schematic diagram of a process following the process of FIG.

【図8】図7に続く工程の模式図である。FIG. 8 is a schematic diagram of a process following the process of FIG.

【図9】本発明に係る非球面光学素子の製造方法の第3
実施例の工程の一部分を示す模式図である。
FIG. 9 is a third method of manufacturing an aspherical optical element according to the present invention.
It is a schematic diagram which shows a part of process of an Example.

【図10】本発明に係る非球面光学素子の製造方法の第
4実施例の工程の一部分を示す模式図である。
FIG. 10 is a schematic view showing a part of the process of the fourth example of the method for manufacturing an aspherical optical element according to the present invention.

【図11】本発明に係る非球面光学素子の製造方法の第
4実施例の工程の一部分を示す模式図である。
FIG. 11 is a schematic view showing a part of the process of the fourth example of the method of manufacturing an aspherical optical element according to the present invention.

【図12】本発明に係る非球面光学素子の製造方法の第
4実施例の工程の一部分を示す模式図である。
FIG. 12 is a schematic view showing a part of the process of the fourth example of the method for manufacturing an aspherical optical element according to the present invention.

【図13】本発明に係る非球面光学素子の一実施例の断
面模式図である。
FIG. 13 is a schematic sectional view of an example of the aspherical optical element according to the present invention.

【符号の説明】[Explanation of symbols]

1 光学母材 2a 光硬化性樹脂 3 金型 3a 凹形状非球面 4 紫外線 5 第2の紫外線 10 ハイブリッドレンズ 1 Optical Base Material 2a Photocurable Resin 3 Mold 3a Concave Aspherical Surface 4 Ultraviolet Ray 5 Second Ultraviolet Ray 10 Hybrid Lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 3/02 G02B 1/10 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G02B 3/02 G02B 1/10 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所望の非球面と反転した形状を有する金
型と、前記所望非球面に近似する形状を有する光学母材
との間に、光硬化性樹脂を挟み、前記金型と前記光学母
材間の間隔を所定間隔に保持して、光照射することで、
前記光学母材表面に所望の非球面形状樹脂層を硬化形成
する非球面光学素子の製造方法において、前記光照射
後、前記照射光よりもエネルギーの高い第2の照射光を
前記光硬化性樹脂に照射することを特徴とする非球面光
学素子の製造方法。
1. A photocurable resin is sandwiched between a mold having a shape that is the reverse of a desired aspherical surface and an optical base material having a shape that approximates the desired aspherical surface, and the mold and the optical element. By keeping the distance between the base materials at a predetermined distance and irradiating with light,
In the method of manufacturing an aspherical optical element in which a desired aspherical resin layer is formed by curing on the surface of the optical base material, after the light irradiation, a second irradiation light having higher energy than the irradiation light is irradiated with the photocurable resin. A method for manufacturing an aspherical optical element, which comprises irradiating the surface of the aspherical optical element.
【請求項2】 請求項1記載の非球面光学素子の製造方
法において、前記第2の照射光は、前記光学母材を透過
させるものでなく、前記非球面球状樹脂層側から照射す
ることを特徴とする非球面光学素子の製造方法。
2. The method for manufacturing an aspherical optical element according to claim 1, wherein the second irradiation light is not transmitted through the optical base material, but is irradiated from the aspherical spherical resin layer side. A method of manufacturing a characteristic aspherical optical element.
【請求項3】 請求項2記載の非球面光学素子の製造方
法において、前記第2の光照射を減圧下で実施すること
を特徴とする非球面光学素子の製造方法。
3. The method for manufacturing an aspherical optical element according to claim 2, wherein the second light irradiation is performed under reduced pressure.
【請求項4】 請求項1、2、3記載の非球面光学素子
の製造方法において、前記第2の光照射は、前記光硬化
性樹脂の加熱と同時に実施することを特徴とする、非球
面光学素子の製造方法。
4. The method for manufacturing an aspherical optical element according to claim 1, 2, or 3, wherein the second light irradiation is performed simultaneously with heating of the photocurable resin. Optical element manufacturing method.
【請求項5】 前記非球面形状樹脂層上に、反射防止層
を被覆したことを特徴とする請求項1、2、3または4
記載の非球面光学素子。
5. The antireflection layer is coated on the aspherical resin layer.
The aspherical optical element described.
JP7255594A 1995-09-06 1995-09-06 Aspheric optical element and its production Pending JPH0971439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255594A JPH0971439A (en) 1995-09-06 1995-09-06 Aspheric optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255594A JPH0971439A (en) 1995-09-06 1995-09-06 Aspheric optical element and its production

Publications (1)

Publication Number Publication Date
JPH0971439A true JPH0971439A (en) 1997-03-18

Family

ID=17280901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255594A Pending JPH0971439A (en) 1995-09-06 1995-09-06 Aspheric optical element and its production

Country Status (1)

Country Link
JP (1) JPH0971439A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039502A (en) * 1998-07-23 2000-02-08 Konica Corp Electromagnetic wave decreasing antireflection film and optical member having this antireflection film
JP2002343697A (en) * 2001-05-11 2002-11-29 Ricoh Opt Ind Co Ltd Method and device for heating polymer material layer
JP2003071858A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method for manufacturing composite optical element
WO2006038378A1 (en) * 2004-10-01 2006-04-13 Murata Manufacturing Co., Ltd. Hybrid lens of translucent ceramic
WO2006070488A1 (en) * 2004-12-27 2006-07-06 Hoya Corporation Optical lens coating apparatus
WO2010119725A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
JPWO2009038134A1 (en) * 2007-09-19 2011-01-06 株式会社ニコン Resin composite type optical element and method for manufacturing the same
WO2013024733A1 (en) * 2011-08-12 2013-02-21 株式会社精工技研 Method for manufacturing hybrid lens

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039502A (en) * 1998-07-23 2000-02-08 Konica Corp Electromagnetic wave decreasing antireflection film and optical member having this antireflection film
JP4683763B2 (en) * 2001-05-11 2011-05-18 リコー光学株式会社 Method and apparatus for heating polymer material layer
JP2002343697A (en) * 2001-05-11 2002-11-29 Ricoh Opt Ind Co Ltd Method and device for heating polymer material layer
JP2003071858A (en) * 2001-09-03 2003-03-12 Olympus Optical Co Ltd Method for manufacturing composite optical element
WO2006038378A1 (en) * 2004-10-01 2006-04-13 Murata Manufacturing Co., Ltd. Hybrid lens of translucent ceramic
JP4743835B2 (en) * 2004-12-27 2011-08-10 Hoya株式会社 Optical lens coating equipment
JP2006181455A (en) * 2004-12-27 2006-07-13 Hoya Corp Coating device of optical lens
WO2006070488A1 (en) * 2004-12-27 2006-07-06 Hoya Corporation Optical lens coating apparatus
US8028650B2 (en) 2004-12-27 2011-10-04 Hoya Corporation Optical lens coating apparatus
JPWO2009038134A1 (en) * 2007-09-19 2011-01-06 株式会社ニコン Resin composite type optical element and method for manufacturing the same
WO2010119725A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens and method for manufacturing wafer lens laminated body
WO2013024733A1 (en) * 2011-08-12 2013-02-21 株式会社精工技研 Method for manufacturing hybrid lens
JP5179680B1 (en) * 2011-08-12 2013-04-10 株式会社精工技研 Hybrid lens manufacturing method
US9193116B2 (en) 2011-08-12 2015-11-24 Seikoh Giken Co., Ltd. Method of manufacturing hybrid lens unit

Similar Documents

Publication Publication Date Title
JP2920164B2 (en) Reflective overcoat for replica gratings
US4477328A (en) Optically readable information disk and method of manufacturing same
US5269867A (en) Method for producing optical device
KR101020634B1 (en) Manufacturing method of lens having nanopattern
JP3955438B2 (en) Curved optical device and manufacturing method thereof
KR100643411B1 (en) High efficiency monolithic glass light shaping diffuser and method of making
JP4811032B2 (en) Reflective replica optical element
JP4652055B2 (en) Lithographic method for forming mold inserts and molds
JPH0971439A (en) Aspheric optical element and its production
US5191479A (en) Fresnel lens
US8154794B2 (en) Imaging lens and method of manufacturing the same
JPH07174902A (en) Microlens array and its production
JP2001249208A (en) Diffraction optical device and method of manufacturing the same
US20070007675A1 (en) Method of manufacturing compound optical element and compound optical element module
JPH0659104A (en) Production of aspherical optical element
JP3825505B2 (en) Manufacturing method of compound lens
JPH0772310A (en) Production of aspherical optical element
JPH05107407A (en) Optical mirror
JPH11143342A (en) Hologram original plate and its making method
JPH02196201A (en) Production of microlens array
JPH0782121B2 (en) Optical element manufacturing method
TWI261685B (en) Microlens arrays
JPH0675106A (en) Production of aspherical optical element
JP3359631B2 (en) Method and apparatus for manufacturing composite optical element
JPH08142068A (en) Mold for molding composite optical element