JP3825505B2 - Manufacturing method of compound lens - Google Patents

Manufacturing method of compound lens Download PDF

Info

Publication number
JP3825505B2
JP3825505B2 JP21828596A JP21828596A JP3825505B2 JP 3825505 B2 JP3825505 B2 JP 3825505B2 JP 21828596 A JP21828596 A JP 21828596A JP 21828596 A JP21828596 A JP 21828596A JP 3825505 B2 JP3825505 B2 JP 3825505B2
Authority
JP
Japan
Prior art keywords
resin layer
aspheric
polymerization
irradiation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21828596A
Other languages
Japanese (ja)
Other versions
JPH1058550A (en
Inventor
亨 千葉
一範 小森
靖宜 土金
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP21828596A priority Critical patent/JP3825505B2/en
Publication of JPH1058550A publication Critical patent/JPH1058550A/en
Application granted granted Critical
Publication of JP3825505B2 publication Critical patent/JP3825505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスレンズの表面に非球面樹脂層を形成することにより複合化レンズを製造する方法に関する。
【0002】
【従来の技術】
ガラスレンズの表面に非球面樹脂層を設けた複合化レンズは、従来から知られているが、成形可能な樹脂層の形状に限界があった。例えば、図2に示したように、ガラスレンズ2の上方に非球面成形面を有する成形型3を設置し、その間の空間に置かれた紫外線硬化性組成物にガラスレンズ2の下方から紫外線を照射することによって製造する方法がある。
【0003】
この従来の方法の問題点を図3及び図4を参照して以下に説明する。図3及び図4に示した非球面樹脂層の下側は、一般には球面であるが、説明の簡略化のため平面とした。図3に示した非球面樹脂層において、下方から全体に同じ照射強度で紫外線照射を行うと、図3に示すように下側部分1dから硬化反応が進行し、非球面樹脂層の最も薄い部分1fの重合が完了し、もはや重合収縮が起こらない状態になっても、非球面樹脂層の厚い部分1eの重合は進行中である。この状態で非球面樹脂層の厚い部分1eの重合がさらに進行し、それに伴って重合収縮が発生しても、最も薄い部分1fが成形型の落ち込みを阻止する。そのため、非球面樹脂層の厚い部分1eにヒケ(樹脂が成形型から離れて空洞が発生する欠陥)が発生する。
上記のような薄い部分が先に硬化してしまうのを回避するため、薄い部分にマスクを置くなどして周辺部のみに紫外線照射を行うと、図4に示したように非球面樹脂層の周辺部1gで先に重合が進行し、重合収縮が完了しているが、層厚の薄い中央部1hが未硬化の状態となる。この場合には、周辺部1gの樹脂層が硬化収縮に伴う成形型の落ち込みを阻止する現象が起こり、中央部1hに欠陥が生じる。
これらはいずれも重合反応中の収縮を制御できなかったために生じる欠陥である。このため、従来は、非球面樹脂層に欠陥が生じやすく、歩留りが極めて悪かった。
【0004】
【発明が解決しようとする課題】
本発明は、紫外線硬化型の非球面樹脂層を有する複合化レンズを硬化収縮に起因する欠陥の発生を減少させ、効率よく製造しうる方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、非球面樹脂層の厚さに応じて重合収縮を制御することによって上記課題を達成したものである。すなわち、本発明による複合化レンズの製造方法は、ガラスレンズと非球面成形面を有する成形型の間に紫外線硬化性樹脂組成物を注入し、紫外線を照射することにより非球面樹脂層を形成して複合化レンズを製造する方法において、形成すべき非球面樹脂層の厚いところと薄いところとで、重合収縮の最終段階が同時に行われるように照射光量を制御して、非球面樹脂層の厚いところの重合収縮量と薄いところの重合収縮量の差分だけ、厚いところを先に収縮させてから全体を重合させることを特徴とする。
【0006】
【発明の実施の形態】
本発明の方法においては、上記のように、形成すべき非球面樹脂層の厚いところに紫外線照射光量を多くし、層厚の薄いところには紫外線照射光量を少なくして反応速度を制御する。この制御により、反応に伴い発生する重合収縮の速度も、形成すべき非球面樹脂層の厚みに応じて制御される。さらに樹脂層全体の、重合収縮の最終段階がほぼ同時に出現するような照射制御を行う。
次に、図面を参照して本発明をさらに詳細に説明する。なお、図面には、説明の簡明にするため、非球面樹脂層は実際より著しく極端な形状で示した。
【0007】
図1は、本発明の方法により照射を行った際の重合反応の進行、したがって重合収縮の進行を説明する非球面樹脂層の説明断面図であり、3層で示してあるが、これは3層構造を有するものではなく、単層の樹脂層を形成する際の重合収縮の進行状態を説明するため便宜上3層で示したものである。さらに、説明の簡略化のため非球面樹脂層の下側は、平面で示したが、一般には、ガラスレンズの球面の上に設けられるので、球面となっている。すなわち、図2に示したガラスレンズ2と成形型3の間で非球面樹脂層が形成される。非球面樹脂層1は、下方から紫外線照射されるため、まず下層部1aから重合反応が始まり、徐々に部分1b、さらには1cへと進行する。
【0008】
本発明においては、厚さに応じて照射光量を制御することによって、重合収縮率が全体に均一になるように硬化させ、硬化収縮による応力の集中を解消し、図1に示したような非球面樹脂層を効率よく製造することができる。
その方法としては、非球面樹脂層の厚いところの重合収縮量と薄いところの重合収縮量の差分だけ、厚いところを先に収縮させてから全体を重合させる方法、あるいは非球面樹脂層の厚いところの重合収縮速度と薄いところの重合収縮速度に差をつける方法及びこれらの組合せなどがある。
【0009】
また、さらに具体的には、非球面樹脂層において所望の非球面樹脂層の層厚比とほぼ同等の相対的照射強度分布になるような特性を有する光学部材を用い、これを介して紫外線照射を行うことにより、重合収縮量、重合収縮速度を制御するのが好ましい。
照射強度分布を得るための光学部材としては、フィルター、パワーレンズ、遮光エリアを有する拡散板などが挙げられる。
【0010】
さらに、紫外線照射は、従来、200mw以上の高い照射強度で行われてきたが、このような高い照射強度では重合反応が急速に進行してしまい、制御が困難である。ところが、50mw以下の照射強度で紫外線照射を行うと、重合反応の開始時間や反応速度を制御しうることが見いだされた。すなわち、50mw以下の低い照射強度では、厚い部分と薄い部分とで照射強度に差を付けると、反応の開始時間や反応速度に大きな差が生じ、結局、重合収縮の制御が可能となる。
本発明において照射強度は、非球面樹脂層の層厚の差や樹脂の種類によっても変動するが、通常、0.1〜50mwとするのが好ましく、重合収縮の制御のしやすさの点から1.0〜20mw以下とするのがより好ましく、1.0〜10mw以下とするのが最も好ましい。
【0011】
本発明の方法においては、上記のように、低い照射強度で重合を行うので、全体的に硬化反応が完了したと認められる状態でも、モノマーが残留していることがありうる。したがって、硬化収縮が終わった後に、照射強度が高めて、例えば、従来採用されている200mw以上の強度で照射し、重合を完結させるのが好ましい。この時点では、前段階で行われた硬化反応により、高い照射強度で紫外線照射を行っても、応力集中に起因する欠陥が発生しない状態になっている。
【0012】
【実施例】
次に、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれによって制限されるものではない。
【0013】
実施例1
エポキシアクリレート、多官能アクリレート及び光重合開始剤から成る紫外線硬化性組成物(三菱レーヨン株式会社製、商品名MP201)を用いて紫外線照射強度を種々に変えて重合反応の開始及び進行を観察した。その際に測定した紫外線硬化性組成物の電圧(熱電対で測定)の経時変化を図5に示す。反応発熱量は、その時点における反応量と関係することが知られているので、図5に示した結果から低照射強度では反応開始時間の遅れと反応進行の遅れが観察され、その効果は、低照射強度ほど顕著であることが分かる。この実験は、紫外線照射強度分布を測定エリア内で一定としたが、2次元的強度分布を設け、各部分の反応制御を同時に行うことも可能である。
図5に示した曲線のうち、照射強度5.0mwの発熱曲線と1.5mwの発熱曲線の積分値を反応率として求め、図6に示した。図6から分かるように、非球面樹脂層の層厚比に応じて紫外線照射強度を変化させることにより、樹脂層の厚い部分と薄い部分とで、厚みに比例した速度で反応を進行させることができ、それにともっなって収縮も同じ割合で発生させることができ、図3及び図4に示したような極端な応力集中を防ぐことができ、効率よく欠陥のない複合化レンズを成形することができる。
【0014】
そこで、図7に曲線Aspで示す非球面樹脂層(直径34mm)を形成するため、図8に示したように、ガラスレンズ4の下方に直径35mmのポリエステル樹脂製の拡散板5の中央に直径10mmのアルミ箔6を貼り付けたものを設置し、ガラスレンズ4と非球面成形型8の間に上記の紫外線硬化性組成物を注入し、拡散板5を介して光源7から照射強度5mwで照射したところ、図7に「本発明のパターン」と示した照射強度分布曲線を得た。なお、図8において、ガラスレンズ4は、レンズ支持部材9で固定されており、拡散板5により拡散された光のうち、レンズ支持部材9により反射されてレンズに入射する光もあることから、完全な遮光部分を設けたにもかかわらず、図に示すようなながらかな照射強度分布が得られる。
紫外線の強度分布は、紫外線照射光学系や強度分布を持たせるためのフィルターの形態及び周辺治工具の構成などから決まるものであり、強度分布を得る方法に関しても本実施例の構成に限定されるものではない。
上記の拡散板を介して実際に上記紫外線硬化性組成物に5mwの照射強度で紫外線を照射し、硬化反応がほぼ完了した後、250mwの照射強度で照射して残留モノマーを重合させたところ、曲線Aspで示した樹脂層厚を有する非球面樹脂層を形成することができた。なお、図7中、従来パターンは、光源からの光を何も介さず直接照射した場合のパターンである。
【0015】
図面及び前記説明には、周辺部が厚く、中央部が薄い非球面樹脂層を形成する場合について説明したが、本発明は、この形状に限定されるものではなく、周辺部が薄く、中心部が厚い非球面樹脂層など、他の形状にも適用しうるものである。
【0016】
【発明の効果】
本発明によれば、非球面樹脂層を形成する際の重合収縮を層厚に応じて進行させることができるため、重合収縮による部分的応力の集中を防止することができ、応力集中に起因する歪などの欠陥の発生が少ない。また、重合収縮の制御を照射光量によって容易に行うことができ、非球面樹脂層を有する複合化レンズを効率よく製造することができる。
【図面の簡単な説明】
【図1】本発明の方法により照射を行った際の重合反応の進行状態、したがって重合収縮の進行状態を説明する非球面樹脂層の説明断面図である。
【図2】非球面樹脂層を形成するための成形型の断面図である。
【図3】従来法による非球面樹脂層の形成状態の説明図である。
【図4】従来法による非球面樹脂層の形成状態の説明図である。
【図5】本発明の実施例で測定した若干の紫外線照射強度における紫外線硬化性組成物の反応熱の経時変化を示す図である。
【図6】図5に示した照射強度5.0mwの曲線と1.5mwの曲線の積分値を反応率を示すグラフである。
【図7】実施例における目的の非球面樹脂層と実施例で生じた照射強度分布を示すグラフである。
【図8】本発明の複合化レンズの製造方法の実施例を示す説明図である。
【符号の説明】
1 非球面樹脂層
2 ガラスレンズ
3 成形型
4 ガラスレンズ
5 拡散板
6 アルミ箔
7 光源
8 非球面成形型
9 レンズ支持部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a compound lens by forming an aspheric resin layer on the surface of a glass lens.
[0002]
[Prior art]
A compound lens in which an aspherical resin layer is provided on the surface of a glass lens is conventionally known, but there is a limit to the shape of the resin layer that can be molded. For example, as shown in FIG. 2, a molding die 3 having an aspherical molding surface is installed above the glass lens 2, and ultraviolet rays are applied to the ultraviolet curable composition placed in the space therebetween from below the glass lens 2. There is a method of manufacturing by irradiation.
[0003]
Problems of this conventional method will be described below with reference to FIGS. The lower side of the aspherical resin layer shown in FIGS. 3 and 4 is generally a spherical surface, but is a plane for the sake of simplicity of explanation. In the aspherical resin layer shown in FIG. 3, when UV irradiation is performed from the bottom with the same irradiation intensity, the curing reaction proceeds from the lower part 1 d as shown in FIG. 3, and the thinnest part of the aspherical resin layer Even if the polymerization of 1f is completed and the polymerization shrinkage no longer occurs, the polymerization of the thick portion 1e of the aspherical resin layer is in progress. In this state, the polymerization of the thick portion 1e of the aspherical resin layer further proceeds, and even when polymerization shrinkage occurs, the thinnest portion 1f prevents the mold from dropping. Therefore, sink marks (defects in which the resin is separated from the mold and a cavity is generated) occur in the thick portion 1e of the aspheric resin layer.
In order to avoid the above-described thin portion from being cured first, when an ultraviolet ray is irradiated only on the peripheral portion by placing a mask on the thin portion or the like, as shown in FIG. Polymerization progresses first at the peripheral portion 1g and the polymerization shrinkage is completed, but the thin central portion 1h is in an uncured state. In this case, a phenomenon occurs in which the resin layer in the peripheral portion 1g prevents the mold from dropping due to curing shrinkage, and a defect occurs in the central portion 1h.
These are all defects that occur because the shrinkage during the polymerization reaction cannot be controlled. Therefore, conventionally, the aspheric resin layer is likely to be defective, and the yield is extremely poor.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of efficiently producing a compound lens having an ultraviolet curable aspherical resin layer by reducing the occurrence of defects due to curing shrinkage.
[0005]
[Means for Solving the Problems]
The present invention achieves the above object by controlling the polymerization shrinkage in accordance with the thickness of the aspheric resin layer. That is, in the method for producing a compound lens according to the present invention, an aspheric resin layer is formed by injecting an ultraviolet curable resin composition between a glass lens and a mold having an aspheric molding surface and irradiating with ultraviolet rays. In the method of manufacturing a compound lens, the amount of irradiation light is controlled so that the final stage of polymerization shrinkage is simultaneously performed between the thick and thin portions of the aspheric resin layer to be formed. It is characterized in that the entire portion is polymerized after the thick portion is first shrunk by the difference between the polymerization shrinkage amount and the thin polymerization shrinkage amount.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, as described above, the reaction rate is controlled by increasing the amount of ultraviolet irradiation light where the aspheric resin layer to be formed is thick and decreasing the amount of ultraviolet irradiation light where the layer thickness is thin. By this control, the rate of polymerization shrinkage generated with the reaction is also controlled according to the thickness of the aspheric resin layer to be formed. Furthermore, irradiation control is performed so that the final stage of polymerization shrinkage of the entire resin layer appears almost simultaneously.
Next, the present invention will be described in more detail with reference to the drawings. In the drawings, the aspheric resin layer is shown in an extremely extreme shape for the sake of simplicity.
[0007]
FIG. 1 is an explanatory cross-sectional view of an aspherical resin layer for explaining the progress of the polymerization reaction when irradiated by the method of the present invention, and hence the progress of the polymerization shrinkage. In order to explain the progress of polymerization shrinkage when a single resin layer is formed, it is shown as three layers for convenience. Furthermore, although the lower side of the aspherical resin layer is shown as a plane for the sake of simplicity of explanation, it is generally a spherical surface because it is provided on the spherical surface of the glass lens. That is, an aspheric resin layer is formed between the glass lens 2 and the mold 3 shown in FIG. Since the aspherical resin layer 1 is irradiated with ultraviolet rays from below, the polymerization reaction starts from the lower layer portion 1a and gradually proceeds to the portion 1b and further to 1c.
[0008]
In the present invention, the amount of irradiation light is controlled in accordance with the thickness, so that the polymerization shrinkage rate is cured so as to be uniform throughout, and the concentration of stress due to the curing shrinkage is eliminated. The spherical resin layer can be efficiently manufactured.
As a method for this, the difference between the polymerization shrinkage amount at the thick part of the aspheric resin layer and the polymerization shrinkage amount at the thin part, the thick part is first shrunk and then the whole is polymerized, or the aspheric resin layer is thick. There are a method of making a difference between the polymerization shrinkage rate of a thin film and a polymerization shrinkage rate of a thin part, and a combination thereof.
[0009]
More specifically, an optical member having a characteristic such that the aspherical resin layer has a relative irradiation intensity distribution substantially equal to the desired thickness ratio of the aspherical resin layer is used, and ultraviolet irradiation is performed through this optical member. It is preferable to control the amount of polymerization shrinkage and the rate of polymerization shrinkage.
Examples of the optical member for obtaining the irradiation intensity distribution include a filter, a power lens, and a diffusion plate having a light shielding area.
[0010]
Furthermore, ultraviolet irradiation has been conventionally performed at a high irradiation intensity of 200 mw or more, but at such a high irradiation intensity, the polymerization reaction proceeds rapidly and is difficult to control. However, it has been found that when ultraviolet irradiation is performed with an irradiation intensity of 50 mw or less, the start time and reaction rate of the polymerization reaction can be controlled. That is, at a low irradiation intensity of 50 mw or less, if there is a difference in irradiation intensity between the thick part and the thin part, a large difference occurs in the reaction start time and reaction rate, and eventually the polymerization shrinkage can be controlled.
In the present invention, the irradiation intensity varies depending on the difference in the thickness of the aspherical resin layer and the kind of the resin, but is usually preferably 0.1 to 50 mw, from the viewpoint of easy control of polymerization shrinkage. It is more preferably 1.0 to 20 mw or less, and most preferably 1.0 to 10 mw or less.
[0011]
In the method of the present invention, since the polymerization is performed at a low irradiation intensity as described above, the monomer may remain even when it is recognized that the curing reaction has been completed as a whole. Therefore, it is preferable to complete the polymerization by increasing the irradiation intensity after curing shrinkage is completed, for example, by irradiation with a conventionally employed intensity of 200 mw or more. At this point, due to the curing reaction performed in the previous stage, defects due to stress concentration are not generated even when ultraviolet irradiation is performed with high irradiation intensity.
[0012]
【Example】
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
[0013]
Example 1
Using a UV curable composition (trade name MP201, manufactured by Mitsubishi Rayon Co., Ltd.) composed of an epoxy acrylate, a polyfunctional acrylate, and a photopolymerization initiator, the start and progress of the polymerization reaction were observed while varying the UV irradiation intensity. FIG. 5 shows changes with time in the voltage (measured with a thermocouple) of the ultraviolet curable composition measured at that time. Since it is known that the reaction calorific value is related to the reaction amount at that time, from the result shown in FIG. 5, a delay in reaction start time and a delay in reaction progress are observed at a low irradiation intensity. It can be seen that the lower the irradiation intensity, the more remarkable. In this experiment, the ultraviolet irradiation intensity distribution is made constant within the measurement area, but it is also possible to provide a two-dimensional intensity distribution and simultaneously control the reaction of each part.
Of the curves shown in FIG. 5, the integrated value of an exothermic curve with an irradiation intensity of 5.0 mw and an exothermic curve with 1.5 mw was obtained as a reaction rate and shown in FIG. As can be seen from FIG. 6, by changing the ultraviolet irradiation intensity according to the layer thickness ratio of the aspherical resin layer, the reaction can proceed at a rate proportional to the thickness between the thick part and the thin part of the resin layer. Accordingly, shrinkage can be generated at the same rate, extreme stress concentration as shown in FIGS. 3 and 4 can be prevented, and a defect-free compound lens can be efficiently molded. it can.
[0014]
Therefore, in order to form the aspherical resin layer (diameter 34 mm) indicated by the curve Asp in FIG. 7, the diameter is formed in the center of the diffusion plate 5 made of polyester resin having a diameter of 35 mm below the glass lens 4 as shown in FIG. A 10 mm aluminum foil 6 affixed is installed, the ultraviolet curable composition is injected between the glass lens 4 and the aspherical mold 8, and the irradiation intensity is 5 mw from the light source 7 through the diffusion plate 5. Upon irradiation, an irradiation intensity distribution curve indicated as “pattern of the present invention” in FIG. 7 was obtained. In FIG. 8, the glass lens 4 is fixed by the lens support member 9, and among the light diffused by the diffusion plate 5, there is also light that is reflected by the lens support member 9 and enters the lens. Despite providing a complete light-shielding portion, a faint irradiation intensity distribution can be obtained as shown in the figure.
The intensity distribution of the ultraviolet ray is determined by the form of the filter for providing the ultraviolet ray irradiation optical system and the intensity distribution, the configuration of the peripheral jig, and the like, and the method for obtaining the intensity distribution is also limited to the configuration of this embodiment. It is not a thing.
When the ultraviolet curable composition was actually irradiated with ultraviolet rays at an irradiation intensity of 5 mw through the diffusion plate and the curing reaction was almost completed, the residual monomer was polymerized by irradiation with an irradiation intensity of 250 mw. An aspheric resin layer having a resin layer thickness indicated by a curve Asp could be formed. In addition, in FIG. 7, the conventional pattern is a pattern when directly irradiating light from a light source without any intervention.
[0015]
In the drawings and the above description, the case where an aspherical resin layer having a thick peripheral portion and a thin central portion has been described. However, the present invention is not limited to this shape, and the peripheral portion is thin and the central portion is formed. It can be applied to other shapes such as a thick aspherical resin layer.
[0016]
【The invention's effect】
According to the present invention, since the polymerization shrinkage when forming the aspheric resin layer can proceed according to the layer thickness, the concentration of partial stress due to the polymerization shrinkage can be prevented, resulting in the stress concentration. There is little occurrence of defects such as distortion. In addition, polymerization shrinkage can be easily controlled by the amount of irradiation light, and a composite lens having an aspheric resin layer can be efficiently manufactured.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view of an aspherical resin layer for explaining the progress of a polymerization reaction when irradiated by the method of the present invention, and hence the progress of polymerization shrinkage.
FIG. 2 is a cross-sectional view of a molding die for forming an aspheric resin layer.
FIG. 3 is an explanatory diagram of a state of forming an aspheric resin layer by a conventional method.
FIG. 4 is an explanatory diagram of a state of forming an aspheric resin layer by a conventional method.
FIG. 5 is a graph showing a change with time of reaction heat of an ultraviolet curable composition at a slight ultraviolet irradiation intensity measured in an example of the present invention.
6 is a graph showing the reaction rate of the integrated values of the irradiation intensity 5.0 mw curve and 1.5 mw curve shown in FIG.
FIG. 7 is a graph showing a target aspheric resin layer in an example and an irradiation intensity distribution generated in the example.
FIG. 8 is an explanatory diagram showing an example of a method for manufacturing a compound lens according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aspherical resin layer 2 Glass lens 3 Mold 4 Glass lens 5 Diffuser 6 Aluminum foil 7 Light source 8 Aspheric mold 9 Lens support member

Claims (1)

ガラスレンズと非球面成形面を有する成形型の間に紫外線硬化性樹脂組成物を注入し、紫外線を照射することにより非球面樹脂層を形成して複合化レンズを製造する方法において、形成すべき非球面樹脂層の厚いところと薄いところとで、重合収縮の最終段階が同時に行われるように照射光量を制御して、非球面樹脂層の厚いところの重合収縮量と薄いところの重合収縮量の差分だけ、厚いところを先に収縮させてから全体を重合させることを特徴とする複合化レンズの製造方法。In a method for producing a compound lens by injecting an ultraviolet curable resin composition between a glass lens and a mold having an aspheric molding surface and irradiating with ultraviolet rays to form an aspheric resin layer The amount of irradiation is controlled so that the final stage of polymerization shrinkage is performed simultaneously at the thick and thin portions of the aspheric resin layer, and the polymerization shrinkage amount at the thick and thin portions of the aspheric resin layer is controlled. A method of manufacturing a compound lens, wherein the entire portion is polymerized after the thick portion is first shrunk by the difference.
JP21828596A 1996-08-20 1996-08-20 Manufacturing method of compound lens Expired - Fee Related JP3825505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21828596A JP3825505B2 (en) 1996-08-20 1996-08-20 Manufacturing method of compound lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21828596A JP3825505B2 (en) 1996-08-20 1996-08-20 Manufacturing method of compound lens

Publications (2)

Publication Number Publication Date
JPH1058550A JPH1058550A (en) 1998-03-03
JP3825505B2 true JP3825505B2 (en) 2006-09-27

Family

ID=16717453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21828596A Expired - Fee Related JP3825505B2 (en) 1996-08-20 1996-08-20 Manufacturing method of compound lens

Country Status (1)

Country Link
JP (1) JP3825505B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467388B2 (en) 2004-09-07 2010-05-26 三洋電機株式会社 COMPOUND LENS, COMPOSITE LENS MANUFACTURING METHOD, AND LENS MODULE
CN100462740C (en) * 2005-04-06 2009-02-18 鸿富锦精密工业(深圳)有限公司 Composite lens manufacturing method
JP5359624B2 (en) * 2009-07-07 2013-12-04 株式会社ニコン Method and apparatus for manufacturing diffractive optical element
JP5302403B2 (en) 2009-07-16 2013-10-02 パナソニック株式会社 COMPOSITE OPTICAL ELEMENT, MANUFACTURING METHOD THEREOF, AND IMAGING DEVICE AND OPTICAL RECORDING / REPRODUCING DEVICE INCLUDING THE COMPOSITE OPTICAL ELEMENT
DE102013207243B4 (en) 2013-04-22 2019-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DEVICE AND METHOD FOR PRODUCING A STRUCTURE OF CURABLE MATERIAL BY IMPREGNATION
KR102146934B1 (en) * 2018-11-14 2020-08-21 한국광기술원 Apparatus and Method for Producing Lens
JP7203958B2 (en) * 2019-03-29 2023-01-13 富士フイルム株式会社 Light irradiation device, light irradiation method, operation method of light irradiation device, and program

Also Published As

Publication number Publication date
JPH1058550A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
EP0322353B1 (en) Method and apparatus for producing optical element
US5299062A (en) Optical lens
US5269867A (en) Method for producing optical device
US7144528B2 (en) Method and mold to control optical device polymerization
JP3825505B2 (en) Manufacturing method of compound lens
JP2574360B2 (en) Plastic lens molding method and apparatus
JPH02126434A (en) Optical disk substrate molding method
JPH06254868A (en) Manufacture of composite precisely molded product
US20070007675A1 (en) Method of manufacturing compound optical element and compound optical element module
JPH0659104A (en) Production of aspherical optical element
JPH0772310A (en) Production of aspherical optical element
JP3800685B2 (en) Optical element manufacturing method
JPH0692130B2 (en) Fresnel lens plate manufacturing method
JPH06331822A (en) Filter type lens, lens array plate, its production, and device utilizing same
JPH02196201A (en) Production of microlens array
JPH08142068A (en) Mold for molding composite optical element
JPH03176835A (en) Production of substrate for recording medium and production of recording medium
JPH03200106A (en) Optical waveguide lens
JPH10138349A (en) Method for laminating stereo lithography
JP2005115105A (en) Holographic recording medium and method for manufacturing same
JPH04340903A (en) Composite optical element and production thereof
JPH0681687B2 (en) Lens molding method
JP2004317755A (en) Optical element and method for manufacturing optical element
JPH0210539A (en) Manufacture of optical disk substrate
JPH06270166A (en) Manufacture of resin bonding type aspherical lens and lens made thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees