1261685 九、發明說明: 本申請案係為2004年1月8日申請之No· 10/754365美國 專利申請案的部份後續申請案,其名稱為“製造微鏡陣列 的方法”,内容併此附送。 5 【發明戶斤屬之技術領域】 發明領域 本發明係概有關於光學元件及光學裝置,尤係關於微 鏡陣列與製造微鏡陣列的方法,及微鏡陣列系統和用途等。 I:先前技術3 10 發明背景 微透鏡陣列可在顯像用途的小型封裝體中提供光調變 性。傳統上,微透鏡係指直徑小於1mm的透鏡;但直徑大 到5mm的透鏡有時亦會被視為微透鏡。 有許多習知的方法可用來製造微鏡。例如,一普遍用 15 來製造微透鏡的技術係首先以一所擇的光阻塗覆一基板, 再透過一罩幕將該被覆光阻的基板曝露於輻射,或者,以 灰階雷射來曝照該光阻。當加熱該基板時,被曝照的光阻 即會熔化,且表面張力會將其材料拉拱成凸透鏡的形狀。 而該光阻的深度會決定該等透鏡的焦距。 20 另一種製造微透鏡的方法係利用離子交換。在此方法 中,離子會被擴散於一玻璃桿内而使其具有一徑向折射率 分佈。該折射率在透鏡的中心處最高,並會與該中心軸的 徑向距離呈一函數地逐減。利用該離子交換法所製成的微 透鏡可被用來調有例如電信光纖中的光。 I26l685 通常在ό午夕用返中,微鏡陣列會比個別的微鏡更適 宜。例如,一種製造破璃微透鏡陣列的方法通常包括熔融 二氧化石夕的反應離子餘刻(RIE)。但一般而言,使用rie法 後難以達到微透鏡陣列的全部要求。該RIE技術在一最終產 5品被製成之前包含許多的步驟,故其產能一般較低所以產 品會較昂貴。 至於另一例,以光學級玻璃之模壓成型來製成微透鏡 陣列亦已習知。此方法包括在高溫下模壓其光學元件預製 物(通常稱為胚料)而製成一玻璃透鏡元件。在該模壓成型過 1〇裎中,一胚料會被嵌入一模穴内。於該成型製程中,該模 具會被置於一無氧腔室内。該胚料通常會被放在下模件 上,並被加熱至玻璃轉變温度而接近玻璃軟化點。嗣上模 件會被送來與該胚料接觸,並施加壓力而使該胚料順應模 穴的形狀。在冷却之後,該透鏡即可由該模具取出。 5 不幸的是,使用一或多個預製物來模壓成型微透鏡陣 列仍會有許多的困難,包括機械性的對準,及各透鏡元件 之光軸相對於一共同軸心的對準,和各透鏡元件的位置相 對於該陣列中之一參考點的對準等等。又,假使該微透鏡 的直徑小於lmm,則使用傳統的技術極難以製成凸拱的非 20 球形模穴。 又如另一例,微鏡陣列時常被設在石夕晶片頂面上,其 可為光敏性(如CCDs)或發光性的(如微顯示元件)。一平坦 化層會首先製設在該矽基材上。一濾色層嗣會覆設於該平 坦化層上,並使各次像元區正確地對準矽基材中的主動元 6 1261685 件。另一平坦化層又會覆設在該濾色層上,最後一光阻材 料會沈積在此第二平坦化層上。習知的微影技術嗣會被用 來在該光阻中形成矩形圖案。經曝光後,一顯影步驟將會 除去曝光區域中的光阻,而留下透光之像元主動區上的中 5 央島狀區域等。藉顯影並有時加以蝕刻,將可除去該等中 央區域之間的光阻材料,而在該光阻區域中造成溝槽來分 開現已形成個別微透鏡部位的各光阻島。嗣一蝕入該矽基 材的深電漿蝕刻將會除去該基材上的所有各層。然後光阻 亦會被剝除,且該等裝置會被硬烤而藉控制時間和溫度來 10 使該等微透鏡重流形成妥當的光學形狀。 雖有許多習知的方法可用來製造微鏡透鏡及微鏡透鏡 陣列,但該等習知技術會包含困難或昂貴的製造步驟,或 不能符合某些設計要求,例如視角、亮度、均一性、對比 等。因此,乃有需要一種改良的微鏡陣列。 15 【發明内容】 發明概要 各種系統和方法於此揭露來提供微鏡陣列。例如,根 據本發明之一實施例,一種用來製造微鏡陣列的方法乃被 揭露。該微鏡陣列可不必使用某些習知微鏡陣列所須之困 20 難或昂貴的製造步驟。該微鏡陣列亦能符合一顯示幕的設 計要求,例如亮度、均一性、對比及/或視角等。舉例而 言,該微鏡透鏡陣列可被用來作為電視螢幕,電腦螢幕, 複印機螢幕,投影機螢幕,顯示螢幕(例如從手機顯示幕到 壁面尺寸的顯示幕等),一膝上電腦,或具有各種其它顯 1261685 像、光學、顯示系統的螢幕等。 依據本發明之一實施例,一方法乃被提供來製造微鏡 陣列。該方法包括將一束透光物例如桿條或光纖等黏結在 5 7起。魏光桿束會被_來形成桿段片。該段片的截面 5 ^面會形成-似蜂巢狀結構。該等端面可被抛光俾使切 剎製程所造成的任何粗糙邊緣平滑化。若有需要,該段片 的或一端面亦可被修正而成型為所需形狀。 經修正的端部會被曝露於一能源,譬如熱源、電激衝、 宙射光等,此將會使各桿段的端部形成一透鏡段。一遮光 10層可被設在該段片之一或兩面上的修正端部,而例如令各 桿段的透鏡段僅部份地曝露(例如只有各透鏡段的中央部 伤可谷光穿過)。一或多數覆層(如抗反射及/或防眩光塗層) 可被佈設在該段片的兩面或僅只一面上。如此製成的微鏡 陣列即可供各種用途的顯不幕(例如一相機、個人數位助 15理、或膝上電腦的小顯示幕,及至一投影螢幕、壁面尺寸 顯示幕、或廣告看板尺寸顯示幕等之大顯示幕)。 故’以本發明之方法所製成的微透鏡陣列可被製成很 小或很大的。例如,該微透鏡陣列的尺寸可被製成/從小於 μηι平方至大於70inx70in的壁面顯示單元。不像其它的微透 2〇鏡陣列製造方法,所有透鏡元件皆被製成具有高度的尺寸 同一性。如後所詳述,列設在該陣列中之各透鏡元件係可 依需要或滿足不同用途的要求來組構。 更具言之,依據本發明之一實施例,該用來製造微鏡 陣列的方法包括:提供一束透光桿;切割該透光桿束來形 1261685 成至少一透光桿段片;加熱該至少一透光桿段片來形成透 鏡段;及以一遮光層來覆蓋至少一透鏡段的一部份。 依據本發明的另一實施例,一顯示幕包含透光桿等係 被製成如一或多數的透鏡陣列段片,而可提供一光徑,其 5 中每一透光桿皆在其至少一端具有一透鏡;及一遮光層鄰 設於該段片而可阻擋一部份離開該等透光桿的光。 依據本發明之一實施例,一種用來提供被製成一微鏡 陣列之顯示幕的方法乃包括:提供集束在一起的透光筒桿 等來形成一具有蜂巢狀截面的結構;切割該束透光筒桿來 10 形成至少一透光桿段片,每一透光桿段皆具有一第一端與 一第二端,並能導通光;加熱該桿段兩端而在其上形成一 透鏡表面;及以一遮光層覆蓋第一上之透鏡表面的一部份。 本發明的範圍係由申請專利範圍來界定,其可併入本 節來參考。而參酌以下之一或多個實施例的詳細說明,將 15 可使專業人士對本發明之各實施例及其所能實現的附加優 點有一更完全瞭解。亦請參閱所附圖式,它們會先被簡單 地說明。 圖式簡單說明 第1圖為本發明之一實施例的方法流程圖; 20 第2圖為本發明一實施例之一束透光物的簡化示圖; 第3A圖為本發明一實施例之橫過第2圖所示桿束的透 光桿段切片之簡化示圖; 第3B圖為本發明一實施例之單一透光桿段的側視圖; 第4A圖為依本發明一實施例對一透光桿段陣列進行熱 1261685 處理的簡化側視圖; 第4B圖為依本發明另一實施例對一透光桿段陣列進行 熱處理的簡化側視圖; 第5圖為使用於含有本發明一實施例的微透鏡陣列之 5 投射系統中的光束形狀轉變器及光解譯器之簡化示圖; 第6A〜6D圖為本發明之各種微透鏡陣列結構的簡化 側視圖; 第7A與7B圖為本發明一實施例之透光桿束的簡化側 視圖, 10 第8A與8B圖為本發明之標準透光桿段在進行蝕刻製 程的簡化示圖;及 第9圖為本發明之透光桿段在進行熱處理時的簡化示 圖。 第10圖為本發明一實施例之透光桿段片的簡化示圖; 15 第11圖為本發明一實施例之具有遮光層之透光桿段陣 列的簡化側視圖;及 第12圖為本發明一實施例之透光桿段片使用於一顯示 幕的簡化示圖。 本發明的實施例及其優點等將可參閱以下詳細說明而 20 獲得最佳的瞭解。亦請瞭解在一或多個圖式中相同的編號 係被用來標示相同的元件。 L實施方式3 較佳實施例之詳細說明 第1圖為本發明一實施例之方法100的流程圖。該方法 10 1261685 匕括提供一整束的透光物條,例如由玻璃、塑膠等所製 f的透光#或光纖等(S1Q2)。該透光桿束會被切割成一片或 夕片的透光桿段(S1G4),其中各段m有—第—面與_第 面。亥各段片的厚度可依需要或之視用途要求而被製成 5任何所需厚度。 、…在各段>!中之每—透光桿段的末端皆可被抛光以形成 光/月的端部。該方法刚亦包括修整該段片的-或兩面 (S106)’而使该段片的端面由一平面變成較圓曲的表面。可 擇地’遠各透光桿段的末端亦可被修正(S1G6),俾在透鏡元 件的衣k過程中造成不同尺寸和形狀的透鏡結構。 如下所洋述,各透光桿段片的一或二面嗣會被施以一 月匕源來提供熱處理,而使_透鏡元件形成於該等透光桿段 的端口P Jt外’若有需要,剛形成的透鏡元件陣列亦能以 4膜來破覆。該覆層可包括應用於顯示幕的抗反射或防 15 眩光材料。 第2圖為本發明一實施例之多數透光桿的桿束2〇〇 之簡化不圖°在—實施例中,各透光桿2G2可為-桿體,筒 柱光、、戴或其匕類似形狀之物,而能提供一光徑。該等透 光才干2〇2會沿其縱軸來被黏合在一起(训2) 。如此形成的結 構會具有—類似蜂巢狀的截面。 在貝施例中,該等透光桿2〇2能使用任何適當的黏 20 ^例如藉UV可固化的黏劑等,來黏結在-起而製成該桿 束200 I乂佳的| ’當使用—uv固化黏劑來製成透光桿束 200^ ’任何可能存在於該等桿體之間的間隙在該黏劑固化 11 1261685 之别將會被黏劑填滿。或者,該桿束200亦可於一抽拉製程 中來被製成。 該等透光桿202可由各種材料來製成。例如,在一實施 例中,該等透光桿202可由玻璃(Si〇2)、塑膠、聚合物線體 5或其它類似的透光材料等來製成。組成該桿束200之各透光 桿202的直徑和長度一般係由用途來決定。 例如,在一實施例中,當製造該微鏡陣列時,該桿束 200的厚度(即各桿體202的長度)會被製成大於或至少等於 該微鏡陣列就該用途所需的厚度。例如第3A圖所示,為確 ⑺保適當的厚度,該桿束200可被切成一單層或段片3〇〇,而 形成具有一厚度t的透光桿段302之陣列(sl〇4)。如此,各透 光桿202的長度會大於或等於t。該桿束2〇〇可利用習知的切 割技術,例如使用切鋸及/或切輪等來切割成一或多數段 片 3〇〇。 15 在—實施例中’例如當要提供-用於顯像系統(如相機) 的被叙陣列,祕透光桿段片3_厚度可約為⑽帅, 若為-使用光整合器的影像投射系統,則該厚度將可達到 數mm或更大。 在一貫施例中,該桿束2〇〇中之各透光桿2〇2可為標準 的單波权光纖,其核蕊尺寸為9μηι,而整體外經為約 !25_。-般而言,各透光桿2_直徑可^職以下至約 數職,黑視其用途而定。通常,被設計成所需規格以適配 特定用途之如第2圖所示的難集束透光桿2Q2等,係可例 如由New York的Corning公司蹲得。 12 1261685 第7 A與7 B圖為本發明之桿束7 〇 〇實施例的簡化側視圖 (为別為第7A圖的桿束700a及第7B圖的桿束700b)。在一實 施例中,桿束7〇〇a可被製成包含直徑各不相同的透光桿 等。例如,在第7A圖中桿束7〇〇a係被示出具有直徑為山的 5透光桿702&與直徑為屯的透光桿702b等,其中d2大於d]。在 此貫施例中,透光桿7〇2a等係被設在該桿束7〇加的周邊區 ’而透光桿702b等則係設在該桿束7〇〇a的核心區a2處。 於本例中,被導入以本發明之原理而由該桿束700a所 製成之微鏡陣列中的輸入光束強度704,將可被重新分佈成 10如強度曲線7〇6所示。該等光強度的重分佈在某些系統中甚 為有用,例如影像投射系統、照相機等。 第7B圖示出另一桿束700b具有直徑為d4的透光桿702c 及直徑屯的透光桿702d等,該屯係大於d4。在本例中,透光 桿702d等會環設在桿束700b的周邊區A4處。 15 在本例中,依本發明的原理由桿束700b所製成的微鏡 陣列所導入的輸入光束強度708,將可被重分佈成如強度曲 線710所示。 如第3A及3B圖所示,當透光桿段片3〇〇被切成所需厚 度t後,其二端面304和306可被修正。在一實施例中,該段 2〇片300的端面304及306係可被拋光或“清理”,而在該段片 300的一或兩端形成一光滑的平面。 在另一實施例中,該拋光可被用來修正該段片300之各 端面304和306的曲率、尺寸、及相關的參數等,其能被最 佳化而在該段片的一或二端面上形成一所需的微鏡陣列表 13 1261685 面。該陣列表面的形狀係取決於其用途。 例如,請參閱第6D圖,其係為一簡化示圖示出一實施 例的微鏡陣列表面608之透鏡係以弧曲的方式來列設在一 立而面上。於—實施例中,該陣列608之段片端面304的曲率 5係可在拋光製程中來被控制。例如,該拋光阻臂會在當段 片⑽疋轉時擺動,而使端面304上之各桿段302形成彎曲表 面0 各处光桿段302之各端面304和306(見第3B圖)的形狀 亦可被调整或修正來造成該各桿段3〇2的曲率、尺寸及參數 10等等(S106)。此修正可用*同的技術包括抛光、姓刻、酸餘 等來達成。 例如在一實施例中,各端面3〇4和306等可藉蝕刻每— 桿段302的周緣區域而被修整成不同的形狀。例如第认圖示 出-光纖段302係被姓刻成令其核蕊區^高出周緣區〜而 15形成蝕刻桿段802,而當被如後所述地加熱時,其將會造成 一較為圓曲的透鏡元件804。 於另-實施例中,如第8B圖所示,該桿段3〇2_虫刻會 被加強’而在該蝕刻桿段806的核蕊區\處幾乎形成一點狀 區域,並在周緣區A2處形成-較陡崎的斜坡,故當如後所 20述地加熱時’其將會造成-更高度弧曲的透鏡元件咖。 在-實施例中,前述祕刻製程可藉將各端面3〇4和 306置入-HF(氫氟)酸中-預定時間來完成。該酸液會在影 響核蕊區A,之前先影響周緣區a2,故該透光桿3〇2浸入册 酸液中愈長,則其蝕刻會愈嚴重(即被蝕刻區域的斜坡會更 14 1261685 陡山肖)。有利的是,例如’具有_端面之透光桿段所形成 的透鏡會具有較短的焦距,故能加強光的聚焦。 如第4A圖所示,構成該段片3⑻之透光桿段陣列的表面 308及/或1G ’不論有否被_,皆可被施以1源,此會 造成加熱(S1G8)來製成各透鏡讀,它們會—起組成微 鏡陣列400。 如第9圖所示,該熱處理會使各桿段3〇2的周緣區&比 核蕊區Q更快地軟化或炫化。因不均勾炼解作用所造成的 表面張力將會令該桿段端部形成弧曲表面而造成透鏡元件 10 904和906 。 15 20 該熱處理能使用任何適當的熱產生手段來進行,包括 下述實施例的等效措施。請再參閱第4A圖,在-實施例中, 該等透光桿段302的陣列可被置人—爐術内。該爐4〇2能夠 達到-加熱程度㈣任何指㈣透光桿段材料進行孰處 理二該熱處理會使其在第―端部遍上形成透鏡細9〇4, 或若有需要,亦可在第二料306上職透鏡元件906。 另貝知例中,如第4B圖所示,該熱處理能以一 射4 〇 4 (例如冋功率雷射)掃描各表面则及/或则而來完 成’該雷射可用—能被該透光桿段材料吸㈣波長來加熱 乂材料而衣成透鏡凡件9()4及/或_等。在其它實施例 中二用來加熱的能源可為1置設靠近透光桿段端部的電 火花/電弧或-輝光放電,或施以其它習知的能源。 第3B圖為本舍明~實施例之-透光桿段302的側視 θ在此声ϋ列中’ 5亥透光桿段搬的第一端3⑽能被該加 15 1261685 熱製程修整而在二互相垂直或其它不同的方向具有不同的 曲率半徑。第3B圖中示出在第一端304上的彎曲表面308, 諸如一橢圓、半橢圓、平凸狀非球形、及類似形狀的透鏡 表面等,其能在相對於該透鏡表面主軸的不同光軸中提供 5 不同的光學性能。 在一實施例中,該第二端306亦可被修正成平坦的,或 沿二互相垂直或其它不同的方向具有不同的曲率半徑。第 3B圖示出一在第二端306上的彎曲表面310,例如一橢圓或 半橢圓形的透鏡表面,其能在相對於該透鏡表面主軸的不 10 同光轴中提供不同的光學性能。 該微鏡陣列的間距和尺寸亦可依據特定用途的需要來 調整。微鏡陣列的製造規格和容差係可依特定用途來規 定,及由終端使用者來限定。 在一例中,利用本發明之一實施例的方法可令一使用 15 直徑約為125μπι之標準單波模光纖的微鏡陣列,能被製成 遍及整個陣列具有小於5%的焦距不均一性或差異。 第5圖示出一使用本發明之方法所製成的微鏡陣列應 用例。該例包含一投射系統500,其可包括許多設計以供特 定用途之不同尺寸和形狀的微鏡陣列等。在一實施例中, 20 光會由第一端502進入該投射系統500,該第一端設有第一 微鏡陣列504,其具有第一形狀506,例如圓形。該光會穿 過一具有第二形狀512例如矩形的第二微鏡陣列510,而由 第二端508離開該投射系統500。由本例中應可暸解該等微 鏡陣列的形狀和尺寸係能針對任何用途所需而依本發明之 16 I261685 —或多個實施例所揭的方法來製成。 此外,若有需要,本發明之一實施例的微鏡陣列4〇〇 之各透鏡元件406(見第4A圖)亦可被覆層⑴。在一實施 例中,譬如針對一顯不幕的用途,該微鏡陣列4〇〇可被塗覆 5抗反射及/或防眩光塗層。覆於該微鏡陣列400上的覆層能 以習知技術來佈設,例如濺鍍、沈積、蒸鍍、喷灑、浸潰、 旋塗、滾塗等等。 如岫依本發明之一或多個實施例所述,該微鏡陣列的 厚度t以及该等透鏡表面的尺寸與形狀,和透鏡面的數目 10等,皆可依用途來改變。例如,第6A圖提供一簡化圖示出 一實施例的微透鏡陣列602具有透鏡設在兩面上。該微鏡陣 歹IJ602的厚度t能被製成任何所需厚度,例如在約1〇〇μιη至 1mm之間的小厚度,或者lmm以上的大厚度t。 第6B圖提供一簡化圖示出一實施例的微鏡陣列6〇4,其 I5 ’亦有透鏡設在兩面上;但本例的厚度係相當地大(例如大於 1mm)。由攻些實施例將可瞭解,該厚度【能依需要來製成任 何厚度。第6C圖提供一簡化圖示出一實施例微鏡陣列6〇6, 其僅在一面上設有本發明實施例的透鏡。第6D圖係類似於 第6C圖’亦僅在—面上設有透鏡,但如前所述,該表面61〇 20 形成一彎曲表面。 上述之本發明的一或多個實施例係被述為使用成束列 設之圓筒狀的透光桿。但專業人士應可瞭解本發明的原理 並不限於圓筒桿,而亦可應用於其它形狀的透光桿,例如 矩形、方形或六角形等。 17 1261685 依據本發明之-實施例,一微鏡陣列乃可被如所揭述 地提供,而例如被用作為—顯示幕。舉例而言,-微鏡陣 列可被以則述之方法100(例如S102〜Su〇)來製造,並在當 被用作-顯示幕時’可再額外進行其它的製程操作來加二 該微鏡陣列的性能或品質。 例如’第10圖提供本發明之一透光桿段1002的微鏡陣 列段片麵的簡化示圖。該段片麵係可依據前述方法 100(例如S102〜S108)或者以其它可擇的對等操作步驟來 製成。 10 即,紐片誦係如割—束透光物或光桿來形成(例 如,令該段片1000接近所需厚度t),且該段片麵的兩面 10〇4和1006會被抛光(及/或修整)及熱處理,而在該等透光 桿段1002的各端形成透鏡。該段片1〇〇〇將可被用作為顯示 幕,或其它的操作步驟亦可對該段片1〇〇〇實施,而來改良 15 該段片1 〇〇〇使用於一鮮員不幕時的性能或$質。 例如,一遮光層可被佈設在端面1004及/或1006上, 來阻擋一部份穿過一或多數透光桿段1002的光(例如阻擋 該各桿段之透鏡周緣處的光)。該遮光層(例如一黑色層)可 為一金屬或其它種類的材料,其可被沈積、黏著、塗敷、 20喷灑、或佈設在該段片⑻的端面1004及/或1006上。該 遮光層的佈設操作亦能被含括於該方法100中之一步驟(例 如第1圖之方法100的S110步驟)。 例如,第11圖為本發明一實施例之具有遮光層1102的 透光桿段1002之簡化示圖。例如,該層11〇2可被沈積在整 18 685 口 ^先椁段1002的各透鏡1104上(即端面1004上)。該等透光 〇〇2的透鏡11 〇4嗣會被部份地曝露,例如可視該声 所用的材料而以|虫刻或回拋光或其它的技術來除掉— 冲份的遮光 層1102 。 5 如此該等透鏡1104將會部份地曝露,例如在各透鏡 11〇4的中央或核心區域曝露,而仍使其周緣區域保持蔽 光。該蝕刻、回拋光、或其它所用的技術亦會平坦化各透 、見11〇4 ’如弟η圖所示。故’第I〗圖示出該段片ι〇〇〇(即一 从知陣列)會具有一整體的遮光物。亦請瞭解第11圖係為一 1〇不意圖,故所示出之該遮光層1102和透光桿段1〇〇2的尺寸 會較誇張或失真,俾能更清楚表示而有助於對本發明實施 例之一或多方面的瞭解。 在佈設遮光層1102之後,-覆層(例如〜薄膜覆層)可被 覆设在該段片1000的端面1006及/或ι〇〇4 μ 上。例如一抗反 15 20 射及/或防眩光的薄膜覆層可被敷設在端面刪上(例如 光輸出面)。該覆層可用來減少反射及,或眩光,並亦能保 護該段片誦(例如防止幾或其它損害)。該覆層的塗佈亦 可納為該方法1 〇〇〇的一部份(如第1圖之方、去的 , 各種覆層,諸如專業人士所習知去, 白夫者,皆可被塗佈使用, 乃取決於所需效果或用途的要求。彳丨士 ^ _ . 邊覆層材料可選 自Si〇2 ’ SisN4 ’ Ti〇2或其任何纟且合你, 或其它的習知被覆 材料。舉例而s ’該所擇的覆層材料科 丁、可用來造成一多層 薄膜覆層結構。 設有如苐1 1圖所示之遮光層1 1 Q2的听 、又片1〇〇〇如前所述 19 1261685 係可作為一顯示幕。例如,第12圖提供本發明一實施例之 顯示幕1200的簡化示圖◦該顯示幕1200例如包含段片1000 具有透光桿段1002等及遮光層1102(圍繞在各透光桿段 1002的透鏡周緣)。 5 該顯示幕12⑻亦可包含一覆層1202(例如前述的薄膜 覆層)。一鏡片1204例如菲湟耳(Fresnel)透鏡片亦可被含括 設入。如第12圖所示,光將被提供,其會穿過該顯示幕12⑻ 而可由另一面看到。藉著利用所述之技術,所產生的輸出 光(即穿過顯示幕1200之後的光)相較於習知的顯示幕將會 10 有較佳的品質或性能。 如上所述,各種微鏡實施例乃被揭露。例如,依據本 發明之一實施例,一所揭的微鏡陣列可被用來提供一高品 質顯示幕。該顯示幕相對於某些習知的顯示幕能較廉價地 製造。而且,該顯示幕能提供比某些習知的顯示幕更佳的 15 性能,譬如亮度、均一性、對比及/或視角等。 上述各實施例係供說明而非限制本發明。亦該瞭解依 據本發明的原理可能有各種不同的修正和變化。因此,本 發明的範圍僅由以下申請專利範圍來界定。 【圖式簡單說明】 20 第1圖為本發明之一實施例的方法流程圖; 第2圖為本發明一實施例之一束透光物的簡化示圖; 第3 A圖為本發明一實施例之橫過第2圖所示桿束的透 光桿段切片之簡化示圖; 第3B圖為本發明一實施例之單一透光桿段的側視圖; 20 1261685 第4A圖為依本發明一實施例對一透光桿段陣列進行熱 處理的簡化側視圖; 第4B圖為依本發明另一實施例對一透光桿段陣列進行 熱處理的簡化側視圖; 5 第5圖為使用於含有本發明一實施例的微透鏡陣列之 投射系統中的光束形狀轉變器及光解譯器之簡化示圖; 第6A〜6D圖為本發明之各種微透鏡陣列結構的簡化 側祝圖; 第7A與7B圖為本發明一實施例之透光桿束的簡化側 1〇祝圖; 第8A與8B圖為本發明之標準透光桿段在進行蝕刻製 移的簡化示圖;及 第9圖為本發明之透光桿段在進行熱處理時的簡化示 圖。 15 第1〇圖為本發明一實施例之透光桿段片的簡化示圖; 第11圖為本發明一實施例之具有遮光層之透光桿段陣 列的簡化側視圖;及 第12圖為本發明一實施例之透光桿段片使用於一顯示 幕的簡化示圖。 20【主要元件符號說明】 100···製造方法 S102〜S110···各製造步驟 200,700…透光桿束 2〇2,7〇2···透光桿 300…段片 302…透光桿段 21 1261685 304,306···端面 308,310,610···微透鏡陣列表面 400,602,604,606,608…微透鏡陣列 402·.·爐 404···雷射 406,804,808,904,906···透鏡元件 500···投射系統 502···第一端</ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Comes with. 5 FIELD OF THE INVENTION The present invention relates generally to optical components and optical devices, and more particularly to micromirror arrays and methods of fabricating micromirror arrays, and micromirror array systems and uses. I: Prior Art 3 10 Background of the Invention A microlens array can provide light modulation in a small package for development use. Conventionally, a microlens refers to a lens having a diameter of less than 1 mm; however, a lens having a diameter of up to 5 mm is sometimes regarded as a microlens. There are many conventional methods for making micromirrors. For example, a technique commonly used to fabricate microlenses is to first coat a substrate with a selected photoresist, and then expose the coated photoresist substrate to radiation through a mask, or by a gray-scale laser. Exposure to the photoresist. When the substrate is heated, the exposed photoresist is melted and the surface tension will arch the material into the shape of a convex lens. The depth of the photoresist determines the focal length of the lenses. 20 Another method of making microlenses utilizes ion exchange. In this method, ions are diffused into a glass rod to have a radial refractive index profile. The index of refraction is highest at the center of the lens and is reduced as a function of the radial distance from the central axis. Microlenses made by this ion exchange method can be used to modulate light in, for example, a telecommunications fiber. I26l685 is usually used in the midnight, and the micromirror array is more suitable than individual micromirrors. For example, a method of fabricating a glass microlens array typically includes a reactive ion residue (RIE) of molten silica. However, in general, it is difficult to achieve all the requirements of the microlens array after using the rie method. The RIE technique involves a number of steps before the final product is produced, so the production capacity is generally low and the product is relatively expensive. As another example, it has also been known to form a microlens array by compression molding of optical grade glass. This method involves molding a preform of an optical element (commonly referred to as a billet) at a high temperature to form a glass lens element. In the press molding, a blank is embedded in a cavity. During the forming process, the mold is placed in an anaerobic chamber. The billet is typically placed on the lower mold and heated to the glass transition temperature to near the softening point of the glass. The upper jaw module is fed into contact with the blank and pressure is applied to conform the blank to the shape of the cavity. After cooling, the lens can be removed from the mold. 5 Unfortunately, there are still many difficulties in molding a microlens array using one or more preforms, including mechanical alignment, and alignment of the optical axes of the lens elements relative to a common axis, and The position of each lens element relative to a reference point in the array, and the like. Further, if the diameter of the microlens is less than 1 mm, it is extremely difficult to form a non-spherical cavity of the convex arch using a conventional technique. As another example, micromirror arrays are often placed on the top surface of a stone wafer, which may be photosensitive (e.g., CCDs) or luminescent (e.g., microdisplay elements). A planarization layer is first formed on the substrate. A color filter layer is applied over the planarization layer, and each of the pixel regions is correctly aligned with the active element 6 1261685 in the substrate. Another planarization layer is overlaid on the color filter layer, and a last photoresist material is deposited on the second planarization layer. Conventional lithography techniques are used to form a rectangular pattern in the photoresist. After exposure, a development step will remove the photoresist in the exposed area, leaving a central island-like area on the active area of the light-transmissive pixel. By developing and sometimes etching, the photoresist material between the central regions can be removed, and trenches are created in the photoresist regions to separate the photoresist islands that now form individual microlens locations. A deep plasma etch that etches into the ruthenium substrate will remove all layers on the substrate. The photoresist is then stripped and the devices are hard baked to control the time and temperature to re-flow the microlenses to form a proper optical shape. While many conventional methods are available for fabricating micromirror lenses and micromirror lens arrays, such prior art techniques may involve difficult or expensive manufacturing steps or may not meet certain design requirements, such as viewing angle, brightness, uniformity, Contrast and so on. Therefore, there is a need for an improved micromirror array. 15 SUMMARY OF THE INVENTION Various systems and methods are disclosed herein to provide a micromirror array. For example, a method for fabricating a micromirror array is disclosed in accordance with an embodiment of the present invention. The micromirror array eliminates the need for difficult or expensive manufacturing steps that are required for some conventional micromirror arrays. The micromirror array can also conform to the design requirements of a display such as brightness, uniformity, contrast and/or viewing angle. For example, the micromirror lens array can be used as a television screen, a computer screen, a copier screen, a projector screen, a display screen (for example, from a mobile phone display screen to a wall-sized display screen, etc.), a laptop computer, or Screens with various other 1261685 image, optical, display systems, etc. In accordance with an embodiment of the invention, a method is provided for fabricating a micromirror array. The method includes bonding a bundle of light transmissive materials such as rods or optical fibers to 57. The Weiguang beam will be formed by the _ to form the rod piece. The section 5^ of the segment will form a honeycomb-like structure. These end faces can be polished to smooth any rough edges caused by the brake process. If desired, the end or end of the segment can be modified to form the desired shape. The corrected ends are exposed to an energy source such as a heat source, an electric shock, a prismatic light, etc., which will cause the ends of the segments to form a lens segment. A light-shielding 10 layer may be provided on the correction end of one or both sides of the segment, and for example, the lens segments of the respective segments may be only partially exposed (for example, only the central portion of each lens segment may pass through the valley) . One or more coatings (such as anti-reflective and/or anti-glare coatings) may be applied to both sides or only one side of the segment. The micromirror array thus produced can be used for various purposes (such as a camera, personal digital help, or a small display screen of a laptop computer, and to a projection screen, wall size display screen, or advertising billboard size). Large display screen such as display screen). Therefore, the microlens array produced by the method of the present invention can be made small or large. For example, the size of the microlens array can be made/from a wall display unit that is less than ηηι squared to greater than 70 inx70 inches. Unlike other micro-mirror array fabrication methods, all lens elements are made to have a high degree of dimensional identity. As will be described in more detail below, the various lens elements listed in the array can be configured as needed or to meet the requirements of different applications. More specifically, in accordance with an embodiment of the present invention, the method for fabricating a micromirror array includes: providing a bundle of light transmissive rods; cutting the bundle of light transmissive rods to form 1261685 into at least one strip of light transmissive rod; heating The at least one light transmissive rod segment forms a lens segment; and covers a portion of the at least one lens segment with a light shielding layer. According to another embodiment of the present invention, a display screen includes a light-transmitting rod or the like which is formed into one or a plurality of lens array segments, and provides a light path, wherein each of the light-transmitting rods 5 is at least at one end thereof. Having a lens; and a light shielding layer adjacent to the segment to block a portion of the light exiting the light transmissive rod. According to an embodiment of the present invention, a method for providing a display screen formed into a micro mirror array includes: providing a bundle of light-transmitting rods or the like to form a structure having a honeycomb cross section; cutting the beam The light-transmissive tube rod 10 forms at least one light-transmissive rod segment, each of the light-transmitting rod segments has a first end and a second end, and can conduct light; heating the two ends of the rod to form a a lens surface; and covering a portion of the first upper lens surface with a light shielding layer. The scope of the invention is defined by the scope of the claims, which are incorporated herein by reference. With regard to the detailed description of one or more of the following embodiments, the skilled person will have a more complete understanding of the various embodiments of the invention and the additional advantages that can be achieved. Please also refer to the drawings, which will be briefly explained first. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of a method according to an embodiment of the present invention; 20 FIG. 2 is a simplified diagram of a light-transmissive article according to an embodiment of the present invention; FIG. 3A is an embodiment of the present invention FIG. 3B is a side view of a single light-transmissive rod segment according to an embodiment of the present invention; FIG. 4A is a side view of a single light-transmissive rod segment according to an embodiment of the present invention; A simplified side view of an array of light-transmissive rod segments subjected to heat 1261685; FIG. 4B is a simplified side view of heat treatment of an array of light-transmissive rod segments according to another embodiment of the present invention; FIG. 5 is a view for use in the present invention A simplified view of a beam shaper and a photointerpreter in a projection system of a microlens array of an embodiment; FIGS. 6A to 6D are simplified side views of various microlens array structures of the present invention; FIGS. 7A and 7B A simplified side view of a light-transmissive rod bundle according to an embodiment of the present invention, 10 FIGS. 8A and 8B are simplified views of a standard light-transmissive rod segment of the present invention in an etching process; and FIG. 9 is a light-transmitting process of the present invention A simplified view of the rod section as it undergoes heat treatment. 10 is a simplified view of a light-transmissive rod segment according to an embodiment of the present invention; FIG. 11 is a simplified side view of an array of light-transmitting rod segments having a light-shielding layer according to an embodiment of the present invention; and FIG. A light-transmissive segment of an embodiment of the invention is used in a simplified view of a display screen. The embodiments of the present invention, its advantages, and the like will be described in the following detailed description. Also, please understand that the same numbers are used to designate the same elements in one or more drawings. L. Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart of a method 100 according to an embodiment of the present invention. The method 10 1261685 includes providing a bundle of light transmissive strips, such as light transmissive or optical fibers (S1Q2) made of glass, plastic, or the like. The beam of light transmissive rods is cut into a light-transmissive rod segment (S1G4) of a piece or a piece of slab, wherein each segment m has a - face and a _ face. The thickness of each segment of the hai can be made to any desired thickness, as desired or depending on the application. , at each of the segments >!, the ends of the light-transmissive rod segments can be polished to form the end of the light/month. The method also includes trimming the - or both sides (S106)' of the segment to change the end face of the segment from a plane to a more rounded surface. Alternatively, the ends of the remote light-transmissive rod segments can be modified (S1G6) to create lens structures of different sizes and shapes during the garment k of the lens element. As will be described below, one or two sides of each of the light-transmissive rod segments are subjected to a one-month source to provide heat treatment, and the _ lens element is formed outside the port P Jt of the light-transmitting rod segments. Needed, the array of lens elements that have just been formed can also be broken with 4 films. The coating may comprise an anti-reflective or anti-glare material applied to the display screen. 2 is a simplified view of a rod bundle 2 of a plurality of light-transmissive rods according to an embodiment of the present invention. In the embodiment, each of the light-transmitting rods 2G2 may be a rod body, a column light, or a pair thereof A similar shape can provide a light path. These light-transmitting abilities 2 〇 2 will be glued together along their longitudinal axis (Xun 2). The structure thus formed will have a honeycomb-like cross section. In the case of the shell, the light-transmitting rods 2〇2 can be bonded to the rod bundle 200 by using any suitable adhesive 20, for example, by a UV-curable adhesive or the like. When the UV-curing adhesive is used to make the light-transmissive rod bundle 200^' any gaps that may exist between the rods will be filled with the adhesive when the adhesive is cured 11 1261685. Alternatively, the beam 200 can be made in a drawing process. The light transmissive rods 202 can be made from a variety of materials. For example, in one embodiment, the light transmissive rods 202 can be made of glass (Si 2 ), plastic, polymer strands 5 or other similar light transmissive materials, and the like. The diameter and length of each of the light transmissive rods 202 that make up the beam 200 are generally determined by the application. For example, in one embodiment, when fabricating the micromirror array, the thickness of the rod bundle 200 (i.e., the length of each rod 202) will be made greater than or at least equal to the thickness required for the micromirror array for that purpose. . For example, as shown in FIG. 3A, in order to ensure (7) a proper thickness, the rod bundle 200 can be cut into a single layer or a segment 3〇〇 to form an array of light-transmitting rod segments 302 having a thickness t (sl〇 4). Thus, the length of each of the light-transmitting rods 202 will be greater than or equal to t. The beam 2 can be cut into one or more segments 3 using conventional cutting techniques, such as using a saw and/or a cutting wheel. 15 In the embodiment - for example, when it is to be provided - for the array of imaging systems (such as cameras), the secret light strip 3_ thickness can be about (10) handsome, if - use the image of the optical integrator With a projection system, the thickness will be a few mm or more. In a consistent embodiment, each of the light-transmissive rods 2〇2 of the beam bundle 2 can be a standard single-wavelength fiber having a core size of 9 μm and an overall outer diameter of about !25_. In general, the diameter of each light-transmitting rod 2_ can be less than or equal to the number of positions, depending on the purpose of use. In general, the difficult-to-bundle light-transmitting rod 2Q2 or the like as shown in Fig. 2, which is designed to a desired size to suit a specific purpose, can be obtained, for example, by Corning Corporation of New York. 12 1261685 FIGS. 7A and 7B are simplified side views of the embodiment of the beam bundle 7 〇 ( of the present invention (for the beam bundle 700a of FIG. 7A and the beam bundle 700b of FIG. 7B). In one embodiment, the beam 7a can be made to include a light-transmissive rod or the like having a different diameter. For example, in the Fig. 7A, the beam 7 〇〇a is shown to have a light-transmissive rod 702 & of diameter mountain and a light-transmissive rod 702 b of diameter 屯, etc., where d2 is greater than d]. In this embodiment, the light-transmitting rods 7〇2a and the like are disposed in the peripheral region ′ of the rod bundle 7 and the light-transmitting rods 702b and the like are disposed at the core area a2 of the rod bundle 7〇〇a. . In this example, the input beam intensity 704 introduced into the micromirror array fabricated by the beam 700a in accordance with the principles of the present invention will be redistributed into 10 as shown by the intensity curve 7〇6. These light intensity redistributions are useful in certain systems, such as image projection systems, cameras, and the like. Fig. 7B shows that the other beam 700b has a light-transmitting rod 702c having a diameter d4, a light-transmitting rod 702d having a diameter of 屯, and the like, which is larger than d4. In this example, the light-transmitting rod 702d or the like is disposed at the peripheral portion A4 of the rod bundle 700b. In this example, the input beam intensity 708 introduced by the array of micromirrors made by the beam 700b in accordance with the principles of the present invention will be redistributed as shown by intensity curve 710. As shown in Figs. 3A and 3B, when the light-transmissive rod segments 3 are cut to a desired thickness t, the two end faces 304 and 306 can be corrected. In one embodiment, the end faces 304 and 306 of the segment 2 of the segment 300 can be polished or "cleaned" to form a smooth plane at one or both ends of the segment 300. In another embodiment, the polishing can be used to modify the curvature, dimensions, and associated parameters of the end faces 304 and 306 of the segment 300, which can be optimized for one or two of the segments. A desired micromirror array table 13 1261685 face is formed on the end face. The shape of the surface of the array depends on its use. For example, please refer to Fig. 6D, which is a simplified diagram showing the lens system of the micromirror array surface 608 of an embodiment arranged in an arcuate manner on a face. In an embodiment, the curvature 5 of the segment end face 304 of the array 608 can be controlled during the polishing process. For example, the polishing stop arm will oscillate as the segment (10) is turned, and the segments 302 on the end face 304 will form the curved surface 0 in the shape of the respective end faces 304 and 306 (see Figure 3B) of the polished bar segment 302. It can also be adjusted or corrected to cause the curvature, size and parameters 10 of the respective segments 3〇2, and the like (S106). This correction can be achieved by the same technique including polishing, surname, acid residue, and the like. For example, in one embodiment, the end faces 3〇4 and 306 and the like may be trimmed into different shapes by etching the peripheral region of each of the segments 302. For example, the first figure shows that the fiber section 302 is named such that its core area is higher than the peripheral area 〜15 to form the etched rod section 802, and when heated as will be described later, it will cause one A relatively rounded lens element 804. In another embodiment, as shown in FIG. 8B, the rod segment 3〇2_insert will be reinforced] and a little bit-shaped region is formed at the core region of the etched rod segment 806, and in the peripheral region. At A2, a steeper slope is formed, so when heated as described in the following 20, it will cause a more highly curved lens element. In the embodiment, the aforementioned engraving process can be carried out by placing each of the end faces 3〇4 and 306 in -HF (hydrofluoric) acid for a predetermined time. The acid solution will affect the peripheral zone a2 before affecting the core region A. Therefore, the longer the light-transmissive rod 3〇2 is immersed in the acid solution, the more severe the etching will be (ie, the slope of the etched region will be 14). 1261685 Steep Mountain Shaw). Advantageously, for example, a lens formed by a section of the light-transmissive rod having an end face will have a shorter focal length, thereby enhancing the focus of the light. As shown in Fig. 4A, the surface 308 and/or 1G' of the array of light-transmissive rod segments constituting the segment 3 (8) can be applied with a source, whether or not it is _, which causes heating (S1G8) to be made. Each lens is read and they will form a micromirror array 400. As shown in Fig. 9, this heat treatment softens or stuns the peripheral region & of the respective segment 3〇2 faster than the core region Q. The surface tension caused by the uneven smelting action will cause the end of the segment to form an arcuate surface resulting in lens elements 10 904 and 906. 15 20 The heat treatment can be carried out using any suitable heat generating means, including the equivalent measures of the following examples. Referring again to FIG. 4A, in an embodiment, the array of light transmissive rod segments 302 can be placed in a furnace. The furnace 4〇2 can reach-heating degree (4) any finger (4) the light-transmissive rod segment material is subjected to bismuth treatment. The heat treatment will cause the lens fine 9〇4 to be formed on the first end portion, or if necessary, The second material 306 is a top lens element 906. In another example, as shown in FIG. 4B, the heat treatment can scan each surface with a shot of 4 〇 4 (for example, a power laser) and/or then complete the 'the laser is available. The rod section material absorbs (four) wavelengths to heat the crucible material and coats the lens parts 9() 4 and/or _. In other embodiments, the energy source used for heating may be 1 to provide an electric spark/arc or glow discharge near the end of the beam section, or to apply other conventional sources of energy. 3B is a side view θ of the light-transmitting rod section 302 of the present embodiment to the embodiment. In the sonar column, the first end 3 (10) of the 5-thick transmission rod section can be trimmed by the heating process of the 15 1261685 There are different radii of curvature in two mutually perpendicular or other different directions. Figure 3B shows a curved surface 308 on the first end 304, such as an elliptical, semi-elliptical, plano-convex non-spherical, and similarly shaped lens surface, etc., which can be in different light relative to the major axis of the lens surface. 5 different optical properties are available in the shaft. In one embodiment, the second end 306 can also be modified to be flat, or have different radii of curvature along two mutually perpendicular or otherwise different directions. Figure 3B shows a curved surface 310 on the second end 306, such as an elliptical or semi-elliptical lens surface that provides different optical properties in a different optical axis relative to the major axis of the lens surface. The pitch and size of the micromirror array can also be adjusted to suit the needs of the particular application. The manufacturing specifications and tolerances of the micromirror array can be specified for a particular application and by the end user. In one example, a method of an embodiment of the present invention can be used to provide a micromirror array of 15 standard single-mode fiber fibers having a diameter of about 125 μm, which can be made to have less than 5% focal length non-uniformity throughout the array or difference. Figure 5 shows an example of a micromirror array made using the method of the present invention. This example includes a projection system 500 that can include a number of micromirror arrays and the like that are designed for different sizes and shapes for a particular application. In one embodiment, 20 light will enter the projection system 500 from the first end 502, the first end being provided with a first micromirror array 504 having a first shape 506, such as a circle. The light passes through a second micromirror array 510 having a second shape 512, such as a rectangle, and exits the projection system 500 by the second end 508. It will be appreciated from this example that the shape and dimensions of the micromirror arrays can be made in accordance with the method of the present invention, in accordance with the method of the invention. Further, if necessary, each of the lens elements 406 (see Fig. 4A) of the micromirror array 4 of an embodiment of the present invention may be coated (1). In one embodiment, the micromirror array 4 can be coated with an anti-reflective and/or anti-glare coating, for example, for a conspicuous use. The coating overlying the micromirror array 400 can be laid down by conventional techniques such as sputtering, deposition, evaporation, spraying, dipping, spin coating, roll coating, and the like. As described in one or more embodiments of the present invention, the thickness t of the micromirror array, the size and shape of the lens surfaces, and the number of lens faces 10, etc., may vary depending on the application. For example, Figure 6A provides a simplified diagram showing an embodiment of a microlens array 602 having lenses disposed on both sides. The thickness t of the micromirror array IJ602 can be made to any desired thickness, for example, a small thickness of between about 1 μm and 1 mm, or a large thickness t of more than 1 mm. Fig. 6B provides a simplified illustration of an embodiment of a micromirror array 6〇4 having I5' also having lenses disposed on both sides; however, the thickness of this example is relatively large (e.g., greater than 1 mm). It will be appreciated from these examples that the thickness can be made to any thickness as desired. Figure 6C provides a simplified diagram showing an embodiment of a micromirror array 6〇6 having a lens of an embodiment of the invention disposed on only one side. Fig. 6D is similar to Fig. 6C' and is only provided with a lens on the face, but as previously described, the surface 61〇 20 forms a curved surface. One or more embodiments of the invention described above are described as the use of a cylindrical light transmissive rod in a bundle. However, it should be understood by those skilled in the art that the principles of the present invention are not limited to cylindrical rods, but can be applied to other shapes of light-transmitting rods such as rectangular, square or hexagonal. 17 1261685 In accordance with an embodiment of the present invention, a micromirror array can be provided as disclosed, for example, as a display screen. For example, the micromirror array can be fabricated by the method 100 (eg, S102~Su〇) as described, and can be additionally used for other process operations when used as a display screen. The performance or quality of the mirror array. For example, Fig. 10 provides a simplified illustration of the facet of the micromirror array of one of the light transmissive rod segments 1002 of the present invention. The segment can be made in accordance with the aforementioned method 100 (e.g., S102 to S108) or in other alternative equivalent steps. 10 That is, the crepe is formed by cutting a beam of light or a light rod (for example, bringing the piece 1000 close to the desired thickness t), and the two sides 10 〇 4 and 1006 of the piece are polished (and / or trimming) and heat treatment, and a lens is formed at each end of the light-transmitting rod segments 1002. The segment 1〇〇〇 can be used as a display screen, or other steps can be performed on the segment 1 to improve 15 segment 1 〇〇〇 used in a freshman Performance or quality. For example, a light shielding layer can be disposed over end faces 1004 and/or 1006 to block a portion of the light passing through one or more of the light transmissive rod segments 1002 (e.g., to block light at the periphery of the lens of the respective segment segments). The opacifying layer (e.g., a black layer) can be a metal or other type of material that can be deposited, adhered, coated, sprayed, or disposed on the end faces 1004 and/or 1006 of the segment (8). The laying operation of the light shielding layer can also be included in one of the steps of the method 100 (e.g., step S110 of the method 100 of Fig. 1). For example, Figure 11 is a simplified pictorial illustration of a light transmissive rod segment 1002 having a light shielding layer 1102 in accordance with one embodiment of the present invention. For example, the layer 11 〇 2 can be deposited on each lens 1104 of the entire 18 685 椁 椁 section 1002 (i.e., on the end face 1004). The lenses 11 〇 4 of the light-transmissive 〇〇 2 are partially exposed, for example, by the use of the material used for the sound, by the technique of insect or back polishing or other techniques - the blistering layer 1102. 5 Thus, the lenses 1104 will be partially exposed, for example, exposed in the center or core region of each lens 11〇4 while still maintaining the peripheral region of the lens. The etching, polishing, or other techniques used will also be flattened, as shown in Figure 11 如. Therefore, the "I" diagram shows that the segment ι (i.e., a known array) will have an integral shade. Please also understand that the 11th figure is not intended, so the size of the light-shielding layer 1102 and the light-transmissive rod section 1〇〇2 will be more exaggerated or distorted, which can be more clearly expressed and contribute to the present. An understanding of one or more aspects of the inventive embodiments. After the light shielding layer 1102 is disposed, a cladding layer (e.g., a film coating layer) may be applied over the end faces 1006 and/or ι 4 μ of the segment sheet 1000. For example, an anti-reflective and/or anti-glare film coating can be applied to the end face (e.g., the light output face). The coating can be used to reduce reflections and or glare, and can also protect the segment (e.g., to prevent several or other damage). The coating of the coating can also be part of the method 1 (as shown in Figure 1, the various coatings, such as those skilled in the art, the white husband can be Coating is used depending on the desired effect or application. Gentleman ^ _ . The edge coating material may be selected from Si〇2 'SisN4 ' Ti〇2 or any of them, or other customary The coating material, for example, can be used to form a multilayer film coating structure. The sound-shielding layer 1 1 Q2 as shown in Fig. 1 is provided. 19 1261685 can be used as a display screen. For example, FIG. 12 provides a simplified diagram of a display screen 1200 according to an embodiment of the present invention. The display screen 1200 includes, for example, a segment 1000 having a light-transmissive rod segment 1002, etc. And a light shielding layer 1102 (around the lens periphery of each of the transparent rod segments 1002). 5 The display screen 12 (8) may also include a coating 1202 (such as the aforementioned film coating). A lens 1204 such as a Fresnel lens The sheet may also be included. As shown in Fig. 12, light will be provided which will pass through the display screen 12(8). Viewed from the other side, by utilizing the techniques described, the resulting output light (i.e., light that passes through the display screen 1200) will have better quality or performance than conventional display screens. Various micromirror embodiments are disclosed. For example, in accordance with an embodiment of the present invention, a disclosed micromirror array can be used to provide a high quality display screen. The display screen is relative to some conventional ones. The display screen can be manufactured relatively inexpensively. Moreover, the display screen can provide better performance than some conventional display screens, such as brightness, uniformity, contrast and/or viewing angle, etc. The above embodiments are for illustrative purposes. The invention is not limited thereto, and it is to be understood that various modifications and changes can be made in accordance with the principles of the invention. The scope of the invention is therefore defined only by the scope of the following claims. A method flow diagram of one embodiment; FIG. 2 is a simplified diagram of a beam translucent material according to an embodiment of the present invention; FIG. 3A is a cross-sectional view of the beam bundle of FIG. 2 according to an embodiment of the present invention Simplified diagram of the section of the light-transmissive rod 3B is a side view of a single light-transmissive rod segment according to an embodiment of the present invention; 20 1261685 FIG. 4A is a simplified side view of heat treatment of an array of light-transmissive rod segments according to an embodiment of the present invention; FIG. A simplified side view of heat treatment of an array of light transmissive rod segments in accordance with another embodiment of the present invention; 5 FIG. 5 is a beam shape converter and photolysis used in a projection system including a microlens array according to an embodiment of the present invention BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6A to FIG. 6D are simplified side views of various microlens array structures of the present invention; FIGS. 7A and 7B are simplified side views of a light-transmitting rod bundle according to an embodiment of the present invention; 8A and 8B are simplified views of the standard light-transmissive rod section of the present invention undergoing etching and shifting; and FIG. 9 is a simplified view of the light-transmitting rod section of the present invention when heat-treated. 15 is a simplified view of a light-transmissive rod segment according to an embodiment of the present invention; FIG. 11 is a simplified side view of an array of light-transmitting rod segments having a light-shielding layer according to an embodiment of the present invention; and FIG. A simplified view of a light transmissive rod segment used in a display screen in accordance with an embodiment of the present invention. 20 [Description of main component symbols] 100··· Manufacturing method S102 to S110··· Manufacturing steps 200, 700...transparent beam bundle 2〇2,7〇2···transparent rod 300...section 302 Light rod segment 21 1261685 304, 306 · · · End surface 308, 310, 610 · Microlens array surface 400, 602, 604, 606, 608... Microlens array 402 · · Furnace 404 · · · Laser 406, 804, 808, 904, 906 · · lens element 500 · · projection system 502 · · · first end
5〇4…第一微透鏡陣列 506···第一形狀 508···第二端 510···第二微透鏡陣列 512···第二形狀 704,708…輸入光強度曲線 706,710…輸出光強度曲線 802,806···蝕刻桿段5〇4...first microlens array 506···first shape 508···second end 510···second microlens array 512···second shape 704,708...input light intensity curve 706,710 ...output light intensity curve 802,806···etching rod segment
KX30…段片 1002…透光桿段 1004,1006···端面 1102…遮光層 1104…透鏡 1200…顯示幕 1202…覆層 1204…鏡片 22KX30... segment 1002...transparent rod segment 1004,1006···end face 1102...shading layer 1104...lens 1200...display screen 1202...cladding 1204...lens 22