JPH0963843A - Multilayer structure for integrated magnetic sensor - Google Patents

Multilayer structure for integrated magnetic sensor

Info

Publication number
JPH0963843A
JPH0963843A JP7213872A JP21387295A JPH0963843A JP H0963843 A JPH0963843 A JP H0963843A JP 7213872 A JP7213872 A JP 7213872A JP 21387295 A JP21387295 A JP 21387295A JP H0963843 A JPH0963843 A JP H0963843A
Authority
JP
Japan
Prior art keywords
thin film
magnetoresistive element
magnetic field
magnetic sensor
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7213872A
Other languages
Japanese (ja)
Other versions
JP2776314B2 (en
Inventor
Hideto Konno
秀人 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7213872A priority Critical patent/JP2776314B2/en
Publication of JPH0963843A publication Critical patent/JPH0963843A/en
Application granted granted Critical
Publication of JP2776314B2 publication Critical patent/JP2776314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control the waveform of a signal being outputted finally from an IC as desired. SOLUTION: The integrated magnetic sensor comprises an aluminum electrode 2, a spin on glass 3, an insulation layer 4, a thin film reluctance element 5, a conductor layer 6, and a passivation film 7 formed on a diffusion layer 1. When the passivation film 7 is deposited by sputtering and the thin film magnetoresistive element 5 is composed of Ni82Fe12Co6, compressive stress is applied to the thin film magnetoresistive element 5. Consequently, anisotropy is distributed in the direction normal to the surface of element by reverse magnetostrictive effect, and the R-H curve is changed in the direction of high saturation field. When the passivation film 7 is deposited by atmospheric pressure CVD and the thin film magnetoresistive element 5 is composed of Ni82Fe12 Co6, tensile stress is applied to the element 5. Consequently, anisotropy is distributed in the surface of element and the R-H curve is changed in the direction where the variation rate ΔR/ΔH between the resistance and field strength is slightly higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気センサの積層膜
構造に関し、特に異方性磁気抵抗効果を有する磁気抵抗
効果素子薄膜とIC(集積回路)とをシリコンウエハ上
に集積した形態を有する磁気センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated film structure of a magnetic sensor, and more particularly to a magnetic film having a magnetoresistive effect element thin film having an anisotropic magnetoresistive effect and an IC (integrated circuit) integrated on a silicon wafer. Regarding sensors.

【0002】[0002]

【従来の技術】従来、この種の磁気センサを形成する磁
電変換素子、つまり磁気抵抗素子としては、連続的な折
返し構造を持つ強磁性体薄膜を接合部で直列に接続して
形成されるものがある。この磁電変換素子については、
特公昭54−41335号公報に詳述されている。
2. Description of the Related Art Conventionally, a magnetoelectric conversion element forming a magnetic sensor of this type, that is, a magnetoresistive element, is formed by connecting ferromagnetic thin films having a continuous folded structure in series at a junction. There is. About this magnetoelectric conversion element,
It is described in detail in JP-B-54-41335.

【0003】上記の磁気抵抗素子に対して、例えば磁気
記録媒体からその磁気抵抗素子を飽和させるに十分な、
しかもその素子面内で回転するような磁界が発生する場
合、磁気抵抗素子が磁気記録媒体から有限の距離を隔て
て配置されると、磁気抵抗素子からは磁気記録媒体の磁
気信号によって接続部より電気信号が出力される。
Sufficient to saturate the magnetoresistive element with respect to the magnetoresistive element described above, for example from a magnetic recording medium,
In addition, when a magnetic field that rotates in the element plane is generated, if the magnetoresistive element is arranged at a finite distance from the magnetic recording medium, the magnetoresistive element is connected to the connecting portion by the magnetic signal of the magnetic recording medium. An electric signal is output.

【0004】上記の磁気抵抗素子を製造する場合、91
〜38重量%のニッケル(Ni)と9〜62重量%のコ
バルト(Co)とからなる合金薄膜を、ある蒸着基板の
温度や膜厚、及び熱処理温度等で成膜する方法がある。
この方法については、特開昭58−135688号公報
に詳述されている。
When manufacturing the above magnetoresistive element, 91
There is a method of forming an alloy thin film composed of nickel (Ni) of 38% by weight and cobalt (Co) of 9 to 62% by weight at a certain vapor deposition substrate temperature, film thickness, heat treatment temperature and the like.
This method is described in detail in JP-A-58-135688.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の磁気セ
ンサでは、磁気抵抗素子薄膜が持つ磁歪特性が全く考慮
されておらず、磁気抵抗素子薄膜上に形成されるパッシ
ベーションが与える応力、あるいは通常パッケージング
で用いられるモールド成形の際に加わる圧縮や引張り等
の外的応力が全く考慮されていない。
In the above-mentioned conventional magnetic sensor, the magnetostrictive characteristic of the magnetoresistive element thin film is not taken into consideration at all, and the stress given by the passivation formed on the magnetoresistive element thin film or the normal package is used. External stresses such as compression and tension applied during molding used in molding are not considered at all.

【0006】そのため、それらの応力によって影響を受
ける磁気抵抗素子薄膜の磁歪特性が、最終的に磁電変換
処理やパルス信号への変換後の出力信号に影響を与える
こととなる。
Therefore, the magnetostrictive characteristics of the magnetoresistive element thin film, which are affected by those stresses, finally affect the output signal after magnetoelectric conversion processing or conversion into pulse signals.

【0007】すなわち、磁歪という特性を有する磁気抵
抗素子薄膜に対して外的な応力が加わることで、異方性
あるいは飽和磁界等の対磁気特性が影響を受け、それら
が応力によって歪められるので、理想状態とは異なる磁
気抵抗素子の出力波形によって最終的にIC部分から出
力される信号に影響がでる。具体的には気体や液体等の
流量を計測するための回転マグネットの回転数検出の際
にデューティのアンバランス等の現象として現れること
が多い。
That is, when an external stress is applied to a magnetoresistive element thin film having a characteristic called magnetostriction, magnetic characteristics such as anisotropy or a saturation magnetic field are affected and they are distorted by the stress. The output waveform of the magnetoresistive element different from the ideal state finally affects the signal output from the IC portion. Specifically, it often appears as a phenomenon such as duty imbalance when detecting the rotation speed of a rotating magnet for measuring the flow rate of gas or liquid.

【0008】そこで、本発明の目的は上記の問題点を解
消し、最終的にIC部分から出力される信号の波形を任
意に制御することができる磁気センサの積層膜構造を提
供することにある。
Therefore, an object of the present invention is to solve the above problems and provide a laminated film structure of a magnetic sensor capable of arbitrarily controlling the waveform of a signal finally output from the IC portion. .

【0009】[0009]

【課題を解決するための手段】本発明による磁気センサ
の積層膜構造は、チップ上に異方性磁気抵抗効果を有す
る磁気抵抗効果素子薄膜を形成してなる磁気センサの積
層膜構造であって、前記チップ上にパッシベーションと
して形成されかつ前記磁気抵抗効果素子薄膜の出力特性
に応じて前記磁気抵抗効果素子薄膜に圧縮応力を付与す
る工法及び前記磁気抵抗効果素子薄膜に引張り応力を付
与する工法のうちのいずれかの工法で形成される保護膜
を備えている。
A laminated film structure of a magnetic sensor according to the present invention is a laminated film structure of a magnetic sensor formed by forming a magnetoresistive element thin film having an anisotropic magnetoresistive effect on a chip. A method of applying compressive stress to the magnetoresistive effect element thin film according to the output characteristics of the magnetoresistive effect element thin film formed as passivation on the chip, and a method of applying tensile stress to the magnetoresistive effect element thin film It has a protective film formed by one of these methods.

【0010】[0010]

【発明の実施の形態】まず、本発明の作用について以下
に述べる。
First, the operation of the present invention will be described below.

【0011】磁気抵抗素子薄膜の元来の外部磁界(R−
H)特性と磁気発生媒体との組合せとなるアプリケーシ
ョンにおいて望まれるパルス波形あるいは最適なパルス
波形を得るために、集積化磁気センサの積層膜の最終形
成膜であるパッシベーション膜の形成工法をスパッタリ
ング工法及び常圧CVDのうちから選択する。
The original external magnetic field (R-
H) In order to obtain a desired pulse waveform or an optimum pulse waveform in an application that is a combination of the characteristics and the magnetic generation medium, the formation method of the passivation film, which is the final formation film of the laminated film of the integrated magnetic sensor, is used as a sputtering method and Select from atmospheric pressure CVD.

【0012】これによって、強磁性体薄膜で生成される
磁気抵抗素子薄膜自体の成膜及び加工工程が終了した後
でも、最終製品形態の集積化磁気センサとしての外部交
番磁界、例えば羽根車状の磁気媒体が作り出す回転磁界
検出におけるIC部分からの出力パルス波形(例えば、
デューティ比)を任意に制御可能となる。
As a result, even after the film forming and processing steps of the magnetoresistive element thin film itself formed of the ferromagnetic thin film are completed, an external alternating magnetic field as an integrated magnetic sensor in the final product form, for example, an impeller-like magnetic field is formed. Output pulse waveform from the IC part in detecting the rotating magnetic field generated by the magnetic medium (for example,
The duty ratio) can be controlled arbitrarily.

【0013】次に、本発明の一実施例について図面を参
照して説明する。図1は本発明の一実施例の断面図であ
る。図において、本発明の一実施例による集積化磁気セ
ンサは拡散層1上にアルミニウム(Al)電極2と、ス
ピンオングラス(SOG)3と、絶縁層4と、磁気抵抗
素子薄膜5と、導体膜6と、パッシベーション膜7とを
積層して構成されている。ここで、スピンオングラス3
は急峻な段差部を解消するために用いられている。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of an embodiment of the present invention. In the figure, an integrated magnetic sensor according to an embodiment of the present invention shows an aluminum (Al) electrode 2, a spin-on-glass (SOG) 3, an insulating layer 4, a magnetoresistive element thin film 5, and a conductor film on a diffusion layer 1. 6 and a passivation film 7 are laminated. Where spin on glass 3
Is used to eliminate a steep step.

【0014】磁気抵抗素子薄膜5はアルミニウム電極2
との間でオーミックコンタクト(Ohmic cont
act:オーム接触)が形成されている。磁気抵抗素子
薄膜5はNi85Fe15の場合に磁歪定数として約−8×
10-6程度の数値を、またNi82Fe12Co6 の場合に
磁歪定数として約+1.8×10-6程度の数値を夫々示
す。
The magnetoresistive element thin film 5 is an aluminum electrode 2
Ohmic contact with
(act: ohmic contact) is formed. In the case of Ni85Fe15, the magnetoresistive element thin film 5 has a magnetostriction constant of about −8 ×.
Numerical values of about 10 −6 and, in the case of Ni 82 Fe 12 Co 6 , a magnetostriction constant of about + 1.8 × 10 −6 are shown.

【0015】パッシベーション膜7は、通常、SiO2
等の無機質の薄膜が用いられ、磁気抵抗素子薄膜5や導
体膜6の上に積層される。パッシベーション膜7の形成
方法としてスパッタリング工法を用いた場合には磁気抵
抗素子薄膜5に圧縮応力が付加される。
The passivation film 7 is usually SiO2.
An inorganic thin film such as is used and is laminated on the magnetoresistive element thin film 5 and the conductor film 6. When the sputtering method is used as the method of forming the passivation film 7, compressive stress is applied to the magnetoresistive element thin film 5.

【0016】磁気抵抗素子薄膜5が正の磁歪定数を有す
るNi82Fe12Co6 の場合にスパッタリング工法を用
いると、逆磁歪効果によって素子面法線方向に異方性が
分散され、その結果として外部磁界と抵抗値との関係を
示すR−H曲線において飽和電界が大きな方向に変化
し、特に低磁界側におけるR−H曲線がなだらかとな
る。つまり、磁界強度の変化に対応する抵抗値変化の割
合ΔR/ΔHが小さい方向に変化する。
If the sputtering method is used when the magnetoresistive element thin film 5 is Ni82Fe12Co6 having a positive magnetostriction constant, the anisotropy is dispersed in the direction normal to the element surface by the inverse magnetostriction effect, and as a result, the external magnetic field and the resistance value are obtained. In the R-H curve showing the relationship with, the saturation electric field changes in a large direction, and the R-H curve becomes gentle especially on the low magnetic field side. That is, the rate of change in resistance value ΔR / ΔH corresponding to the change in magnetic field strength changes in the smaller direction.

【0017】一方、パッシベーション膜7の形成方法と
して常圧CVD(ChemicalVapor Dep
osition:化学気相成長法)を用いた場合には磁
気抵抗素子薄膜5に引張り応力が付加される。この場合
には素子面内にて異方性が分散されるので、その結果と
して外部磁界と抵抗値との関係を示すR−H曲線におい
て磁界強度の変化に対応する抵抗値変化の割合ΔR/Δ
Hが若干大きな方向に変化する。
On the other hand, as a method for forming the passivation film 7, atmospheric pressure CVD (Chemical Vapor Dep) is used.
position: chemical vapor deposition method), tensile stress is applied to the magnetoresistive element thin film 5. In this case, since the anisotropy is dispersed in the element plane, the rate of change in resistance value corresponding to the change in magnetic field strength ΔR / Δ
H changes in a slightly larger direction.

【0018】磁気抵抗素子薄膜5が負の磁歪定数を有す
るNi85Fe15の場合には上記の関係が全く正反対の特
性を示すことになる。
In the case where the magnetoresistive element thin film 5 is Ni85Fe15 having a negative magnetostriction constant, the above-mentioned relationship shows the opposite characteristics.

【0019】図2は図1の磁気抵抗素子薄膜5の出力変
動に及ぼす組成材料とパッシベーション膜7の形成工法
との組合せの対応関係を示す図である。図において、矢
印は磁界強度の変化に対応する抵抗値変化の割合ΔR/
ΔHが変動する方向を示している。
FIG. 2 is a diagram showing a correspondence relationship of a combination of a composition material and a forming method of the passivation film 7 which affects the output fluctuation of the magnetoresistive element thin film 5 of FIG. In the figure, the arrow indicates the rate of change in resistance value corresponding to the change in magnetic field strength ΔR /
The direction in which ΔH fluctuates is shown.

【0020】すなわち、Ni85Fe15の場合にはスパッ
タリング工法を用いると抵抗値変化の割合ΔR/ΔHは
やや上方に変動するが、常圧CVDを用いると抵抗値変
化の割合ΔR/ΔHは大きく下方に変動する。
That is, in the case of Ni85Fe15, the resistance change rate ΔR / ΔH fluctuates slightly upward when the sputtering method is used, but the resistance change rate ΔR / ΔH fluctuates greatly downward when the atmospheric pressure CVD is used. To do.

【0021】また、Ni82Fe12Co6 の場合にはスパ
ッタリング工法を用いると抵抗値変化の割合ΔR/ΔH
はやや下方に変動し、常圧CVDを用いると抵抗値変化
の割合ΔR/ΔHはやや上方に変動する。
In the case of Ni82Fe12Co6, the rate of change in resistance value ΔR / ΔH is obtained by using the sputtering method.
It changes slightly downward, and when atmospheric pressure CVD is used, the rate of change in resistance value ΔR / ΔH changes slightly upward.

【0022】図3及び図4は図1の磁気抵抗素子薄膜5
の磁界と抵抗値との関係を示すR−H曲線に対する入力
交番磁界と出力信号との関係を示す図である。図3は磁
気抵抗素子薄膜5がNi82Fe12Co6 の場合のR−H
曲線に対する入力交番磁界と出力信号との関係を示し、
図4は磁気抵抗素子薄膜5がNi85Fe15の場合のR−
H曲線に対する入力交番磁界と出力信号との関係を示し
ている。
3 and 4 show the magnetoresistive element thin film 5 of FIG.
FIG. 5 is a diagram showing a relationship between an input alternating magnetic field and an output signal with respect to an RH curve showing a relationship between the magnetic field and the resistance value of FIG. FIG. 3 shows RH when the magnetoresistive element thin film 5 is Ni82Fe12Co6.
Shows the relationship between the input alternating magnetic field and the output signal for the curve,
Fig. 4 shows R- when the magnetoresistive element thin film 5 is Ni85Fe15.
The relationship between the input alternating magnetic field and the output signal for the H curve is shown.

【0023】図3において、AはNi82Fe12Co6 に
対してスパッタリング工法によってパッシベーション膜
7を形成した時のR−H曲線を示し、BはNi82Fe12
Co6 に対して常圧CVDによってパッシベーション膜
7を形成した時のR−H曲線を示している。これらR−
H曲線AとR−H曲線Bとの差は大きい箇所において数
十%程度となる。
In FIG. 3, A shows the RH curve when the passivation film 7 is formed on Ni82Fe12Co6 by the sputtering method, and B shows Ni82Fe12.
The RH curve is shown when the passivation film 7 is formed on Co6 by atmospheric pressure CVD. These R-
The difference between the H curve A and the RH curve B is about several tens of percent at a large portion.

【0024】また、Pは磁界Hが0〜30[Oe]の範
囲の交番磁界の入力波形を示し、a,bは夫々R−H曲
線A及びR−H曲線Bに対応する磁気抵抗素子からの出
力波形を示している。ここで、出力波形aは出力波形b
に対して20〜30%程度出力が小さい。
Further, P indicates the input waveform of the alternating magnetic field in which the magnetic field H is in the range of 0 to 30 [Oe], and a and b are the magnetoresistive elements corresponding to the RH curve A and the RH curve B, respectively. The output waveform of is shown. Here, the output waveform a is the output waveform b
However, the output is small by about 20 to 30%.

【0025】Oは磁界Hが0〜10[Oe]の範囲、つ
まり低磁界側の交番磁界の入力波形を示し、a′,b′
は夫々R−H曲線A及びR−H曲線Bに対応する磁気抵
抗素子からの出力波形を示している。
O represents the input waveform of the alternating magnetic field on the low magnetic field side, that is, a ', b', where the magnetic field H is in the range of 0 to 10 [Oe].
Shows the output waveforms from the magnetoresistive element corresponding to the RH curve A and the RH curve B, respectively.

【0026】磁気抵抗素子のR−H曲線が変化すると、
磁気抵抗素子の出力波形に変化が生ずることは上記のR
−H曲線A及びR−H曲線B各々に対応する磁気抵抗素
子からの出力波形の違いからも明らかであるが、そのR
−H曲線の変化によってコンパレータ[ヒステリシス付
きオペアンプ(op−amp)]からの出力波形の形
状、いわゆるデューティ比が変動する原因となる。
When the RH curve of the magnetoresistive element changes,
The change in the output waveform of the magnetoresistive element is caused by the above R
It is clear from the difference in the output waveforms from the magnetoresistive elements corresponding to the −H curve A and the RH curve B, respectively.
The change in the −H curve causes a change in the shape of the output waveform from the comparator [opamp with hysteresis (op-amp)], that is, the so-called duty ratio.

【0027】図4において、CはNi85Fe15に対して
スパッタリング工法によってパッシベーション膜7を形
成した時のR−H曲線を示し、DはNi85Fe15に対し
て常圧CVDによってパッシベーション膜7を形成した
時のR−H曲線を示している。
In FIG. 4, C shows an RH curve when the passivation film 7 is formed on Ni85Fe15 by the sputtering method, and D is R when the passivation film 7 is formed on Ni85Fe15 by atmospheric pressure CVD. -H curve is shown.

【0028】これらR−H曲線C及びR−H曲線DはR
−H曲線A及びR−H曲線Bに比べて磁界強度の変化に
対応する抵抗値変化の割合ΔR/ΔHが緩やかであるの
は材料特性そのものの違いによるものであり、一般的に
Ni82Fe12Co6 の出力はNi85Fe15の出力に比べ
て数十%程度大きいとされている。但し、この一般的な
説には外部応力による逆磁歪効果等は考慮されていな
い。
These R-H curve C and R-H curve D are R
The reason why the ratio ΔR / ΔH of the resistance change corresponding to the change of the magnetic field strength is gentler than that of the −H curve A and the RH curve B is due to the difference in the material characteristics itself, and in general, the output of Ni82Fe12Co6 Is about several tens of percent higher than the output of Ni85Fe15. However, this general theory does not consider the inverse magnetostriction effect due to external stress.

【0029】Qは磁界Hが0〜30[Oe]の範囲の交
番磁界の入力波形を示し、c,dは夫々R−H曲線C及
びR−H曲線Dに対応する磁気抵抗素子からの出力波形
を示している。
Q represents an input waveform of an alternating magnetic field in which the magnetic field H is in the range of 0 to 30 [Oe], and c and d are outputs from the magnetoresistive element corresponding to the RH curve C and the RH curve D, respectively. The waveform is shown.

【0030】図5は本発明の一実施例による集積化磁気
センサの回路構成例を示す図である。図5(a)は磁気
抵抗素子のみによるブリッジ回路の構成例を示し、図5
(b)及び図5(c)は磁気抵抗素子とトランジスタと
を組合せた回路の構成例を示している。
FIG. 5 is a diagram showing a circuit configuration example of an integrated magnetic sensor according to an embodiment of the present invention. FIG. 5A shows a configuration example of a bridge circuit including only magnetoresistive elements.
5B and FIG. 5C show a configuration example of a circuit in which a magnetoresistive element and a transistor are combined.

【0031】図5(a)において、11は入力端子を、
12はグランド端子を、13〜16は磁気抵抗素子を、
17はオペアンプ(op−amp)を、18は拡散抵抗
あるいはイオン注入抵抗によるヒステリシス形成用帰還
抵抗を、19はIC部の出力端子を、10a,10bは
磁気抵抗素子ブリッジの出力端子を夫々示している。
In FIG. 5A, 11 is an input terminal,
12 is a ground terminal, 13 to 16 are magnetoresistive elements,
Reference numeral 17 is an operational amplifier (op-amp), 18 is a feedback resistor for forming hysteresis by diffusion resistance or ion implantation resistance, 19 is an output terminal of the IC section, and 10a and 10b are output terminals of a magnetoresistive element bridge. There is.

【0032】図5(b)において、21は入力端子を、
22はグランド端子を、23,24は磁気抵抗素子を、
25〜27はトランジスタを夫々示している。図5
(c)において、31は入力端子を、32はグランド端
子を、33〜36は磁気抵抗素子を、37〜39はトラ
ンジスタを夫々示している。
In FIG. 5 (b), 21 is an input terminal,
22 is a ground terminal, 23 and 24 are magnetoresistive elements,
Reference numerals 25 to 27 denote transistors, respectively. FIG.
In (c), 31 is an input terminal, 32 is a ground terminal, 33 to 36 are magnetoresistive elements, and 37 to 39 are transistors.

【0033】上記のように、磁気抵抗素子13〜16の
みによるブリッジ回路[図5(a)参照]でも、また磁
気抵抗素子23,24,33〜36にトランジスタ25
〜27,37〜39を組合せた回路[図5(b)及び図
5(c)参照]でも、同様の機能を持つ回路を構成する
ことが可能となる。
As described above, even in the bridge circuit [see FIG. 5 (a)] including only the magnetoresistive elements 13 to 16, the magnetoresistive elements 23, 24, 33 to 36 have the transistor 25.
It is also possible to configure a circuit having a similar function by a circuit combining [-27, 37-39] [see FIGS. 5 (b) and 5 (c)].

【0034】図6〜図9は本発明の一実施例による集積
化磁気センサの回転磁界に対する出力例を示す図であ
る。図6(a)はNi85Fe15に対して常圧CVDによ
ってパッシベーション膜7を形成した場合に、モールド
パッケージされた集積化磁気センサ41が羽根車状の磁
気媒体40による交番磁界を検出する状態を示し、図6
(b)は(a)の検出状態における集積化磁気センサ4
1の回転磁界に対する出力パルス波形42を示してい
る。
6 to 9 are diagrams showing examples of output with respect to the rotating magnetic field of the integrated magnetic sensor according to one embodiment of the present invention. FIG. 6A shows a state in which the integrated magnetic sensor 41 in the mold package detects an alternating magnetic field by the impeller-shaped magnetic medium 40 when the passivation film 7 is formed on Ni85Fe15 by atmospheric pressure CVD. Figure 6
(B) is the integrated magnetic sensor 4 in the detection state of (a)
The output pulse waveform 42 for one rotating magnetic field is shown.

【0035】尚、羽根車状の磁気媒体40は、例えば気
体や液体等の流体の流量を検出するための検知に用いら
れており、集積化磁気センサ41は羽根車状の磁気媒体
40による交番磁界を検出することで羽根車状の磁気媒
体40の回転数を計数するために用いられている。
The impeller-shaped magnetic medium 40 is used for detection for detecting the flow rate of a fluid such as gas or liquid, and the integrated magnetic sensor 41 is alternated with the impeller-shaped magnetic medium 40. It is used to count the number of rotations of the impeller-shaped magnetic medium 40 by detecting the magnetic field.

【0036】図7(a)はNi85Fe15に対して常圧C
VDによってパッシベーション膜7を形成し、ギャップ
を離した時の集積化磁気センサ43が羽根車状の磁気媒
体40による交番磁界を検出する状態を示し、図7
(b)は(a)の検出状態における集積化磁気センサ4
3の回転磁界に対する出力パルス波形44を示してい
る。
FIG. 7 (a) shows Ni85Fe15 at normal pressure C.
7 shows a state in which the passivation film 7 is formed by VD and the integrated magnetic sensor 43 detects the alternating magnetic field by the impeller-shaped magnetic medium 40 when the gap is separated.
(B) is the integrated magnetic sensor 4 in the detection state of (a)
The output pulse waveform 44 for the rotating magnetic field of No. 3 is shown.

【0037】図8(a)はNi82Fe12Co6 に対して
常圧CVDによってパッシベーション膜7を形成した時
の集積化磁気センサ45が羽根車状の磁気媒体40によ
る交番磁界を検出する状態を示し、図8(b)は(a)
の検出状態における集積化磁気センサ45の回転磁界に
対する出力パルス波形46を示している。
FIG. 8A shows a state in which the integrated magnetic sensor 45 detects the alternating magnetic field of the impeller-shaped magnetic medium 40 when the passivation film 7 is formed on Ni82Fe12Co6 by atmospheric pressure CVD. (B) is (a)
The output pulse waveform 46 with respect to the rotating magnetic field of the integrated magnetic sensor 45 in the detection state is shown.

【0038】図9(a)はNi82Fe12Co6 に対して
常圧CVDによってパッシベーション膜7を形成し、ギ
ャップを離した時の集積化磁気センサ47が羽根車状の
磁気媒体40による交番磁界を検出する状態を示し、図
9(b)は(a)の検出状態における集積化磁気センサ
47の回転磁界に対する出力パルス波形48を示してい
る。
FIG. 9A shows a state in which the passivation film 7 is formed on Ni82Fe12Co6 by atmospheric pressure CVD and the integrated magnetic sensor 47 detects the alternating magnetic field by the impeller-shaped magnetic medium 40 when the gap is separated. 9B shows an output pulse waveform 48 with respect to the rotating magnetic field of the integrated magnetic sensor 47 in the detection state of FIG. 9A.

【0039】このように、磁気抵抗素子薄膜5の元来の
外部磁界(R−H)特性と磁気発生媒体との組合せとな
るアプリケーションにおいて望まれるパルス波形あるい
は最適なパルス波形を得るために、集積化磁気センサ4
1,43,45,47の積層膜の最終形成膜であるパッ
シベーション膜7の形成工法をスパッタリング工法及び
常圧CVDのうちから選択することによって、強磁性体
薄膜で生成される磁気抵抗素子薄膜5自体の成膜及び加
工工程が終了した後でも、最終製品形態の集積化磁気セ
ンサとしての外部交番磁界、例えば羽根車状の磁気媒体
40が作り出す回転磁界検出におけるIC部分からの出
力パルス波形(例えば、デューティ比)を任意に制御す
ることが可能となる。
As described above, in order to obtain a desired pulse waveform or an optimum pulse waveform in an application that is a combination of the original external magnetic field (RH) characteristic of the magnetoresistive element thin film 5 and the magnetic generation medium, the integration is performed. Magnetic sensor 4
The magnetoresistive element thin film 5 formed of a ferromagnetic thin film is selected by selecting the forming method of the passivation film 7 which is the final formed film of the laminated film of 1, 43, 45 and 47 from the sputtering method and the atmospheric pressure CVD. Even after the film forming and processing steps of itself are completed, an external alternating magnetic field as an integrated magnetic sensor of the final product form, for example, an output pulse waveform from the IC portion in the rotating magnetic field detection generated by the impeller-shaped magnetic medium 40 (for example, , Duty ratio) can be arbitrarily controlled.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、チ
ップ上に異方性磁気抵抗効果を有する磁気抵抗効果素子
薄膜を形成してなる磁気センサの積層膜構造において、
チップ上にパッシベーションとして形成されかつ磁気抵
抗効果素子薄膜の出力特性に応じて磁気抵抗効果素子薄
膜に圧縮応力を付与する工法及び磁気抵抗効果素子薄膜
に引張り応力を付与する工法のうちのいずれかの工法で
形成される保護膜を備えることによって、最終的にIC
部分から出力される信号の波形を任意に制御することが
できるという効果がある。
As described above, according to the present invention, in the laminated film structure of the magnetic sensor in which the magnetoresistive effect element thin film having the anisotropic magnetoresistive effect is formed on the chip,
One of the method of applying compressive stress to the magnetoresistive element thin film and the method of applying tensile stress to the magnetoresistive element thin film formed on the chip as passivation and according to the output characteristics of the magnetoresistive effect element thin film. By providing a protective film formed by the method, finally the IC
There is an effect that the waveform of the signal output from the part can be controlled arbitrarily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】図1の磁気抵抗素子薄膜の出力変動に及ぼす組
成材料とパッシベーション膜の形成工法との組合せの対
応関係を示す図である。
FIG. 2 is a diagram showing a correspondence relationship of a combination of a composition material and a passivation film forming method which influences an output variation of the magnetoresistive element thin film of FIG.

【図3】図1の磁気抵抗素子薄膜がNi82Fe12Co6
の場合のR−H曲線に対する入力交番磁界と出力信号と
の関係を示す図である。
FIG. 3 is a magnetoresistive element thin film of FIG. 1 made of Ni82Fe12Co6.
It is a figure which shows the relationship between an input alternating magnetic field and an output signal with respect to the RH curve in the case of.

【図4】図1の磁気抵抗素子薄膜がNi85Fe15の場合
のR−H曲線に対する入力交番磁界と出力信号との関係
を示す図である。
4 is a diagram showing a relationship between an input alternating magnetic field and an output signal with respect to an RH curve when the magnetoresistive element thin film of FIG. 1 is Ni85Fe15.

【図5】(a)は磁気抵抗素子のみによるブリッジ回路
の構成例を示す図、(b)及び(c)は磁気抵抗素子と
トランジスタとを組合せた回路の構成例を示す図であ
る。
5A is a diagram showing a configuration example of a bridge circuit using only a magnetoresistive element, and FIGS. 5B and 5C are diagrams showing a configuration example of a circuit in which a magnetoresistive element and a transistor are combined.

【図6】(a)は本発明の一実施例による集積化磁気セ
ンサが羽根車状の磁気媒体による交番磁界を検出する状
態を示す図、(b)は(a)の検出状態における集積化
磁気センサの回転磁界に対する出力パルス波形を示す図
である。
FIG. 6A is a diagram showing a state in which an integrated magnetic sensor according to an embodiment of the present invention detects an alternating magnetic field by an impeller-shaped magnetic medium, and FIG. 6B is an integrated state in the detection state of FIG. It is a figure which shows the output pulse waveform with respect to the rotating magnetic field of a magnetic sensor.

【図7】(a)は本発明の一実施例による集積化磁気セ
ンサが羽根車状の磁気媒体による交番磁界を検出する状
態を示す図、(b)は(a)の検出状態における集積化
磁気センサの回転磁界に対する出力パルス波形を示す図
である。
FIG. 7A is a diagram showing a state in which an integrated magnetic sensor according to an embodiment of the present invention detects an alternating magnetic field by an impeller-shaped magnetic medium, and FIG. 7B is an integrated state in the detection state of FIG. 7A. It is a figure which shows the output pulse waveform with respect to the rotating magnetic field of a magnetic sensor.

【図8】(a)は本発明の一実施例による集積化磁気セ
ンサが羽根車状の磁気媒体による交番磁界を検出する状
態を示す図、(b)は(a)の検出状態における集積化
磁気センサの回転磁界に対する出力パルス波形を示す図
である。
8A is a diagram showing a state in which an integrated magnetic sensor according to an embodiment of the present invention detects an alternating magnetic field generated by an impeller-shaped magnetic medium, and FIG. 8B is a diagram showing integration in the detection state shown in FIG. 8A. It is a figure which shows the output pulse waveform with respect to the rotating magnetic field of a magnetic sensor.

【図9】(a)は本発明の一実施例による集積化磁気セ
ンサが羽根車状の磁気媒体による交番磁界を検出する状
態を示す図、(b)は(a)の検出状態における集積化
磁気センサの回転磁界に対する出力パルス波形を示す図
である。
FIG. 9A is a diagram showing a state in which an integrated magnetic sensor according to an embodiment of the present invention detects an alternating magnetic field by an impeller-shaped magnetic medium, and FIG. 9B is a diagram showing integration in the detection state of FIG. 9A. It is a figure which shows the output pulse waveform with respect to the rotating magnetic field of a magnetic sensor.

【符号の説明】[Explanation of symbols]

1 拡散層 2 アルミニウム電極 3 スピンオングラス 4 絶縁膜 5 磁気抵抗素子薄膜 6 導体層 7 パッシベーション層 1 Diffusion layer 2 Aluminum electrode 3 Spin-on-glass 4 Insulating film 5 Magnetoresistive element thin film 6 Conductor layer 7 Passivation layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チップ上に異方性磁気抵抗効果を有する
磁気抵抗効果素子薄膜を形成してなる磁気センサの積層
膜構造であって、前記チップ上にパッシベーションとし
て形成されかつ前記磁気抵抗効果素子薄膜の出力特性に
応じて前記磁気抵抗効果素子薄膜に圧縮応力を付与する
工法及び前記磁気抵抗効果素子薄膜に引張り応力を付与
する工法のうちのいずれかの工法で形成される保護膜を
有することを特徴とする積層膜構造。
1. A laminated film structure of a magnetic sensor comprising a magnetoresistive effect element thin film having an anisotropic magnetoresistive effect formed on a chip, the magnetoresistive effect element formed on the chip as passivation. Having a protective film formed by any one of a method of applying a compressive stress to the magnetoresistive effect element thin film and a method of applying a tensile stress to the magnetoresistive effect element thin film according to the output characteristics of the thin film. A laminated film structure characterized by:
【請求項2】 前記磁気抵抗効果素子薄膜にスパッタリ
ング工法で圧縮応力を付与し、前記磁気抵抗効果素子薄
膜に常圧化学気相成長法で引張り応力を付与するよう構
成したことを特徴とする請求項1記載の積層膜構造。
2. The structure is characterized in that the magnetoresistive effect element thin film is applied with a compressive stress by a sputtering method, and the magnetoresistive effect element thin film is applied with a tensile stress by an atmospheric pressure chemical vapor deposition method. Item 1. The laminated film structure according to item 1.
【請求項3】 前記磁気抵抗効果素子薄膜は、正の磁歪
定数及び負の磁歪定数のいずれかを有する組成物質から
なることを特徴とする請求項1または請求項2記載の積
層膜構造。
3. The laminated film structure according to claim 1 or 2, wherein the magnetoresistive effect element thin film is made of a composition material having either a positive magnetostriction constant or a negative magnetostriction constant.
【請求項4】 前記正の磁歪定数を有する組成物質とし
てNiFeを用い、前記負の磁歪定数を有する組成物質
としてNiFeCoを用いることを特徴とする請求項3
記載の積層膜構造。
4. The composition material having a positive magnetostriction constant is NiFe, and the composition material having a negative magnetostriction constant is NiFeCo.
The laminated film structure described.
JP7213872A 1995-08-23 1995-08-23 Stacked film structure of integrated magnetic sensor Expired - Lifetime JP2776314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7213872A JP2776314B2 (en) 1995-08-23 1995-08-23 Stacked film structure of integrated magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7213872A JP2776314B2 (en) 1995-08-23 1995-08-23 Stacked film structure of integrated magnetic sensor

Publications (2)

Publication Number Publication Date
JPH0963843A true JPH0963843A (en) 1997-03-07
JP2776314B2 JP2776314B2 (en) 1998-07-16

Family

ID=16646421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7213872A Expired - Lifetime JP2776314B2 (en) 1995-08-23 1995-08-23 Stacked film structure of integrated magnetic sensor

Country Status (1)

Country Link
JP (1) JP2776314B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7830143B2 (en) 2006-03-10 2010-11-09 Nec Corporation Magnetic sensor, method of manufacturing the same, and electronic device
US9417296B2 (en) 2011-02-23 2016-08-16 Murata Manufacturing Co., Ltd. Magnetic sensor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064484A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Ferromagnetic magnetoresistance effect alloy film
JPS63246806A (en) * 1987-04-02 1988-10-13 Mitsubishi Electric Corp Thin film device
JPH06310327A (en) * 1993-04-21 1994-11-04 Nec Corp Integrated magnetoresistance effect sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064484A (en) * 1983-09-19 1985-04-13 Hitachi Ltd Ferromagnetic magnetoresistance effect alloy film
JPS63246806A (en) * 1987-04-02 1988-10-13 Mitsubishi Electric Corp Thin film device
JPH06310327A (en) * 1993-04-21 1994-11-04 Nec Corp Integrated magnetoresistance effect sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7582489B2 (en) 2002-11-21 2009-09-01 Denso Corporation Method for manufacturing magnetic sensor apparatus
US7830143B2 (en) 2006-03-10 2010-11-09 Nec Corporation Magnetic sensor, method of manufacturing the same, and electronic device
US9417296B2 (en) 2011-02-23 2016-08-16 Murata Manufacturing Co., Ltd. Magnetic sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2776314B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JPS649649B2 (en)
JP4347040B2 (en) Sensor for measuring magnetic field and method for adjusting the sensor
US20080084205A1 (en) Concept for Detecting a Change of a Physical Quantity by Means of a Conductor Structure
US10746611B2 (en) Magnetostrictive strain gauge sensor
US7830143B2 (en) Magnetic sensor, method of manufacturing the same, and electronic device
JP2018073913A (en) Magnetic sensor and production method thereof
JPH0888423A (en) Magnetic sensor
WO2021029113A1 (en) Sensor, strain detection sensor, pressure sensor, and microphone
JP2776314B2 (en) Stacked film structure of integrated magnetic sensor
US20060164204A1 (en) Magnetoresistance effect element and production method and application method therefor same
CN113167841A (en) Magnetic sensor and hall sensor using abnormal hall effect and method of manufacturing hall sensor
JPH07297465A (en) Huge magnetic reluctance sensor with insulation pinned layer
Bajorek et al. A permalloy current sensor
JP3590291B2 (en) Magnetoresistive element
Konno et al. Integrated ferromagnetic MR sensors
JP2001274477A (en) Magnetoresistive element
CN117320536A (en) Self-driven spin sensor and preparation method thereof
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JPH09119968A (en) Magnetoresistance sensor and its manufacturing method
Giebeler et al. Single deposition GMR sensors for rotational speed sensing
JP3028585B2 (en) Magnetoresistive element
JP2806549B2 (en) Magnetoresistance effect element
JP2005049262A (en) Magnetic sensor and magnetic sensor unit
JPH09283735A (en) Integrated magnetic sensor and its manufacture
JP3715380B2 (en) Hall element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term