WO2021029113A1 - Sensor, strain detection sensor, pressure sensor, and microphone - Google Patents

Sensor, strain detection sensor, pressure sensor, and microphone Download PDF

Info

Publication number
WO2021029113A1
WO2021029113A1 PCT/JP2020/017025 JP2020017025W WO2021029113A1 WO 2021029113 A1 WO2021029113 A1 WO 2021029113A1 JP 2020017025 W JP2020017025 W JP 2020017025W WO 2021029113 A1 WO2021029113 A1 WO 2021029113A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive element
magnetoresistive
layer
sensor
region
Prior art date
Application number
PCT/JP2020/017025
Other languages
French (fr)
Japanese (ja)
Inventor
将司 久保田
淳一 橋本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021029113A1 publication Critical patent/WO2021029113A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/16Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in the magnetic properties of material resulting from the application of stress

Definitions

  • the present disclosure relates to a sensor in which a magnetoresistive element is arranged on a flexible substrate, and a strain detection sensor, a pressure sensor, and a microphone provided with the sensor.
  • Non-Patent Document 1 uses MEMS processing technology A microphone equipped with the sensor that was used is disclosed.
  • the sensor a capacitance type sensor and a strain detection type sensor are known.
  • Capacitance type sensor changes the capacitance by changing the distance between the diaphragm electrode and the back plate electrode by sound.
  • SNR Signal to Noise Ratio
  • the distortion detection type sensor detects the distortion generated on the diaphragm surface by sound. Compared with the capacitance type sensor, the sensor is less affected by air viscosity, has a simple structure and is easy to manufacture, and the detection sensitivity is less likely to be lowered by foreign matter. Since the sensitivity of conventional semiconductor strain gauges is low, a strain detection type sensor (spin MEMS microphone) using MEMS processing technology has been proposed as an effort for high sensitivity and wide band.
  • a tunnel magnetoresistive (TMR) sensor is integrated by spintronics technology on a diaphragm formed by MEMS technology.
  • the magnetization direction of the free layer changes due to the inverse magnetostrictive effect.
  • a large resistance change occurs due to the tunnel magnetoresistive effect depending on the relative angle between the magnetization directions of the free layer and the reference layer, so that minute distortion can be detected with high sensitivity.
  • GF dR / R / d ⁇
  • Non-Patent Document 2 Japanese Patent Application Laid-Open No. 2018-006769
  • Patent Document 1 in a spin MEMS microphone, an early stage of a free layer is described for the purpose of making an odd function of resistance change with respect to positive and negative strain (tensile / compressive), improving input dynamic range, and reducing hysteresis.
  • a technique for applying a bias to a free layer so that the magnetization direction is 45 degrees or 135 degrees with respect to the magnetization direction of the reference layer is disclosed.
  • Patent Document 2 discloses a technique for changing the magnetization fixing direction of the reference layer according to the arrangement location of the detection element on the diaphragm in the spin MEMS microphone.
  • Patent Document 3 states that in a spin MEMS microphone, as a technique for integrating a bias function in a magnetoresistive element, a free layer is provided by a laminated structure of a bias magnetic layer / separation layer / free layer. A technique for biasing by an interlayer exchange bonding layer is disclosed. As a method for fixing the magnetization of the bias magnetic layer, a laminated structure of an antiferromagnetic layer / bias magnetic layer or an antiferromagnetic layer / ferromagnetic layer / magnetic coupling layer / bias magnetic layer is disclosed. Further, it is disclosed that a full bridge circuit is formed by using a plurality of magnetoresistive elements.
  • a magnetoresistive element having a vortex structure is disclosed.
  • the magnetic vortex structure is manifested on a ferromagnetic submicron scale disc. Its magnetic structure is determined by the competition of exchange energy, electrostatic anisotropy (shape anisotropy), Zeeman energy, and various magnetic anisotropy energies.
  • electrostatic anisotropy shape anisotropy
  • Zeeman energy various magnetic anisotropy energies.
  • various magnetic anisotropy energies In the hysteresis loop in the magnetoresistive element having a magnetic vortex structure, a linear region appears in a part of the magnetization curve.
  • Non-Patent Document 4 the static energy depends on the shape, and the disk It is disclosed that the magnetization structure can be controlled by the aspect ratio (disk film thickness / disk diameter).
  • Non-Patent Document 5 the linear region of the magnetization curve is a disk. It is disclosed that it expands as the diameter decreases (increases the aspect ratio).
  • Patent Document 4 states that in a giant magnetoresistive (GMR) or tunnel magnetoresistive (TMR) sensor, in order to obtain a linear input magnetic field-resistance characteristic of odd function type. , A method using a magnetic vortex structure (vortex) has been proposed.
  • GMR giant magnetoresistive
  • TMR tunnel magnetoresistive
  • a structure in which a magnetoresistive element including a laminated portion in which a reference layer, a barrier layer, and a free layer having a magnetic vortex structure are laminated in this order is sandwiched between a lower shield and an upper shield formed of a magnetically permeable material.
  • the magnetization is fixed in the in-plane direction, and in the free layer, the magnetization is spiral.
  • Non-Patent Document 6 Motoi Endo, Mikihiko Okane, Hiroshi Naganuma, Yasuo Ando, Ferromagnetic tunnel junction magnetic field sensor applying magnetic vortex structure, 39th Annual Meeting of the Magnetic Society of Japan 10pE-12, 277 (2015)
  • Non-Patent Document 7 discloses a magnetic resistance element having a magnetic vortex structure.
  • Patent Document 5 discloses that an exchange coupling bias is expressed by a laminated structure of a free layer having a magnetic vortex structure and an antiferromagnetic layer.
  • JP-A-2018-006769 Japanese Unexamined Patent Publication No. 2015-06425 JP-A-2015-061070 U.S. Patent Application Publication No. 2008/0188865 U.S. Patent Application Publication No. 2017/0168122
  • Non-Patent Document 2 and Patent Document 1 a technique of applying a bias to the free layer so that the initial magnetization direction of the free layer is 45 degrees or 135 degrees with respect to the magnetization direction of the reference layer.
  • the bias application direction is effective as a technique for increasing the sensitivity when the bridge circuit is not formed by the TMR element, it cannot be said to be optimal when the bridge circuit is formed by the TMR element.
  • Patent Document 2 it is disclosed that the magnetization fixing direction of the reference layer is changed according to the arrangement location of the detection element on the diaphragm.
  • the bridge circuit is composed of the detection elements, the optimum arrangement of the plurality of detection elements, the magnetization fixing direction of the reference layer, and the like are not disclosed.
  • Patent Document 3 discloses a technique of applying a bias magnetic field to the free layer by interlayer exchange bonding.
  • Patent Document 3 in order to improve the characteristics, there is room for improving the direction of the bias magnetic field, the direction of magnetization of the reference layer, and the like in relation to the individual arrangement of the plurality of magnetoresistive elements constituting the bridge circuit. ..
  • the bias strength is adjusted by designing the material and film thickness of the laminated structure. Therefore, it is difficult to form a laminate so that the bias strengths are different in the same wafer and in the bridge circuit.
  • Non-Patent Document 6 discloses a magnetoresistive element having a magnetic vortex structure.
  • the application of the magnetoresistive element to a sensor that detects distortion, pressure, inertia, sound, etc. is not disclosed.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is a sensor and distortion detection that include a full bridge circuit composed of a plurality of magnetoresistive elements and can improve sensitivity. To provide sensors, pressure sensors, and microphones.
  • the sensor based on the first aspect of the present disclosure includes a substrate having a deflection region and a plurality of magnetoresistive elements in which the center of gravity of each is arranged in the deflection region so as to be along the outer edge of the deflection region.
  • the plurality of magnetoresistive elements include one or more first magnetoresistive elements and one or more second magnetoresistive elements constituting the first half-bridge circuit, and one or more members constituting the second half-bridge circuit. Includes a third magnetoresistive element and one or more fourth magnetoresistive elements.
  • a full bridge circuit is composed of the first half bridge circuit and the second half bridge circuit.
  • the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element each have a free layer whose magnetization direction changes according to the deflection of the deflection region and magnetization. It has a reference layer having a fixed direction and a tunnel barrier layer arranged between the free layer and the reference layer. A bias magnetic field is applied to the free layer so that the magnetization direction faces a predetermined direction in a state where no external force is applied to the deflection region.
  • the state in which no external force is applied to the deflection region means a state in which strain, pressure, inertia, sound, or the like from the outside is not applied to the deflection region.
  • a straight line orthogonal to the shortest virtual straight line connecting the center of gravity of the resistance element and the fourth magnetic resistance element to the outer edge of the deflection region and passing through the center of gravity is set as a reference line, and the above reference line is used.
  • the first magnetic resistance element, the second magnetic resistance element, and the third magnetic resistance In each of the element and the fourth magnetic resistance element, in a state where no external force is applied to the deflection region, the clockwise angle from the reference direction to the direction in which the magnetization of the free layer is directed by the bias magnetic field is , 135 degrees ⁇ 5 degrees.
  • the clockwise angle from the reference direction to the magnetization direction of the reference layer In the first magnetoresistive element and the fourth magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 45 degrees ⁇ 5 degrees.
  • the clockwise angle from the reference direction to the magnetization direction of the reference layer In the second magnetoresistive element and the third magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 225 degrees ⁇ 5 degrees.
  • the sensor based on the second aspect of the present disclosure includes a substrate having a deflection region, and a plurality of magnetoresistive elements arranged in the deflection region so that their respective centers of gravity are arranged along the outer edge of the deflection region.
  • the plurality of magnetoresistive elements include one or more first magnetoresistive elements and one or more second magnetoresistive elements constituting the first half-bridge circuit, and one or more members constituting the second half-bridge circuit. Includes a third magnetoresistive element and one or more fourth magnetoresistive elements.
  • a full bridge circuit is composed of the first half bridge circuit and the second half bridge circuit.
  • the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element each have a free layer whose magnetization direction changes according to the deflection of the deflection region and magnetization. It has a reference layer having a fixed direction, and a tunnel barrier layer sandwiched between the free layer and the reference layer. A bias magnetic field is applied to the free layer so that the magnetization direction faces a predetermined direction in a state where the deflection region is not bent.
  • a straight line orthogonal to the shortest virtual straight line connecting the center of gravity of the resistance element and the fourth magnetic resistance element to the outer edge of the deflection region and passing through the center of gravity is set as a reference line, and the above reference line is used.
  • the first magnetic resistance element, the second magnetic resistance element, and the third magnetic resistance In each of the element and the fourth magnetic resistance element, in a state where no external force is applied to the deflection region, the clockwise angle from the reference direction to the direction in which the magnetization of the free layer is directed by the bias magnetic field is , 135 degrees ⁇ 5 degrees.
  • the clockwise angle from the reference direction to the magnetization direction of the reference layer In the first magnetoresistive element and the fourth magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 225 degrees ⁇ 5 degrees.
  • the clockwise angle from the reference direction to the magnetization direction of the reference layer In the second magnetoresistive element and the third magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 45 degrees ⁇ 5 degrees.
  • the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element are respectively. It is preferable to further have a bias layer for applying the bias magnetic field to the free layer and a separation layer arranged between the bias layer and the free layer.
  • the free layer may have a disk shape.
  • the free layer may have a magnetized vortex structure.
  • the strength of the bias magnetic field applied to the free layer is preferably larger than the strength of the exchange coupling magnetic field acting between the free layer and the reference.
  • the disk diameter of the free layer in the magnetoresistive element may be different.
  • the sensitivity in the first magnetoresistive element and the second magnetoresistive element, and the sensitivity in the third magnetoresistive element and the fourth magnetoresistive element may be different from each other.
  • the deflection area may be provided with one or more slits passing through the center of the deflection area.
  • the deflection region is divided into a plurality of parts in the circumferential direction by the one or more slits.
  • the deflection region may include a first region and a second region separated from each other.
  • the one or more first magnetoresistive elements and the one or more second magnetoresistive elements are arranged in the first region, and the one in the second region.
  • the above-mentioned third magnetoresistive element and the above-mentioned one or more fourth magnetoresistive elements are arranged.
  • the resonance frequency of the first region and the resonance frequency of the second region are different from each other.
  • the deflection region may include a first region and a second region separated from each other.
  • the one or more first magnetoresistive elements and the one or more second magnetoresistive elements are arranged in the first region, and the one in the second region.
  • the above-mentioned third magnetoresistive element and the above-mentioned one or more fourth magnetoresistive elements are arranged.
  • the area of the first region and the area of the second region are different from each other.
  • the senor when either the output from the first half-bridge circuit or the output from the second half-bridge circuit is saturated, the sensor is saturated. It is preferable to use the other of the output from the first half-bridge circuit and the output from the second half-bridge circuit.
  • the sensors based on the first and second aspects of the present disclosure include a first cancel magnetic field generator and a first cancel magnetic field generator that generate a cancel magnetic field that cancels the stress-induced anisotropy that appears when an external force is applied to the flexure region.
  • the two canceling magnetic field generation unit, the first canceling magnetic field generation unit, and the current control unit for controlling the current flowing through the second canceling magnetic field generation unit may be further provided.
  • the distortion detection sensor of the present disclosure includes the above sensor.
  • the pressure sensor of the present disclosure includes the above sensor.
  • the microphone of the present disclosure includes the above sensor.
  • a sensor which include a full bridge circuit composed of a plurality of magnetoresistive elements and can improve sensitivity, are provided.
  • FIG. It is the schematic sectional drawing which shows the sensor which concerns on Embodiment 1.
  • FIG. It is a schematic plan view which shows the sensor which concerns on Embodiment 1.
  • FIG. It is schematic cross-sectional view which shows the laminated structure of the magnetic resistance element which comprises the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformed state in which a diaphragm portion is not deformed in the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 1st deformation state which the diaphragm part was deformed in the sensor which concerns on Embodiment 1.
  • FIG. 5 is a diagram showing the relationship between the relative angle shown in FIG. 9 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment. It is a figure which shows the relationship between the deformation amount of the diaphragm part, and the resistance of a plurality of magnetoresistive element parts which form a full bridge circuit in the sensor which concerns on Embodiment 1.
  • FIG. 5 shows the relationship between the amount of distortion of a magnetoresistive element by deformation of the diaphragm part, and the relative angle between the magnetization direction of a free layer and the magnetization direction of a reference layer in the sensor which concerns on Embodiment 1.
  • FIG. 5 is a diagram showing the relationship between the relative angle shown in FIG. 9 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment. It is a figure which shows the relationship between the deformation amount of the diaphragm part, and the resistance of a pluralit
  • FIG. It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the output voltage of a half-bridge circuit in the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the output voltage of a full bridge circuit in the sensor which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows the 2nd process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 3rd process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 4th process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 5th process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 6th process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 7th process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. 1 shows the 2nd process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 3rd process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 4th process of the manufacturing
  • FIG. It is a figure which shows the 8th process of the manufacturing process of the sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformation state in which a diaphragm portion is not deformed in the sensor which concerns on a comparative form. It is a figure which shows the direction of stress-induced anisotropy which occurs in the 1st state which a diaphragm part is deformed, and the direction of magnetization of a reference layer in the sensor which concerns on the comparative form.
  • FIG. 1 shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformation state in which a diaphragm portion is not deformed in the sensor which concerns on Embodiment 2.
  • FIG. 2 shows the direction of the stress-induced anisotropy which occurs in the 1st deformation state which a diaphragm part was deformed in the sensor which concerns on Embodiment 2, and the direction of magnetization of a reference layer.
  • FIG. 2 shows the direction of the stress-induced anisotropy which occurs in the 2nd deformation state in which the diaphragm part is deformed, and the direction of magnetization of a reference layer in the sensor which concerns on Embodiment 2.
  • FIG. 1 shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformation state in which a diaphragm portion is not deformed in the sensor which concerns on Embodiment 3.
  • FIG. 2 shows the direction of the stress-induced anisotropy which occurs in the 1st deformation state which a diaphragm part was deformed in the sensor which concerns on Embodiment 3, and the direction of magnetization of a reference layer.
  • FIG. 2nd deformation state shows the direction of the stress-induced anisotropy which occurs in the 2nd deformation state in which the diaphragm part is deformed in the sensor which concerns on Embodiment 3, and the direction of magnetization of a reference layer.
  • FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the fourth embodiment.
  • FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the fifth embodiment. It is a figure which shows the relationship between the frequency and the sensitivity in each of the 1st region and the 2nd region constituting the deflection region in the sensor which concerns on Embodiment 5.
  • FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the sixth embodiment.
  • FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the seventh embodiment.
  • FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the eighth embodiment.
  • 9 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the ninth embodiment.
  • 9 is a schematic perspective view showing a configuration of a magnetoresistive element and its surroundings in the sensor according to the ninth embodiment.
  • 9 is a schematic cross-sectional view of the magnetoresistive element and its peripheral configuration according to the ninth embodiment.
  • FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the tenth embodiment. It is a figure which shows the distortion detection sensor which concerns on Embodiment 10. It is a figure which shows the pressure sensor which concerns on Embodiment 11. It is a figure which shows the mobile information terminal provided with the microphone which concerns on Embodiment 12.
  • FIG. 1 is a schematic cross-sectional view showing a sensor according to the first embodiment.
  • FIG. 2 is a schematic plan view showing the sensor according to the first embodiment.
  • the sensor 100 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the senor 100 is a so-called MEMS type sensor, and includes a substrate 1 having a deflection region 4 and a plurality of magnetoresistive elements 10.
  • the substrate 1 includes a base portion 2 and a diaphragm portion 3.
  • the base 2 is made of, for example, a silicon substrate.
  • the diaphragm portion 3 is made of, for example, silicon, silicon oxide, silicon nitride, or the like.
  • the diaphragm portion 3 is supported on the base portion 2.
  • the base portion 2 is formed with a cavity portion 5 that reaches the diaphragm portion 3 at a predetermined position.
  • the diaphragm portion 3 of the portion corresponding to the cavity portion 5 can be bent, and the deflection region 4 is formed in the diaphragm portion 3.
  • the plurality of magnetoresistive elements 10 are arranged on the main surface of the diaphragm portion 3 located on the side opposite to the side where the base portion 2 is located.
  • the plurality of magnetoresistive elements 10 are arranged in the deflection region 4 so that their respective centers of gravity are along the outer edge of the deflection region 4.
  • the center of gravity defined here refers to the geometric center of a figure constituting the outer shape of the magnetoresistive element 10.
  • the deflection region 4 has a circular shape, whereby the plurality of magnetoresistive elements 10 are arranged side by side in an annular shape.
  • the plurality of magnetoresistive elements 10 have a substantially square shape when viewed in a plan view.
  • the plurality of magnetoresistive elements 10 includes a plurality of first magnetoresistive elements 11, a plurality of second magnetoresistive elements 12, a plurality of third magnetoresistive elements 13, and a plurality of fourth magnetoresistive elements 14.
  • a full bridge circuit is composed of a plurality of first magnetoresistive elements 11, a plurality of second magnetoresistive elements 12, a plurality of third magnetoresistive elements 13, and a plurality of fourth magnetoresistive elements 14.
  • the number of the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth magnetoresistive element 14 is a plurality is illustrated. These numbers may be singular.
  • the plurality of first magnetoresistive elements 11 constitute the first magnetoresistive element portion R1
  • the plurality of second magnetoresistive elements 12 constitute the second magnetoresistive element portion R2.
  • the first half-bridge circuit Hf1 is configured by connecting the first magnetoresistive element R1 and the second magnetoresistive sensor R2 in series.
  • the plurality of third magnetoresistive elements 13 constitute the third magnetoresistive element portion R3, and the plurality of fourth magnetoresistive elements 14 constitute the fourth magnetoresistive element portion R4.
  • the second half bridge circuit Hf2 is configured by connecting the third magnetoresistive element portion R3 and the fourth magnetoresistive element portion R4 in series.
  • a full bridge circuit is configured by connecting the first half bridge circuit Hf1 and the second half bridge circuit Hf2 in parallel.
  • one side of the first magnetoresistive element unit R1 is connected to the electrode unit P1 for applying the power supply voltage Vin.
  • the other side of the first magnetoresistive element unit R1 is connected to the electrode unit P2 for extracting the output voltage V +.
  • One side of the second magnetoresistive element unit R2 is connected to the electrode unit P2 for extracting the output voltage V +.
  • the other side of the second magnetoresistive element portion R2 is connected to the electrode portion P4 as a ground electrode.
  • One side of the third magnetoresistive element unit R3 is connected to the electrode unit P1 for applying the power supply voltage Vin.
  • the other side of the third magnetoresistive element unit R3 is connected to the electrode unit P3 for taking out the output voltage V ⁇ .
  • One side of the fourth magnetoresistive element unit R4 is connected to the electrode unit P3 for taking out the output voltage V ⁇ .
  • the other side of the fourth magnetoresistive element portion R4 is connected to the electrode portion P4 as a ground electrode.
  • the output voltage V + of the half bridge by the first magnetoresistive element R1 and the second magnetoresistive sensor R2 has a positive output property.
  • the output voltage V ⁇ of the half bridge by the third magnetoresistive element unit R3 and the fourth magnetoresistive element unit R4 has a negative output property.
  • the output voltages V + and V- are taken out from the electrode portion P2 and the electrode portion P4 according to the magnitude of the external force acting on the deflection region 4. ..
  • the output voltages V + and V- are differentially amplified via a differential amplifier (not shown).
  • FIG. 3 is a schematic cross-sectional view showing a laminated structure of magnetoresistive elements constituting the sensor according to the first embodiment.
  • the laminated structure of the magnetoresistive element 10 will be described with reference to FIG.
  • the laminated structure of the first magnetic resistance element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element is the same as the laminated structure of the magnetic resistance element 10 described here.
  • the magnetoresistive element 10 includes a lower electrode layer 20, a pinning layer 21, a pin layer 22, a magnetic coupling layer 23, a reference layer 24, a tunnel barrier layer 25, a free layer 26, a separation layer 27, a bias layer 28, and an upper electrode layer 29. including.
  • the lower electrode layer 20 functions as a seed layer for appropriately growing the crystals of the pinning layer 21.
  • a laminated film of Ru and Ta can be adopted.
  • a single metal film made of another metal or alloy, or one in which a plurality of types of the above metal films are laminated can be adopted.
  • the pinning layer 21 is provided on the lower electrode layer 20.
  • the pinning layer 21 is composed of an antiferromagnetic layer.
  • IrMn can be adopted.
  • the pinning layer 21 may be an alloy containing Mn such as PtMn.
  • the pin layer 22 is provided on the pinning layer 21.
  • the pin layer 22 is composed of a ferromagnetic layer.
  • CoFe can be adopted as the pin layer 22.
  • the pin layer 22 may be CoFeB or the like.
  • the magnetization of the pin layer 22 is fixed in a predetermined in-plane direction by the exchange coupling magnetic field acting from the pinning layer 21.
  • the magnetic coupling layer 23 is provided on the pin layer 22.
  • the magnetic coupling layer 23 is arranged between the pin layer 22 and the reference layer 24, and causes an antiferromagnetic coupling between the pin layer 22 and the reference layer 24.
  • the magnetic coupling layer 23 is composed of a non-magnetic layer.
  • Ru can be adopted as the magnetic coupling layer 23, for example, Ru can be adopted.
  • the reference layer 24 is provided on the magnetic coupling layer 23.
  • the reference layer 24 is composed of a ferromagnetic layer.
  • the reference layer 24 may be CoFe or the like.
  • the pin layer 22, the magnetic coupling layer 23, and the reference layer 24 described above form a SAF structure. As a result, the magnetization direction of the reference layer 24 can be firmly fixed.
  • the tunnel barrier layer 25 is provided on the reference layer 24.
  • the tunnel barrier layer 25 is arranged between the reference layer 24 and the free layer 26.
  • the tunnel barrier layer 25 is composed of an insulating layer.
  • the free layer 26 is provided on the tunnel barrier layer 25.
  • the free layer 26 is composed of a ferromagnetic layer.
  • a laminate of CoFeB and FeB can be adopted.
  • a ferromagnetic amorphous layer such as CoFeTa may be provided between CoFeB and FeB and between FeB and the separation layer 27.
  • the separation layer 27 is provided on the free layer 26.
  • the separation layer 27 is arranged between the free layer 26 and the bias layer 28.
  • Cu, Ru, Rh, Ir, V, Cr, Nb, Mo, Ta, W, Rr and the like showing an RKKY (Ruderman-Kittel-Kasuya-Yoshida) bond can be adopted.
  • These can use positive magnetic coupling (ferromagnetism, parallel) and negative magnetic coupling (antiferromagnetism, antiparallel) properly according to the thickness of the separation layer 27.
  • Au, Ag, Pt, Pd, Ti, Zr, and Hf when Au, Ag, Pt, Pd, Ti, Zr, and Hf are used, a positive magnetic coupling is mainly obtained.
  • Ru, Rh, Ir can be used.
  • the bias layer 28 is provided on the separation layer 27.
  • the bias layer 28 functions as a bias application unit that applies a bias magnetic field to the free layer 26.
  • a laminate of a ferromagnetic layer and an antiferromagnetic layer can be adopted.
  • a laminate of CoFeB and IrMn can be adopted. CoFeB and IrMn are laminated from the separation layer 27 side in this order.
  • the bias layer 28 applies the exchange coupling magnetic field expressed by the ferromagnetic layer and the antiferromagnetic layer to the free layer 26 as a bias magnetic field.
  • the strength of the bias magnetic field is greater than the interlayer exchange coupling strength from the reference layer 24.
  • the antiferromagnetic layer on the reference layer side is provided so that the direction of the bias magnetic field applied to the free layer and the magnetization direction of the reference layer 24 (the direction of magnetization fixed in the reference layer 24) are different.
  • the blocking temperature of the antiferromagnetic layer on the bias layer 28 side is different.
  • the blocking temperature of the antiferromagnetic layer on the reference layer side is higher than the blocking temperature of the antiferromagnetic layer on the bias layer 28 side.
  • the antiferromagnetic layer on the reference layer side is the antiferromagnetic layer on the bias layer 28 side.
  • the blocking temperature of the antiferromagnetic layer on the reference layer side can be made higher than the blocking temperature of the antiferromagnetic layer on the bias layer 28 side.
  • the blocking temperature of PtMn is 310 ° C.
  • the blocking temperature of IrMn is 255 ° C.
  • the antiferromagnetic layer on the reference layer side may be PtMn, and the antiferromagnetic layer on the bias layer side may be IrMn.
  • the upper electrode layer 29 is provided on the bias layer 28.
  • the magnetoresistive element 10 according to the first embodiment is a Bottom-pinned type TMR element in which the reference layer 24 is arranged below the free layer 26 has been described as an example. It is not limited, and may be a Top-pinned type TMR element in which the reference layer 24 is arranged on the upper side of the free layer 26. Further, the magnetoresistive element 10 is not limited to the TMR element.
  • FIG. 4 is a diagram showing the direction of the magnetization direction of the free layer and the direction of magnetization of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the first embodiment.
  • the arrow indicated by a black line in each magnetoresistive element 10 indicates the direction of the magnetic field applied to the free layer, and the arrow indicated by white in each magnetoresistive element 10 indicates the direction of magnetization of the reference layer. Is shown.
  • the virtual straight line VL1 and the outer edge of the deflection region 4 meet at the reference line BL1.
  • the direction from the center of gravity to the right when the intersection is viewed from the center of gravity is defined as the reference direction.
  • the first magnetoresistive element 11 When the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4, the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth.
  • the counterclockwise angle ⁇ 1 from the reference direction to the magnetization direction of the free layer is 135 degrees ⁇ 5 degrees.
  • the counterclockwise angle ⁇ 2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 45. Degree ⁇ 5 degrees.
  • the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 is 225. Degree ⁇ 5 degrees.
  • the difference from the absolute value of the output from the full bridge in the case can be 30% or less.
  • the angle ⁇ 1 is preferably 135 degrees ⁇ 3 degrees
  • the angle ⁇ 2 is preferably 45 degrees ⁇ 3 degrees
  • the angle ⁇ 3 is preferably 225 degrees ⁇ 3 degrees.
  • the angle ⁇ 1 is preferably 135 degrees ⁇ 1.5 degrees
  • the angle ⁇ 2 is preferably 45 degrees ⁇ 1.5 degrees
  • the angle ⁇ 3 is 225 degrees ⁇ 1.5 degrees. Is more preferable.
  • the angle ⁇ 1 is 135 degrees
  • the angle ⁇ 2 is 45 degrees
  • the angle ⁇ 3 is 225 degrees.
  • the difference between the absolute value of the output from the full bridge when the magnetoresistive element 10 is positively distorted and the absolute value of the output from the full bridge when the magnetoresistive element 10 is negatively distorted is omitted. It can be 0%.
  • FIG. 5 is a diagram showing a first deformed state in which the diaphragm portion is deformed in the sensor according to the first embodiment.
  • the deflection region 4 of the diaphragm portion 3 is deformed so as to be convex toward the base portion 2. At this time, tensile stress acts on the magnetoresistive element 10.
  • FIG. 6 is a diagram showing the direction of stress-induced anisotropy generated in the first deformation state shown in FIG. 5 and the direction of magnetization of the reference layer.
  • the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines.
  • FIG. 6 shows a case where the magnetostrictive constant is positive.
  • each of the plurality of magnetoresistive elements 10 is deformed so as to extend in the radial direction of the deflection region 4.
  • stress-induced anisotropy develops toward the radial outer side of the deflection region 4.
  • the direction of stress-induced anisotropy is parallel to the virtual straight line VL1 that connects the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 at the shortest distance, as shown by the black arrow shown in the magnetoresistive element 10 of FIG. ..
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
  • the counterclockwise angle ⁇ 5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
  • FIG. 7 is a diagram showing a second deformed state in which the diaphragm portion is deformed in the sensor according to the first embodiment.
  • the deflection region 4 of the diaphragm portion 3 is deformed so as to be convex toward the side opposite to the side where the base portion 2 is located. At this time, compressive stress acts on the magnetoresistive element 10.
  • FIG. 8 is a diagram showing the direction of stress-induced anisotropy generated in the second deformation state shown in FIG. 7 and the direction of magnetization of the reference layer.
  • the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines.
  • FIG. 8 shows a case where the magnetostrictive constant is positive.
  • each of the plurality of magnetoresistive elements 10 is deformed so as to contract in the radial direction of the deflection region 4.
  • stress-induced anisotropy appears toward the tangential direction of the outer edge of the deflection region 4.
  • the direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 that connects the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 at the shortest distance, as shown by the black arrow shown in the magnetoresistive element 10 of FIG. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
  • the counterclockwise angle ⁇ 5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
  • the relative angle between the reference layer 24 and the magnetization direction of the free layer changes.
  • the resistances of R2, the third magnetoresistive element R3, and the fourth magnetoresistive element R4 change.
  • the output from the full bridge circuit changes.
  • FIG. 9 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer in the sensor according to the first embodiment.
  • the magnetic resistance element 10 is compressed from the non-deformed state.
  • the relative angle between the magnetizing direction of the free layer and the magnetizing direction of the reference layer changes from 90 degrees to approach 130 degrees.
  • the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from 90 degrees to approaching approximately 50 degrees.
  • the second magnetoresistive element R2 and the third magnetoresistive element R3 (the second magnetoresistive element 12 and the third magnetoresistive element 13), as the magnetic resistance element 10 is compressed from the non-deformed state, the free layer becomes The relative angle between the magnetizing direction and the magnetizing direction of the reference layer changes from 90 degrees to approach about 50 degrees. Further, in the second magnetoresistive element R2 and the third magnetoresistive sensor R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from 90 degrees to approach approximately 130 degrees.
  • FIG. 10 is a diagram showing the relationship between the relative angle shown in FIG. 9 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment.
  • the first magnetoresistive element R1, the second magnetoresistive element R2, and the third magnetoresistive element increases in each of the portion R3 and the fourth magnetoresistive element portion R4.
  • the changes in the resistances of the first magnetoresistive element R1, the second magnetoresistive sensor R2, the third magnetoresistive element R3, and the fourth magnetoresistive element R4 are substantially the same.
  • FIG. 11 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment.
  • the magnetoresistive element 10 is compressed from the non-deformed state. As it is done, the resistance changes from about 0.052 k ⁇ to approach about 0.08 k ⁇ . Further, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance decreases from about 0.052 k ⁇ to about 0.04 k ⁇ . It changes to get closer.
  • the resistance is increased. It decreases from about 0.052 k ⁇ and changes to approach about 0.04 k ⁇ . Further, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance increases from approximately 0.042 k ⁇ to approximately 0.08 k ⁇ . It changes to get closer.
  • the design value of the resistor is 0.052 k ⁇ , but the value is not limited to this value, and the resistance value may be increased according to the required current consumption.
  • FIG. 12 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the output voltage of the half-bridge circuit in the sensor according to the first embodiment.
  • the magnetoresistive element 10 is compressed from the non-deformed state.
  • the output of the first half-bridge circuit Hf1 changes from about 1.5V to approaching about 2.0V.
  • the output of the first half bridge circuit Hf1 decreases from about 1.5 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 1.0 V.
  • the second half as the magnetoresistive element 10 is compressed from the non-deformed state.
  • the output of the bridge circuit Hf2 decreases from about 1.5V and changes to approach about 1.0V.
  • the output of the second half bridge circuit Hf2 increases from about 1.5 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 2.0V.
  • FIG. 13 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the output voltage of the full bridge circuit in the sensor according to the first embodiment.
  • the output voltage of the full bridge circuit increases from 0 mV as the magnetoresistive element 10 is compressed from the non-deformed state, and changes so as to approach approximately 900 mV. Further, the output voltage of the full bridge circuit decreases from 0 mV as the magnetoresistive element 10 is pulled from the non-deformed state, and changes so as to approach approximately ⁇ 1000 mV.
  • the resistance value when the amount of distortion of the magnetoresistive element 10 is 0 is set to substantially the same value between the magnetoresistive element portion R4, the second magnetoresistive element portion R2, and the third magnetic resistance element portion R3. Can be done.
  • the change range of resistance is made substantially equal between the first magnetoresistive element R1 and the fourth magnetoresistive element R4 and the second magnetoresistive element R2 and the third magnetoresistive element R3. Can be done.
  • the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4 are set as described above.
  • the offset voltage in the case of 0 can be set to substantially the same value.
  • the output range can be made substantially the same between the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2.
  • the output voltage of the full bridge circuit in the non-deformed state is set to 0, and the output of the full bridge circuit is output.
  • the range can be increased.
  • the sensitivity can be improved by a configuration including a full bridge circuit composed of a plurality of magnetoresistive elements 10.
  • the angle ⁇ 1 is 135 degrees
  • the angle ⁇ 2 is 45 degrees
  • the angle ⁇ 3 is 225 degrees. Therefore, the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state vary in the manufacturing process, and the resistance changes when the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer deviates. And the change in the output of the full bridge circuit is shown in FIGS. 14 and 15.
  • FIG. 14 shows the relationship between the amount of distortion of the magnetoresistive element and the resistance of a plurality of magnetoresistive elements constituting the full bridge circuit when the magnetization direction of the reference layer is shifted in the sensor according to the first embodiment. It is a figure which shows.
  • the counterclockwise angle ⁇ 1 from the reference direction to the magnetization direction of the free layer is 135 degrees.
  • the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 is changed.
  • the counterclockwise angle ⁇ 2 from the reference direction to the magnetization direction of the reference layer 24 is changed in the range of 45 degrees to 55 degrees.
  • the angle ⁇ 1 is 135 degrees and the angle ⁇ 2 is 45 degrees in the non-deformed state, the amount of deviation of the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer is 0 degree.
  • the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 is changed in the range of 225 degrees to 235 degrees.
  • the angle ⁇ 1 in the non-deformed state is 135 degrees and the angle ⁇ 3 is 235 degrees, the amount of deviation of the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer is 0 degree.
  • the amount of deviation of the relative angles increases, the amount of distortion of the magnetoresistive element becomes negative and positive. In both cases, the value that becomes substantially constant decreases.
  • FIG. 15 is a diagram showing the relationship between the amount of strain of the magnetoresistive element and the output voltage of the full bridge circuit when the magnetization direction of the reference layer is shifted in the sensor according to the first embodiment. Also in FIG. 15, the relative angle deviation amount is the same as in FIG.
  • the output of the full bridge circuit is when the strain amount of the magnetoresistive element is negative and positive. In both cases, the value that becomes substantially constant decreases.
  • FIG. 16 shows the output of the full bridge circuit in the sensor according to the first embodiment when the strain amount of the magnetoresistive element is + 0.02% and when the strain amount of the magnetoresistive element is ⁇ 0.02%. It is a figure which shows the relationship between the difference of an absolute value and the difference of an output range, and the deviation angle of a reference layer in the magnetization direction. Also in FIG. 15, the relative angle deviation amount is the same as in FIG.
  • the difference in the absolute value of the output of the full bridge circuit when the strain amount of the magnetoresistive element is + 0.02% and ⁇ 0.02% is the amount of deviation of the relative angles. Increases as the number increases.
  • the relative angle deviation is 10 degrees
  • the difference in the absolute value of the output of the full bridge circuit between the case where the amount of distortion of the magnetoresistive element is + 0.02% and the case where it is -0.02%. Can be set to 30% or less with respect to the case where the relative angle deviation amount is 0.
  • the difference between the absolute values of the outputs is 30%. It can be as follows.
  • the relative angle deviation is 6 degrees
  • the difference in the absolute value of the output of the full bridge circuit between the case where the amount of distortion of the magnetoresistive element is + 0.02% and the case where it is -0.02%. Can be 20% or less with respect to the case where the relative angle deviation amount is 0.
  • the difference between the absolute values of the outputs is 20%. It can be as follows.
  • the relative angle deviation is 3 degrees
  • the difference in the absolute value of the output of the full bridge circuit between the case where the amount of distortion of the magnetoresistive element is + 0.02% and the case where it is -0.02%. Can be set to 10% or less with respect to the case where the relative angle deviation amount is 0.
  • the absolute output is absolute.
  • the difference between the values can be 10% or less.
  • the output range of the full bridge circuit when the strain amount of the magnetoresistive element is + 0.02% and -0.02% increases as the relative angle deviation amount increases.
  • the amount of increase is small. That is, the output range of the full bridge circuit when the strain amount of the magnetoresistive element is + 0.02% and ⁇ 0.02% is even when the relative angle deviation amount increases. It is almost constant. That is, even when the angle ⁇ 1 is 135 degrees ⁇ 5 degrees, the angle ⁇ 2 is 45 degrees ⁇ 5 degrees, and the angle ⁇ 3 is 225 degrees ⁇ 5 degrees, the angle ⁇ 1 is 135 degrees.
  • An output range substantially similar to that in the case where the angle ⁇ 2 is 45 degrees and the angle ⁇ 3 is 225 degrees is maintained.
  • the sensitivity can be improved by the configuration including the full bridge circuit configured by 10.
  • FIGS. 17 to 24 are diagrams showing the first to eighth steps of the sensor manufacturing process according to the first embodiment. A method of manufacturing the sensor 100 according to the first embodiment will be described with reference to FIGS. 17 to 24.
  • a substrate 61 on which the film portion 62 to be the diaphragm portion is formed is prepared.
  • the film portion 62 is an insulating layer such as silicon oxide or silicon nitride.
  • the film portion 62 may be a semiconductor material such as silicon or a metal material.
  • CMP chemical mechanical polishing
  • the lower electrode film 63, the TMR laminated film 64, and the upper electrode film 65 are laminated on the film portion 62. Specifically, the lower electrode film 63, the pinning film, the pin film, the magnetic coupling film, the reference film, the tunnel barrier film, the free film, the separation film, the bias film, and the upper electrode film 65 are laminated.
  • the lower electrode film 63, pinning film, pin film, magnetic coupling film, reference film, tunnel barrier film, free film, separation film, bias film, and upper electrode film are formed into the lower electrode layer 20, the pinning layer 21, and the pins. It becomes a layer 22, a magnetic coupling layer 23, a reference layer 24, a tunnel barrier layer 25, a free layer 26, a separation layer 27, a bias layer 28, and an upper electrode layer 29.
  • the film portion 62 is a semiconductor material or a metal material
  • an insulating layer is formed on the film portion 62 that is a region where the magnetoresistive element is formed, and then the lower electrode film 63 and the TMR laminated film are formed. 64, the upper electrode film 65 may be laminated.
  • the lower electrode film 63 for example, Ru / Ta is formed.
  • the pin film / pinning film (ferromagnetic film / antiferromagnetic film) on the upper layer of the lower electrode film 63 for example, CoFe / IrMn is formed. This laminated film functions as a pin layer due to exchange bonding caused by annealing in a magnetic field, which will be described later.
  • PtMn may be formed as a pinning film.
  • the reference film / magnetic bond film / pin film (lower ferromagnetic film / non-magnetic film / ferromagnetic film) constitutes a synthetic anti-ferromagnetic (SAF) bonding structure.
  • the tunnel barrier film for example, MgO is formed, and as the free film (upper ferromagnetic film) on the tunnel barrier film, for example, FeB / CoFeB is formed.
  • FeB has a large magnetostrictive constant, is amorphous, and has a small magnetocrystalline anisotropy.
  • the separation membrane is not limited to Cu as described above, and can be appropriately selected depending on the positive magnetic coupling and the negative magnetic coupling.
  • the bias film antiferromagnetic film / ferromagnetic film
  • IrMn / CoFeB is formed.
  • the blocking temperature of the antiferromagnetic film formation in the bias film is lower than the blocking temperature of the antiferromagnetic film on the reference film side.
  • the antiferromagnetic film on the bias film and the antiferromagnetic film on the reference film are formed of the same material, the antiferromagnetic film on the reference film is made thicker than the antiferromagnetic film on the bias film.
  • the upper electrode film 65 for example, Ta / Ru is formed.
  • the substrate 61 on which the lower electrode film 63, the TMR laminated film 64, and the upper electrode film 65 are formed is annealed in a magnetic field.
  • the TMR laminated film 64 and the upper electrode film 65 are patterned into desired shapes by using photolithography and dry etching.
  • a part of the lower electrode film 63 is removed by using photolithography and dry etching to form a wiring pattern.
  • a plurality of magnetoresistive elements 10 are formed.
  • a part of the plurality of magnetoresistive elements is electrically connected by a wiring pattern composed of the lower electrode film 63.
  • the substrate 61 is covered with the insulating film 66 so as to cover the plurality of magnetoresistive elements 10.
  • the insulating film 66 for example, SiO 2 can be adopted.
  • a part of the insulating film 66 is removed by photolithography and dry etching to form a contact hole.
  • metal wirings 31, 32, and 33 are formed in the contact hole by photolithography and lift-off. Cu can be used as the metal wirings 31, 32, 33.
  • a passivation film 67 is formed on the insulating film 66 so as to cover the metal wirings 31, 32, and 33.
  • the passivation film 67 for example, SiO 2 can be adopted.
  • electrode portions P1, P2, P3, and P4 are formed in the opening by photolithography and lift-off.
  • the magnetization direction is determined according to the shape of the deflection region 4 formed in the subsequent step and the configuration of the full bridge circuit.
  • a method of fixing the magnetization direction of the reference layer in a different direction for each magnetic resistance element 10 of the full bridge circuit a method of locally heating by laser irradiation while applying a magnetic field with an electromagnet or a permanent magnet, or a method of applying a magnetic field with an electromagnet or a permanent magnet.
  • a method of energizing and heating the heater wiring arranged in the vicinity of the element while applying the force or a method of heat-treating with a jig that can locally apply a magnetic field.
  • determine the direction of the bias magnetic field Specifically, a method substantially similar to the method for fixing the magnetization direction of the reference layer described above is performed. At this time, the temperature at which each magnetoresistive element 10 is heated is set to a temperature at which the magnetization direction of the reference layer does not change.
  • a part of the substrate 61 is used from the main surface side of the substrate 61 located on the side opposite to the side where the magnetoresistive element 10 is formed by using dry etching. Is removed to form the cavity 5.
  • the cavity 5 refers to a space surrounded by the inner wall of the substrate 61.
  • the senor 100 according to the first embodiment which includes a full bridge circuit composed of a plurality of magnetoresistive elements and can improve the sensitivity, is manufactured.
  • FIG. 25 is a diagram showing the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the comparative form.
  • the sensor 100X according to the comparative embodiment has a magnetization direction of the reference layer in the first magnetoresistive element 11 and the third magnetoresistive element 13 when compared with the sensor 100 according to the first embodiment.
  • the magnetization directions of the reference layers in the second magnetoresistive element 12 and the fourth magnetoresistive element 14 are different. That is, in the first magnetic resistance element 11 and the fourth magnetic resistance element 14, the counterclockwise angle ⁇ 2 from the reference direction to the magnetization direction of the reference layer 24 is different from that of the first embodiment, and the second magnetic resistance In the element 12 and the third magnetic resistance element 13, the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 is different from that of the embodiment.
  • the angle ⁇ 2 is 0 degrees
  • the angle ⁇ 3 is 180 degrees.
  • FIG. 26 is a diagram showing the direction of stress-induced anisotropy generated in the first state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the comparative form.
  • FIG. 26 shows a case where the magnetostrictive constant of the free layer is positive.
  • stress-induced anisotropy develops toward the radial outer side of the deflection region 4.
  • the direction of stress-induced anisotropy is parallel to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG.
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees. It becomes.
  • the counterclockwise angle ⁇ 5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
  • FIG. 27 is a diagram showing the direction of stress-induced anisotropy generated in the second state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the comparative form.
  • stress-induced anisotropy appears toward the tangential direction of the outer edge of the deflection region 4.
  • the direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
  • the counterclockwise angle ⁇ 5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
  • FIG. 28 is a diagram showing the relationship between the amount of distortion of the magnetoresistive element due to the deformation of the diaphragm portion and the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer in the sensor according to the comparative form. ..
  • the magnetic resistance element 10 is compressed from the non-deformed state.
  • the relative angle between the magnetizing direction of the free layer and the magnetizing direction of the reference layer changes from 135 degrees to approach 180 degrees.
  • the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from 135 degrees to approaching approximately 90 degrees.
  • the second magnetoresistive element R2 and the third magnetoresistive element R3 (the second magnetoresistive element 12 and the third magnetoresistive element 13), as the magnetic resistance element 10 is compressed from the non-deformed state, the free layer becomes The relative angle between the magnetizing direction and the magnetizing direction of the reference layer changes from about 45 degrees to approach 0 degrees. Further, in the second magnetoresistive element R2 and the third magnetoresistive sensor R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from about 45 degrees to approaching about 90 degrees.
  • the range of the relative angles between the magnetization direction of the free layer and the magnetization direction of the reference layer in the first magnetic resistance element portion R1 and the fourth magnetic resistance element portion R4, and the second magnetic resistance is different from each other.
  • FIG. 29 is a diagram showing the relationship between the relative angle shown in FIG. 28 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the comparative form.
  • the first magnetoresistive element R1, the second magnetoresistive element R2, and the third magnetoresistive element increases in each of the portion R3 and the fourth magnetoresistive element portion R4.
  • the relative angles are different between the first magnetoresistive element R1 and the fourth magnetoresistive element R4 and the second magnetoresistive element R2 and the third magnetoresistive element R3.
  • the range of resistance in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 is different from the range of resistance in the second magnetoresistive element R2 and the third magnetoresistive element R3.
  • FIG. 30 is a diagram showing the relationship between the amount of strain of the magnetoresistive element due to the deformation of the diaphragm portion and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the comparative form.
  • the magnetoresistive element 10 is compressed from the non-deformed state. As it is done, the resistance changes from about 0.07 k ⁇ to approach about 0.10 k ⁇ . Further, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance decreases from about 0.07 k ⁇ to about 0.05 k ⁇ . It changes to get closer.
  • the resistance is increased. It decreases from about 0.04 k ⁇ and changes to approach about 0.035 k ⁇ . Further, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance increases from approximately 0.04 k ⁇ to approximately 0.05 k ⁇ . It changes to get closer.
  • FIG. 31 is a diagram showing the relationship between the amount of distortion of the magnetoresistive element due to the deformation of the diaphragm portion and the output voltage of the half-bridge circuit in the sensor according to the comparative form.
  • the magnetoresistive element 10 is compressed from the non-deformed state.
  • the output of the first half-bridge circuit Hf1 increases from about 1.9V and changes to approach about 2.2V.
  • the output of the first half-bridge circuit Hf1 decreases from approximately 1.9 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 1.5V.
  • the second half as the magnetoresistive element 10 is compressed from the non-deformed state.
  • the output of the bridge circuit Hf2 decreases from about 1.1V and changes to approach about 0.8V.
  • the output of the second half bridge circuit Hf2 increases from approximately 1.1 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 1.5V.
  • FIG. 32 is a diagram showing the relationship between the amount of distortion of the magnetoresistive element due to the deformation of the diaphragm portion and the output voltage of the full bridge circuit in the sensor according to the comparative form.
  • the output voltage of the full bridge circuit increases from 900 mV as the magnetoresistive element 10 is compressed from the non-deformed state, and changes so as to approach approximately 1500 mV. Further, the output voltage of the full bridge circuit decreases from 900 mV as the magnetoresistive element 10 is pulled from the non-deformed state, and changes so as to approach approximately 100 mV.
  • the angles ⁇ 2 and the angles ⁇ 3 are different from those in the first embodiment, so that the first magnetoresistive element unit R1 and the fourth magnetism are different as described above.
  • the resistance value when the strain amount of the magnetic resistance element 10 is 0 is different between the resistance element portion R4, the second magnetic resistance element portion R2, and the third magnetic resistance element portion R3.
  • the change range of resistance is also different between the first magnetoresistive element R1 and the fourth magnetoresistive element R4 and the second magnetoresistive element R2 and the third magnetoresistive element R3.
  • a second half-bridge circuit Hf1 composed of a first magnetoresistive element R1 and a fourth magnetoresistive element R4, and a second magnetoresistive element R2 and a third magnetoresistive sensor R3.
  • the offset voltage when the amount of distortion of the magnetoresistive element 10 is 0 is different from that of the half-bridge circuit Hf2.
  • the output range is also different between the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2.
  • the output range in the full bridge circuit becomes smaller than that in the first embodiment, and the sensitivity is lowered.
  • FIG. 33 is a diagram showing the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the second embodiment.
  • the sensor 100A according to the second embodiment will be described with reference to FIG. 33.
  • the sensor 100A according to the second embodiment is provided with the shape of the deflection region 4 and the slit 4a in the deflection region 4 when compared with the sensor 100 according to the first embodiment. It differs in that. Other configurations are almost the same.
  • the deflection region 4 has a rectangular shape when viewed in a plan view (when viewed from the normal direction of the deflection region 4). Specifically, the deflection region 4 has a square shape.
  • the deflection region 4 has a plurality of side portions (first side portion 41, second side portion 42, third side portion 43, and fourth side portion 44) and a plurality of corner portions.
  • the deflection region 4 is provided with a slit 4a that divides the deflection region 4 into a plurality of parts in the circumferential direction.
  • the slit 4a is provided so as to connect a plurality of corners diagonally.
  • the plurality of regions divided by the slit 4a are provided so as to be rotationally symmetric with respect to the central portion of the deflection region 4.
  • the plurality of regions has a triangular outer shape, but is not limited to such a shape.
  • the first side portion 41 and the fourth side portion 44 are arranged so as to face each other, and the second side portion 42 and the third side portion 43 are the first side portion 41 and the fourth side portion 44. Both ends are connected and arranged so as to face each other.
  • the plurality of magnetoresistive elements 10 are arranged in the deflection region 4 so that the center of gravity of each is along the outer edge of the deflection region 4. Specifically, the plurality of first magnetoresistive elements 11 are arranged along the first side portion 41. The plurality of second magnetoresistive elements 12 are arranged along the second side portion 42. The plurality of third magnetoresistive elements 13 are arranged along the third side portion 43. The plurality of fourth magnetoresistive elements 14 are arranged along the fourth side portion 44.
  • the plurality of first magnetoresistive elements 11 are arranged in the central portion of the first side portion 41.
  • the plurality of second magnetoresistive elements 12 are arranged at the center of the second side portion 42.
  • the plurality of third magnetoresistive elements 13 are arranged at the center of the third side portion 43.
  • the plurality of fourth magnetoresistive elements 14 are arranged at the center of the fourth side portion 44.
  • the straight line that is orthogonal to the virtual straight line VL1 that connects each center of gravity of the element 13 and the fourth magnetoresistive element 14 to the outer edge of the deflection region 4 at the shortest distance and passes through the center of gravity is defined as the reference line BL1.
  • the virtual straight line VL1 and the outer edge of the deflection region 4 meet at the reference line BL1.
  • the direction from the center of gravity to the right when the intersection is viewed from the center of gravity is defined as the reference direction.
  • the first magnetoresistive element 11 When the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4, the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth.
  • the counterclockwise angle ⁇ 1 from the reference direction to the magnetization direction of the free layer is 135 degrees ⁇ 5 degrees.
  • the counterclockwise angle ⁇ 2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 45. Degree ⁇ 5 degrees.
  • the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 is 225. Degree ⁇ 5 degrees.
  • FIG. 34 is a diagram showing the direction of stress-induced anisotropy generated in the first deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the second embodiment.
  • the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines.
  • FIG. 34 shows a case where the magnetostrictive constant of the free layer is positive.
  • tensile stress acts on the plurality of magnetoresistive elements 10. Specifically, the tensile stress acts along the direction perpendicular to each side (the direction parallel to the above-mentioned virtual straight line VL1) as shown by the black arrow in FIG. 34. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to extend in a direction parallel to the virtual straight line VL1.
  • stress-induced anisotropy is exhibited in each of the plurality of magnetoresistive elements 10.
  • the direction of stress-induced anisotropy is parallel to the virtual straight line VL1 that connects the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 at the shortest distance, as shown by the black arrow shown in the magnetoresistive element 10 of FIG. ..
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
  • the counterclockwise angle ⁇ 5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
  • FIG. 35 is a diagram showing the direction of stress-induced anisotropy generated in the second deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the second embodiment.
  • the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines.
  • FIG. 35 shows a case where the magnetostrictive constant of the free layer is positive.
  • stress-induced anisotropy is exhibited in each of the plurality of magnetoresistive elements 10.
  • the direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
  • the counterclockwise angle ⁇ 5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
  • the relationship between the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, the angle ⁇ 4, and the angle ⁇ 5 in the non-deformed state, the first deformed state, and the second deformed state is the embodiment. It becomes the same as 1. As a result, even in the sensor 100A according to the second embodiment, substantially the same effect as that of the first embodiment can be obtained.
  • the sensor 100A according to the second embodiment is manufactured in accordance with the manufacturing method of the sensor 100 according to the first embodiment.
  • the TMR laminated film 64 and the upper electrode film 65 are arranged so that the plurality of magnetoresistive elements 10 are arranged in the center of each side portion as described above. Patterning.
  • the cavity portion 5 is formed so that the deflection region 4 has a rectangular shape. Further, a slit 4a is formed in the deflection region 4.
  • the slit 4a is provided in the deflection region 4 as an example, but the present invention is not limited to this, and the slit 4a may not be provided.
  • the stress input to the diaphragm portion 3 in the manufacturing process can be released by the slit 4a.
  • FIG. 36 is a diagram showing the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the third embodiment.
  • the sensor 100B according to the third embodiment will be described with reference to FIG. 36.
  • the sensor 100B according to the third embodiment is different from the sensor 100 according to the first embodiment in that a plurality of magnetoresistive elements 10 have a magnetic vortex structure. Other configurations are almost the same.
  • Each of the plurality of magnetoresistive elements 10 has a disk shape.
  • the free layer included in each of the plurality of magnetoresistive elements 10 also has a disk shape.
  • the strain amount of the magnetic resistance element 10 is zero, the free layer having a magnetic vortex structure has a point-symmetrical magnetization direction in the plane and has magnetization in the plane perpendicular direction at the center thereof. That is, it can be considered to be equivalent to the case of biasing in the direction perpendicular to the plane.
  • the magnetization fixing direction of the reference layer is set so that the relative angle with respect to the direction of the stress-induced anisotropy that appears when the magnetoresistive element is pulled or compressed is 45 degrees. ..
  • the magnetoresistive element 10 has a disk shape and stress is applied to the magnetoresistive element 10 to form an elliptical shape, the direction of stress-induced anisotropy is determined only by the inverse magnetostrictive effect. , It becomes difficult to uniquely determine whether the elliptical shape faces one side or the other side in the long axis direction.
  • the free layer in the laminated structure of the free layer / tunnel barrier layer / reference layer, in the case of a general tonnel barrier layer film thickness, the free layer has a weak interlayer exchange bond that tries to align in the direction parallel to the magnetization direction of the reference layer. Power works. When the direction of stress-induced anisotropy is governed by the interlayer exchange coupling force, the output characteristic with respect to the positive and negative distortion of the magnetoresistive element becomes an even function.
  • the free layer is biased in the direction of 90 degrees with respect to the magnetization direction of the reference layer in order to obtain the output characteristics of the odd function. Further, in order to uniquely determine the magnetization direction of the free layer when strain is applied to the magnetoresistive element, the strength of the bias magnetic field applied to the free layer is determined by the exchange coupling magnetic field acting between the free layer and the reference layer. It is larger than the strength.
  • the intersection of the virtual straight line VL1 and the outer edge of the deflection region 4 is set at the reference line BL1.
  • the direction from the center of gravity to the right when viewed from the front is defined as the reference direction.
  • the first magnetoresistive element 11, the second magnetoresistive element 12, and the third magnetoresistive element are in the state where the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4.
  • the counterclockwise angle ⁇ 1 from the reference direction to the magnetization direction of the free layer is 135 degrees ⁇ 5 degrees. is there.
  • the counterclockwise angle ⁇ 2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 45. Degree ⁇ 5 degrees.
  • the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 is 225. Degree ⁇ 5 degrees.
  • FIG. 37 is a diagram showing the direction of stress-induced anisotropy generated in the first deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the third embodiment.
  • the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines.
  • FIG. 37 shows a case where the magnetostrictive constant of the free layer is positive.
  • tensile stress acts on the plurality of magnetoresistive elements 10. Specifically, the tensile stress acts along the radial direction of the deflection region 4, as shown by the black arrow in FIG. 37. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to extend in the radial direction of the deflection region 4.
  • stress-induced anisotropy develops toward the radial outer side of the deflection region 4.
  • the direction of the stress-induced anisotropy is parallel to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. 37.
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
  • the counterclockwise angle ⁇ 5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
  • FIG. 38 is a diagram showing the direction of stress-induced anisotropy generated in the second deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the second embodiment.
  • the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines.
  • FIG. 38 shows a case where the magnetostrictive constant of the free layer is positive.
  • compressive stress acts on the plurality of magnetoresistive elements 10. Specifically, the compressive stress acts along the radial direction of the deflection region 4, as shown by the black arrow in FIG. 38. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to contract in the radial direction of the deflection region 4.
  • stress-induced anisotropy is exhibited in each of the plurality of magnetoresistive elements 10.
  • the direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. 38. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
  • the counterclockwise angle ⁇ 4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
  • the counterclockwise angle ⁇ 5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
  • the relationship between the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, the angle ⁇ 4, and the angle ⁇ 5 in the non-deformed state, the first deformed state, and the second deformed state is the embodiment. It becomes the same as 1. As a result, even in the sensor 100B according to the third embodiment, substantially the same effect as that of the first embodiment can be obtained.
  • the sensor 100B according to the third embodiment is manufactured in accordance with the manufacturing method of the sensor 100 according to the first embodiment.
  • the TMR laminated film 64 and the upper electrode film 65 are patterned into a disk shape.
  • FIG. 39 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the fourth embodiment.
  • the sensor 100C according to the fourth embodiment will be described with reference to FIG. 39.
  • the sensor 100C according to the fourth embodiment has a plurality of magnetoresistive elements 10 constituting the first half-bridge circuit Hf1 and a second magnetoresistive element 10 when compared with the sensor 100B according to the third embodiment.
  • the difference is that the disk diameters are different between the plurality of magnetoresistive elements 10 constituting the half-bridge circuit Hf2.
  • Other configurations are almost the same.
  • the disk diameter of the free layer in the first magnetoresistive element 11 and the second magnetoresistive element 12 and the free layer in the third magnetoresistive element 13 and the fourth magnetoresistive element 14 is different.
  • the disk diameter of the free layer in the first magnetoresistive element 11 and the second magnetoresistive element 12 becomes smaller than the disk diameter of the free layer in the third magnetoresistive element 13 and the fourth magnetoresistive element 14.
  • the sensitivity can be reduced and the dynamic range can be increased on the first half-bridge circuit Hf1 side.
  • the sensitivity can be increased and the dynamic range can be decreased.
  • the dynamic range By properly using the dynamic range in this way, it is possible to properly detect the external force acting on the deflection region 4. Further, when the external force input to the deflection region 4 is sound, the input sound pressure level and the input dynamic range can be expanded.
  • the sensor 100C according to the fourth embodiment in the non-deformed state, the first deformed state, and the second deformed state, the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle
  • the relationship between ⁇ 4 and the angle ⁇ 5 is the same as in the third embodiment. Therefore, the sensor 100C according to the fourth embodiment has almost the same effect as the sensor 100B according to the third embodiment.
  • the magnetoresistive element having a different sensitivity as compared with the first embodiment in which it is difficult to change the film thickness in the plane. can be easily integrated in the same chip.
  • the sensor 100C according to the fourth embodiment is manufactured in accordance with the manufacturing method of the sensor 100 according to the first embodiment.
  • the TMR laminated film 64 and the upper electrode film 65 are patterned into a disk shape.
  • the plurality of magnetoresistive elements 10 constituting the first half-bridge circuit Hf1 and the plurality of magnetoresistive elements 10 constituting the second half-bridge circuit Hf2 are patterned so that the disk diameters are different.
  • FIG. 40 shows a non-deformed state in which the diaphragm portion (here, since the diaphragm portion is not fixed all around, it can also be expressed as a cantilever portion or a cantilever portion) in the sensor according to the fifth embodiment. It is a schematic plan view which shows. The sensor 100D according to the fifth embodiment will be described with reference to FIG. 40.
  • the sensor 100D according to the fifth embodiment has a different configuration of the deflection region 4 when compared with the sensor 100B according to the third embodiment. Other configurations are almost the same.
  • the deflection region 4 has a first region 4A and a second region 4B separated from each other.
  • the areas of the first region 4A and the second region 4B are different from each other.
  • the first region 4A and the second region 4B have a semicircular shape including an arc portion and a straight portion when viewed in a plan view.
  • the first region 4A and the second region 4B are arranged so that the straight portions face each other.
  • the first region 4A and the second region 4B are similar to each other.
  • the radius of the first region 4A is larger than the radius of the second region 4B.
  • the first magnetoresistive element 11 and the second magnetoresistive element 12 constituting the first half-bridge circuit Hf1 are arranged.
  • the first magnetoresistive element 11 and the second magnetoresistive element 12 are arranged so that the center of gravity of each magnetoresistive element is along the arc portion of the first region 4A of the outer edge of the deflection region 4.
  • the third magnetoresistive element 13 and the fourth magnetoresistive element 14 constituting the second half-bridge circuit Hf2 are arranged.
  • the third magnetoresistive element 13 and the fourth magnetoresistive element 14 are arranged so that the center of gravity of each magnetoresistive element is along the arc portion of the second region 4B of the outer edge of the deflection region 4.
  • FIG. 41 is a diagram showing the relationship between frequency and sensitivity in each of the first region and the second region constituting the deflection region in the sensor according to the fifth embodiment.
  • the resonance frequency f1 in the first region 4A and the resonance frequency f2 in the second region 4B are different from each other.
  • the area of the first region 4A is larger than the area of the second region 4B, and the resonance frequency f1 in the first region 4A is smaller than the resonance frequency f2 in the second region 4B.
  • the sensitivity increases in the vicinity of the resonance frequency. Since it is preferable that there is no frequency dependence of the output, a frequency domain having a constant sensitivity is used.
  • the deflection region 4 is divided into the first region 4A and the second region 4B having different resonance frequencies, and the output from the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2 are divided according to the frequency. Switch the output from.
  • the range in which the sensitivity is constant is R11.
  • a range having a constant sensitivity is included from R11 to R11 and R12. It can be extended to the range. As a result, the frequency band that can be detected by the sensor 100D can be expanded.
  • the sensor 100D according to the fifth embodiment in the non-deformed state, the first deformed state, and the second deformed state, the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle
  • the relationship between ⁇ 4 and the angle ⁇ 5 is the same as in the third embodiment. Therefore, the sensor 100D according to the fifth embodiment has almost the same effect as the sensor 100B according to the third embodiment.
  • FIG. 42 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the sixth embodiment.
  • the sensor 100E according to the sixth embodiment will be described with reference to FIG. 42.
  • the sensor 100E according to the sixth embodiment is different in that the plurality of magnetoresistive elements 10 have a magnetic vortex structure when compared with the sensor 100A according to the second embodiment. That is, each of the plurality of magnetoresistive elements 10 has a disk shape.
  • the sensor 100E according to the sixth embodiment in the non-deformed state, the first deformed state, and the second deformed state, the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4 , And the angle ⁇ 5 are the same as in the second embodiment. Therefore, the sensor 100E according to the sixth embodiment has almost the same effect as the sensor 100A according to the second embodiment.
  • FIG. 43 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the seventh embodiment.
  • the sensor 100F according to the seventh embodiment will be described with reference to FIG. 43.
  • the sensor 100F according to the seventh embodiment has a plurality of magnetoresistive elements 10 constituting the first half-bridge circuit Hf1 and a second magnetoresistive element 10 when compared with the sensor 100E according to the sixth embodiment.
  • the difference is that the disk diameters are different between the plurality of magnetoresistive elements 10 constituting the half-bridge circuit Hf2.
  • Other configurations are almost the same.
  • the disk diameter of the free layer in the first magnetoresistive element 11 and the second magnetoresistive element 12 becomes smaller than the disk diameter of the free layer in the third magnetoresistive element 13 and the fourth magnetoresistive element 14.
  • the sensitivity can be reduced and the dynamic range can be increased on the first half-bridge circuit Hf1 side.
  • the sensitivity can be increased and the dynamic range can be decreased.
  • the dynamic range By properly using the dynamic range in this way, it is possible to properly detect the external force acting on the deflection region 4. Further, when the external force input to the deflection region 4 is sound, the input sound pressure level and the input dynamic range can be expanded.
  • the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angles in the non-deformed state, the first deformed state, and the second deformed state are the same as in the sixth embodiment. Therefore, the sensor 100F according to the seventh embodiment has almost the same effect as the sensor 100E according to the sixth embodiment.
  • FIG. 44 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the eighth embodiment.
  • the sensor 100G according to the eighth embodiment will be described with reference to FIG. 44.
  • the sensor 100G according to the eighth embodiment has a different configuration of the deflection region 4 when compared with the sensor 100E according to the sixth embodiment. Other configurations are almost the same.
  • the deflection region 4 has a first region 4A and a second region 4B separated from each other.
  • the areas of the first region 4A and the second region 4B are different from each other.
  • the first region 4A and the second region 4B have a substantially isosceles triangular shape when viewed in a plan view.
  • the first region 4A and the second region 4B are arranged so that their hypotenuses face each other.
  • the first region 4A and the second region 4B are similar to each other.
  • the area of the first region 4A is larger than the area of the second region 4B.
  • the resonance frequency f1 in the first region 4A and the resonance frequency f2 in the second region 4B are different from each other as in the fifth embodiment.
  • the area of the first region 4A is larger than the area of the second region 4B, and the resonance frequency f1 in the first region 4A is smaller than the resonance frequency f2 in the second region 4B.
  • the deflection region 4 is divided into the first region 4A and the second region 4B having different resonance frequencies, and the output from the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2 are divided according to the frequency. Switch the output from.
  • the sensitivity can be expanded in a certain range, and the frequency band that can be detected by the sensor 100G can be expanded.
  • the angles ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angles are in the non-deformed state, the first deformed state, and the second deformed state.
  • the relationship between ⁇ 4 and the angle ⁇ 5 is the same as in the sixth embodiment. Therefore, the sensor 100G according to the eighth embodiment has almost the same effect as the sensor 100E according to the sixth embodiment.
  • FIG. 45 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the ninth embodiment.
  • FIG. 46 is a schematic perspective view showing the configuration of the magnetoresistive element and its surroundings in the sensor according to the ninth embodiment.
  • FIG. 47 is a schematic cross-sectional view of the magnetoresistive element and its peripheral configuration according to the ninth embodiment. The sensor 100H according to the ninth embodiment will be described with reference to FIGS. 45 to 47.
  • the sensor 100H according to the ninth embodiment has the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 when compared with the sensor E according to the sixth embodiment. And the current control unit 55 (see FIG. 46) is further provided. Other configurations are almost the same.
  • the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 include a first magnetoresistive element unit R1, a second magnetoresistive element unit R2, a third magnetoresistive element unit R3, and a fourth magnetoresistive element unit R4. It is provided in each of.
  • the second cancel magnetic field generation unit 52, the first cancel magnetic field generation unit 51, and the magnetoresistive element 10 are laminated in this order.
  • a second insulating layer 54 is provided between the second cancel magnetic field generation unit 52 and the first cancel magnetic field generation unit 51.
  • a first insulating layer 53 is provided between the first canceling magnetic field generation unit 51 and the lower electrode layer 20.
  • the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 are composed of a conductive member such as a coil.
  • the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 cancel the stress-induced anisotropy M10 generated when the magnetoresistive element 10 is deformed by the current flowing through the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52. Generates a canceling magnetic field.
  • the stress-induced anisotropy M10 is canceled by the combined magnetic field M11 of the first canceling magnetic field and the second canceling magnetic field.
  • the current control unit 55 adjusts the amount of current flowing through the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 so that the output value of the full bridge circuit becomes zero when the magnetoresistive element 10 is deformed.
  • the detection accuracy is determined by calculating the direction of the external force applied to the deflection region 4 and the amount of distortion of the magnetoresistive element 10 based on the amount of current flowing through the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52. Can be improved.
  • FIG. 48 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the tenth embodiment.
  • the sensor 100I according to the tenth embodiment will be described with reference to FIG. 48.
  • the sensor 100I according to the tenth embodiment has a different magnetization direction of the reference layer when compared with the sensor 100 according to the first embodiment.
  • the other configurations are almost the same.
  • each magnetoresistive element 10 the magnetization direction of the reference layer is 180 degrees different from that of the first embodiment. As a result, the angles ⁇ 2 and ⁇ 3 are different from each other as compared with the first embodiment.
  • the counterclockwise angle ⁇ 1 from the reference direction to the magnetization direction of the free layer is 135 degrees ⁇ 5. Degree.
  • the counterclockwise angle ⁇ 2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 225. Degree ⁇ 5 degrees.
  • the counterclockwise angle ⁇ 3 from the reference direction to the magnetization direction of the reference layer 24 in the second magnetoresistive element 12 and the third magnetoresistive element 13 is 45. Degree ⁇ 5 degrees.
  • the sensor 100I according to the tenth embodiment has the same effect as the sensor 100 according to the first embodiment.
  • the direction of the magnetization direction of the reference layer may be rotated by 180 degrees. That is, the angles ⁇ 2 and ⁇ 3 in the above-described 10th embodiment may be applied to the second to ninth embodiments as well.
  • FIG. 49 is a diagram showing a strain detection sensor according to the tenth embodiment.
  • the strain detection sensor 150 according to the tenth embodiment will be described with reference to FIG. 49.
  • the strain detection sensor 150 includes the sensor 100 according to the first embodiment, a base portion 110, and a cover portion 120.
  • the base portion 110 has a plate-like shape and has a first main surface 110a and a second main surface 110b that are in a front-to-back relationship with each other.
  • the base portion 110 is provided with a through hole 111.
  • the base portion 110 is made of, for example, a substrate made of a material combining resin and glass fiber such as a glass epoxy substrate, a low temperature co-fired ceramics (LTCC) multilayer substrate, or alumina.
  • LTCC low temperature co-fired ceramics
  • a substrate or the like made of a ceramic material can be adopted.
  • the sensor 100 is arranged on the first main surface 110a.
  • the sensor 100 is arranged so that the cavity 5 communicates with the through hole 111 and the deflection region 4 faces the through hole 111.
  • the cover portion 120 is provided so as to cover the sensor 100 at a distance from the sensor 100 on the first main surface 110a side.
  • the cover portion 120 is joined to the first main surface 110a without a gap in order to seal the space between the sensor 100 and the cover portion 120.
  • the cover portion 120 is made of a metal material or a resin material.
  • the cover portion 120 may be formed by cutting or pressing a member made of the above material, or may be formed by molding.
  • the space inside the sensor 100 (the space between the sensor 100 and the first main surface 110a) and the space outside the sensor 100 (between the sensor 100 and the cover portion 120). Space) and is separated.
  • an external force is applied to the deflection region 4 of the sensor 100 by a sound wave or the like passing through the through hole 111, the magnetoresistive element arranged in the deflection region 4 is distorted.
  • a voltage corresponding to the amount of distortion of the magnetoresistive element is output from the sensor 100.
  • distortion detection sensor 150 distortion can be detected with high sensitivity by measuring the output.
  • FIG. 50 is a diagram showing a pressure sensor according to the eleventh embodiment.
  • the pressure sensor 200 according to the eleventh embodiment will be described with reference to FIG. 50. Note that FIG. 50 shows a state in which the base portion 210 is bent due to stress acting on the base portion 210.
  • the pressure sensor 200 includes the sensor 100 according to the first embodiment, a base portion 210, and a sealing portion 220.
  • the base portion 210 has a plate-like shape.
  • the sensor 100 is arranged on the base portion 210.
  • the sensor 100 is sealed on the base 210 by the sealing 220.
  • the pressure acts on the base portion 210 and the base portion 210 is distorted
  • the pressure also acts on the sensor 100 arranged on the base portion 210.
  • the deflection region 4 of the sensor 100 is distorted, and the magnetoresistive element arranged on the deflection region is also distorted.
  • a voltage corresponding to the amount of distortion of the magnetoresistive element is output from the sensor 100.
  • the pressure applied to the base portion can be detected with high sensitivity by measuring the output.
  • FIG. 51 is a diagram showing a mobile information terminal provided with the microphone according to the twelfth embodiment.
  • the microphone 300 according to the twelfth embodiment will be described with reference to FIG. 51.
  • the microphone 300 provided with the sensor 100 according to the first embodiment is incorporated in the mobile information terminal 400.
  • the diaphragm portion 3 of the sensor 100 provided on the microphone 300 is substantially parallel to the surface of the mobile information terminal 400 on which the display portion 410 is provided.
  • the arrangement of the sensor 100 can be changed as appropriate.
  • the microphone 300 may be incorporated into an IC recorder, a pin microphone, or the like in addition to the mobile information terminal 400.
  • the strain detection sensor 150, the pressure sensor 200, and the microphone 300 include the sensor 100 according to the first embodiment has been described as an example, but the present invention is not limited thereto. Any of the sensors according to the first to tenth embodiments may be provided.

Abstract

A sensor (100) comprises a substrate having a bending area (4) and a plurality of magnetoresistive elements (10). A first magnetoresistive element (11), second magnetoresistive element (12), third magnetoresistive element (13), and fourth magnetoresistive element (14) included in the plurality of magnetoresistive elements (10) each comprise a free layer, reference layer, and tunnel barrier layer. In a state in which no external force is being applied to the bending area (4), the first magnetoresistive element (11), second magnetoresistive element (12), third magnetoresistive element (13), and fourth magnetoresistive element (14) are each such that an angle θ1 is 135° ± 5°; the first magnetoresistive element (11) and fourth magnetoresistive element (14) are such that an angle θ2 is 45° ± 5°; and the second magnetoresistive element (12) and third magnetoresistive element (13) are such that an angle θ3 is 225° ± 5°.

Description

センサ、歪検知センサ、圧力センサ、およびマイクロフォンSensors, strain detection sensors, pressure sensors, and microphones
 本開示は、たわむ基板に磁気抵抗素子が配置されたセンサ、ならびに当該センサを備えた歪検知センサ、圧力センサ、およびマイクロフォンに関する。 The present disclosure relates to a sensor in which a magnetoresistive element is arranged on a flexible substrate, and a strain detection sensor, a pressure sensor, and a microphone provided with the sensor.
 藤慶彦, 加治志織, 原道子, “スピントロニクス技術を応用した高感度歪み検知素子を用いたスピンMEMSマイクロホン”, 東芝レビュー73, 44 (2018)(非特許文献1)には、MEMS加工技術を用いたセンサを搭載したマイクロフォンが開示されている。当該センサとしては、静電容量型のセンサと歪み検知型のセンサが知られている。 Yoshihiko Fuji, Shiori Kaji, Michiko Hara, "Spin MEMS microphone using high-sensitivity distortion detection element applying spintronics technology", Toshiba Review 73, 44 (2018) (Non-Patent Document 1) uses MEMS processing technology A microphone equipped with the sensor that was used is disclosed. As the sensor, a capacitance type sensor and a strain detection type sensor are known.
 静電容量型のセンサ(静電容量型MEMSマイクロフォン)は、音によりダイヤフラム電極とバックプレート電極の距離が変化することで静電容量が変化する。当該センサは、感度が高いものの、電極間の空気粘性の影響でSNR(Signal to Noise Ratio)の向上に限界がある。また、構造が複雑であり、異物によって検知精度が低下する。 Capacitance type sensor (capacitance type MEMS microphone) changes the capacitance by changing the distance between the diaphragm electrode and the back plate electrode by sound. Although the sensor has high sensitivity, there is a limit to the improvement of SNR (Signal to Noise Ratio) due to the influence of air viscosity between electrodes. In addition, the structure is complicated, and the detection accuracy is lowered by foreign matter.
 一方、歪検知型のセンサは、音によりダイヤフラム表面に生じた歪みを検知する。当該センサは、静電容量型センサと比較して、空気粘性の影響が小さく、構造がシンプルかつ製造が容易であり、また、異物によって検知感度が低下しにくい。従来の半導体ひずみゲージでは感度が低いため、高感度、および広帯域化への取り組みとして、MEMS加工技術を用いた歪検知型センサ(スピンMEMSマイクロフォン)が提案されている。 On the other hand, the distortion detection type sensor detects the distortion generated on the diaphragm surface by sound. Compared with the capacitance type sensor, the sensor is less affected by air viscosity, has a simple structure and is easy to manufacture, and the detection sensitivity is less likely to be lowered by foreign matter. Since the sensitivity of conventional semiconductor strain gauges is low, a strain detection type sensor (spin MEMS microphone) using MEMS processing technology has been proposed as an effort for high sensitivity and wide band.
 このスピンMEMSマイクロフォンにおいては、MEMS技術により形成したダイヤフラムの上に、スピントロニクス技術によりトンネル磁気抵抗(TMR)センサを集積している。 In this spin MEMS microphone, a tunnel magnetoresistive (TMR) sensor is integrated by spintronics technology on a diaphragm formed by MEMS technology.
 圧力・慣性・音などの外力によるダイヤフラムが変形してTMRセンサへ歪みが伝わった場合には、逆磁歪効果によりフリー層の磁化方向が変化する。これにより、フリー層とリファレンス層の磁化方向の相対角度に依るトンネル磁気抵抗効果により大きな抵抗変化が発生することで、微小な歪みを高感度に検知することができる。 When the diaphragm is deformed by an external force such as pressure, inertia, or sound and the strain is transmitted to the TMR sensor, the magnetization direction of the free layer changes due to the inverse magnetostrictive effect. As a result, a large resistance change occurs due to the tunnel magnetoresistive effect depending on the relative angle between the magnetization directions of the free layer and the reference layer, so that minute distortion can be detected with high sensitivity.
 TMRの大きな抵抗変化を利用することで、歪みに対する抵抗変化率を表す性能指標ゲージファクター(GF = dR/R / dε)が、金属歪みゲージの2500倍、半導体歪みゲージの40倍の値が得られている。この特性を利用し、周辺固定のダイヤフラム上へTMRセンサを直列接続したスピンMEMSマイクロフォンの試作がされており、SNRが57dBと、既存の静電容量型MEMSマイクロフォン(56~74dB)と比較しても試作品ながら良い特性が得られている。 By using the large resistance change of TMR, the performance index gauge factor (GF = dR / R / dε), which indicates the resistance change rate with respect to strain, is 2500 times that of the metal strain gauge and 40 times that of the semiconductor strain gauge. Has been done. Utilizing this characteristic, a prototype spin MEMS microphone in which a TMR sensor is connected in series on a diaphragm fixed at the periphery has been prototyped, and the SNR is 57 dB, which is compared with the existing capacitive MEMS microphone (56 to 74 dB). Although it is a prototype, it has good characteristics.
 Y. Fuji et al., “Highly sensitive spintronic strain-gauge sensor based on magnetic tunnel junction and its application to MEMS microphone”, 2018 IEEE International Electron Devices Meeting (IEDM)(非特許文献2)、および特開2018-006769号公報(特許文献1)には、スピンMEMSマイクロフォンにおいて、歪みの正負(引張・圧縮)に対する抵抗変化の奇関数化、入力ダイナミックレンジの向上、およびヒステリシスの低減を目的として、フリー層の初期の磁化方向がリファレンス層の磁化方向に対して45度もしくは135度となるように、フリー層にバイアスを印加する技術が開示されている。 Y. Fuji et al., "Highly sensitive spintronic strain-gauge sensor based on magnetic tunnel junction and its applications to MEMS microphone", 2018 IEEE International Electron Devices Meeting (IEDM) (Non-Patent Document 2), and Japanese Patent Application Laid-Open No. 2018-006769 In Japanese Patent Application Laid-Open No. 1 (Patent Document 1), in a spin MEMS microphone, an early stage of a free layer is described for the purpose of making an odd function of resistance change with respect to positive and negative strain (tensile / compressive), improving input dynamic range, and reducing hysteresis. A technique for applying a bias to a free layer so that the magnetization direction is 45 degrees or 135 degrees with respect to the magnetization direction of the reference layer is disclosed.
 特開2015-064255号公報(特許文献2)には、スピンMEMSマイクロフォンにおいて、ダイヤフラム上の検知素子の配置場所に応じてリファレンス層の磁化固定方向を変更する技術について開示されている。 Japanese Unexamined Patent Publication No. 2015-06425 (Patent Document 2) discloses a technique for changing the magnetization fixing direction of the reference layer according to the arrangement location of the detection element on the diaphragm in the spin MEMS microphone.
 特開2015-061070号公報(特許文献3)には、スピンMEMSマイクロフォンにおいて、磁気抵抗素子内にバイアス機能を集積する技術として、バイアス磁性層/分離層/フリー層の積層構造により、フリー層を層間交換結合層によりバイアスする技術が開示されている。バイアス磁性層の磁化固定方法としては、反強磁性層/バイアス磁性層、もしくは反強磁性層/強磁性層/磁気結合層/バイアス磁性層の積層構造が開示されている。また、複数の磁気抵抗素子を用いてフルブリッジ回路を構成する点が開示されている。 Japanese Patent Application Laid-Open No. 2015-061070 (Patent Document 3) states that in a spin MEMS microphone, as a technique for integrating a bias function in a magnetoresistive element, a free layer is provided by a laminated structure of a bias magnetic layer / separation layer / free layer. A technique for biasing by an interlayer exchange bonding layer is disclosed. As a method for fixing the magnetization of the bias magnetic layer, a laminated structure of an antiferromagnetic layer / bias magnetic layer or an antiferromagnetic layer / ferromagnetic layer / magnetic coupling layer / bias magnetic layer is disclosed. Further, it is disclosed that a full bridge circuit is formed by using a plurality of magnetoresistive elements.
 R. Antos, Y. Otani and J. Shibata,  “Magnetic vortex dynamics”, J. Phys. Soc. Jpn. 77, 031004 (2008)(非特許文献3)では、磁界に対して特殊な応答をする磁気渦構造(vortex)の磁気抵抗素子が開示されている。磁気渦構造は、強磁性体のサブミクロンスケールのディスクにおいて発現する。交換エネルギー、静磁エネルギー(形状異方性)、ゼーマンエネルギー、および各種磁気異方性エネルギーの競合によりその磁気構造が決定付けられる。磁気渦構造を有する磁気抵抗素子におけるヒステリシスループにおいては、磁化曲線の一部に線形的な領域が現れる。 In R. Antos, Y. Otani and J. Shibata, "Magnetic vortex dynamics", J. Phys. Soc. A magnetoresistive element having a vortex structure is disclosed. The magnetic vortex structure is manifested on a ferromagnetic submicron scale disc. Its magnetic structure is determined by the competition of exchange energy, electrostatic anisotropy (shape anisotropy), Zeeman energy, and various magnetic anisotropy energies. In the hysteresis loop in the magnetoresistive element having a magnetic vortex structure, a linear region appears in a part of the magnetization curve.
 K. Y. Guslienko,  “Magnetic vortex state stability, reversal and dynamics in restricted geometries”, Journal of Nanoscience and Nanotechnology 8, 2745 (2008)(非特許文献4)には、静磁エネルギーは形状に依存し、ディスクアスペクト比(ディスク膜厚/ディスク直径)により磁化構造を制御することができることが開示されている。 According to K. Y. Guslienko, "Magnetic vortex state stability, reversal and dynamics in restricted geometries", Journal of Nanoscience and Nanotechnology 8, 2745 (2008) (Non-Patent Document 4), the static energy depends on the shape, and the disk It is disclosed that the magnetization structure can be controlled by the aspect ratio (disk film thickness / disk diameter).
 ディスクアスペクト比が小さい場合は、面内方向に形状異方性が優勢となり、面内の単磁区構造をとる。ディスクアスペクト比が大きい場合は、垂直方向の形状異方性が優勢となり、垂直方向の単磁区構造をとる。それらの中間領域では主に交換エネルギーと静磁エネルギーの競合により、磁気渦構造をとる。 When the disk aspect ratio is small, shape anisotropy becomes predominant in the in-plane direction, and an in-plane single magnetic domain structure is adopted. When the disk aspect ratio is large, the shape anisotropy in the vertical direction becomes predominant, and a single magnetic domain structure in the vertical direction is adopted. In those intermediate regions, a magnetic vortex structure is formed mainly due to the competition between exchange energy and static energy.
 M. Schneider, H. Hoffmann and J. Zweck,  “Lorentz microscopy of circular ferromagnetic permalloy nanodisks”, Appl. Phys. Lett. 77, 2909 (2000)(非特許文献5)には、磁化曲線の線形領域はディスク径の減少(アスペクト比の増大)に従って拡大することが開示されている。 In M. Schneider, H. Hoffmann and J. Zweck, "Lorentz microscopy of circular ferromagnetic permalloy nanodisks", Appl. Phys. Lett. 77, 2909 (2000) (Non-Patent Document 5), the linear region of the magnetization curve is a disk. It is disclosed that it expands as the diameter decreases (increases the aspect ratio).
 米国特許出願公開第2008/0180865号明細書(特許文献4)には、巨大磁気抵抗(GMR)もしくはトンネル磁気抵抗(TMR)センサにおいて、奇関数型の線形な入力磁界-抵抗特性を得るために、磁気渦構造(vortex)を用いる手法が提案されている。 U.S. Patent Application Publication No. 2008/018886 (Patent Document 4) states that in a giant magnetoresistive (GMR) or tunnel magnetoresistive (TMR) sensor, in order to obtain a linear input magnetic field-resistance characteristic of odd function type. , A method using a magnetic vortex structure (vortex) has been proposed.
 具体的には、リファレンス層、バリア層、および磁気渦構造を有するフリー層が順に積層された積層部を含む磁気抵抗素子が、透磁性材料で形成される下部シールド、上部シールドに挟持された構造が開示されている。リファレンス層においては、面内方向へ磁化を固定されており、フリー層においては、磁化が渦状になっている。 Specifically, a structure in which a magnetoresistive element including a laminated portion in which a reference layer, a barrier layer, and a free layer having a magnetic vortex structure are laminated in this order is sandwiched between a lower shield and an upper shield formed of a magnetically permeable material. Is disclosed. In the reference layer, the magnetization is fixed in the in-plane direction, and in the free layer, the magnetization is spiral.
 遠藤基, 大兼幹彦, 永沼博, 安藤康夫, 磁気渦構造を応用した強磁性トンネル接合磁場センサ, 第39回日本磁気学会学術講演概要集10pE-12, 277 (2015)(非特許文献6)、およびT. Wurft, W. Raberg, K. Prugl, A. Satz, G. Reiss and H. Bruckl, The influence of edge inhomogeneities on vortex hysteresis curves in magnetic tunnel junctions, IEEE Transactions on Magnetics AF-05, 1 (2017)(非特許文献7)においても、磁気渦構造を有する磁気抵抗素子が開示されている。 Motoi Endo, Mikihiko Okane, Hiroshi Naganuma, Yasuo Ando, Ferromagnetic tunnel junction magnetic field sensor applying magnetic vortex structure, 39th Annual Meeting of the Magnetic Society of Japan 10pE-12, 277 (2015) (Non-Patent Document 6) , And T. Wurft, W. Raberg, K. Prugl, A. Satz, G. Reiss and H. Bruckl, The influence of edge inhomogeneities on vortex hysteresis curves in magnetic tunnel junctions, IEEE Transactions on 2017) (Non-Patent Document 7) also discloses a magnetic resistance element having a magnetic vortex structure.
 米国特許出願公開第2017/0168122号明細書(特許文献5)においては、磁気渦構造を有するフリー層と反強磁性層の積層構造によって交換結合バイアスを発現させることが開示されている。 U.S. Patent Application Publication No. 2017/0168122 (Patent Document 5) discloses that an exchange coupling bias is expressed by a laminated structure of a free layer having a magnetic vortex structure and an antiferromagnetic layer.
特開2018-006769号公報JP-A-2018-006769 特開2015-064255号公報Japanese Unexamined Patent Publication No. 2015-06425 特開2015-061070号公報JP-A-2015-061070 米国特許出願公開第2008/0180865号明細書U.S. Patent Application Publication No. 2008/0188865 米国特許出願公開第2017/0168122号明細書U.S. Patent Application Publication No. 2017/0168122
 しかしながら、上記非特許文献1におけるスピンMEMSマイクロフォンにおいては、ダイヤフラム上で、TMR素子が直列に接続されているが、TMR素子によってブリッジ回路を構成することについては開示されていない。 However, in the spin MEMS microphone in Non-Patent Document 1, although the TMR elements are connected in series on the diaphragm, it is not disclosed that the bridge circuit is formed by the TMR elements.
 上記非特許文献2および特許文献1では、上述のように、フリー層の初期の磁化方向がリファレンス層の磁化方向に対して45度もしくは135度となるように、フリー層にバイアスを印加する技術が開示されている。しかしながら、バイアスの印加方向は、TMR素子によってブリッジ回路を構成しない場合に高感度化する技術としては有効であるが、TMR素子によってブリッジ回路を構成する場合には、最適とは言えない。 In Non-Patent Document 2 and Patent Document 1, as described above, a technique of applying a bias to the free layer so that the initial magnetization direction of the free layer is 45 degrees or 135 degrees with respect to the magnetization direction of the reference layer. Is disclosed. However, although the bias application direction is effective as a technique for increasing the sensitivity when the bridge circuit is not formed by the TMR element, it cannot be said to be optimal when the bridge circuit is formed by the TMR element.
 上記特許文献2においては、上述のように、ダイヤフラム上の検知素子の配置場所に応じてリファレンス層の磁化固定方向を変更することについては開示されている。しかしながら、検知素子によってブリッジ回路を構成する場合において、複数の検知素子の最適な配置およびリファレンス層の磁化固定方向等については開示されていない。 In the above-mentioned Patent Document 2, as described above, it is disclosed that the magnetization fixing direction of the reference layer is changed according to the arrangement location of the detection element on the diaphragm. However, when the bridge circuit is composed of the detection elements, the optimum arrangement of the plurality of detection elements, the magnetization fixing direction of the reference layer, and the like are not disclosed.
 上記特許文献3においては、上述のように、層間交換結合によりフリー層にバイアス磁場を印加する技術が開示されている。しかしながら、特許文献3においては、特性向上のため、ブリッジ回路を構成する複数の磁気抵抗素子の個々の配置との関係において、バイアス磁界の方向ならびにリファレンス層の磁化の方向等を改善する余地がある。 As described above, Patent Document 3 discloses a technique of applying a bias magnetic field to the free layer by interlayer exchange bonding. However, in Patent Document 3, in order to improve the characteristics, there is room for improving the direction of the bias magnetic field, the direction of magnetization of the reference layer, and the like in relation to the individual arrangement of the plurality of magnetoresistive elements constituting the bridge circuit. ..
 また、層間交換結合のみによりフリー層をバイアスする場合には、バイアス強度の調整を積層構造の材料・膜厚設計により行う。このため、同一ウエハ内、ブリッジ回路内でバイアス強度が異なるように、積層体を形成することが困難となる。 In addition, when the free layer is biased only by the interlayer exchange coupling, the bias strength is adjusted by designing the material and film thickness of the laminated structure. Therefore, it is difficult to form a laminate so that the bias strengths are different in the same wafer and in the bridge circuit.
 上記特許文献4、非特許文献6および非特許文献7においては、上述のように、磁気渦構造を有する磁気抵抗素子が開示されている。しかしながら、歪、圧力、慣性、または音等を検知するセンサへ当該磁気抵抗素子を応用することについては、開示されていない。 As described above, the above-mentioned Patent Document 4, Non-Patent Document 6 and Non-Patent Document 7 disclose a magnetoresistive element having a magnetic vortex structure. However, the application of the magnetoresistive element to a sensor that detects distortion, pressure, inertia, sound, etc. is not disclosed.
 上記特許文献5においても、上述のように上述のように、磁気渦構造を有する磁気抵抗素子が開示されている。しかしながら、歪、圧力、慣性、または音等を検知するセンサへ当該磁気抵抗素子を応用することについては、開示されていない。 Also in the above-mentioned Patent Document 5, as described above, as described above, a magnetoresistive element having a magnetic vortex structure is disclosed. However, the application of the magnetoresistive element to a sensor that detects distortion, pressure, inertia, sound, etc. is not disclosed.
 本開示は、上記のような問題に鑑みてなされたものであり、本開示の目的は、複数の磁気抵抗素子により構成されたフルブリッジ回路を含み、感度を向上させることができるセンサ、歪検知センサ、圧力センサ、およびマイクロフォンを提供することにある。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is a sensor and distortion detection that include a full bridge circuit composed of a plurality of magnetoresistive elements and can improve sensitivity. To provide sensors, pressure sensors, and microphones.
 本開示の第1態様に基づくセンサは、たわみ領域を有する基板と、各々の重心が、上記たわみ領域の外縁に沿うように上記たわみ領域に配置された複数の磁気抵抗素子とを備える。上記複数の磁気抵抗素子は、第1ハーフブリッジ回路を構成する1つ以上の第1磁気抵抗素子および1つ以上の第2磁気抵抗素子、ならびに、第2ハーフブリッジ回路を構成する1つ以上の第3磁気抵抗素子および1つ以上の第4磁気抵抗素子を含む。上記第1ハーフブリッジ回路と上記第2ハーフブリッジ回路とによってフルブリッジ回路が構成されている。上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子は、それぞれ、上記たわみ領域のたわみに応じて磁化方向が変化するフリー層と、磁化方向が固定されたリファレンス層と、上記フリー層と上記リファレンス層との間に配置されたトンネルバリア層とを有する。上記フリー層には、上記たわみ領域に外力が印加されていない状態において磁化方向が所定の方向を向くようにバイアス磁界が印加されている。ここで、たわみ領域に外力が印加されていない状態とは、たわみ領域に対して外部からの歪、圧力、慣性、または音等が印加されていない状態をさす。上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子のそれぞれにおいて、上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子の各重心から上記たわみ領域の上記外縁までを最短で結ぶ仮想直線に直交し、かつ、上記重心を通過する直線を基準線とし、上記基準線において、上記仮想直線と上記外縁との交点を上記重心から正面に見て上記重心から右に向かう方向を基準方向とした場合に、上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子のそれぞれにおいて、上記たわみ領域に外力が印加されていない状態において、上記基準方向から、上記バイアス磁界によって上記フリー層の磁化が向く方向までの時計回りの角度が、135度±5度である。上記第1磁気抵抗素子および上記第4磁気抵抗素子において、上記基準方向から上記リファレンス層の磁化方向までの時計回りの角度が、45度±5度である。上記第2磁気抵抗素子および上記第3磁気抵抗素子において、上記基準方向から上記リファレンス層の磁化方向までの時計回りの角度が、225度±5度である。 The sensor based on the first aspect of the present disclosure includes a substrate having a deflection region and a plurality of magnetoresistive elements in which the center of gravity of each is arranged in the deflection region so as to be along the outer edge of the deflection region. The plurality of magnetoresistive elements include one or more first magnetoresistive elements and one or more second magnetoresistive elements constituting the first half-bridge circuit, and one or more members constituting the second half-bridge circuit. Includes a third magnetoresistive element and one or more fourth magnetoresistive elements. A full bridge circuit is composed of the first half bridge circuit and the second half bridge circuit. The first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element each have a free layer whose magnetization direction changes according to the deflection of the deflection region and magnetization. It has a reference layer having a fixed direction and a tunnel barrier layer arranged between the free layer and the reference layer. A bias magnetic field is applied to the free layer so that the magnetization direction faces a predetermined direction in a state where no external force is applied to the deflection region. Here, the state in which no external force is applied to the deflection region means a state in which strain, pressure, inertia, sound, or the like from the outside is not applied to the deflection region. In each of the first magnetic resistance element, the second magnetic resistance element, the third magnetic resistance element, and the fourth magnetic resistance element, the first magnetic resistance element, the second magnetic resistance element, and the third magnetism A straight line orthogonal to the shortest virtual straight line connecting the center of gravity of the resistance element and the fourth magnetic resistance element to the outer edge of the deflection region and passing through the center of gravity is set as a reference line, and the above reference line is used. When the intersection of the virtual straight line and the outer edge is viewed from the center of gravity in front of the center and the direction from the center of gravity to the right is used as the reference direction, the first magnetic resistance element, the second magnetic resistance element, and the third magnetic resistance In each of the element and the fourth magnetic resistance element, in a state where no external force is applied to the deflection region, the clockwise angle from the reference direction to the direction in which the magnetization of the free layer is directed by the bias magnetic field is , 135 degrees ± 5 degrees. In the first magnetoresistive element and the fourth magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 45 degrees ± 5 degrees. In the second magnetoresistive element and the third magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 225 degrees ± 5 degrees.
 本開示の第2態様に基づくセンサは、たわみ領域を有する基板と、各々の重心が、上記たわみ領域の外縁に沿うように上記たわみ領域に配置された複数の磁気抵抗素子とを備える。上記複数の磁気抵抗素子は、第1ハーフブリッジ回路を構成する1つ以上の第1磁気抵抗素子および1つ以上の第2磁気抵抗素子、ならびに、第2ハーフブリッジ回路を構成する1つ以上の第3磁気抵抗素子および1つ以上の第4磁気抵抗素子を含む。上記第1ハーフブリッジ回路と上記第2ハーフブリッジ回路によってフルブリッジ回路が構成されている。上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子は、それぞれ、上記たわみ領域のたわみに応じて磁化方向が変化するフリー層と、磁化方向が固定されたリファレンス層と、上記フリー層と上記リファレンス層とに挟まれたトンネルバリア層とを有する。上記フリー層には、上記たわみ領域がたわんでいない状態において磁化方向が所定の方向を向くようにバイアス磁界が印加されている。上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子のそれぞれにおいて、上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子の各重心から上記たわみ領域の上記外縁までを最短で結ぶ仮想直線に直交し、かつ、上記重心を通過する直線を基準線とし、上記基準線において、上記仮想直線と上記外縁との交点を上記重心から正面に見て上記重心から右に向かう方向を基準方向とした場合に、上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子のそれぞれにおいて、上記たわみ領域に外力が印加されていない状態において、上記基準方向から、上記バイアス磁界によって上記フリー層の磁化が向く方向までの時計回りの角度が、135度±5度である。上記第1磁気抵抗素子および上記第4磁気抵抗素子において、上記基準方向から上記リファレンス層の磁化方向までの時計回りの角度が、225度±5度である。上記第2磁気抵抗素子および上記第3磁気抵抗素子において、上記基準方向から上記リファレンス層の磁化方向までの時計回りの角度が、45度±5度である。 The sensor based on the second aspect of the present disclosure includes a substrate having a deflection region, and a plurality of magnetoresistive elements arranged in the deflection region so that their respective centers of gravity are arranged along the outer edge of the deflection region. The plurality of magnetoresistive elements include one or more first magnetoresistive elements and one or more second magnetoresistive elements constituting the first half-bridge circuit, and one or more members constituting the second half-bridge circuit. Includes a third magnetoresistive element and one or more fourth magnetoresistive elements. A full bridge circuit is composed of the first half bridge circuit and the second half bridge circuit. The first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element each have a free layer whose magnetization direction changes according to the deflection of the deflection region and magnetization. It has a reference layer having a fixed direction, and a tunnel barrier layer sandwiched between the free layer and the reference layer. A bias magnetic field is applied to the free layer so that the magnetization direction faces a predetermined direction in a state where the deflection region is not bent. In each of the first magnetic resistance element, the second magnetic resistance element, the third magnetic resistance element, and the fourth magnetic resistance element, the first magnetic resistance element, the second magnetic resistance element, and the third magnetism A straight line orthogonal to the shortest virtual straight line connecting the center of gravity of the resistance element and the fourth magnetic resistance element to the outer edge of the deflection region and passing through the center of gravity is set as a reference line, and the above reference line is used. When the intersection of the virtual straight line and the outer edge is viewed from the center of gravity in front of the center and the direction from the center of gravity to the right is used as the reference direction, the first magnetic resistance element, the second magnetic resistance element, and the third magnetic resistance In each of the element and the fourth magnetic resistance element, in a state where no external force is applied to the deflection region, the clockwise angle from the reference direction to the direction in which the magnetization of the free layer is directed by the bias magnetic field is , 135 degrees ± 5 degrees. In the first magnetoresistive element and the fourth magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 225 degrees ± 5 degrees. In the second magnetoresistive element and the third magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 45 degrees ± 5 degrees.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記第1磁気抵抗素子、上記第2磁気抵抗素子、上記第3磁気抵抗素子、および上記第4磁気抵抗素子は、それぞれ、上記フリー層に上記バイアス磁界を印加するバイアス層と、上記バイアス層と上記フリー層との間に配置された分離層とをさらに有することが好ましい。 In the sensors based on the first aspect and the second aspect of the present disclosure, the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element are respectively. It is preferable to further have a bias layer for applying the bias magnetic field to the free layer and a separation layer arranged between the bias layer and the free layer.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記フリー層は、ディスク形状を有していてもよい。 In the sensor based on the first aspect and the second aspect of the present disclosure, the free layer may have a disk shape.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記フリー層は、磁化渦構造を有していてもよい。この場合には、上記フリー層に印加される上記バイアス磁界の強度は、上記フリー層と上記リファレンス等の間で作用する交換結合磁界の強度よりも大きいことが好ましい。 In the sensor based on the first aspect and the second aspect of the present disclosure, the free layer may have a magnetized vortex structure. In this case, the strength of the bias magnetic field applied to the free layer is preferably larger than the strength of the exchange coupling magnetic field acting between the free layer and the reference.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記第1磁気抵抗素子および上記第2磁気抵抗素子における上記フリー層のディスク径と、上記第3磁気抵抗素子および上記第4磁気抵抗素子における上記フリー層のディスク径とが異なっていてもよい。 In the sensors based on the first aspect and the second aspect of the present disclosure, the disk diameter of the free layer in the first magnetoresistive element and the second magnetoresistive element, the third magnetoresistive element, and the second magnetic resistance element. 4 The disk diameter of the free layer in the magnetoresistive element may be different.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記第1磁気抵抗素子および上記第2磁気抵抗素子における感度と、上記第3磁気抵抗素子および上記第4磁気抵抗素子における感度とが互いに異なっていてもよい。 In the sensors based on the first aspect and the second aspect of the present disclosure, the sensitivity in the first magnetoresistive element and the second magnetoresistive element, and the sensitivity in the third magnetoresistive element and the fourth magnetoresistive element. The sensitivities may be different from each other.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記たわみ領域には、当該たわみ領域の中心を通過する1つ以上のスリットが設けられていてもよい。この場合には、上記1つ以上のスリットによって、上記たわみ領域が周方向に複数に分割されていることが好ましい。 In the sensor based on the first aspect and the second aspect of the present disclosure, the deflection area may be provided with one or more slits passing through the center of the deflection area. In this case, it is preferable that the deflection region is divided into a plurality of parts in the circumferential direction by the one or more slits.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記たわみ領域は、互いに分離された第1領域および第2領域を含んでいてもよい。この場合には、上記第1領域に、上記1つ以上の第1磁気抵抗素子および上記1つ以上の第2磁気抵抗素子が配置されていることが好ましく、上記第2領域に、上記1つ以上の第3磁気抵抗素子および上記1つ以上の第4磁気抵抗素子が配置されていることが好ましい。さらに、上記第1領域の共振周波数と、上記第2領域の共振周波数とが互いに異なることが好ましい。 In the sensor based on the first aspect and the second aspect of the present disclosure, the deflection region may include a first region and a second region separated from each other. In this case, it is preferable that the one or more first magnetoresistive elements and the one or more second magnetoresistive elements are arranged in the first region, and the one in the second region. It is preferable that the above-mentioned third magnetoresistive element and the above-mentioned one or more fourth magnetoresistive elements are arranged. Further, it is preferable that the resonance frequency of the first region and the resonance frequency of the second region are different from each other.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記たわみ領域は、互いに分離された第1領域および第2領域を含んでいてもよい。この場合には、上記第1領域に、上記1つ以上の第1磁気抵抗素子および上記1つ以上の第2磁気抵抗素子が配置されていることが好ましく、上記第2領域に、上記1つ以上の第3磁気抵抗素子および上記1つ以上の第4磁気抵抗素子が配置されていることが好ましい。さらに、上記第1領域の面積と、上記第2領域の面積が互いに異なることが好ましい。 In the sensor based on the first aspect and the second aspect of the present disclosure, the deflection region may include a first region and a second region separated from each other. In this case, it is preferable that the one or more first magnetoresistive elements and the one or more second magnetoresistive elements are arranged in the first region, and the one in the second region. It is preferable that the above-mentioned third magnetoresistive element and the above-mentioned one or more fourth magnetoresistive elements are arranged. Further, it is preferable that the area of the first region and the area of the second region are different from each other.
 上記本開示の第1態様および第2態様に基づくセンサにあっては、上記第1ハーフブリッジ回路からの出力および上記第2ハーフブリッジ回路からの出力のいずれか一方が飽和している場合に、上記第1ハーフブリッジ回路からの上記出力および上記第2ハーフブリッジ回路からの上記出力の他方を用いることが好ましい。 In the sensor based on the first aspect and the second aspect of the present disclosure, when either the output from the first half-bridge circuit or the output from the second half-bridge circuit is saturated, the sensor is saturated. It is preferable to use the other of the output from the first half-bridge circuit and the output from the second half-bridge circuit.
 上記本開示の第1態様および第2態様に基づくセンサは、上記たわみ領域に外力が印加されることで発現する応力誘起異方性を相殺するキャンセル磁界を生成する第1キャンセル磁界生成部および第2キャンセル磁界生成部と、上記第1キャンセル磁界生成部および上記第2キャンセル磁界生成部に流れる電流を制御する電流制御部と、をさらに備えてもよい。 The sensors based on the first and second aspects of the present disclosure include a first cancel magnetic field generator and a first cancel magnetic field generator that generate a cancel magnetic field that cancels the stress-induced anisotropy that appears when an external force is applied to the flexure region. The two canceling magnetic field generation unit, the first canceling magnetic field generation unit, and the current control unit for controlling the current flowing through the second canceling magnetic field generation unit may be further provided.
 本開示の歪検知センサは、上記センサを備える。
 本開示の圧力センサは、上記センサを備える。
The distortion detection sensor of the present disclosure includes the above sensor.
The pressure sensor of the present disclosure includes the above sensor.
 本開示のマイクロフォンは、上記センサを備える。 The microphone of the present disclosure includes the above sensor.
 本開示によれば、複数の磁気抵抗素子により構成されたフルブリッジ回路を含み、感度を向上させることができるセンサ、歪検知センサ、圧力センサ、およびマイクロフォンを提供する。 According to the present disclosure, a sensor, a strain detection sensor, a pressure sensor, and a microphone, which include a full bridge circuit composed of a plurality of magnetoresistive elements and can improve sensitivity, are provided.
実施の形態1に係るセンサを示す概略断面図である。It is the schematic sectional drawing which shows the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサを示す概略平面図である。It is a schematic plan view which shows the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサを構成する磁気抵抗素子の積層構造を示す概略断面図である。It is schematic cross-sectional view which shows the laminated structure of the magnetic resistance element which comprises the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態におけるフリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformed state in which a diaphragm portion is not deformed in the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサにおいて、ダイヤフラム部が変形した第1変形状態を示す図である。It is a figure which shows the 1st deformation state which the diaphragm part was deformed in the sensor which concerns on Embodiment 1. 図5に示す第1変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of stress-induced anisotropy which occurs in the 1st deformation state shown in FIG. 5, and the direction of magnetization of a reference layer. 実施の形態1に係るセンサにおいて、ダイヤフラム部が変形した第2変形状態を示す図である。It is a figure which shows the 2nd deformation state which the diaphragm part was deformed in the sensor which concerns on Embodiment 1. 図7に示す第2変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of stress-induced anisotropy which occurs in the 2nd deformation state shown in FIG. 7, and the direction of magnetization of a reference layer. 実施の形態1に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of the diaphragm part, and the relative angle between the magnetization direction of a free layer and the magnetization direction of a reference layer in the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサにおいて、図9に示す相対的な角度と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。FIG. 5 is a diagram showing the relationship between the relative angle shown in FIG. 9 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment. 実施の形態1に係るセンサにおいて、ダイヤフラム部の変形量と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。It is a figure which shows the relationship between the deformation amount of the diaphragm part, and the resistance of a plurality of magnetoresistive element parts which form a full bridge circuit in the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、ハーフブリッジ回路の出力電圧との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the output voltage of a half-bridge circuit in the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フルブリッジ回路の出力電圧との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the output voltage of a full bridge circuit in the sensor which concerns on Embodiment 1. 実施の形態1に係るセンサにおいて、リファレンス層の磁化方向をずらした場合における、磁気抵抗素子の歪量と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element, and the resistance of a plurality of magnetoresistive elements constituting a full bridge circuit, when the magnetization direction of a reference layer is shifted in the sensor which concerns on Embodiment 1. .. 実施の形態1に係るセンサにおいて、リファレンス層の磁化方向をずらした場合における、磁気抵抗素子の歪量と、フルブリッジ回路の出力電圧との関係を示す図である。It is a figure which shows the relationship between the strain amount of a magnetoresistive element, and the output voltage of a full bridge circuit, when the magnetization direction of a reference layer is shifted in the sensor which concerns on Embodiment 1. 実施の形態1に係るセンサにおいて、磁気抵抗素子の歪量を+0.02%とした場合と磁気抵抗素子の歪量を-0.02%とした場合におけるフルブリッジ回路の出力の絶対値の差および出力レンジの差と、リファレンス層の磁化方向のずれ角度との関係を示す図である。In the sensor according to the first embodiment, the difference in the absolute value of the output of the full bridge circuit when the amount of distortion of the magnetoresistive element is + 0.02% and the amount of distortion of the magnetoresistive element is −0.02%. It is a figure which shows the relationship between the difference of an output range, and the deviation angle of a reference layer in the magnetization direction. 実施の形態1に係るセンサの製造工程の第1工程を示す図である。It is a figure which shows the 1st process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第2工程を示す図である。It is a figure which shows the 2nd process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第3工程を示す図である。It is a figure which shows the 3rd process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第4工程を示す図である。It is a figure which shows the 4th process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第5工程を示す図である。It is a figure which shows the 5th process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第6工程を示す図である。It is a figure which shows the 6th process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第7工程を示す図である。It is a figure which shows the 7th process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 実施の形態1に係るセンサの製造工程の第8工程を示す図である。It is a figure which shows the 8th process of the manufacturing process of the sensor which concerns on Embodiment 1. FIG. 比較の形態に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態において、フリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformation state in which a diaphragm portion is not deformed in the sensor which concerns on a comparative form. 比較の形態に係るセンサにおいて、ダイヤフラム部が変形した第1状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of stress-induced anisotropy which occurs in the 1st state which a diaphragm part is deformed, and the direction of magnetization of a reference layer in the sensor which concerns on the comparative form. 比較の形態に係るセンサにおいて、ダイヤフラム部が変形した第2状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of stress-induced anisotropy which occurs in the 2nd state which a diaphragm part is deformed, and the direction of magnetization of a reference layer in the sensor which concerns on the comparative form. 比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the relative angle between the magnetization direction of a free layer and the magnetization direction of a reference layer in the sensor which concerns on the comparative form. 比較の形態に係るセンサにおいて、図28に示す相対的な角度と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。It is a figure which shows the relationship between the relative angle shown in FIG. 28, and the resistance of a plurality of magnetoresistive element portions constituting a full bridge circuit in the sensor which concerns on the form of comparison. 比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the resistance of a plurality of magnetic resistance element parts constituting a full bridge circuit in the sensor which concerns on the comparative form. 比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、ハーフブリッジ回路の出力電圧との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by the deformation of a diaphragm part, and the output voltage of a half-bridge circuit in the sensor which concerns on the form of comparison. 比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フルブリッジ回路の出力電圧との関係を示す図である。It is a figure which shows the relationship between the amount of distortion of a magnetoresistive element by deformation of a diaphragm part, and the output voltage of a full bridge circuit in the sensor which concerns on the form of comparison. 実施の形態2に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態においてフリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformation state in which a diaphragm portion is not deformed in the sensor which concerns on Embodiment 2. FIG. 実施の形態2に係るセンサにおいて、ダイヤフラム部が変形した第1変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of the stress-induced anisotropy which occurs in the 1st deformation state which a diaphragm part was deformed in the sensor which concerns on Embodiment 2, and the direction of magnetization of a reference layer. 実施の形態2に係るセンサにおいて、ダイヤフラム部が変形した第2変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of the stress-induced anisotropy which occurs in the 2nd deformation state in which the diaphragm part is deformed, and the direction of magnetization of a reference layer in the sensor which concerns on Embodiment 2. FIG. 実施の形態3に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態において、フリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the magnetization direction of a free layer and the magnetization direction of a reference layer in a non-deformation state in which a diaphragm portion is not deformed in the sensor which concerns on Embodiment 3. FIG. 実施の形態3に係るセンサにおいて、ダイヤフラム部が変形した第1変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of the stress-induced anisotropy which occurs in the 1st deformation state which a diaphragm part was deformed in the sensor which concerns on Embodiment 3, and the direction of magnetization of a reference layer. 実施の形態3に係るセンサにおいて、ダイヤフラム部が変形した第2変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。It is a figure which shows the direction of the stress-induced anisotropy which occurs in the 2nd deformation state in which the diaphragm part is deformed in the sensor which concerns on Embodiment 3, and the direction of magnetization of a reference layer. 実施の形態4に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the fourth embodiment. 実施の形態5に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the fifth embodiment. 実施の形態5に係るセンサにおいて、たわみ領域を構成する第1領域および第2領域の各々において、周波数と感度との関係を示す図である。It is a figure which shows the relationship between the frequency and the sensitivity in each of the 1st region and the 2nd region constituting the deflection region in the sensor which concerns on Embodiment 5. 実施の形態6に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the sixth embodiment. 実施の形態7に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the seventh embodiment. 実施の形態8に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the eighth embodiment. 実施の形態9に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。9 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the ninth embodiment. 実施の形態9に係るセンサにおいて、磁気抵抗素子、およびその周辺の構成を示す概略斜視図である。9 is a schematic perspective view showing a configuration of a magnetoresistive element and its surroundings in the sensor according to the ninth embodiment. 実施の形態9に係る磁気抵抗素子およびその周辺構成の概略断面図である。9 is a schematic cross-sectional view of the magnetoresistive element and its peripheral configuration according to the ninth embodiment. 実施の形態10に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。FIG. 5 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the tenth embodiment. 実施の形態10に係る歪み検知センサを示す図である。It is a figure which shows the distortion detection sensor which concerns on Embodiment 10. 実施の形態11に係る圧力センサを示す図である。It is a figure which shows the pressure sensor which concerns on Embodiment 11. 実施の形態12に係るマイクロフォンを備えた携帯情報端末を示す図である。It is a figure which shows the mobile information terminal provided with the microphone which concerns on Embodiment 12.
 以下、本開示の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the figures. In the embodiments shown below, the same or common parts are designated by the same reference numerals in the drawings, and the description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1に係るセンサを示す概略断面図である。図2は、実施の形態1に係るセンサを示す概略平面図である。図1および図2を参照して、実施の形態1に係るセンサ100について説明する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a sensor according to the first embodiment. FIG. 2 is a schematic plan view showing the sensor according to the first embodiment. The sensor 100 according to the first embodiment will be described with reference to FIGS. 1 and 2.
 図1および図2に示すように、実施の形態1に係るセンサ100は、いわゆるMEMS型センサであり、たわみ領域4を有する基板1と、複数の磁気抵抗素子10とを備える。 As shown in FIGS. 1 and 2, the sensor 100 according to the first embodiment is a so-called MEMS type sensor, and includes a substrate 1 having a deflection region 4 and a plurality of magnetoresistive elements 10.
 基板1は、基部2と、ダイヤフラム部3とを含む。基部2は、たとえはシリコン基板によって構成されている。ダイヤフラム部3は、たとえば、シリコン、酸化シリコン、または窒化シリコン等によって構成されている。 The substrate 1 includes a base portion 2 and a diaphragm portion 3. The base 2 is made of, for example, a silicon substrate. The diaphragm portion 3 is made of, for example, silicon, silicon oxide, silicon nitride, or the like.
 ダイヤフラム部3は、基部2上に支持されている。基部2には、所定の位置においてダイヤフラム部3に達する空洞部5が形成されている。これにより、空洞部5に対応する部分のダイヤフラム部3がたわむことが可能となり、ダイヤフラム部3にたわみ領域4が形成される。 The diaphragm portion 3 is supported on the base portion 2. The base portion 2 is formed with a cavity portion 5 that reaches the diaphragm portion 3 at a predetermined position. As a result, the diaphragm portion 3 of the portion corresponding to the cavity portion 5 can be bent, and the deflection region 4 is formed in the diaphragm portion 3.
 複数の磁気抵抗素子10は、基部2が位置する側とは反対側に位置するダイヤフラム部3の主表面上に配置されている。複数の磁気抵抗素子10は、各々の重心がたわみ領域4の外縁に沿うように、たわみ領域4に配置されている。ここで定義する重心とは、磁気抵抗素子10の外形を構成する図形の幾何中心をさす。 The plurality of magnetoresistive elements 10 are arranged on the main surface of the diaphragm portion 3 located on the side opposite to the side where the base portion 2 is located. The plurality of magnetoresistive elements 10 are arranged in the deflection region 4 so that their respective centers of gravity are along the outer edge of the deflection region 4. The center of gravity defined here refers to the geometric center of a figure constituting the outer shape of the magnetoresistive element 10.
 実施の形態1においては、たわみ領域4は、円形形状を有し、これにより、複数の磁気抵抗素子10は、環状に並んで配置されている。なお、複数の磁気抵抗素子10は、平面視した場合に、略正方形形状を有する。 In the first embodiment, the deflection region 4 has a circular shape, whereby the plurality of magnetoresistive elements 10 are arranged side by side in an annular shape. The plurality of magnetoresistive elements 10 have a substantially square shape when viewed in a plan view.
 複数の磁気抵抗素子10は、複数の第1磁気抵抗素子11、複数の第2磁気抵抗素子12、複数の第3磁気抵抗素子13、および複数の第4磁気抵抗素子14を含む。複数の第1磁気抵抗素子11、複数の第2磁気抵抗素子12、複数の第3磁気抵抗素子13、および複数の第4磁気抵抗素子14によってフルブリッジ回路が構成されている。 The plurality of magnetoresistive elements 10 includes a plurality of first magnetoresistive elements 11, a plurality of second magnetoresistive elements 12, a plurality of third magnetoresistive elements 13, and a plurality of fourth magnetoresistive elements 14. A full bridge circuit is composed of a plurality of first magnetoresistive elements 11, a plurality of second magnetoresistive elements 12, a plurality of third magnetoresistive elements 13, and a plurality of fourth magnetoresistive elements 14.
 なお、実施の形態1においては、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14の個数が、複数である場合を例示するが、これらの個数は、単数であってもよい。 In the first embodiment, a case where the number of the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth magnetoresistive element 14 is a plurality is illustrated. These numbers may be singular.
 複数の第1磁気抵抗素子11は、第1磁気抵抗素子部R1を構成し、複数の第2磁気抵抗素子12は、第2磁気抵抗素子部R2を構成する。これら第1磁気抵抗素子部R1および第2磁気抵抗素子部R2が直列に接続されることにより、第1ハーフブリッジ回路Hf1が構成されている。 The plurality of first magnetoresistive elements 11 constitute the first magnetoresistive element portion R1, and the plurality of second magnetoresistive elements 12 constitute the second magnetoresistive element portion R2. The first half-bridge circuit Hf1 is configured by connecting the first magnetoresistive element R1 and the second magnetoresistive sensor R2 in series.
 複数の第3磁気抵抗素子13は、第3磁気抵抗素子部R3を構成し、複数の第4磁気抵抗素子14は、第4磁気抵抗素子部R4を構成する。これら第3磁気抵抗素子部R3および第4磁気抵抗素子部R4が直列に接続されることにより、第2ハーフブリッジ回路Hf2が構成されている。 The plurality of third magnetoresistive elements 13 constitute the third magnetoresistive element portion R3, and the plurality of fourth magnetoresistive elements 14 constitute the fourth magnetoresistive element portion R4. The second half bridge circuit Hf2 is configured by connecting the third magnetoresistive element portion R3 and the fourth magnetoresistive element portion R4 in series.
 第1ハーフブリッジ回路Hf1および第2ハーフブリッジ回路Hf2が並列に接続されることにより、フルブリッジ回路が構成される。 A full bridge circuit is configured by connecting the first half bridge circuit Hf1 and the second half bridge circuit Hf2 in parallel.
 具体的には、第1磁気抵抗素子部R1の一方側は、電源電圧Vinを印加するための電極部P1に接続されている。第1磁気抵抗素子部R1の他方側は、出力電圧V+を取り出すための電極部P2に接続されている。 Specifically, one side of the first magnetoresistive element unit R1 is connected to the electrode unit P1 for applying the power supply voltage Vin. The other side of the first magnetoresistive element unit R1 is connected to the electrode unit P2 for extracting the output voltage V +.
 第2磁気抵抗素子部R2の一方側は、出力電圧V+を取り出すための電極部P2に接続されている。第2磁気抵抗素子部R2の他方側は、グランド電極としての電極部P4に接続されている。 One side of the second magnetoresistive element unit R2 is connected to the electrode unit P2 for extracting the output voltage V +. The other side of the second magnetoresistive element portion R2 is connected to the electrode portion P4 as a ground electrode.
 第3磁気抵抗素子部R3の一方側は、電源電圧Vinを印加するための電極部P1に接続されている。第3磁気抵抗素子部R3の他方側は、出力電圧V-を取り出すための電極部P3に接続されている。 One side of the third magnetoresistive element unit R3 is connected to the electrode unit P1 for applying the power supply voltage Vin. The other side of the third magnetoresistive element unit R3 is connected to the electrode unit P3 for taking out the output voltage V−.
 第4磁気抵抗素子部R4の一方側は、出力電圧V-を取り出すための電極部P3に接続されている。第4磁気抵抗素子部R4の他方側は、グランド電極としての電極部P4に接続されている。 One side of the fourth magnetoresistive element unit R4 is connected to the electrode unit P3 for taking out the output voltage V−. The other side of the fourth magnetoresistive element portion R4 is connected to the electrode portion P4 as a ground electrode.
 第1磁気抵抗素子部R1および第2磁気抵抗素子部R2によるハーフブリッジの出力電圧V+は、正出力性を有する。第3磁気抵抗素子部R3および第4磁気抵抗素子部R4によるハーフブリッジの出力電圧V-は、負出力性を有する。 The output voltage V + of the half bridge by the first magnetoresistive element R1 and the second magnetoresistive sensor R2 has a positive output property. The output voltage V− of the half bridge by the third magnetoresistive element unit R3 and the fourth magnetoresistive element unit R4 has a negative output property.
 電極部P1と電極部P4との間に電源電圧Vinを印加すると、電極部P2および電極部P4からは、たわみ領域4に作用する外力の大きさに応じて出力電圧V+,V-が取り出される。出力電圧V+,V-は、差動増幅器(不図示)を介して差動増幅される。 When the power supply voltage Vin is applied between the electrode portion P1 and the electrode portion P4, the output voltages V + and V- are taken out from the electrode portion P2 and the electrode portion P4 according to the magnitude of the external force acting on the deflection region 4. .. The output voltages V + and V- are differentially amplified via a differential amplifier (not shown).
 図3は、実施の形態1に係るセンサを構成する磁気抵抗素子の積層構造を示す概略断面図である。図3を参照して、磁気抵抗素子10の積層構造について説明する。なお、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子の積層構造は、ここで説明する磁気抵抗素子10の積層構造と同様である。 FIG. 3 is a schematic cross-sectional view showing a laminated structure of magnetoresistive elements constituting the sensor according to the first embodiment. The laminated structure of the magnetoresistive element 10 will be described with reference to FIG. The laminated structure of the first magnetic resistance element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element is the same as the laminated structure of the magnetic resistance element 10 described here.
 磁気抵抗素子10は、下部電極層20、ピニング層21、ピン層22、磁気結合層23、リファレンス層24、トンネルバリア層25、フリー層26、分離層27、バイアス層28、および上部電極層29を含む。 The magnetoresistive element 10 includes a lower electrode layer 20, a pinning layer 21, a pin layer 22, a magnetic coupling layer 23, a reference layer 24, a tunnel barrier layer 25, a free layer 26, a separation layer 27, a bias layer 28, and an upper electrode layer 29. including.
 下部電極層20は、ピニング層21の結晶を適切に成長させるシード層として機能する。下部電極層20としては、たとえば、RuとTaとの積層膜を採用することができる。なお、下部電極層20は、他の金属や合金からなる単一の金属膜、および複数種の上記金属膜が積層されたものを採用することができる。 The lower electrode layer 20 functions as a seed layer for appropriately growing the crystals of the pinning layer 21. As the lower electrode layer 20, for example, a laminated film of Ru and Ta can be adopted. As the lower electrode layer 20, a single metal film made of another metal or alloy, or one in which a plurality of types of the above metal films are laminated can be adopted.
 ピニング層21は、下部電極層20上に設けられている。ピニング層21は、反強磁性層によって構成されている。ピニング層21としては、たとえば、IrMnを採用することができる。なお、ピニング層21は、PtMn等のMnを含む合金であってもよい。 The pinning layer 21 is provided on the lower electrode layer 20. The pinning layer 21 is composed of an antiferromagnetic layer. As the pinning layer 21, for example, IrMn can be adopted. The pinning layer 21 may be an alloy containing Mn such as PtMn.
 ピン層22は、ピニング層21上に設けられている。ピン層22は、強磁性層によって構成されている。ピン層22としては、たとえば、CoFeを採用することができる。なお、ピン層22は、CoFeB等であってもよい。ピン層22の磁化は、ピニング層21から作用する交換結合磁界によって所定の面内方向に固定される。 The pin layer 22 is provided on the pinning layer 21. The pin layer 22 is composed of a ferromagnetic layer. For example, CoFe can be adopted as the pin layer 22. The pin layer 22 may be CoFeB or the like. The magnetization of the pin layer 22 is fixed in a predetermined in-plane direction by the exchange coupling magnetic field acting from the pinning layer 21.
 磁気結合層23は、ピン層22上に設けられている。磁気結合層23は、ピン層22とリファレンス層24との間に配置されており、ピン層22とリファレンス層24との間に反強磁性結合を生じさせる。 The magnetic coupling layer 23 is provided on the pin layer 22. The magnetic coupling layer 23 is arranged between the pin layer 22 and the reference layer 24, and causes an antiferromagnetic coupling between the pin layer 22 and the reference layer 24.
 磁気結合層23は、非磁性層によって構成されている。磁気結合層23としては、たとえば、Ruを採用することができる。 The magnetic coupling layer 23 is composed of a non-magnetic layer. As the magnetic coupling layer 23, for example, Ru can be adopted.
 リファレンス層24は、磁気結合層23上に設けられている。リファレンス層24は、強磁性層によって構成されている。リファレンス層24としては、たとえば、CoFeBを採用することができる。なお、リファレンス層24は、CoFe等であってもよい。 The reference layer 24 is provided on the magnetic coupling layer 23. The reference layer 24 is composed of a ferromagnetic layer. As the reference layer 24, for example, CoFeB can be adopted. The reference layer 24 may be CoFe or the like.
 上述のピン層22、磁気結合層23、およびリファレンス層24は、SAF構造を形成している。これにより、リファレンス層24の磁化方向を強固に固定することができる。 The pin layer 22, the magnetic coupling layer 23, and the reference layer 24 described above form a SAF structure. As a result, the magnetization direction of the reference layer 24 can be firmly fixed.
 トンネルバリア層25は、リファレンス層24上に設けられている。トンネルバリア層25は、リファレンス層24とフリー層26との間に配置されている。トンネルバリア層25は、絶縁層によって構成されている。トンネルバリア層25としては、たとえば、MgOを採用することができる。 The tunnel barrier layer 25 is provided on the reference layer 24. The tunnel barrier layer 25 is arranged between the reference layer 24 and the free layer 26. The tunnel barrier layer 25 is composed of an insulating layer. As the tunnel barrier layer 25, for example, MgO can be adopted.
 フリー層26は、トンネルバリア層25上に設けられている。フリー層26は、強磁性層によって構成されている。フリー層26としては、たとえば、CoFeBとFeBとの積層を採用することができる。なお、FeBの結晶化を抑制するために、CoFeBとFeBとの間、およびFeBと分離層27との間には、CoFeTa等の強磁性アモルファス層を設けてもよい。 The free layer 26 is provided on the tunnel barrier layer 25. The free layer 26 is composed of a ferromagnetic layer. As the free layer 26, for example, a laminate of CoFeB and FeB can be adopted. In addition, in order to suppress the crystallization of FeB, a ferromagnetic amorphous layer such as CoFeTa may be provided between CoFeB and FeB and between FeB and the separation layer 27.
 分離層27は、フリー層26上に設けられている。分離層27は、フリー層26とバイアス層28との間に配置されている。分離層27としては、RKKY(Ruderman-Kittel-Kasuya-Yoshida)結合を示すCu、Ru、Rh、Ir、V、Cr、Nb、Mo、Ta、W、Rr等を採用することができる。これらは、分離層27の膜厚に応じて正の磁気結合(強磁性、平行)、負の磁気結合(反強磁性、反平行)を使い分けることができる。その他、Au、Ag、Pt、Pd、Ti、Zr、Hfを用いた場合は主に正の磁気結合が得られる。負の磁気結合を用いる場合は、Ru、Rh、Irを用いることができる。 The separation layer 27 is provided on the free layer 26. The separation layer 27 is arranged between the free layer 26 and the bias layer 28. As the separation layer 27, Cu, Ru, Rh, Ir, V, Cr, Nb, Mo, Ta, W, Rr and the like showing an RKKY (Ruderman-Kittel-Kasuya-Yoshida) bond can be adopted. These can use positive magnetic coupling (ferromagnetism, parallel) and negative magnetic coupling (antiferromagnetism, antiparallel) properly according to the thickness of the separation layer 27. In addition, when Au, Ag, Pt, Pd, Ti, Zr, and Hf are used, a positive magnetic coupling is mainly obtained. When negative magnetic coupling is used, Ru, Rh, Ir can be used.
 バイアス層28は、分離層27上に設けられている。バイアス層28は、フリー層26にバイアス磁界を印加するバイアス印加部として機能する。バイアス層28は、強磁性層と反強磁性層との積層を採用することができる。バイアス層28としては、たとえば、CoFeBとIrMnとの積層を採用することができる。CoFeBとIrMnとは、この順で分離層27側から積層されている。 The bias layer 28 is provided on the separation layer 27. The bias layer 28 functions as a bias application unit that applies a bias magnetic field to the free layer 26. As the bias layer 28, a laminate of a ferromagnetic layer and an antiferromagnetic layer can be adopted. As the bias layer 28, for example, a laminate of CoFeB and IrMn can be adopted. CoFeB and IrMn are laminated from the separation layer 27 side in this order.
 バイアス層28は、強磁性層と反強磁性層とによって発現される交換結合磁界をバイアス磁界としてフリー層26に印加する。バイアス磁界の強度は、リファレンス層24からの層間交換結合強度よりも大きい。 The bias layer 28 applies the exchange coupling magnetic field expressed by the ferromagnetic layer and the antiferromagnetic layer to the free layer 26 as a bias magnetic field. The strength of the bias magnetic field is greater than the interlayer exchange coupling strength from the reference layer 24.
 また、フリー層に印加されるバイアス磁界の方向と、リファレンス層24の磁化方向(リファレンス層24において固定された磁化の方向)とが異なる向きとなるように、リファレンス層側の反強磁性層と、バイアス層28側の反強磁性層のブロッキング温度が異なっている。リファレンス層側の反強磁性層のブロッキング温度は、バイアス層28側の反強磁性層のブロッキング温度よりも高い。これにより、プロセス上安定して、センサ100を製造することができるとともに、センサ100の信頼性が良好となる。 Further, the antiferromagnetic layer on the reference layer side is provided so that the direction of the bias magnetic field applied to the free layer and the magnetization direction of the reference layer 24 (the direction of magnetization fixed in the reference layer 24) are different. , The blocking temperature of the antiferromagnetic layer on the bias layer 28 side is different. The blocking temperature of the antiferromagnetic layer on the reference layer side is higher than the blocking temperature of the antiferromagnetic layer on the bias layer 28 side. As a result, the sensor 100 can be manufactured stably in the process, and the reliability of the sensor 100 becomes good.
 リファレンス層側の反強磁性層と、バイアス層28側の反強磁性層とが同じ材料で構成される場合には、リファレンス層側の反強磁性層を、バイアス層28側の反強磁性層よりも厚くすることで、リファレンス層側の反強磁性層のブロッキング温度を、バイアス層28側の反強磁性層のブロッキング温度よりも高くすることができる。 When the antiferromagnetic layer on the reference layer side and the antiferromagnetic layer on the bias layer 28 side are made of the same material, the antiferromagnetic layer on the reference layer side is the antiferromagnetic layer on the bias layer 28 side. By making it thicker than this, the blocking temperature of the antiferromagnetic layer on the reference layer side can be made higher than the blocking temperature of the antiferromagnetic layer on the bias layer 28 side.
 なお、一例として、PtMnのブロッキング温度が310℃であり、IrMnのブロッキング温度は、255℃である。リファレンス層側の反強磁性層をPtMnとし、バイアス層側の反強磁性層をIrMnとしてもよい。 As an example, the blocking temperature of PtMn is 310 ° C., and the blocking temperature of IrMn is 255 ° C. The antiferromagnetic layer on the reference layer side may be PtMn, and the antiferromagnetic layer on the bias layer side may be IrMn.
 上部電極層29は、バイアス層28上に設けられている。上部電極層29としては、たとえば、RuとTaとの積層膜を採用することができる。なお、上部電極層29は、他の金属や合金からなる単一の金属膜、および複数種の上記金属膜が積層されたものを採用することができる。 The upper electrode layer 29 is provided on the bias layer 28. As the upper electrode layer 29, for example, a laminated film of Ru and Ta can be adopted. As the upper electrode layer 29, a single metal film made of another metal or alloy, or a stack of a plurality of types of the above metal films can be adopted.
 以上のように、実施の形態1に係る磁気抵抗素子10が、フリー層26の下方側にリファレンス層24を配置するBottom-pinned型のTMR素子である場合を例示して説明したが、これに限定されず、フリー層26上方側にリファレンス層24を配置するTop-pinned型のTMR素子であってもよい。また、磁気抵抗素子10は、TMR素子に限定されない。 As described above, the case where the magnetoresistive element 10 according to the first embodiment is a Bottom-pinned type TMR element in which the reference layer 24 is arranged below the free layer 26 has been described as an example. It is not limited, and may be a Top-pinned type TMR element in which the reference layer 24 is arranged on the upper side of the free layer 26. Further, the magnetoresistive element 10 is not limited to the TMR element.
 図4は、実施の形態1に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態におけるフリー層の磁化方向の方向と、リファレンス層の磁化の方向とを示す図である。なお、各磁気抵抗素子10内に黒線で示す矢印が、フリー層に印加される磁界の方向を示しており、各磁気抵抗素子10内に白抜きで示す矢印が、リファレンス層の磁化の方向を示している。 FIG. 4 is a diagram showing the direction of the magnetization direction of the free layer and the direction of magnetization of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the first embodiment. The arrow indicated by a black line in each magnetoresistive element 10 indicates the direction of the magnetic field applied to the free layer, and the arrow indicated by white in each magnetoresistive element 10 indicates the direction of magnetization of the reference layer. Is shown.
 図4に示すように、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14の各重心からたわみ領域4の外縁までを最短で結ぶ仮想直線VL1に直交し、かつ、重心を通過する直線を基準線BL1とする。 As shown in FIG. 4, in each of the first magnetic resistance element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element 14, the first magnetic resistance element 11 and the second magnetic resistance The straight line orthogonal to the virtual straight line VL1 connecting the center of gravity of each of the element 12, the third magnetic resistance element 13 and the fourth magnetic resistance element 14 to the outer edge of the deflection region 4 at the shortest distance and passing through the center of gravity is defined as the reference line BL1. To do.
 また、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、基準線BL1において、仮想直線VL1とたわみ領域4の外縁との交点を上記重心から正面に見て上記重心から右に向かう方向を基準方向と定義する。 Further, in each of the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth magnetoresistive element 14, the virtual straight line VL1 and the outer edge of the deflection region 4 meet at the reference line BL1. The direction from the center of gravity to the right when the intersection is viewed from the center of gravity is defined as the reference direction.
 ダイヤフラム部3が変形していない状態、すなわち、たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、上記基準方向からフリー層の磁化方向(バイアス磁界によってフリー層の磁化が向く方向)までの反時計回りの角度θ1が、135度±5度である。 When the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4, the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth. In each of the magnetoresistive elements 14, the counterclockwise angle θ1 from the reference direction to the magnetization direction of the free layer (the direction in which the magnetization of the free layer is directed by the bias magnetic field) is 135 degrees ± 5 degrees.
 たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2が、45度±5度である。 In a state where no external force is applied to the deflection region 4, the counterclockwise angle θ2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 45. Degree ± 5 degrees.
 たわみ領域4に外力が印加されていない状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3が、225度±5度である。 In a state where no external force is applied to the deflection region 4, in the second magnetoresistive element 12 and the third magnetoresistive element 13, the counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 is 225. Degree ± 5 degrees.
 角度θ1、θ2、θ3を上記のようにすることにより、後述するように、磁気抵抗素子10が正に歪んだ場合のフルブリッジからの出力の絶対値と、磁気抵抗素子10が負に歪んだ場合のフルブリッジからの出力の絶対値との差を30%以下とすることができる。 By setting the angles θ1, θ2, and θ3 as described above, the absolute value of the output from the full bridge when the magnetoresistive element 10 is positively distorted and the magnetic resistance element 10 are negatively distorted, as described later. The difference from the absolute value of the output from the full bridge in the case can be 30% or less.
 また、上記角度θ1は、135度±3度であることが好ましく、上記角度θ2は、45度±3度であることが好ましく、上記角度θ3は、225度±3度であることが好ましい。角度θ1、θ2、θ3を上記のようにすることにより、磁気抵抗素子10が正に歪んだ場合のフルブリッジからの出力の絶対値と、磁気抵抗素子10が負に歪んだ場合のフルブリッジからの出力の絶対値との差を20%以下とすることができる。 Further, the angle θ1 is preferably 135 degrees ± 3 degrees, the angle θ2 is preferably 45 degrees ± 3 degrees, and the angle θ3 is preferably 225 degrees ± 3 degrees. By setting the angles θ1, θ2, and θ3 as described above, the absolute value of the output from the full bridge when the magnetoresistive element 10 is positively distorted and the full bridge when the magnetoresistive element 10 is negatively distorted The difference from the absolute value of the output of is 20% or less.
 さらに、上記角度θ1は、135度±1.5度であることが好ましく、上記角度θ2は、45度±1.5度であることが好ましく、上記角度θ3は、225度±1.5度であることがさらに好ましい。角度θ1、θ2、θ3を上記のようにすることにより、磁気抵抗素子10が正に歪んだ場合のフルブリッジからの出力の絶対値と、磁気抵抗素子10が負に歪んだ場合のフルブリッジからの出力の絶対値との差を10%以下とすることができる。 Further, the angle θ1 is preferably 135 degrees ± 1.5 degrees, the angle θ2 is preferably 45 degrees ± 1.5 degrees, and the angle θ3 is 225 degrees ± 1.5 degrees. Is more preferable. By setting the angles θ1, θ2, and θ3 as described above, the absolute value of the output from the full bridge when the magnetoresistive element 10 is positively distorted and the full bridge when the magnetoresistive element 10 is negatively distorted The difference from the absolute value of the output of is 10% or less.
 なお、上記角度θ1は、135度であり、上記角度θ2は、45度であり、上記角度θ3が225度であることが最も好ましい。この場合には、磁気抵抗素子10が正に歪んだ場合のフルブリッジからの出力の絶対値と、磁気抵抗素子10が負に歪んだ場合のフルブリッジからの出力の絶対値との差を略0%とすることができる。 It is most preferable that the angle θ1 is 135 degrees, the angle θ2 is 45 degrees, and the angle θ3 is 225 degrees. In this case, the difference between the absolute value of the output from the full bridge when the magnetoresistive element 10 is positively distorted and the absolute value of the output from the full bridge when the magnetoresistive element 10 is negatively distorted is omitted. It can be 0%.
 図5は、実施の形態1に係るセンサにおいて、ダイヤフラム部が変形した第1変形状態を示す図である。 FIG. 5 is a diagram showing a first deformed state in which the diaphragm portion is deformed in the sensor according to the first embodiment.
 図5に示すように、ダイヤフラム部3の第1変形状態においては、ダイヤフラム部3のたわみ領域4が、基部2側に向けて凸となるように変形する。この際、磁気抵抗素子10に引張応力が作用する。 As shown in FIG. 5, in the first deformation state of the diaphragm portion 3, the deflection region 4 of the diaphragm portion 3 is deformed so as to be convex toward the base portion 2. At this time, tensile stress acts on the magnetoresistive element 10.
 図6は、図5に示す第1変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。なお、図6においては、非変形状態における磁気抵抗素子10の外縁およびフリー層の磁化方向を破線で示している。図6では、磁歪定数が正の場合を示してある。 FIG. 6 is a diagram showing the direction of stress-induced anisotropy generated in the first deformation state shown in FIG. 5 and the direction of magnetization of the reference layer. In FIG. 6, the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines. FIG. 6 shows a case where the magnetostrictive constant is positive.
 図6の黒塗りの矢印で示すように、引張応力は、たわみ領域4の径方向に沿って作用する。これにより、複数の磁気抵抗素子10の各々が、たわみ領域4の径方向に延びるように変形する。 As shown by the black arrow in FIG. 6, the tensile stress acts along the radial direction of the deflection region 4. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to extend in the radial direction of the deflection region 4.
 この際、たわみ領域4の径方向外側に向けて、応力誘起異方性が発現する。応力誘起異方性の方向は、図6の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを最短で結ぶ仮想直線VL1と平行となる。 At this time, stress-induced anisotropy develops toward the radial outer side of the deflection region 4. The direction of stress-induced anisotropy is parallel to the virtual straight line VL1 that connects the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 at the shortest distance, as shown by the black arrow shown in the magnetoresistive element 10 of FIG. ..
 具体的には、第1状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4、略90度となる。 Specifically, in the first state, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees. Become.
 上記第1状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略90度となる。 In the first state, the counterclockwise angle θ5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
 図7は、実施の形態1に係るセンサにおいて、ダイヤフラム部が変形した第2変形状態を示す図である。 FIG. 7 is a diagram showing a second deformed state in which the diaphragm portion is deformed in the sensor according to the first embodiment.
 図7に示すように、ダイヤフラム部3の第2変形状態においては、ダイヤフラム部3のたわみ領域4が、基部2が位置する側とは反対側に向けて凸となるように変形する。この際、磁気抵抗素子10に圧縮応力が作用する。 As shown in FIG. 7, in the second deformation state of the diaphragm portion 3, the deflection region 4 of the diaphragm portion 3 is deformed so as to be convex toward the side opposite to the side where the base portion 2 is located. At this time, compressive stress acts on the magnetoresistive element 10.
 図8は、図7に示す第2変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。なお、図8においては、非変形状態における磁気抵抗素子10の外縁およびフリー層の磁化方向を破線で示している。図8では、磁歪定数が正の場合を示してある。 FIG. 8 is a diagram showing the direction of stress-induced anisotropy generated in the second deformation state shown in FIG. 7 and the direction of magnetization of the reference layer. In FIG. 8, the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines. FIG. 8 shows a case where the magnetostrictive constant is positive.
 図8の黒塗りの矢印で示すように、圧縮応力は、たわみ領域4の径方向に沿って作用する。これにより、複数の磁気抵抗素子10の各々が、たわみ領域4の径方向に縮むように変形する。 As shown by the black arrow in FIG. 8, the compressive stress acts along the radial direction of the deflection region 4. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to contract in the radial direction of the deflection region 4.
 この際、たわみ領域4の外縁の接線方向に向けて、応力誘起異方性が発現する。応力誘起異方性の方向は、図8の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを最短で結ぶ仮想直線VL1に直交する。すなわち、応力誘起異方性の方向は、基準線BL1と平行となる。 At this time, stress-induced anisotropy appears toward the tangential direction of the outer edge of the deflection region 4. The direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 that connects the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 at the shortest distance, as shown by the black arrow shown in the magnetoresistive element 10 of FIG. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
 具体的には、第2状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4は、略180度となる。 Specifically, in the second state, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
 上記第2状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略180度となる。 In the second state, the counterclockwise angle θ5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
 上述のように、フリー層の磁化方向が上記応力誘起異方性の強度に応じて変化することにより、上記リファレンス層24とフリー層の磁化方向との相対的な角度が変化する。これにより、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14の抵抗、ひいては、第1磁気抵抗素子部R1、第2磁気抵抗素子部R2、第3磁気抵抗素子部R3、および第4磁気抵抗素子部R4の抵抗が変化する。この結果、フルブリッジ回路からの出力が変化する。 As described above, when the magnetization direction of the free layer changes according to the strength of the stress-induced anisotropy, the relative angle between the reference layer 24 and the magnetization direction of the free layer changes. As a result, the resistance of the first magnetic resistance element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element 14, and by extension, the first magnetic resistance element R1 and the second magnetic resistance element The resistances of R2, the third magnetoresistive element R3, and the fourth magnetoresistive element R4 change. As a result, the output from the full bridge circuit changes.
 図9は、実施の形態1に係るセンサにおいて、ダイヤフラム部の変形量と、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度との関係を示す図である。 FIG. 9 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer in the sensor according to the first embodiment.
 図9に示すように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4(第1磁気抵抗素子11および第4磁気抵抗素子14)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、90度から増加して略130度に近づくように変化する。また、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、非変形状態から磁気抵抗素子10が引張されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、90度から減少して略50度に近づくように変化する。 As shown in FIG. 9, in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 (the first magnetoresistive element 11 and the fourth magnetoresistive element 14), the magnetic resistance element 10 is compressed from the non-deformed state. As a result, the relative angle between the magnetizing direction of the free layer and the magnetizing direction of the reference layer changes from 90 degrees to approach 130 degrees. Further, in the first magnetoresistive element R1 and the fourth magnetoresistive sensor R4, as the magnetoresistive element 10 is pulled from the non-deformed state, the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from 90 degrees to approaching approximately 50 degrees.
 第2磁気抵抗素子部R2および第3磁気抵抗素子部R3(第2磁気抵抗素子12および第3磁気抵抗素子13)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、90度から減少して略50度に近づくように変化する。また、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、非変形状態から磁気抵抗素子10が引張されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、90度から増加して略130度に近づくように変化する。 In the second magnetoresistive element R2 and the third magnetoresistive element R3 (the second magnetoresistive element 12 and the third magnetoresistive element 13), as the magnetic resistance element 10 is compressed from the non-deformed state, the free layer becomes The relative angle between the magnetizing direction and the magnetizing direction of the reference layer changes from 90 degrees to approach about 50 degrees. Further, in the second magnetoresistive element R2 and the third magnetoresistive sensor R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from 90 degrees to approach approximately 130 degrees.
 図10は、実施の形態1に係るセンサにおいて、図9に示す相対的な角度と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。 FIG. 10 is a diagram showing the relationship between the relative angle shown in FIG. 9 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment.
 図10に示すように、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が増加するにつれて、第1磁気抵抗素子部R1、第2磁気抵抗素子部R2、第3磁気抵抗素子部R3、および第4磁気抵抗素子部R4のそれぞれにおいて抵抗が増加する。第1磁気抵抗素子部R1、第2磁気抵抗素子部R2、第3磁気抵抗素子部R3、および第4磁気抵抗素子部R4のそれぞれの抵抗の変化は、略同一である。 As shown in FIG. 10, as the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer increases, the first magnetoresistive element R1, the second magnetoresistive element R2, and the third magnetoresistive element The resistance increases in each of the portion R3 and the fourth magnetoresistive element portion R4. The changes in the resistances of the first magnetoresistive element R1, the second magnetoresistive sensor R2, the third magnetoresistive element R3, and the fourth magnetoresistive element R4 are substantially the same.
 図11は、実施の形態1に係るセンサにおいて、ダイヤフラム部の変形量と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。 FIG. 11 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the first embodiment.
 図11に示すように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4(第1磁気抵抗素子11および第4磁気抵抗素子14)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、抵抗が、略0.052kΩから増加して略0.08kΩに近づくように変化する。また、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、非変形状態から磁気抵抗素子10が引張されるにつれて、抵抗が、略0.052kΩから減少して略0.04kΩに近づくように変化する。 As shown in FIG. 11, in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 (the first magnetoresistive element 11 and the fourth magnetoresistive element 14), the magnetoresistive element 10 is compressed from the non-deformed state. As it is done, the resistance changes from about 0.052 kΩ to approach about 0.08 kΩ. Further, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance decreases from about 0.052 kΩ to about 0.04 kΩ. It changes to get closer.
 第2磁気抵抗素子部R2および第3磁気抵抗素子部R3(第2磁気抵抗素子12および第3磁気抵抗素子13)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、抵抗が、略0.052kΩから減少して略0.04kΩに近づくように変化する。また、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、非変形状態から磁気抵抗素子10が引張されるにつれて、抵抗が、略0.042kΩから増加して略0.08kΩに近づくように変化する。なお、ここで示した例では、抵抗の設計値を0.052kΩとしているが、この値に限られるものではなく、要求される消費電流に合わせて抵抗値を大きくしてもよい。 In the second magnetoresistive element R2 and the third magnetoresistive element R3 (second magnetoresistive element 12 and third magnetoresistive element 13), as the magnetoresistive element 10 is compressed from the non-deformed state, the resistance is increased. It decreases from about 0.052 kΩ and changes to approach about 0.04 kΩ. Further, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance increases from approximately 0.042 kΩ to approximately 0.08 kΩ. It changes to get closer. In the example shown here, the design value of the resistor is 0.052 kΩ, but the value is not limited to this value, and the resistance value may be increased according to the required current consumption.
 図12は、実施の形態1に係るセンサにおいて、ダイヤフラム部の変形量と、ハーフブリッジ回路の出力電圧との関係を示す図である。 FIG. 12 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the output voltage of the half-bridge circuit in the sensor according to the first embodiment.
 図12に示すように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4(第1磁気抵抗素子11および第4磁気抵抗素子14)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、第1ハーフブリッジ回路Hf1の出力が、略1.5Vから増加して略2.0Vに近づくように変化する。また、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、非変形状態から磁気抵抗素子10が引張されるにつれて、第1ハーフブリッジ回路Hf1の出力が、略1.5Vから減少して略1.0Vに近づくように変化する。 As shown in FIG. 12, in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 (the first magnetoresistive element 11 and the fourth magnetoresistive element 14), the magnetoresistive element 10 is compressed from the non-deformed state. As a result, the output of the first half-bridge circuit Hf1 changes from about 1.5V to approaching about 2.0V. Further, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4, the output of the first half bridge circuit Hf1 decreases from about 1.5 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 1.0 V.
 第2磁気抵抗素子部R2および第3磁気抵抗素子部R3(第2磁気抵抗素子12および第3磁気抵抗素子13)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、第2ハーフブリッジ回路Hf2の出力が、略1.5Vから減少して略1.0Vに近づくように変化する。また、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、非変形状態から磁気抵抗素子10が引張されるにつれて、第2ハーフブリッジ回路Hf2の出力が、略1.5Vから増加して略2.0Vに近づくように変化する。 In the second magnetoresistive element R2 and the third magnetoresistive element R3 (the second magnetoresistive element 12 and the third magnetoresistive element 13), the second half as the magnetoresistive element 10 is compressed from the non-deformed state. The output of the bridge circuit Hf2 decreases from about 1.5V and changes to approach about 1.0V. Further, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, the output of the second half bridge circuit Hf2 increases from about 1.5 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 2.0V.
 図13は、実施の形態1に係るセンサにおいて、ダイヤフラム部の変形量と、フルブリッジ回路の出力電圧との関係を示す図である。 FIG. 13 is a diagram showing the relationship between the amount of deformation of the diaphragm portion and the output voltage of the full bridge circuit in the sensor according to the first embodiment.
 図13に示すように、フルブリッジ回路の出力電圧は、非変形状態から磁気抵抗素子10が圧縮されるにつれて、0mVから増加し、略900mVに近づくように変化する。また、フルブリッジ回路の出力電圧は、非変形状態から磁気抵抗素子10が引張されるにつれて、0mVから減少し、略-1000mVに近づくように変化する。 As shown in FIG. 13, the output voltage of the full bridge circuit increases from 0 mV as the magnetoresistive element 10 is compressed from the non-deformed state, and changes so as to approach approximately 900 mV. Further, the output voltage of the full bridge circuit decreases from 0 mV as the magnetoresistive element 10 is pulled from the non-deformed state, and changes so as to approach approximately −1000 mV.
 ここで、上述のように、たわみ領域4へ外力が印加されていない状態において上記角度θ1、θ2、θ3を上述の範囲とすることにより、上述のように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3との間で、磁気抵抗素子10の歪量が0の場合の抵抗値を略同一の値とすることができる。加えて、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3との間で、抵抗の変化範囲を略同等にすることができる。 Here, as described above, by setting the angles θ1, θ2, and θ3 in the above range in a state where no external force is applied to the deflection region 4, the first magnetoresistive element unit R1 and the first magnetic resistance element unit R1 and the first 4. The resistance value when the amount of distortion of the magnetoresistive element 10 is 0 is set to substantially the same value between the magnetoresistive element portion R4, the second magnetoresistive element portion R2, and the third magnetic resistance element portion R3. Can be done. In addition, the change range of resistance is made substantially equal between the first magnetoresistive element R1 and the fourth magnetoresistive element R4 and the second magnetoresistive element R2 and the third magnetoresistive element R3. Can be done.
 また、たわみ領域4に外力が印加されていない状態において上記角度θ1、θ2、θ3を上述の範囲とすることにより、上述のように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4によって構成される第1ハーフブリッジ回路Hf1と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3によって構成される第2ハーフブリッジ回路Hf2との間で、磁気抵抗素子10の歪量が0の場合のオフセット電圧を略同一の値とすることができる。加えて、第1ハーフブリッジ回路Hf1と、第2ハーフブリッジ回路Hf2との間で、出力範囲を略同等とすることができる。 Further, by setting the angles θ1, θ2, and θ3 in the above range in a state where no external force is applied to the deflection region 4, the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4 are set as described above. The amount of distortion of the magnetoresistive element 10 between the first half-bridge circuit Hf1 composed of the above and the second half-bridge circuit Hf2 composed of the second magnetoresistive element R2 and the third magnetoresistive element R3. The offset voltage in the case of 0 can be set to substantially the same value. In addition, the output range can be made substantially the same between the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2.
 さらに、たわみ領域4に外力が印加されていない状態において上記角度θ1、θ2、θ3を上述の範囲とすることにより、非変形状態におけるフルブリッジ回路の出力電圧を0にしつつ、フルブリッジ回路の出力範囲を大きくすることができる。 Further, by setting the angles θ1, θ2, and θ3 in the above range in the state where no external force is applied to the deflection region 4, the output voltage of the full bridge circuit in the non-deformed state is set to 0, and the output of the full bridge circuit is output. The range can be increased.
 以上により、実施の形態1に係るセンサ100にあっては、複数の磁気抵抗素子10により構成されたフルブリッジ回路を含む構成で、感度を向上させることができる。 As described above, in the sensor 100 according to the first embodiment, the sensitivity can be improved by a configuration including a full bridge circuit composed of a plurality of magnetoresistive elements 10.
 なお、上述の図9から図13においては、上記角度θ1を135度、上記角度θ2を45度であり、上記角度θ3を225度とした場合のものである。このため、非変形状態におけるフリー層の磁化方向とリファレンス層の磁化方向とが製造工程においてばらつき、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度がずれた場合における抵抗の変化およびフルブリッジ回路の出力の変化を図14、図15に示す。 Note that, in FIGS. 9 to 13 above, the angle θ1 is 135 degrees, the angle θ2 is 45 degrees, and the angle θ3 is 225 degrees. Therefore, the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state vary in the manufacturing process, and the resistance changes when the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer deviates. And the change in the output of the full bridge circuit is shown in FIGS. 14 and 15.
 図14は、実施の形態1に係るセンサにおいて、リファレンス層の磁化方向をずらした場合における、磁気抵抗素子の歪量と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。 FIG. 14 shows the relationship between the amount of distortion of the magnetoresistive element and the resistance of a plurality of magnetoresistive elements constituting the full bridge circuit when the magnetization direction of the reference layer is shifted in the sensor according to the first embodiment. It is a figure which shows.
 図14においては、非変形状態において、上記基準方向からフリー層の磁化方向までの反時計回りの角度θ1を135度としている。第1磁気抵抗素子11および第4磁気抵抗素子14における上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2、ならびに、第2磁気抵抗素子12および第3磁気抵抗素子13における上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3を変更している。 In FIG. 14, in the non-deformed state, the counterclockwise angle θ1 from the reference direction to the magnetization direction of the free layer is 135 degrees. The counterclockwise angle θ2 from the reference direction in the first magnetic resistance element 11 and the fourth magnetic resistance element 14 to the magnetization direction of the reference layer 24, and the above in the second magnetic resistance element 12 and the third magnetic resistance element 13. The counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 is changed.
 第1磁気抵抗素子11および第4磁気抵抗素子14においては、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2を45度から55度の範囲で変更している。非変形状態における上記角度θ1が135度であり、上記角度θ2が45度である場合において、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度のずれ量を0度としている。 In the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ2 from the reference direction to the magnetization direction of the reference layer 24 is changed in the range of 45 degrees to 55 degrees. When the angle θ1 is 135 degrees and the angle θ2 is 45 degrees in the non-deformed state, the amount of deviation of the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer is 0 degree.
 第2磁気抵抗素子12および第3磁気抵抗素子13においては、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3を225度から235度の範囲で変更している。非変形状態における上記角度θ1が135度であり、上記角度θ3が235度である場合において、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度のずれ量を0度としている。 In the second magnetoresistive element 12 and the third magnetoresistive element 13, the counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 is changed in the range of 225 degrees to 235 degrees. When the angle θ1 in the non-deformed state is 135 degrees and the angle θ3 is 235 degrees, the amount of deviation of the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer is 0 degree.
 この場合において、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、上記相対的な角度のずれ量が増加するにつれて、磁気抵抗素子の歪量が負の場合および正の場合の双方において、略一定となる値が減少していく。 In this case, in the first magnetoresistive element unit R1 and the fourth magnetoresistive element unit R4, as the amount of deviation of the relative angles increases, the amount of distortion of the magnetoresistive element becomes negative and positive. In both cases, the value that becomes substantially constant decreases.
 一方で、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、上記相対的な角度のずれ量が増加するにつれて、磁気抵抗素子の歪量が負の場合および正の場合の双方において、略一定となる値が増加していく。 On the other hand, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, as the amount of deviation of the relative angles increases, both the case where the amount of distortion of the magnetoresistive element is negative and the case where the strain amount is positive In, the value that becomes substantially constant increases.
 なお、磁気抵抗素子の歪量が0の場合には、上記相対的な角度のずれ量がいずれの場合でもほぼ同様の抵抗値が維持される。 When the strain amount of the magnetoresistive element is 0, almost the same resistance value is maintained regardless of the relative angle deviation amount.
 図15は、実施の形態1に係るセンサにおいて、リファレンス層の磁化方向をずらした場合における、磁気抵抗素子の歪量と、フルブリッジ回路の出力電圧との関係を示す図である。図15においても、上記相対的な角度のずれ量は、図14と同様としている。 FIG. 15 is a diagram showing the relationship between the amount of strain of the magnetoresistive element and the output voltage of the full bridge circuit when the magnetization direction of the reference layer is shifted in the sensor according to the first embodiment. Also in FIG. 15, the relative angle deviation amount is the same as in FIG.
 この場合において、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度のずれ量が増加するにつれて、フルブリッジ回路の出力は、磁気抵抗素子の歪量が負の場合および正の場合の双方において、略一定となる値が減少していく。 In this case, as the amount of deviation of the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer increases, the output of the full bridge circuit is when the strain amount of the magnetoresistive element is negative and positive. In both cases, the value that becomes substantially constant decreases.
 なお、磁気抵抗素子の歪量が0の場合には、上記相対的な角度のずれ量がいずれの場合でもほぼ同様の出力値が維持される。フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度のずれ量がずれた場合でも、出力範囲(出力の上限値と下限値との差)は、略同等となる。 When the strain amount of the magnetoresistive element is 0, almost the same output value is maintained regardless of the relative angle deviation amount. Even when the relative angular deviation between the magnetization direction of the free layer and the magnetization direction of the reference layer deviates, the output range (difference between the upper limit value and the lower limit value of the output) is substantially the same.
 図16は、実施の形態1に係るセンサにおいて、磁気抵抗素子の歪量を+0.02%とした場合と磁気抵抗素子の歪量を-0.02%とした場合におけるフルブリッジ回路の出力の絶対値の差および出力レンジの差と、リファレンス層の磁化方向のずれ角度との関係を示す図である。図15においても、上記相対的な角度のずれ量は、図14と同様としている。 FIG. 16 shows the output of the full bridge circuit in the sensor according to the first embodiment when the strain amount of the magnetoresistive element is + 0.02% and when the strain amount of the magnetoresistive element is −0.02%. It is a figure which shows the relationship between the difference of an absolute value and the difference of an output range, and the deviation angle of a reference layer in the magnetization direction. Also in FIG. 15, the relative angle deviation amount is the same as in FIG.
 図16に示すように、磁気抵抗素子の歪量が+0.02%の場合と-0.02%の場合とにおけるフルブリッジ回路の出力の絶対値の差は、上記相対的な角度のずれ量が増加するにつれて、増加する。 As shown in FIG. 16, the difference in the absolute value of the output of the full bridge circuit when the strain amount of the magnetoresistive element is + 0.02% and −0.02% is the amount of deviation of the relative angles. Increases as the number increases.
 上記相対的な角度のずれ量が10度である場合には、磁気抵抗素子の歪量が+0.02%の場合と-0.02%の場合とにおけるフルブリッジ回路の出力の絶対値の差を上記相対的な角度のずれ量が0である場合に対して30%以下にすることができる。 When the relative angle deviation is 10 degrees, the difference in the absolute value of the output of the full bridge circuit between the case where the amount of distortion of the magnetoresistive element is + 0.02% and the case where it is -0.02%. Can be set to 30% or less with respect to the case where the relative angle deviation amount is 0.
 すなわち、上記角度θ1を135度±5度とし、上記角度θ2を45度±5度とし、上記角度θ3を、225度±5度とすることにより、上述の出力の絶対値の差を30%以下とすることができる。 That is, by setting the angle θ1 to 135 degrees ± 5 degrees, the angle θ2 to 45 degrees ± 5 degrees, and the angle θ3 to 225 degrees ± 5 degrees, the difference between the absolute values of the outputs is 30%. It can be as follows.
 上記相対的な角度のずれ量が6度である場合には、磁気抵抗素子の歪量が+0.02%の場合と-0.02%の場合とにおけるフルブリッジ回路の出力の絶対値の差を上記相対的な角度のずれ量が0である場合に対して20%以下にすることができる。 When the relative angle deviation is 6 degrees, the difference in the absolute value of the output of the full bridge circuit between the case where the amount of distortion of the magnetoresistive element is + 0.02% and the case where it is -0.02%. Can be 20% or less with respect to the case where the relative angle deviation amount is 0.
 すなわち、上記角度θ1を135度±3度とし、上記角度θ2を45度±3度とし、上記角度θ3を、225度±3度とすることにより、上述の出力の絶対値の差を20%以下とすることができる。 That is, by setting the angle θ1 to 135 degrees ± 3 degrees, the angle θ2 to 45 degrees ± 3 degrees, and the angle θ3 to 225 degrees ± 3 degrees, the difference between the absolute values of the outputs is 20%. It can be as follows.
 上記相対的な角度のずれ量が3度である場合には、磁気抵抗素子の歪量が+0.02%の場合と-0.02%の場合とにおけるフルブリッジ回路の出力の絶対値の差を上記相対的な角度のずれ量が0である場合に対して10%以下にすることができる。 When the relative angle deviation is 3 degrees, the difference in the absolute value of the output of the full bridge circuit between the case where the amount of distortion of the magnetoresistive element is + 0.02% and the case where it is -0.02%. Can be set to 10% or less with respect to the case where the relative angle deviation amount is 0.
 すなわち、上記角度θ1を135度±1.5度とし、上記角度θ2を45度±1.5度とし、上記角度θ3を、225度±1.5度とすることにより、上述の出力の絶対値の差を10%以下とすることができる。 That is, by setting the angle θ1 to 135 degrees ± 1.5 degrees, the angle θ2 to 45 degrees ± 1.5 degrees, and the angle θ3 to 225 degrees ± 1.5 degrees, the absolute output is absolute. The difference between the values can be 10% or less.
 一方、磁気抵抗素子の歪量が+0.02%の場合と-0.02%の場合とにおけるフルブリッジ回路の出力範囲は、上記相対的な角度のずれ量が増加するにつれて、増加するものの、その増加量はわずかである。すなわち、磁気抵抗素子の歪量が+0.02%の場合と-0.02%の場合とにおけるフルブリッジ回路の出力範囲は、上記相対的な角度のずれ量が増加した場合であっても、ほぼ一定である。すなわち、上記角度θ1を135度±5度とし、上記角度θ2を45度±5度とし、上記角度θ3を、225度±5度をした場合であっても、上記角度θ1を135度とし、上記角度θ2を45度とし、上記角度θ3を、225度とした場合とほぼ同様の出力範囲が維持される。 On the other hand, the output range of the full bridge circuit when the strain amount of the magnetoresistive element is + 0.02% and -0.02% increases as the relative angle deviation amount increases. The amount of increase is small. That is, the output range of the full bridge circuit when the strain amount of the magnetoresistive element is + 0.02% and −0.02% is even when the relative angle deviation amount increases. It is almost constant. That is, even when the angle θ1 is 135 degrees ± 5 degrees, the angle θ2 is 45 degrees ± 5 degrees, and the angle θ3 is 225 degrees ± 5 degrees, the angle θ1 is 135 degrees. An output range substantially similar to that in the case where the angle θ2 is 45 degrees and the angle θ3 is 225 degrees is maintained.
 以上のように実施の形態1に係るセンサ100にあっては、非変形状態におけるフルブリッジ回路の出力電圧を0にしつつ、フルブリッジ回路の出力範囲を大きくすることができ、複数の磁気抵抗素子10により構成されたフルブリッジ回路を含む構成で、感度を向上させることができる。 As described above, in the sensor 100 according to the first embodiment, it is possible to increase the output range of the full bridge circuit while setting the output voltage of the full bridge circuit to 0 in the non-deformed state, and a plurality of magnetoresistive elements. The sensitivity can be improved by the configuration including the full bridge circuit configured by 10.
 (製造方法)
 図17から図24は、実施の形態1に係るセンサの製造工程の第1工程から第8工程を示す図である。図17から図24を参照して、実施の形態1に係るセンサ100の製造方法について説明する。
(Production method)
17 to 24 are diagrams showing the first to eighth steps of the sensor manufacturing process according to the first embodiment. A method of manufacturing the sensor 100 according to the first embodiment will be described with reference to FIGS. 17 to 24.
 実施の形態1に係るセンサ100を製造する場合には、図17に示すように、第1工程において、ダイヤフラム部となる膜部62が形成された基板61を準備する。膜部62は、たとえば、酸化シリコン、窒化シリコン等の絶縁性層である。なお、膜部62は、シリコン等の半導体材料であってもよいし、金属材料であってもよい。 When manufacturing the sensor 100 according to the first embodiment, as shown in FIG. 17, in the first step, a substrate 61 on which the film portion 62 to be the diaphragm portion is formed is prepared. The film portion 62 is an insulating layer such as silicon oxide or silicon nitride. The film portion 62 may be a semiconductor material such as silicon or a metal material.
 続いて、当該膜部62の表面にドライエッチングを行いトレンチ部(不図示)を形成し、めっき法やスパッタ法によりトレンチ部にCu等によって構成される配線部を形成する。次に、トレンチ部の開口から外側に隆起する余剰の導電部を化学機械研磨法(CMP:Chemical Mechanical Polishing)によって研磨する。 Subsequently, dry etching is performed on the surface of the film portion 62 to form a trench portion (not shown), and a wiring portion composed of Cu or the like is formed in the trench portion by a plating method or a sputtering method. Next, the surplus conductive portion that rises outward from the opening of the trench portion is polished by a chemical mechanical polishing method (CMP).
 次に、図18に示すように、第2工程において、膜部62上に、下部電極膜63、TMR積層膜64、および上部電極膜65を積層する。具体的には、下部電極膜63、ピニング膜、ピン膜、磁気結合膜、リファレンス膜、トンネルバリア膜、フリー膜、分離膜、バイアス膜、および上部電極膜65を積層する。 Next, as shown in FIG. 18, in the second step, the lower electrode film 63, the TMR laminated film 64, and the upper electrode film 65 are laminated on the film portion 62. Specifically, the lower electrode film 63, the pinning film, the pin film, the magnetic coupling film, the reference film, the tunnel barrier film, the free film, the separation film, the bias film, and the upper electrode film 65 are laminated.
 下部電極膜63、ピニング膜、ピン膜、磁気結合膜、リファレンス膜、トンネルバリア膜、フリー膜、分離膜、バイアス膜、および上部電極膜は、パターニング後に、下部電極層20、ピニング層21、ピン層22、磁気結合層23、リファレンス層24、トンネルバリア層25、フリー層26、分離層27、バイアス層28、および上部電極層29となる。 After patterning, the lower electrode film 63, pinning film, pin film, magnetic coupling film, reference film, tunnel barrier film, free film, separation film, bias film, and upper electrode film are formed into the lower electrode layer 20, the pinning layer 21, and the pins. It becomes a layer 22, a magnetic coupling layer 23, a reference layer 24, a tunnel barrier layer 25, a free layer 26, a separation layer 27, a bias layer 28, and an upper electrode layer 29.
 なお、膜部62が、半導体材料および金属材料である場合には、磁気抵抗素子が形成される領域となる膜部62上に絶縁層を形成してから、上記下部電極膜63、TMR積層膜64、上部電極膜65を積層してもよい。 When the film portion 62 is a semiconductor material or a metal material, an insulating layer is formed on the film portion 62 that is a region where the magnetoresistive element is formed, and then the lower electrode film 63 and the TMR laminated film are formed. 64, the upper electrode film 65 may be laminated.
 下部電極膜63としては、たとえばRu/Taを成膜する。下部電極膜63の上層のピン膜/ピニング膜(強磁性膜/反強磁性膜)としては、たとえばCoFe/IrMnを成膜する。この積層膜は、後述する磁場中アニールにより交換結合が生じ、ピン層として機能する。なお、ピンニング膜としてPtMnを成膜してもよい。 As the lower electrode film 63, for example, Ru / Ta is formed. As the pin film / pinning film (ferromagnetic film / antiferromagnetic film) on the upper layer of the lower electrode film 63, for example, CoFe / IrMn is formed. This laminated film functions as a pin layer due to exchange bonding caused by annealing in a magnetic field, which will be described later. PtMn may be formed as a pinning film.
 ピン膜(強磁性膜)の上層の磁気結合膜(非磁性膜)としては、たとえばRuを成膜し、非磁性膜の上層のリファレンス膜(下部強磁性膜)としては、たとえばCoFeBを成膜する。リファレンス膜/磁気結合膜/ピン膜(下部強磁性膜/非磁性膜/強磁性膜)は、合成反強磁性(SAF:synthetic anti-ferromagnetic)結合構造を構成している。 As the magnetic coupling film (non-magnetic film) on the upper layer of the pin film (ferromagnetic film), for example, Ru is formed, and as the reference film (lower ferromagnetic film) on the upper layer of the non-magnetic film, for example, CoFeB is formed. To do. The reference film / magnetic bond film / pin film (lower ferromagnetic film / non-magnetic film / ferromagnetic film) constitutes a synthetic anti-ferromagnetic (SAF) bonding structure.
 トンネルバリア膜としては、たとえばMgOを成膜し、トンネルバリア膜上のフリー膜(上部強磁性膜)としては、たとえば、FeB/CoFeBを成膜する。FeBは、磁歪定数が大きく、かつ、アモルファスであり結晶磁気異方性が小さい。 As the tunnel barrier film, for example, MgO is formed, and as the free film (upper ferromagnetic film) on the tunnel barrier film, for example, FeB / CoFeB is formed. FeB has a large magnetostrictive constant, is amorphous, and has a small magnetocrystalline anisotropy.
 分離膜としては、Cuを成膜する。なお、分離膜としては、上述のようにCuに限定されず、正の磁気結合、負の磁気結合に応じて適宜選択することができる。 Cu is formed as a separation film. The separation membrane is not limited to Cu as described above, and can be appropriately selected depending on the positive magnetic coupling and the negative magnetic coupling.
 バイアス膜(反強磁性膜/強磁性膜)としては、IrMn/CoFeBを製膜する。バイアス膜における反強磁成膜のブロッキング温度は、リファレンス膜側の反強磁性膜のブロッキング温度よりも低い。これにより、後述するように、リファレンス層の磁化方向と、バイアス層によるバイアス磁界方向とを異なるようにすることができる。 As the bias film (antiferromagnetic film / ferromagnetic film), IrMn / CoFeB is formed. The blocking temperature of the antiferromagnetic film formation in the bias film is lower than the blocking temperature of the antiferromagnetic film on the reference film side. As a result, as will be described later, the magnetization direction of the reference layer and the bias magnetic field direction of the bias layer can be made different.
 バイアス膜における反強磁成膜と、リファレンス膜における反強磁性膜を同じ材料で形成する場合には、リファレンス膜における反強磁性膜をバイアス膜における反強磁成膜よりも厚くする。なお、上部電極膜65としては、たとえばTa/Ruを成膜する。 When the antiferromagnetic film on the bias film and the antiferromagnetic film on the reference film are formed of the same material, the antiferromagnetic film on the reference film is made thicker than the antiferromagnetic film on the bias film. As the upper electrode film 65, for example, Ta / Ru is formed.
 続いて、下部電極膜63、TMR積層膜64、および上部電極膜65が形成された基板61を磁場中でアニールする。 Subsequently, the substrate 61 on which the lower electrode film 63, the TMR laminated film 64, and the upper electrode film 65 are formed is annealed in a magnetic field.
 次に、図19に示すように、第3工程において、フォトリソグラフィおよびドライエッチングを用いて、TMR積層膜64、および上部電極膜65を所望の形状にパターニングする。 Next, as shown in FIG. 19, in the third step, the TMR laminated film 64 and the upper electrode film 65 are patterned into desired shapes by using photolithography and dry etching.
 続いて、図20に示すように、第4工程において、フォトリソグラフィおよびドライエッチングを用いて、下部電極膜63の一部を除去し、配線パターンを形成する。これにより、複数の磁気抵抗素子10が形成される。複数の磁気抵抗素子の一部は、下部電極膜63によって構成される配線パターンによって電気的に接続される。 Subsequently, as shown in FIG. 20, in the fourth step, a part of the lower electrode film 63 is removed by using photolithography and dry etching to form a wiring pattern. As a result, a plurality of magnetoresistive elements 10 are formed. A part of the plurality of magnetoresistive elements is electrically connected by a wiring pattern composed of the lower electrode film 63.
 次に、図21に示すように、第5工程において、複数の磁気抵抗素子10を覆うように基板61上に、絶縁膜66で覆う。絶縁膜66としては、たとえばSiOを採用することができる。 Next, as shown in FIG. 21, in the fifth step, the substrate 61 is covered with the insulating film 66 so as to cover the plurality of magnetoresistive elements 10. As the insulating film 66, for example, SiO 2 can be adopted.
 続いて、図22に示すように、第6工程において、フォトリソグラフィおよびドライエッチングを用いて、絶縁膜66の一部を除去し、コンタクトホールを形成する。次に、フォトリソグラフィおよびリフトオフにより、上記コンタクトホールに金属配線31、32、33を形成する。金属配線31、32、33としては、Cuを用いることができる。 Subsequently, as shown in FIG. 22, in the sixth step, a part of the insulating film 66 is removed by photolithography and dry etching to form a contact hole. Next, metal wirings 31, 32, and 33 are formed in the contact hole by photolithography and lift-off. Cu can be used as the metal wirings 31, 32, 33.
 続いて、図23に示すように、第7工程において、金属配線31、32、33を覆うように絶縁膜66上にパッシベーション膜67を成膜する。パッシベーション膜67としては、たとえばSiOを採用することができる。 Subsequently, as shown in FIG. 23, in the seventh step, a passivation film 67 is formed on the insulating film 66 so as to cover the metal wirings 31, 32, and 33. As the passivation film 67, for example, SiO 2 can be adopted.
 次に、フォトリソグラフィおよびドライエッチングを用いて、パッシベーション膜67の一部を除去し、開口部を形成する。続いて、フォトリソグラフィおよびリフトオフにより、上記開口部に、電極部P1、P2、P3、P4を形成する。 Next, a part of the passivation film 67 is removed to form an opening by using photolithography and dry etching. Subsequently, electrode portions P1, P2, P3, and P4 are formed in the opening by photolithography and lift-off.
 次に、リファレンス層の磁化方向を固定する。ここでは、上述の図4に示すように、後工程で形成するたわみ領域4の形状、およびフルブリッジ回路の構成に合わせて磁化方向を決定する。 Next, fix the magnetization direction of the reference layer. Here, as shown in FIG. 4 described above, the magnetization direction is determined according to the shape of the deflection region 4 formed in the subsequent step and the configuration of the full bridge circuit.
 フルブリッジ回路の磁気抵抗素子10ごとに異なる方向にリファレンス層の磁化方向を固定する方法としては、電磁石もしくは永久磁石により磁場を印加しながらレーザ照射により局所加熱する方法、電磁石もしくは永久磁石により磁場を印加しながら素子の近傍に配置したヒーター用配線に通電加熱する方法、あるいは局所的に磁場印加できる冶具を配置した状態で熱処理する方法等がある。 As a method of fixing the magnetization direction of the reference layer in a different direction for each magnetic resistance element 10 of the full bridge circuit, a method of locally heating by laser irradiation while applying a magnetic field with an electromagnet or a permanent magnet, or a method of applying a magnetic field with an electromagnet or a permanent magnet. There are a method of energizing and heating the heater wiring arranged in the vicinity of the element while applying the force, or a method of heat-treating with a jig that can locally apply a magnetic field.
 続いて、バイアス磁界の方向を決定する。具体的には、上述のリファレンス層の磁化方向を固定する方法とほぼ同様の方法を行なう。この際、各磁気抵抗素子10を加熱する温度は、リファレンス層の磁化方向が変化しない温度とする。 Next, determine the direction of the bias magnetic field. Specifically, a method substantially similar to the method for fixing the magnetization direction of the reference layer described above is performed. At this time, the temperature at which each magnetoresistive element 10 is heated is set to a temperature at which the magnetization direction of the reference layer does not change.
 次に、図24に示すように、第8工程において、ドライエッチングを用いて、磁気抵抗素子10が形成されている側とは反対側に位置する基板61の主面側から基板61の一部を除去し、空洞部5を形成する。ここで、空洞部5は、基板61の内壁に囲まれた空間を指す。このように空洞部5が形成されることで、ダイヤフラム部3のたわみ領域4が形成される。空洞部を形成する方法として、ドライエッチングを例示したが、ウェットエッチング等の他の加工方法を用いてもよい。 Next, as shown in FIG. 24, in the eighth step, a part of the substrate 61 is used from the main surface side of the substrate 61 located on the side opposite to the side where the magnetoresistive element 10 is formed by using dry etching. Is removed to form the cavity 5. Here, the cavity 5 refers to a space surrounded by the inner wall of the substrate 61. By forming the cavity portion 5 in this way, the deflection region 4 of the diaphragm portion 3 is formed. Dry etching has been exemplified as a method for forming the cavity, but other processing methods such as wet etching may be used.
 このような製造工程を経て、上述のように、複数の磁気抵抗素子により構成されたフルブリッジ回路を含み、感度を向上させることができる実施の形態1に係るセンサ100が製造される。 Through such a manufacturing process, as described above, the sensor 100 according to the first embodiment, which includes a full bridge circuit composed of a plurality of magnetoresistive elements and can improve the sensitivity, is manufactured.
 (比較の形態)
 図25は、比較の形態に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態において、フリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。
(Form of comparison)
FIG. 25 is a diagram showing the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the comparative form.
 図25に示すように、比較の形態に係るセンサ100Xは、実施の形態1に係るセンサ100と比較した場合に、第1磁気抵抗素子11および第3磁気抵抗素子13におけるリファレンス層の磁化方向が相違するとともに、第2磁気抵抗素子12および第4磁気抵抗素子14におけるリファレンス層の磁化方向が相違する。すなわち、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2が、実施の形態1と相違するとともに、第2磁気抵抗素子12および第3磁気抵抗素子13において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3が、実施の形態と相違する。 As shown in FIG. 25, the sensor 100X according to the comparative embodiment has a magnetization direction of the reference layer in the first magnetoresistive element 11 and the third magnetoresistive element 13 when compared with the sensor 100 according to the first embodiment. In addition to being different, the magnetization directions of the reference layers in the second magnetoresistive element 12 and the fourth magnetoresistive element 14 are different. That is, in the first magnetic resistance element 11 and the fourth magnetic resistance element 14, the counterclockwise angle θ2 from the reference direction to the magnetization direction of the reference layer 24 is different from that of the first embodiment, and the second magnetic resistance In the element 12 and the third magnetic resistance element 13, the counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 is different from that of the embodiment.
 比較の形態に係るセンサ100Xにおいて、上記角度θ2は、0度であり、上記角度θ3は、180度である。 In the sensor 100X according to the comparative form, the angle θ2 is 0 degrees, and the angle θ3 is 180 degrees.
 図26は、比較の形態に係るセンサにおいて、ダイヤフラム部が変形した第1状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。図26では、フリー層の磁歪定数が正の場合を示してある。 FIG. 26 is a diagram showing the direction of stress-induced anisotropy generated in the first state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the comparative form. FIG. 26 shows a case where the magnetostrictive constant of the free layer is positive.
 図26に示すように、比較の形態においても、ダイヤフラム部3の第1変形状態においては、黒塗りの矢印で示すように、引張応力は、たわみ領域4の径方向に沿って作用する。これにより、複数の磁気抵抗素子10の各々が、たわみ領域4の径方向に延びるように変形する。 As shown in FIG. 26, even in the comparative form, in the first deformed state of the diaphragm portion 3, the tensile stress acts along the radial direction of the deflection region 4 as shown by the black arrow. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to extend in the radial direction of the deflection region 4.
 この際、たわみ領域4の径方向外側に向けて、応力誘起異方性が発現する。応力誘起異方性の方向は、図26の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを結ぶ仮想直線VL1と平行となる。 At this time, stress-induced anisotropy develops toward the radial outer side of the deflection region 4. The direction of stress-induced anisotropy is parallel to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG.
 具体的には、第1状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4は、略90度となる。 Specifically, in the first state, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees. It becomes.
 上記第1状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略90度となる。 In the first state, the counterclockwise angle θ5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
 図27は、比較の形態に係るセンサにおいて、ダイヤフラム部が変形した第2状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。 FIG. 27 is a diagram showing the direction of stress-induced anisotropy generated in the second state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the comparative form.
 図27に示すように、比較の形態においても、ダイヤフラム部3の第2変形状態においては、黒塗りの矢印で圧縮応力は、たわみ領域4の径方向に沿って作用する。これにより、複数の磁気抵抗素子10の各々が、たわみ領域4の径方向に縮むように変形する。 As shown in FIG. 27, even in the comparative form, in the second deformed state of the diaphragm portion 3, the compressive stress acts along the radial direction of the deflection region 4 by the black arrow. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to contract in the radial direction of the deflection region 4.
 この際、たわみ領域4の外縁の接線方向に向けて、応力誘起異方性が発現する。応力誘起異方性の方向は、図27の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを結ぶ仮想直線VL1に直交する。すなわち、応力誘起異方性の方向は、基準線BL1と平行となる。 At this time, stress-induced anisotropy appears toward the tangential direction of the outer edge of the deflection region 4. The direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
 具体的には、第1状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4は、略180度となる。 Specifically, in the first state, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
 上記第1状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略180度となる。 In the first state, the counterclockwise angle θ5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
 図28は、比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度との関係を示す図である。 FIG. 28 is a diagram showing the relationship between the amount of distortion of the magnetoresistive element due to the deformation of the diaphragm portion and the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer in the sensor according to the comparative form. ..
 図28に示すように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4(第1磁気抵抗素子11および第4磁気抵抗素子14)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、135度から増加して略180度に近づくように変化する。また、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、非変形状態から磁気抵抗素子10が引張されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、135度から減少して略90度に近づくように変化する。 As shown in FIG. 28, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4 (first magnetic resistance element 11 and fourth magnetic resistance element 14), the magnetic resistance element 10 is compressed from the non-deformed state. As a result, the relative angle between the magnetizing direction of the free layer and the magnetizing direction of the reference layer changes from 135 degrees to approach 180 degrees. Further, in the first magnetoresistive element R1 and the fourth magnetoresistive sensor R4, as the magnetoresistive element 10 is pulled from the non-deformed state, the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from 135 degrees to approaching approximately 90 degrees.
 第2磁気抵抗素子部R2および第3磁気抵抗素子部R3(第2磁気抵抗素子12および第3磁気抵抗素子13)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、略45度から減少して略0度に近づくように変化する。また、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、非変形状態から磁気抵抗素子10が引張されるにつれて、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が、略45度から増加して略90度に近づくように変化する。 In the second magnetoresistive element R2 and the third magnetoresistive element R3 (the second magnetoresistive element 12 and the third magnetoresistive element 13), as the magnetic resistance element 10 is compressed from the non-deformed state, the free layer becomes The relative angle between the magnetizing direction and the magnetizing direction of the reference layer changes from about 45 degrees to approach 0 degrees. Further, in the second magnetoresistive element R2 and the third magnetoresistive sensor R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the magnetization direction of the free layer and the magnetization direction of the reference layer are relative to each other. The angle changes from about 45 degrees to approaching about 90 degrees.
 このように比較の形態においては、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4におけるフリー層の磁化方向とリファレンス層の磁化方向との相対的な角度の範囲と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3におけるフリー層の磁化方向とリファレンス層の磁化方向との相対的な角度の範囲とが互いに異なる。 As described above, in the comparative form, the range of the relative angles between the magnetization direction of the free layer and the magnetization direction of the reference layer in the first magnetic resistance element portion R1 and the fourth magnetic resistance element portion R4, and the second magnetic resistance The range of relative angles between the magnetization direction of the free layer and the magnetization direction of the reference layer in the element unit R2 and the third magnetic resistance element unit R3 is different from each other.
 図29は、比較の形態に係るセンサにおいて、図28に示す相対的な角度と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。 FIG. 29 is a diagram showing the relationship between the relative angle shown in FIG. 28 and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the comparative form.
 図29に示すように、フリー層の磁化方向とリファレンス層の磁化方向との相対的な角度が増加するにつれて、第1磁気抵抗素子部R1、第2磁気抵抗素子部R2、第3磁気抵抗素子部R3、および第4磁気抵抗素子部R4のそれぞれにおいて抵抗が増加する。しかしながら、上述のように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4と第2磁気抵抗素子部R2および第3磁気抵抗素子部R3とにおいて、上記相対的な角度が相違するために、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4における抵抗の範囲と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3における抵抗の範囲が相違する。 As shown in FIG. 29, as the relative angle between the magnetization direction of the free layer and the magnetization direction of the reference layer increases, the first magnetoresistive element R1, the second magnetoresistive element R2, and the third magnetoresistive element The resistance increases in each of the portion R3 and the fourth magnetoresistive element portion R4. However, as described above, the relative angles are different between the first magnetoresistive element R1 and the fourth magnetoresistive element R4 and the second magnetoresistive element R2 and the third magnetoresistive element R3. In addition, the range of resistance in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 is different from the range of resistance in the second magnetoresistive element R2 and the third magnetoresistive element R3.
 図30は、比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フルブリッジ回路を構成する複数の磁気抵抗素子部の抵抗との関係を示す図である。 FIG. 30 is a diagram showing the relationship between the amount of strain of the magnetoresistive element due to the deformation of the diaphragm portion and the resistance of a plurality of magnetoresistive element portions constituting the full bridge circuit in the sensor according to the comparative form.
 図30に示すように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4(第1磁気抵抗素子11および第4磁気抵抗素子14)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、抵抗が、略0.07kΩから増加して略0.10kΩに近づくように変化する。また、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、非変形状態から磁気抵抗素子10が引張されるにつれて、抵抗が、略0.07kΩから減少して略0.05kΩに近づくように変化する。 As shown in FIG. 30, in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 (first magnetoresistive element 11 and fourth magnetoresistive element 14), the magnetoresistive element 10 is compressed from the non-deformed state. As it is done, the resistance changes from about 0.07 kΩ to approach about 0.10 kΩ. Further, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance decreases from about 0.07 kΩ to about 0.05 kΩ. It changes to get closer.
 第2磁気抵抗素子部R2および第3磁気抵抗素子部R3(第2磁気抵抗素子12および第3磁気抵抗素子13)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、抵抗が、略0.04kΩから減少して略0.035kΩに近づくように変化する。また、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、非変形状態から磁気抵抗素子10が引張されるにつれて、抵抗が、略0.04kΩから増加して略0.05kΩに近づくように変化する。 In the second magnetoresistive element R2 and the third magnetoresistive element R3 (second magnetoresistive element 12 and third magnetoresistive element 13), as the magnetoresistive element 10 is compressed from the non-deformed state, the resistance is increased. It decreases from about 0.04 kΩ and changes to approach about 0.035 kΩ. Further, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, as the magnetoresistive element 10 is pulled from the non-deformed state, the resistance increases from approximately 0.04 kΩ to approximately 0.05 kΩ. It changes to get closer.
 図31は、比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、ハーフブリッジ回路の出力電圧との関係を示す図である。 FIG. 31 is a diagram showing the relationship between the amount of distortion of the magnetoresistive element due to the deformation of the diaphragm portion and the output voltage of the half-bridge circuit in the sensor according to the comparative form.
 図31に示すように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4(第1磁気抵抗素子11および第4磁気抵抗素子14)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、第1ハーフブリッジ回路Hf1の出力が、略1.9Vから増加して略2.2Vに近づくように変化する。また、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4においては、非変形状態から磁気抵抗素子10が引張されるにつれて、第1ハーフブリッジ回路Hf1の出力が、略1.9Vから減少して略1.5Vに近づくように変化する。 As shown in FIG. 31, in the first magnetoresistive element R1 and the fourth magnetoresistive element R4 (the first magnetoresistive element 11 and the fourth magnetoresistive element 14), the magnetoresistive element 10 is compressed from the non-deformed state. As a result, the output of the first half-bridge circuit Hf1 increases from about 1.9V and changes to approach about 2.2V. Further, in the first magnetoresistive element portion R1 and the fourth magnetoresistive element portion R4, the output of the first half-bridge circuit Hf1 decreases from approximately 1.9 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 1.5V.
 第2磁気抵抗素子部R2および第3磁気抵抗素子部R3(第2磁気抵抗素子12および第3磁気抵抗素子13)においては、非変形状態から磁気抵抗素子10が圧縮されるにつれて、第2ハーフブリッジ回路Hf2の出力が、略1.1Vから減少して略0.8Vに近づくように変化する。また、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3においては、非変形状態から磁気抵抗素子10が引張されるにつれて、第2ハーフブリッジ回路Hf2の出力が、略1.1Vから増加して略1.5Vに近づくように変化する。 In the second magnetoresistive element R2 and the third magnetoresistive element R3 (the second magnetoresistive element 12 and the third magnetoresistive element 13), the second half as the magnetoresistive element 10 is compressed from the non-deformed state. The output of the bridge circuit Hf2 decreases from about 1.1V and changes to approach about 0.8V. Further, in the second magnetoresistive element portion R2 and the third magnetoresistive element portion R3, the output of the second half bridge circuit Hf2 increases from approximately 1.1 V as the magnetoresistive element 10 is pulled from the non-deformed state. Then, it changes so as to approach about 1.5V.
 図32は、比較の形態に係るセンサにおいて、ダイヤフラム部の変形による磁気抵抗素子の歪量と、フルブリッジ回路の出力電圧との関係を示す図である。 FIG. 32 is a diagram showing the relationship between the amount of distortion of the magnetoresistive element due to the deformation of the diaphragm portion and the output voltage of the full bridge circuit in the sensor according to the comparative form.
 図32に示すように、フルブリッジ回路の出力電圧は、非変形状態から磁気抵抗素子10が圧縮されるにつれて、900mVから増加し、略1500mVに近づくように変化する。また、フルブリッジ回路の出力電圧は、非変形状態から磁気抵抗素子10が引張されるにつれて、900mVから減少し、略100mVに近づくように変化する。 As shown in FIG. 32, the output voltage of the full bridge circuit increases from 900 mV as the magnetoresistive element 10 is compressed from the non-deformed state, and changes so as to approach approximately 1500 mV. Further, the output voltage of the full bridge circuit decreases from 900 mV as the magnetoresistive element 10 is pulled from the non-deformed state, and changes so as to approach approximately 100 mV.
 以上のように、比較の形態に係るセンサ100Xにおいては、実施の形態1と比較して上記角度θ2および角度θ3が異なることにより、上述のように、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3との間で、磁気抵抗素子10の歪量が0の場合の抵抗値が異なる。加えて、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3との間で、抵抗の変化範囲も異なる。 As described above, in the sensor 100X according to the comparative embodiment, the angles θ2 and the angles θ3 are different from those in the first embodiment, so that the first magnetoresistive element unit R1 and the fourth magnetism are different as described above. The resistance value when the strain amount of the magnetic resistance element 10 is 0 is different between the resistance element portion R4, the second magnetic resistance element portion R2, and the third magnetic resistance element portion R3. In addition, the change range of resistance is also different between the first magnetoresistive element R1 and the fourth magnetoresistive element R4 and the second magnetoresistive element R2 and the third magnetoresistive element R3.
 さらに、第1磁気抵抗素子部R1および第4磁気抵抗素子部R4によって構成される第1ハーフブリッジ回路Hf1と、第2磁気抵抗素子部R2および第3磁気抵抗素子部R3によって構成される第2ハーフブリッジ回路Hf2との間で、磁気抵抗素子10の歪量が0の場合のオフセット電圧が異なる。加えて、第1ハーフブリッジ回路Hf1と、第2ハーフブリッジ回路Hf2との間で、出力範囲も異なる。 Further, a second half-bridge circuit Hf1 composed of a first magnetoresistive element R1 and a fourth magnetoresistive element R4, and a second magnetoresistive element R2 and a third magnetoresistive sensor R3. The offset voltage when the amount of distortion of the magnetoresistive element 10 is 0 is different from that of the half-bridge circuit Hf2. In addition, the output range is also different between the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2.
 この結果、比較の形態に係るセンサ100Xにおいては、フルブリッジ回路での出力範囲が、実施の形態1と比較して小さくなり、感度が低下してしまう。 As a result, in the sensor 100X according to the comparative form, the output range in the full bridge circuit becomes smaller than that in the first embodiment, and the sensitivity is lowered.
 (実施の形態2)
 図33は、実施の形態2に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態においてフリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。図33を参照して、実施の形態2に係るセンサ100Aについて説明する。
(Embodiment 2)
FIG. 33 is a diagram showing the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the second embodiment. The sensor 100A according to the second embodiment will be described with reference to FIG. 33.
 図33に示すように、実施の形態2に係るセンサ100Aは、実施の形態1に係るセンサ100と比較した場合に、たわみ領域4の形状、および当該たわみ領域4にスリット4aが設けられている点において相違する。その他の構成については、ほぼ同様である。 As shown in FIG. 33, the sensor 100A according to the second embodiment is provided with the shape of the deflection region 4 and the slit 4a in the deflection region 4 when compared with the sensor 100 according to the first embodiment. It differs in that. Other configurations are almost the same.
 たわみ領域4は、平面視した場合(たわみ領域4の法線方向から見た場合)に、矩形形状を有している。具体的には、たわみ領域4は、正方形を有している。たわみ領域4は、複数の辺部(第1辺部41、第2辺部42、第3辺部43、および第4辺部44)と、複数の角部を有する。たわみ領域4には、当該たわみ領域4を周方向に複数に分割するスリット4aが設けられている。スリット4aは、複数の角部を対角に結ぶようにスリット4aが設けられている。スリット4aによって分割された複数の領域は、たわみ領域4の中心部に関して回転対称となるように設けられている。複数の領域は、三角形形状の外形を有するが、このような形に限定されない。 The deflection region 4 has a rectangular shape when viewed in a plan view (when viewed from the normal direction of the deflection region 4). Specifically, the deflection region 4 has a square shape. The deflection region 4 has a plurality of side portions (first side portion 41, second side portion 42, third side portion 43, and fourth side portion 44) and a plurality of corner portions. The deflection region 4 is provided with a slit 4a that divides the deflection region 4 into a plurality of parts in the circumferential direction. The slit 4a is provided so as to connect a plurality of corners diagonally. The plurality of regions divided by the slit 4a are provided so as to be rotationally symmetric with respect to the central portion of the deflection region 4. The plurality of regions has a triangular outer shape, but is not limited to such a shape.
 上述の第1辺部41および第4辺部44は、互いに向かいように配置されており、第2辺部42および第3辺部43は、上記第1辺部41および第4辺部44の両端同士を接続するとともに、互いに向かい合うように配置されている。 The first side portion 41 and the fourth side portion 44 are arranged so as to face each other, and the second side portion 42 and the third side portion 43 are the first side portion 41 and the fourth side portion 44. Both ends are connected and arranged so as to face each other.
 複数の磁気抵抗素子10は、各々の重心がたわみ領域4の外縁に沿うようにたわみ領域4に配置されている。具体的には、複数の第1磁気抵抗素子11は、第1辺部41に沿って配置されている。複数の第2磁気抵抗素子12は、第2辺部42に沿って配置されている。複数の第3磁気抵抗素子13は、第3辺部43に沿って配置されている。複数の第4磁気抵抗素子14は、第4辺部44に沿って配置されている。 The plurality of magnetoresistive elements 10 are arranged in the deflection region 4 so that the center of gravity of each is along the outer edge of the deflection region 4. Specifically, the plurality of first magnetoresistive elements 11 are arranged along the first side portion 41. The plurality of second magnetoresistive elements 12 are arranged along the second side portion 42. The plurality of third magnetoresistive elements 13 are arranged along the third side portion 43. The plurality of fourth magnetoresistive elements 14 are arranged along the fourth side portion 44.
 複数の第1磁気抵抗素子11は、第1辺部41の中央部に配置されている。複数の第2磁気抵抗素子12は、第2辺部42の中央部に配置されている。複数の第3磁気抵抗素子13は、第3辺部43の中央部に配置されている。複数の第4磁気抵抗素子14は、第4辺部44の中央部に配置されている。このように配置することにより、各辺部に配置された複数の磁気抵抗素子同士に作用する引張応力または圧縮応力の方向を略同一方向にすることができる。 The plurality of first magnetoresistive elements 11 are arranged in the central portion of the first side portion 41. The plurality of second magnetoresistive elements 12 are arranged at the center of the second side portion 42. The plurality of third magnetoresistive elements 13 are arranged at the center of the third side portion 43. The plurality of fourth magnetoresistive elements 14 are arranged at the center of the fourth side portion 44. By arranging in this way, the directions of the tensile stress or the compressive stress acting on the plurality of magnetoresistive elements arranged on each side can be made substantially the same direction.
 第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14の各重心からたわみ領域4の外縁までを最短で結ぶ仮想直線VL1に直交し、かつ、重心を通過する直線を基準線BL1とする。 In each of the first magnetic resistance element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element 14, the first magnetic resistance element 11, the second magnetic resistance element 12, and the third magnetic resistance The straight line that is orthogonal to the virtual straight line VL1 that connects each center of gravity of the element 13 and the fourth magnetoresistive element 14 to the outer edge of the deflection region 4 at the shortest distance and passes through the center of gravity is defined as the reference line BL1.
 また、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、基準線BL1において、仮想直線VL1とたわみ領域4の外縁との交点を上記重心から正面に見て上記重心から右に向かう方向を基準方向と定義する。 Further, in each of the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth magnetoresistive element 14, the virtual straight line VL1 and the outer edge of the deflection region 4 meet at the reference line BL1. The direction from the center of gravity to the right when the intersection is viewed from the center of gravity is defined as the reference direction.
 ダイヤフラム部3が変形していない状態、すなわち、たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、上記基準方向からフリー層の磁化方向(バイアス磁界によってフリー層の磁化が向く方向)までの反時計回りの角度θ1が、135度±5度である。 When the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4, the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth. In each of the magnetoresistive elements 14, the counterclockwise angle θ1 from the reference direction to the magnetization direction of the free layer (the direction in which the magnetization of the free layer is directed by the bias magnetic field) is 135 degrees ± 5 degrees.
 たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2が、45度±5度である。 In a state where no external force is applied to the deflection region 4, the counterclockwise angle θ2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 45. Degree ± 5 degrees.
 たわみ領域4に外力が印加されていない状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3が、225度±5度である。 In a state where no external force is applied to the deflection region 4, in the second magnetoresistive element 12 and the third magnetoresistive element 13, the counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 is 225. Degree ± 5 degrees.
 図34は、実施の形態2に係るセンサにおいて、ダイヤフラム部が変形した第1変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。なお、図34においては、非変形状態における磁気抵抗素子10の外縁およびフリー層の磁化方向を破線で示している。図34では、フリー層の磁歪定数が正の場合を示してある。 FIG. 34 is a diagram showing the direction of stress-induced anisotropy generated in the first deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the second embodiment. In FIG. 34, the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines. FIG. 34 shows a case where the magnetostrictive constant of the free layer is positive.
 図34に示すように、第1変形状態においては、複数の磁気抵抗素子10に引張応力が作用する。具体的には、引張応力は、図34の黒塗りの矢印で示すように、各辺部に垂直な方向(上述の仮想直線VL1に平行な方向)に沿って作用する。これにより、複数の磁気抵抗素子10の各々は、仮想直線VL1に平行な方向に延びるように変形する。 As shown in FIG. 34, in the first deformation state, tensile stress acts on the plurality of magnetoresistive elements 10. Specifically, the tensile stress acts along the direction perpendicular to each side (the direction parallel to the above-mentioned virtual straight line VL1) as shown by the black arrow in FIG. 34. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to extend in a direction parallel to the virtual straight line VL1.
 この際、複数の磁気抵抗素子10の各々において、応力誘起異方性が発現する。応力誘起異方性の方向は、図34の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを最短で結ぶ仮想直線VL1と平行となる。 At this time, stress-induced anisotropy is exhibited in each of the plurality of magnetoresistive elements 10. The direction of stress-induced anisotropy is parallel to the virtual straight line VL1 that connects the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 at the shortest distance, as shown by the black arrow shown in the magnetoresistive element 10 of FIG. ..
 この場合においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4、略90度となる。 In this case, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
 第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略90度となる。 Also in the second magnetoresistive element 12 and the third magnetoresistive element 13, the counterclockwise angle θ5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
 図35は、実施の形態2に係るセンサにおいて、ダイヤフラム部が変形した第2変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。なお、図35においては、非変形状態における磁気抵抗素子10の外縁およびフリー層の磁化方向を破線で示している。図35では、フリー層の磁歪定数が正の場合を示してある。 FIG. 35 is a diagram showing the direction of stress-induced anisotropy generated in the second deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the second embodiment. In FIG. 35, the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines. FIG. 35 shows a case where the magnetostrictive constant of the free layer is positive.
 図35に示すように、第2変形状態においては、複数の磁気抵抗素子10に圧縮応力が作用する。具体的には、圧縮応力は、図35の黒塗りの矢印で示すように、各辺部に垂直な方向(上述の仮想直線VL1に平行な方向)に沿って作用する。これにより、複数の磁気抵抗素子10の各々は、仮想直線VL1に平行な方向に縮むように変形する。 As shown in FIG. 35, in the second deformation state, compressive stress acts on the plurality of magnetoresistive elements 10. Specifically, the compressive stress acts along the direction perpendicular to each side (direction parallel to the above-mentioned virtual straight line VL1) as shown by the black arrow in FIG. 35. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to contract in a direction parallel to the virtual straight line VL1.
 この際、複数の磁気抵抗素子10の各々において、応力誘起異方性が発現する。応力誘起異方性の方向は、図8の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを結ぶ仮想直線VL1に直交する。すなわち、応力誘起異方性の方向は、基準線BL1と平行となる。 At this time, stress-induced anisotropy is exhibited in each of the plurality of magnetoresistive elements 10. The direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
 具体的には、第2状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4は、略180度となる。 Specifically, in the second state, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
 上記第2状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略180度となる。 In the second state, the counterclockwise angle θ5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
 このように、実施の形態2においても、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係が、実施の形態1と同様となる。この結果、実施の形態2に係るセンサ100Aにあっても、実施の形態1とほぼ同様の効果が得られる。 As described above, also in the second embodiment, the relationship between the angles θ1, the angle θ2, the angle θ3, the angle θ4, and the angle θ5 in the non-deformed state, the first deformed state, and the second deformed state is the embodiment. It becomes the same as 1. As a result, even in the sensor 100A according to the second embodiment, substantially the same effect as that of the first embodiment can be obtained.
 実施の形態2に係るセンサ100Aは、実施の形態1に係るセンサ100の製造方法に準拠して製造される。この場合において、実施の形態1の第3工程に準拠した工程において、上述のように複数の磁気抵抗素子10が各辺部の中央に配置されるようにTMR積層膜64、および上部電極膜65をパターニングする。実施の形態1の第8工程に準拠した工程において、たわみ領域4が矩形形状となるように空洞部5を形成する。また、たわみ領域4にスリット4aを形成する。 The sensor 100A according to the second embodiment is manufactured in accordance with the manufacturing method of the sensor 100 according to the first embodiment. In this case, in the step according to the third step of the first embodiment, the TMR laminated film 64 and the upper electrode film 65 are arranged so that the plurality of magnetoresistive elements 10 are arranged in the center of each side portion as described above. Patterning. In the step according to the eighth step of the first embodiment, the cavity portion 5 is formed so that the deflection region 4 has a rectangular shape. Further, a slit 4a is formed in the deflection region 4.
 なお、実施の形態2においては、たわみ領域4にスリット4aが設けられる場合を例示して説明したが、これに限定されず、スリット4aが設けられていなくてもよい。上記スリット4aを設けた場合には、製造工程でダイヤフラム部3に入力された応力をスリット4aによって解放することができる。 In the second embodiment, the case where the slit 4a is provided in the deflection region 4 has been described as an example, but the present invention is not limited to this, and the slit 4a may not be provided. When the slit 4a is provided, the stress input to the diaphragm portion 3 in the manufacturing process can be released by the slit 4a.
 (実施の形態3)
 図36は、実施の形態3に係るセンサにおいて、ダイヤフラム部が変形していない非変形状態において、フリー層の磁化方向と、リファレンス層の磁化の方向とを示す図である。図36を参照して、実施の形態3に係るセンサ100Bについて説明する。
(Embodiment 3)
FIG. 36 is a diagram showing the magnetization direction of the free layer and the magnetization direction of the reference layer in the non-deformed state in which the diaphragm portion is not deformed in the sensor according to the third embodiment. The sensor 100B according to the third embodiment will be described with reference to FIG. 36.
 図36に示すように、実施の形態3に係るセンサ100Bは、実施の形態1に係るセンサ100と比較した場合に、複数の磁気抵抗素子10が磁気渦構造を有する点において相違する。その他の構成については、ほぼ同様である。 As shown in FIG. 36, the sensor 100B according to the third embodiment is different from the sensor 100 according to the first embodiment in that a plurality of magnetoresistive elements 10 have a magnetic vortex structure. Other configurations are almost the same.
 複数の磁気抵抗素子10の各々は、ディスク形状を有する。これにより、複数の磁気抵抗素子10の各々に含まれるフリー層もディスク形状を有する。磁気渦構造のフリー層は、磁気抵抗素子10の歪量がゼロの場合、面内での磁化方向は点対称であり、その中心に面直方向に磁化を持つ。すなわち、面直方向にバイアスした場合と等価と考えることができる。 Each of the plurality of magnetoresistive elements 10 has a disk shape. As a result, the free layer included in each of the plurality of magnetoresistive elements 10 also has a disk shape. When the strain amount of the magnetic resistance element 10 is zero, the free layer having a magnetic vortex structure has a point-symmetrical magnetization direction in the plane and has magnetization in the plane perpendicular direction at the center thereof. That is, it can be considered to be equivalent to the case of biasing in the direction perpendicular to the plane.
 この場合においては、後述するように、リファレンス層の磁化固定方向は、磁気抵抗素子が引張または圧縮された場合に発現する応力誘起異方性の方向に対する相対角度が45度となるように設定する。 In this case, as will be described later, the magnetization fixing direction of the reference layer is set so that the relative angle with respect to the direction of the stress-induced anisotropy that appears when the magnetoresistive element is pulled or compressed is 45 degrees. ..
 なお、一般的に、磁気抵抗素子10をディスク形状とし、これに応力を作用させて磁気抵抗素子10が楕円形状となった場合においては、逆磁歪効果だけでは、応力誘起異方性の方向が、楕円形状の長軸方向の一方側に向くか他方側に向くかを一意に決定することが困難となる。 In general, when the magnetoresistive element 10 has a disk shape and stress is applied to the magnetoresistive element 10 to form an elliptical shape, the direction of stress-induced anisotropy is determined only by the inverse magnetostrictive effect. , It becomes difficult to uniquely determine whether the elliptical shape faces one side or the other side in the long axis direction.
 さらに、フリー層/トンネルバリア層/リファレンス層の積層構造では、一般的なトンアネルバリア層の膜厚の場合、フリー層にはリファレンス層の磁化方向と平行方向に揃えようとする弱い層間交換結合力が働く。当該層間交換結合力によって応力誘起異方性の方向が支配される場合には、磁気抵抗素子の歪みの正負に対する出力特性が偶関数となってしまう。 Further, in the laminated structure of the free layer / tunnel barrier layer / reference layer, in the case of a general tonnel barrier layer film thickness, the free layer has a weak interlayer exchange bond that tries to align in the direction parallel to the magnetization direction of the reference layer. Power works. When the direction of stress-induced anisotropy is governed by the interlayer exchange coupling force, the output characteristic with respect to the positive and negative distortion of the magnetoresistive element becomes an even function.
 このため、実施の形態3においても、奇数関数の出力特性を得るために、リファレンス層の磁化方向に対して90度の方向にフリー層をバイアスしている。また、磁気抵抗素子への歪印加時に、フリー層の磁化方向を一意に決定するために、フリー層に印加されるバイアス磁界の強度を、フリー層とリファレンス層の間で作用する交換結合磁界の強度よりも大きくしている。 Therefore, also in the third embodiment, the free layer is biased in the direction of 90 degrees with respect to the magnetization direction of the reference layer in order to obtain the output characteristics of the odd function. Further, in order to uniquely determine the magnetization direction of the free layer when strain is applied to the magnetoresistive element, the strength of the bias magnetic field applied to the free layer is determined by the exchange coupling magnetic field acting between the free layer and the reference layer. It is larger than the strength.
 実施の形態3においても、実施の形態1同様に、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14の各重心からたわみ領域4の外縁までを最短で結ぶ仮想直線VL1に直交し、かつ、重心を通過する直線を基準線BL1とする。 Also in the third embodiment, similarly to the first embodiment, the first magnetic resistance in each of the first magnetic resistance element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element 14. It is orthogonal to the virtual straight line VL1 that connects the center of gravity of each of the element 11, the second magnetic resistance element 12, the third magnetic resistance element 13, and the fourth magnetic resistance element 14 to the outer edge of the deflection region 4 at the shortest, and passes through the center of gravity. Let the straight line be the reference line BL1.
 第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、基準線BL1において、仮想直線VL1とたわみ領域4の外縁との交点を上記重心から正面に見て上記重心から右に向かう方向を基準方向と定義する。 In each of the first magnetoresistive element 11, the second magnetoresistive element 12, the third magnetoresistive element 13, and the fourth magnetoresistive element 14, the intersection of the virtual straight line VL1 and the outer edge of the deflection region 4 is set at the reference line BL1. The direction from the center of gravity to the right when viewed from the front is defined as the reference direction.
 この場合においても、ダイヤフラム部3が変形していない状態、すなわち、たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、上記基準方向からフリー層の磁化方向(バイアス磁界によってフリー層の磁化が向く方向)までの反時計回りの角度θ1が、135度±5度である。 Even in this case, the first magnetoresistive element 11, the second magnetoresistive element 12, and the third magnetoresistive element are in the state where the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4. In each of the 13 and the 4th magnetoresistive element 14, the counterclockwise angle θ1 from the reference direction to the magnetization direction of the free layer (the direction in which the magnetization of the free layer is directed by the bias magnetic field) is 135 degrees ± 5 degrees. is there.
 たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2が、45度±5度である。 In a state where no external force is applied to the deflection region 4, the counterclockwise angle θ2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 45. Degree ± 5 degrees.
 たわみ領域4に外力が印加されていない状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3が、225度±5度である。 In a state where no external force is applied to the deflection region 4, in the second magnetoresistive element 12 and the third magnetoresistive element 13, the counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 is 225. Degree ± 5 degrees.
 図37は、実施の形態3に係るセンサにおいて、ダイヤフラム部が変形した第1変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。なお、図37においては、非変形状態における磁気抵抗素子10の外縁およびフリー層の磁化方向を破線で示している。図37では、フリー層の磁歪定数が正の場合を示してある。 FIG. 37 is a diagram showing the direction of stress-induced anisotropy generated in the first deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the third embodiment. In FIG. 37, the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines. FIG. 37 shows a case where the magnetostrictive constant of the free layer is positive.
 図37に示すように、第1変形状態においては、複数の磁気抵抗素子10に引張応力が作用する。具体的には、引張応力は、図37の黒塗りの矢印で示すように、たわみ領域4の径方向に沿って作用する。これにより、複数の磁気抵抗素子10の各々が、たわみ領域4の径方向に延びるように変形する。 As shown in FIG. 37, in the first deformation state, tensile stress acts on the plurality of magnetoresistive elements 10. Specifically, the tensile stress acts along the radial direction of the deflection region 4, as shown by the black arrow in FIG. 37. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to extend in the radial direction of the deflection region 4.
 この際、たわみ領域4の径方向外側に向けて、応力誘起異方性が発現する。応力誘起異方性の方向は、図37の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを結ぶ仮想直線VL1と平行となる。 At this time, stress-induced anisotropy develops toward the radial outer side of the deflection region 4. The direction of the stress-induced anisotropy is parallel to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. 37.
 この場合においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4、略90度となる。 In this case, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
 第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略90度となる。 Also in the second magnetoresistive element 12 and the third magnetoresistive element 13, the counterclockwise angle θ5 from the reference direction to the direction of stress-induced anisotropy is approximately 90 degrees.
 図38は、実施の形態2に係るセンサにおいて、ダイヤフラム部が変形した第2変形状態において発生する応力誘起異方性の方向と、リファレンス層の磁化の方向とを示す図である。なお、図38においては、非変形状態における磁気抵抗素子10の外縁およびフリー層の磁化方向を破線で示している。図38では、フリー層の磁歪定数が正の場合を示してある。 FIG. 38 is a diagram showing the direction of stress-induced anisotropy generated in the second deformed state in which the diaphragm portion is deformed and the direction of magnetization of the reference layer in the sensor according to the second embodiment. In FIG. 38, the outer edge of the magnetoresistive element 10 and the magnetization direction of the free layer in the non-deformed state are shown by broken lines. FIG. 38 shows a case where the magnetostrictive constant of the free layer is positive.
 図38に示すように、第2変形状態においては、複数の磁気抵抗素子10に圧縮応力が作用する。具体的には、圧縮応力は、図38の黒塗りの矢印で示すように、たわみ領域4の径方向に沿って作用する。これにより、複数の磁気抵抗素子10の各々が、たわみ領域4の径方向に縮むように変形する。 As shown in FIG. 38, in the second deformation state, compressive stress acts on the plurality of magnetoresistive elements 10. Specifically, the compressive stress acts along the radial direction of the deflection region 4, as shown by the black arrow in FIG. 38. As a result, each of the plurality of magnetoresistive elements 10 is deformed so as to contract in the radial direction of the deflection region 4.
 この際、複数の磁気抵抗素子10の各々において、応力誘起異方性が発現する。応力誘起異方性の方向は、図38の磁気抵抗素子10内に示す黒矢印で示すように、磁気抵抗素子10の重心とたわみ領域4の外縁とを結ぶ仮想直線VL1に直交する。すなわち、応力誘起異方性の方向は、基準線BL1と平行となる。 At this time, stress-induced anisotropy is exhibited in each of the plurality of magnetoresistive elements 10. The direction of stress-induced anisotropy is orthogonal to the virtual straight line VL1 connecting the center of gravity of the magnetoresistive element 10 and the outer edge of the deflection region 4 as shown by the black arrow shown in the magnetoresistive element 10 of FIG. 38. That is, the direction of stress-induced anisotropy is parallel to the reference line BL1.
 具体的には、第2状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ4は、略180度となる。 Specifically, in the second state, in the first magnetoresistive element 11 and the fourth magnetoresistive element 14, the counterclockwise angle θ4 from the reference direction to the direction of stress-induced anisotropy is approximately 180 degrees. It becomes.
 上記第2状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13においても、上記基準方向から応力誘起異方性の方向までの反時計回りの角度θ5は、略180度となる。 In the second state, the counterclockwise angle θ5 from the reference direction to the stress-induced anisotropy direction is approximately 180 degrees also in the second magnetoresistive element 12 and the third magnetoresistive element 13.
 このように、実施の形態3においても、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係が、実施の形態1と同様となる。この結果、実施の形態3に係るセンサ100Bにあっても、実施の形態1とほぼ同様の効果が得られる。 As described above, also in the third embodiment, the relationship between the angles θ1, the angle θ2, the angle θ3, the angle θ4, and the angle θ5 in the non-deformed state, the first deformed state, and the second deformed state is the embodiment. It becomes the same as 1. As a result, even in the sensor 100B according to the third embodiment, substantially the same effect as that of the first embodiment can be obtained.
 実施の形態3に係るセンサ100Bは、実施の形態1に係るセンサ100の製造方法に準拠して製造される。この場合において、実施の形態1の第3工程に準拠した工程において、TMR積層膜64、および上部電極膜65をディスク形状にパターニングする。 The sensor 100B according to the third embodiment is manufactured in accordance with the manufacturing method of the sensor 100 according to the first embodiment. In this case, in the step according to the third step of the first embodiment, the TMR laminated film 64 and the upper electrode film 65 are patterned into a disk shape.
 (実施の形態4)
 図39は、実施の形態4に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。図39を参照して、実施の形態4に係るセンサ100Cについて説明する。
(Embodiment 4)
FIG. 39 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the fourth embodiment. The sensor 100C according to the fourth embodiment will be described with reference to FIG. 39.
 図40に示すように、実施の形態4に係るセンサ100Cは、実施の形態3に係るセンサ100Bと比較した場合に、第1ハーフブリッジ回路Hf1を構成する複数の磁気抵抗素子10と、第2ハーフブリッジ回路Hf2を構成する複数の磁気抵抗素子10とで、ディスク径が異なる点が相異する。その他の構成については、ほぼ同様である。 As shown in FIG. 40, the sensor 100C according to the fourth embodiment has a plurality of magnetoresistive elements 10 constituting the first half-bridge circuit Hf1 and a second magnetoresistive element 10 when compared with the sensor 100B according to the third embodiment. The difference is that the disk diameters are different between the plurality of magnetoresistive elements 10 constituting the half-bridge circuit Hf2. Other configurations are almost the same.
 上述のように、実施の形態4においては、第1磁気抵抗素子11および第2磁気抵抗素子12におけるフリー層のディスク径と、第3磁気抵抗素子13および第4磁気抵抗素子14におけるフリー層のディスク径とが異なる。 As described above, in the fourth embodiment, the disk diameter of the free layer in the first magnetoresistive element 11 and the second magnetoresistive element 12 and the free layer in the third magnetoresistive element 13 and the fourth magnetoresistive element 14 The disk diameter is different.
 具体的には、第1磁気抵抗素子11および第2磁気抵抗素子12におけるフリー層のディスク径が、第3磁気抵抗素子13および第4磁気抵抗素子14におけるフリー層のディスク径よりも小さくなっている。 Specifically, the disk diameter of the free layer in the first magnetoresistive element 11 and the second magnetoresistive element 12 becomes smaller than the disk diameter of the free layer in the third magnetoresistive element 13 and the fourth magnetoresistive element 14. There is.
 これにより、第1ハーフブリッジ回路Hf1側において、感度を小さくし、ダイナミックレンジを大きくすることができる。一方、第2ハーフブリッジ回路Hf2側においては、感度を大きくし、ダイナミックレンジを小さくすることができる。 As a result, the sensitivity can be reduced and the dynamic range can be increased on the first half-bridge circuit Hf1 side. On the other hand, on the second half bridge circuit Hf2 side, the sensitivity can be increased and the dynamic range can be decreased.
 この場合においては、第1ハーフブリッジ回路Hf1からの出力および前記第2ハーフブリッジ回路からの出力のいずれか一方が飽和している場合に、第1ハーフブリッジ回路からの出力および第2ハーフブリッジ回路Hf2からの出力の他方を用いる。 In this case, when either the output from the first half-bridge circuit Hf1 or the output from the second half-bridge circuit is saturated, the output from the first half-bridge circuit and the second half-bridge circuit The other of the outputs from Hf2 is used.
 このようにダイナミックレンジを使い分けることにより、たわみ領域4に作用する外力を適正に検知することができる。また、たわみ領域4に入力される外力が音である場合に、入力音圧レベル、入力ダイナミックレンジを拡大することができる。 By properly using the dynamic range in this way, it is possible to properly detect the external force acting on the deflection region 4. Further, when the external force input to the deflection region 4 is sound, the input sound pressure level and the input dynamic range can be expanded.
 上述のような構成とする場合であっても、実施の形態4に係るセンサ100Cにおいて、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係は、実施の形態3と同様である。このため、実施の形態4に係るセンサ100Cにおいても、実施の形態3に係るセンサ100Bとほぼ同様の効果が得られる。 Even in the case of the above-described configuration, in the sensor 100C according to the fourth embodiment, in the non-deformed state, the first deformed state, and the second deformed state, the angles θ1, the angle θ2, the angle θ3, and the angle The relationship between θ4 and the angle θ5 is the same as in the third embodiment. Therefore, the sensor 100C according to the fourth embodiment has almost the same effect as the sensor 100B according to the third embodiment.
 また、上述の感度は、磁気抵抗素子のディスク径を変更することで調整できるため、面内で膜厚を変更することが困難な実施の形態1と比較して、異なる感度を有する磁気抵抗素子を容易に同一チップ内に集積することができる。 Further, since the above-mentioned sensitivity can be adjusted by changing the disk diameter of the magnetoresistive element, the magnetoresistive element having a different sensitivity as compared with the first embodiment in which it is difficult to change the film thickness in the plane. Can be easily integrated in the same chip.
 実施の形態4に係るセンサ100Cは、実施の形態1に係るセンサ100の製造方法に準拠して製造される。この場合において、実施の形態1の第3工程に準拠した工程において、TMR積層膜64、および上部電極膜65をディスク形状にパターニングする。この際、第1ハーフブリッジ回路Hf1を構成する複数の磁気抵抗素子10と、第2ハーフブリッジ回路Hf2を構成する複数の磁気抵抗素子10とで、ディスク径が異なるようにパターニングする。 The sensor 100C according to the fourth embodiment is manufactured in accordance with the manufacturing method of the sensor 100 according to the first embodiment. In this case, in the step according to the third step of the first embodiment, the TMR laminated film 64 and the upper electrode film 65 are patterned into a disk shape. At this time, the plurality of magnetoresistive elements 10 constituting the first half-bridge circuit Hf1 and the plurality of magnetoresistive elements 10 constituting the second half-bridge circuit Hf2 are patterned so that the disk diameters are different.
 (実施の形態5)
 図40は、実施の形態5に係るセンサにおいてダイヤフラム部(ここでは、ダイヤフラム部は、全周固定されていないため、片持ち梁部またはカンチレバー部とも表現できる)が変形していない非変形状態を示す概略平面図である。図40を参照して、実施の形態5に係るセンサ100Dについて説明する。
(Embodiment 5)
FIG. 40 shows a non-deformed state in which the diaphragm portion (here, since the diaphragm portion is not fixed all around, it can also be expressed as a cantilever portion or a cantilever portion) in the sensor according to the fifth embodiment. It is a schematic plan view which shows. The sensor 100D according to the fifth embodiment will be described with reference to FIG. 40.
 図40に示すように、実施の形態5に係るセンサ100Dは、実施の形態3に係るセンサ100Bと比較した場合に、たわみ領域4の構成が相異する。その他の構成については、ほぼ同様である。 As shown in FIG. 40, the sensor 100D according to the fifth embodiment has a different configuration of the deflection region 4 when compared with the sensor 100B according to the third embodiment. Other configurations are almost the same.
 実施の形態5においては、たわみ領域4は、互いに分離された第1領域4Aおよび第2領域4Bを有する。第1領域4Aと第2領域4Bの面積は、互いに異なっている。 In the fifth embodiment, the deflection region 4 has a first region 4A and a second region 4B separated from each other. The areas of the first region 4A and the second region 4B are different from each other.
 第1領域4Aおよび第2領域4Bは、平面視した場合に、円弧部と直線部とを含む半円形状を有する。第1領域4Aおよび第2領域4Bは、直線部が向かい合うように配置されている。第1領域4Aおよび第2領域4Bは、互いに相似関係にある。第1領域4Aの半径は、第2領域4Bの半径よりも大きくなっている。 The first region 4A and the second region 4B have a semicircular shape including an arc portion and a straight portion when viewed in a plan view. The first region 4A and the second region 4B are arranged so that the straight portions face each other. The first region 4A and the second region 4B are similar to each other. The radius of the first region 4A is larger than the radius of the second region 4B.
 第1領域4Aには、第1ハーフブリッジ回路Hf1を構成する第1磁気抵抗素子11および第2磁気抵抗素子12が配置されている。第1磁気抵抗素子11および第2磁気抵抗素子12は、各磁気抵抗素子の重心が、たわみ領域4の外縁のうち上記第1領域4Aの円弧部に沿うよう配置されている。 In the first region 4A, the first magnetoresistive element 11 and the second magnetoresistive element 12 constituting the first half-bridge circuit Hf1 are arranged. The first magnetoresistive element 11 and the second magnetoresistive element 12 are arranged so that the center of gravity of each magnetoresistive element is along the arc portion of the first region 4A of the outer edge of the deflection region 4.
 第2領域4Bには、第2ハーフブリッジ回路Hf2を構成する第3磁気抵抗素子13および第4磁気抵抗素子14が配置されている。第3磁気抵抗素子13および第4磁気抵抗素子14は、各磁気抵抗素子の重心が、たわみ領域4の外縁のうち上記第2領域4Bの円弧部に沿うよう配置されている。 In the second region 4B, the third magnetoresistive element 13 and the fourth magnetoresistive element 14 constituting the second half-bridge circuit Hf2 are arranged. The third magnetoresistive element 13 and the fourth magnetoresistive element 14 are arranged so that the center of gravity of each magnetoresistive element is along the arc portion of the second region 4B of the outer edge of the deflection region 4.
 図41は、実施の形態5に係るセンサにおいて、たわみ領域を構成する第1領域および第2領域の各々において、周波数と感度との関係を示す図である。 FIG. 41 is a diagram showing the relationship between frequency and sensitivity in each of the first region and the second region constituting the deflection region in the sensor according to the fifth embodiment.
 図41に示すように、第1領域4Aにおける共振周波数f1と、第2領域4Bにおける共振周波数f2とは、互いに異なっている。第1領域4Aの面積は、第2領域4Bの面積よりも大きくなっており、第1領域4Aにおける共振周波数f1は、第2領域4Bにおける共振周波数f2よりも小さくなっている。第1領域4Aおよび第2領域4Bのいずれにおいても、共振周波数の近傍で、感度が大きくなる。出力の周波数依存性が無いことが好ましいため、感度が一定の周波数領域が用いられる。 As shown in FIG. 41, the resonance frequency f1 in the first region 4A and the resonance frequency f2 in the second region 4B are different from each other. The area of the first region 4A is larger than the area of the second region 4B, and the resonance frequency f1 in the first region 4A is smaller than the resonance frequency f2 in the second region 4B. In both the first region 4A and the second region 4B, the sensitivity increases in the vicinity of the resonance frequency. Since it is preferable that there is no frequency dependence of the output, a frequency domain having a constant sensitivity is used.
 実施の形態5においては、共振周波数が異なる第1領域4Aと第2領域4Bとにたわみ領域4を分割し、周波数に応じて、第1ハーフブリッジ回路Hf1からの出力および第2ハーフブリッジ回路Hf2からの出力を切り替える。 In the fifth embodiment, the deflection region 4 is divided into the first region 4A and the second region 4B having different resonance frequencies, and the output from the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2 are divided according to the frequency. Switch the output from.
 ここで、第1領域4Aと同様の共振周波数を有する単一の領域でたわみ領域4を構成する場合には、感度が一定の範囲はR11となる。 Here, when the deflection region 4 is formed by a single region having the same resonance frequency as the first region 4A, the range in which the sensitivity is constant is R11.
 実施の形態5では、上述のように、共振周波数が異なる第1領域4Aと第2領域4Bとにたわみ領域4を分割することにより、感度が一定の範囲をR11から、R11とR12とを含む範囲まで拡張することができる。この結果、センサ100Dで検知できる周波数帯域を拡張することができる。 In the fifth embodiment, as described above, by dividing the deflection region 4 into the first region 4A and the second region 4B having different resonance frequencies, a range having a constant sensitivity is included from R11 to R11 and R12. It can be extended to the range. As a result, the frequency band that can be detected by the sensor 100D can be expanded.
 上述のような構成とする場合であっても、実施の形態5に係るセンサ100Dにおいて、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係は、実施の形態3と同様である。このため、実施の形態5に係るセンサ100Dにおいても、実施の形態3に係るセンサ100Bとほぼ同様の効果が得られる。 Even in the case of the above-described configuration, in the sensor 100D according to the fifth embodiment, in the non-deformed state, the first deformed state, and the second deformed state, the angles θ1, the angle θ2, the angle θ3, and the angle The relationship between θ4 and the angle θ5 is the same as in the third embodiment. Therefore, the sensor 100D according to the fifth embodiment has almost the same effect as the sensor 100B according to the third embodiment.
 (実施の形態6)
 図42は、実施の形態6に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。図42を参照して、実施の形態6に係るセンサ100Eについて説明する。
(Embodiment 6)
FIG. 42 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the sixth embodiment. The sensor 100E according to the sixth embodiment will be described with reference to FIG. 42.
 図42に示すように、実施の形態6に係るセンサ100Eは、実施の形態2に係るセンサ100Aと比較した場合に、複数の磁気抵抗素子10が磁気渦構造を有する点において相違する。すなわち、複数の磁気抵抗素子10の各々は、ディスク形状を有する。 As shown in FIG. 42, the sensor 100E according to the sixth embodiment is different in that the plurality of magnetoresistive elements 10 have a magnetic vortex structure when compared with the sensor 100A according to the second embodiment. That is, each of the plurality of magnetoresistive elements 10 has a disk shape.
 このように構成される場合であっても、実施の形態6に係るセンサ100Eにおいて、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係は、実施の形態2と同様である。このため、実施の形態6に係るセンサ100Eにおいても、実施の形態2に係るセンサ100Aとほぼ同様の効果が得られる。 Even in the case of being configured in this way, in the sensor 100E according to the sixth embodiment, in the non-deformed state, the first deformed state, and the second deformed state, the angles θ1, the angle θ2, the angle θ3, and the angle θ4 , And the angle θ5 are the same as in the second embodiment. Therefore, the sensor 100E according to the sixth embodiment has almost the same effect as the sensor 100A according to the second embodiment.
 (実施の形態7)
 図43は、実施の形態7に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。図43を参照して、実施の形態7に係るセンサ100Fについて説明する。
(Embodiment 7)
FIG. 43 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the seventh embodiment. The sensor 100F according to the seventh embodiment will be described with reference to FIG. 43.
 図43に示すように、実施の形態7に係るセンサ100Fは、実施の形態6に係るセンサ100Eと比較した場合に、第1ハーフブリッジ回路Hf1を構成する複数の磁気抵抗素子10と、第2ハーフブリッジ回路Hf2を構成する複数の磁気抵抗素子10とで、ディスク径が異なる点が相異する。その他の構成については、ほぼ同様である。 As shown in FIG. 43, the sensor 100F according to the seventh embodiment has a plurality of magnetoresistive elements 10 constituting the first half-bridge circuit Hf1 and a second magnetoresistive element 10 when compared with the sensor 100E according to the sixth embodiment. The difference is that the disk diameters are different between the plurality of magnetoresistive elements 10 constituting the half-bridge circuit Hf2. Other configurations are almost the same.
 具体的には、第1磁気抵抗素子11および第2磁気抵抗素子12におけるフリー層のディスク径が、第3磁気抵抗素子13および第4磁気抵抗素子14におけるフリー層のディスク径よりも小さくなっている。 Specifically, the disk diameter of the free layer in the first magnetoresistive element 11 and the second magnetoresistive element 12 becomes smaller than the disk diameter of the free layer in the third magnetoresistive element 13 and the fourth magnetoresistive element 14. There is.
 これにより、第1ハーフブリッジ回路Hf1側において、感度を小さくし、ダイナミックレンジを大きくすることができる。一方、第2ハーフブリッジ回路Hf2側においては、感度を大きくし、ダイナミックレンジを小さくすることができる。 As a result, the sensitivity can be reduced and the dynamic range can be increased on the first half-bridge circuit Hf1 side. On the other hand, on the second half bridge circuit Hf2 side, the sensitivity can be increased and the dynamic range can be decreased.
 この場合においては、第1ハーフブリッジ回路Hf1からの出力および第2ハーフブリッジ回路Hf2からの出力のいずれか一方が飽和している場合に、第1ハーフブリッジ回路Hf1からの出力および第2ハーフブリッジ回路Hf2からの出力の他方を用いる。 In this case, when either the output from the first half-bridge circuit Hf1 or the output from the second half-bridge circuit Hf2 is saturated, the output from the first half-bridge circuit Hf1 and the second half bridge The other of the outputs from circuit Hf2 is used.
 このようにダイナミックレンジを使い分けることにより、たわみ領域4に作用する外力を適正に検知することができる。また、たわみ領域4に入力される外力が音である場合に、入力音圧レベル、入力ダイナミックレンジを拡大することができる。 By properly using the dynamic range in this way, it is possible to properly detect the external force acting on the deflection region 4. Further, when the external force input to the deflection region 4 is sound, the input sound pressure level and the input dynamic range can be expanded.
 上述のような構成とする場合であっても、実施の形態7に係るセンサ100Fにおいて、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係は、実施の形態6と同様である。このため、実施の形態7に係るセンサ100Fにおいても、実施の形態6に係るセンサ100Eとほぼ同様の効果が得られる。 Even in the case of the above-described configuration, in the sensor 100F according to the seventh embodiment, the angles θ1, the angle θ2, the angle θ3, and the angles in the non-deformed state, the first deformed state, and the second deformed state. The relationship between θ4 and the angle θ5 is the same as in the sixth embodiment. Therefore, the sensor 100F according to the seventh embodiment has almost the same effect as the sensor 100E according to the sixth embodiment.
 (実施の形態8)
 図44は、実施の形態8に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。図44を参照して、実施の形態8に係るセンサ100Gについて説明する。
(Embodiment 8)
FIG. 44 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the eighth embodiment. The sensor 100G according to the eighth embodiment will be described with reference to FIG. 44.
 図44に示すように、実施の形態8に係るセンサ100Gは、実施の形態6に係るセンサ100Eと比較した場合に、たわみ領域4の構成が相異する。その他の構成については、ほぼ同様である。 As shown in FIG. 44, the sensor 100G according to the eighth embodiment has a different configuration of the deflection region 4 when compared with the sensor 100E according to the sixth embodiment. Other configurations are almost the same.
 実施の形態8においては、たわみ領域4は、互いに分離された第1領域4Aおよび第2領域4Bを有する。第1領域4Aと第2領域4Bの面積は、互いに異なっている。 In the eighth embodiment, the deflection region 4 has a first region 4A and a second region 4B separated from each other. The areas of the first region 4A and the second region 4B are different from each other.
 第1領域4Aおよび第2領域4Bは、平面視した場合に、略二等辺三角形形状を有する。第1領域4Aおよび第2領域4Bは、斜辺が向かい合うように配置されている。第1領域4Aおよび第2領域4Bは、互いに相似関係にある。第1領域4Aの面積は、第2領域4Bの面積よりも大きくなっている。 The first region 4A and the second region 4B have a substantially isosceles triangular shape when viewed in a plan view. The first region 4A and the second region 4B are arranged so that their hypotenuses face each other. The first region 4A and the second region 4B are similar to each other. The area of the first region 4A is larger than the area of the second region 4B.
 このように面積が異なることにより、実施の形態5同様に、第1領域4Aにおける共振周波数f1と、第2領域4Bにおける共振周波数f2とは、互いに異なっている。第1領域4Aの面積は、第2領域4Bの面積よりも大きくなっており、第1領域4Aにおける共振周波数f1は、第2領域4Bにおける共振周波数f2よりも小さくなっている。 Due to the difference in area in this way, the resonance frequency f1 in the first region 4A and the resonance frequency f2 in the second region 4B are different from each other as in the fifth embodiment. The area of the first region 4A is larger than the area of the second region 4B, and the resonance frequency f1 in the first region 4A is smaller than the resonance frequency f2 in the second region 4B.
 実施の形態8においては、共振周波数が異なる第1領域4Aと第2領域4Bとにたわみ領域4を分割し、周波数に応じて、第1ハーフブリッジ回路Hf1からの出力および第2ハーフブリッジ回路Hf2からの出力を切り替える。 In the eighth embodiment, the deflection region 4 is divided into the first region 4A and the second region 4B having different resonance frequencies, and the output from the first half-bridge circuit Hf1 and the second half-bridge circuit Hf2 are divided according to the frequency. Switch the output from.
 これにより、感度が一定の範囲を拡張することができ、センサ100Gで検知できる周波数帯域を拡張することができる。 As a result, the sensitivity can be expanded in a certain range, and the frequency band that can be detected by the sensor 100G can be expanded.
 上述のような構成とする場合であっても、実施の形態8に係るセンサ100Gにおいて、非変形状態、第1変形状態、および第2変形状態において、上記角度θ1、角度θ2、角度θ3、角度θ4、および角度θ5の関係は、実施の形態6と同様である。このため、実施の形態8に係るセンサ100Gにおいても、実施の形態6に係るセンサ100Eとほぼ同様の効果が得られる。 Even in the case of the above-described configuration, in the sensor 100G according to the eighth embodiment, the angles θ1, the angle θ2, the angle θ3, and the angles are in the non-deformed state, the first deformed state, and the second deformed state. The relationship between θ4 and the angle θ5 is the same as in the sixth embodiment. Therefore, the sensor 100G according to the eighth embodiment has almost the same effect as the sensor 100E according to the sixth embodiment.
 (実施の形態9)
 図45は、実施の形態9に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。図46は、実施の形態9に係るセンサにおいて、磁気抵抗素子、およびその周辺の構成を示す概略斜視図である。図47は、実施の形態9に係る磁気抵抗素子およびその周辺構成の概略断面図である。図45から図47を参照して、実施の形態9に係るセンサ100Hについて説明する。
(Embodiment 9)
FIG. 45 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the ninth embodiment. FIG. 46 is a schematic perspective view showing the configuration of the magnetoresistive element and its surroundings in the sensor according to the ninth embodiment. FIG. 47 is a schematic cross-sectional view of the magnetoresistive element and its peripheral configuration according to the ninth embodiment. The sensor 100H according to the ninth embodiment will be described with reference to FIGS. 45 to 47.
 図45から図47に示すように、実施の形態9に係るセンサ100Hは、実施の形態6に係るセンサEと比較した場合に、第1キャンセル磁界生成部51、第2キャンセル磁界生成部52、および電流制御部55(図46参照)をさらに備える点において相違する。その他の構成についてはほぼ同様である。 As shown in FIGS. 45 to 47, the sensor 100H according to the ninth embodiment has the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 when compared with the sensor E according to the sixth embodiment. And the current control unit 55 (see FIG. 46) is further provided. Other configurations are almost the same.
 第1キャンセル磁界生成部51、および第2キャンセル磁界生成部52は、第1磁気抵抗素子部R1、第2磁気抵抗素子部R2、第3磁気抵抗素子部R3,および第4磁気抵抗素子部R4のそれぞれに設けられている。 The first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 include a first magnetoresistive element unit R1, a second magnetoresistive element unit R2, a third magnetoresistive element unit R3, and a fourth magnetoresistive element unit R4. It is provided in each of.
 第2キャンセル磁界生成部52、第1キャンセル磁界生成部51、および磁気抵抗素子10は、順に積層される。第2キャンセル磁界生成部52と第1キャンセル磁界生成部51との間には、第2絶縁層54が設けられている。第1キャンセル磁界生成部51と下部電極層20との間には第1絶縁層53が設けられている。 The second cancel magnetic field generation unit 52, the first cancel magnetic field generation unit 51, and the magnetoresistive element 10 are laminated in this order. A second insulating layer 54 is provided between the second cancel magnetic field generation unit 52 and the first cancel magnetic field generation unit 51. A first insulating layer 53 is provided between the first canceling magnetic field generation unit 51 and the lower electrode layer 20.
 第1キャンセル磁界生成部51および第2キャンセル磁界生成部52は、コイル等の導電性部材によって構成されている。 The first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 are composed of a conductive member such as a coil.
 第1キャンセル磁界生成部51および第2キャンセル磁界生成部52は、自身に電流が流れることにより、磁気抵抗素子10の変形時に発生する応力誘起異方性M10をキャンセルする第1キャンセル磁界および第2キャンセル磁界を発生させる。第1キャンセル磁界と第2キャンセル磁界との合成磁界M11によって、応力誘起異方性M10が相殺される。 The first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 cancel the stress-induced anisotropy M10 generated when the magnetoresistive element 10 is deformed by the current flowing through the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52. Generates a canceling magnetic field. The stress-induced anisotropy M10 is canceled by the combined magnetic field M11 of the first canceling magnetic field and the second canceling magnetic field.
 電流制御部55は、磁気抵抗素子10の変形時に、フルブリッジ回路の出力値がゼロとなるように、第1キャンセル磁界生成部51および第2キャンセル磁界生成部52に流れる電流量を調整する。第1キャンセル磁界生成部51および第2キャンセル磁界生成部52に流れる電流量に基づいて、たわみ領域4に印加された外力の方向および磁気抵抗素子10の歪量を算出することにより、検知精度を向上させることができる。 The current control unit 55 adjusts the amount of current flowing through the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52 so that the output value of the full bridge circuit becomes zero when the magnetoresistive element 10 is deformed. The detection accuracy is determined by calculating the direction of the external force applied to the deflection region 4 and the amount of distortion of the magnetoresistive element 10 based on the amount of current flowing through the first cancel magnetic field generation unit 51 and the second cancel magnetic field generation unit 52. Can be improved.
 (実施の形態10)
 図48は、実施の形態10に係るセンサにおいてダイヤフラム部が変形していない非変形状態を示す概略平面図である。図48を参照して、実施の形態10に係るセンサ100Iについて説明する。
(Embodiment 10)
FIG. 48 is a schematic plan view showing a non-deformed state in which the diaphragm portion is not deformed in the sensor according to the tenth embodiment. The sensor 100I according to the tenth embodiment will be described with reference to FIG. 48.
 図48に示すように、実施の形態10に係るセンサ100Iは、実施の形態1に係るセンサ100と比較した場合に、リファレンス層の磁化方向が相異する。その他の構成においてはほぼ同様である。 As shown in FIG. 48, the sensor 100I according to the tenth embodiment has a different magnetization direction of the reference layer when compared with the sensor 100 according to the first embodiment. The other configurations are almost the same.
 各磁気抵抗素子10において、リファレンス層の磁化方向は、実施の形態1と比較して180度異なっている。これにより、実施の形態1と比較して上記角度θ2、角度θ3が相異する。 In each magnetoresistive element 10, the magnetization direction of the reference layer is 180 degrees different from that of the first embodiment. As a result, the angles θ2 and θ3 are different from each other as compared with the first embodiment.
 実施の形態10においては、ダイヤフラム部3が変形していない状態、すなわち、たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11、第2磁気抵抗素子12、第3磁気抵抗素子13、および第4磁気抵抗素子14のそれぞれにおいて、上記基準方向からフリー層の磁化方向(バイアス磁界によってフリー層の磁化が向く方向)までの反時計回りの角度θ1が、135度±5度である。 In the tenth embodiment, in the state where the diaphragm portion 3 is not deformed, that is, when no external force is applied to the deflection region 4, the first magnetoresistive element 11, the second magnetoresistive element 12, and the third magnetism In each of the resistance element 13 and the fourth magnetoresistive element 14, the counterclockwise angle θ1 from the reference direction to the magnetization direction of the free layer (the direction in which the magnetization of the free layer is directed by the bias magnetic field) is 135 degrees ± 5. Degree.
 たわみ領域4に外力が印加されていない状態においては、第1磁気抵抗素子11および第4磁気抵抗素子14において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ2が、225度±5度である。 In a state where no external force is applied to the deflection region 4, the counterclockwise angle θ2 from the reference direction to the magnetization direction of the reference layer 24 in the first magnetoresistive element 11 and the fourth magnetoresistive element 14 is 225. Degree ± 5 degrees.
 たわみ領域4に外力が印加されていない状態においては、第2磁気抵抗素子12および第3磁気抵抗素子13において、上記基準方向からリファレンス層24の磁化方向までの反時計回りの角度θ3が、45度±5度である。 In a state where no external force is applied to the deflection region 4, the counterclockwise angle θ3 from the reference direction to the magnetization direction of the reference layer 24 in the second magnetoresistive element 12 and the third magnetoresistive element 13 is 45. Degree ± 5 degrees.
 このような構成を有する場合であっても、実施の形態10に係るセンサ100Iは、実施の形態1に係るセンサ100と同様の効果が得られる。 Even with such a configuration, the sensor 100I according to the tenth embodiment has the same effect as the sensor 100 according to the first embodiment.
 なお、実施の形態2から実施の形態9においても、リファレンス層の磁化方向の向きを180度回転させてもよい。すなわち、実施の形態2から実施の形態9においても、上記実施の形態10における角度θ2、角度θ3を適用してもよい。 Also in the second to ninth embodiments, the direction of the magnetization direction of the reference layer may be rotated by 180 degrees. That is, the angles θ2 and θ3 in the above-described 10th embodiment may be applied to the second to ninth embodiments as well.
 (実施の形態11)
 図49は、実施の形態10に係る歪み検知センサを示す図である。図49を参照して、実施の形態10に係る歪み検知センサ150について説明する。
(Embodiment 11)
FIG. 49 is a diagram showing a strain detection sensor according to the tenth embodiment. The strain detection sensor 150 according to the tenth embodiment will be described with reference to FIG. 49.
 実施の形態10に係る歪み検知センサ150は、実施の形態1に係るセンサ100と、ベース部110と、カバー部120と、を備える。 The strain detection sensor 150 according to the tenth embodiment includes the sensor 100 according to the first embodiment, a base portion 110, and a cover portion 120.
 ベース部110は、板状形状を有し、互いに表裏関係にある第1主面110aと第2主面110bとを有する。ベース部110には、貫通孔111が設けられている。ベース部110としては、たとえば、ガラスエポキシ基板などの樹脂とガラス繊維とを組み合わせた材料で構成される基板、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、または、アルミナなどからなるセラミックス材料で構成される基板等を採用することができる。 The base portion 110 has a plate-like shape and has a first main surface 110a and a second main surface 110b that are in a front-to-back relationship with each other. The base portion 110 is provided with a through hole 111. The base portion 110 is made of, for example, a substrate made of a material combining resin and glass fiber such as a glass epoxy substrate, a low temperature co-fired ceramics (LTCC) multilayer substrate, or alumina. A substrate or the like made of a ceramic material can be adopted.
 センサ100は、第1主面110a上に配置されている。センサ100は、空洞部5が貫通孔111に連通するとともに、たわみ領域4が貫通孔111に対向するように配置されている。 The sensor 100 is arranged on the first main surface 110a. The sensor 100 is arranged so that the cavity 5 communicates with the through hole 111 and the deflection region 4 faces the through hole 111.
 カバー部120は、第1主面110a側においてセンサ100から距離を持って当該センサ100を覆うように設けられている。カバー部120は、センサ100とカバー部120との間の空間を密閉するために、第1主面110aと隙間無く接合されている。 The cover portion 120 is provided so as to cover the sensor 100 at a distance from the sensor 100 on the first main surface 110a side. The cover portion 120 is joined to the first main surface 110a without a gap in order to seal the space between the sensor 100 and the cover portion 120.
 カバー部120は、金属材料または樹脂材料で構成されている。カバー部120は、上記材料で構成された部材を切削加工またはプレス加工することにより成形されてもよいし、モールド成形によって成形されてもよい。 The cover portion 120 is made of a metal material or a resin material. The cover portion 120 may be formed by cutting or pressing a member made of the above material, or may be formed by molding.
 以上の構成を有する歪み検知センサ150においては、センサ100の内側の空間(センサ100と第1主面110aとの間の空間)と、センサ100外側の空間(センサ100とカバー部120との間の空間)とが分離される。貫通孔111を通った音波等によってセンサ100のたわみ領域4に外力が印加された場合には、たわみ領域4に配置された磁気抵抗素子が歪む。センサ100からは、磁気抵抗素子の歪量に応じた電圧が出力される。このように、上記歪み検知センサ150にあっては、上記出力を測定することで、歪みを高感度で検知することができる。 In the strain detection sensor 150 having the above configuration, the space inside the sensor 100 (the space between the sensor 100 and the first main surface 110a) and the space outside the sensor 100 (between the sensor 100 and the cover portion 120). Space) and is separated. When an external force is applied to the deflection region 4 of the sensor 100 by a sound wave or the like passing through the through hole 111, the magnetoresistive element arranged in the deflection region 4 is distorted. A voltage corresponding to the amount of distortion of the magnetoresistive element is output from the sensor 100. As described above, in the distortion detection sensor 150, distortion can be detected with high sensitivity by measuring the output.
 (実施の形態12)
 図50は、実施の形態11に係る圧力センサを示す図である。図50を参照して、実施の形態11に係る圧力センサ200について説明する。なお、図50においては、ベース部210に応力が作用し、ベース部210が撓んだ状態を示している。
(Embodiment 12)
FIG. 50 is a diagram showing a pressure sensor according to the eleventh embodiment. The pressure sensor 200 according to the eleventh embodiment will be described with reference to FIG. 50. Note that FIG. 50 shows a state in which the base portion 210 is bent due to stress acting on the base portion 210.
 図50に示すように、実施の形態11に係る圧力センサ200は、実施の形態1に係るセンサ100と、ベース部210と、封止部220と、を備える。 As shown in FIG. 50, the pressure sensor 200 according to the eleventh embodiment includes the sensor 100 according to the first embodiment, a base portion 210, and a sealing portion 220.
 ベース部210は、板状形状を有する。センサ100は、ベース部210上に配置されている。センサ100は、封止部220によってベース部210上に封止されている。 The base portion 210 has a plate-like shape. The sensor 100 is arranged on the base portion 210. The sensor 100 is sealed on the base 210 by the sealing 220.
 ベース部210に応力(圧力)が作用し、ベース部210が歪んだ場合には、ベース部210上に配置されたセンサ100にも圧力が作用する。これにより、センサ100のたわみ領域4が歪み、たわみ領域上に配置された磁気抵抗素子も歪むこととなる。センサ100からは、磁気抵抗素子の歪量に応じた電圧が出力される。このように、圧力センサ200にあっては、上記出力を測定することで、ベース部に印加された圧力を高感度で検知することができる。 When stress (pressure) acts on the base portion 210 and the base portion 210 is distorted, the pressure also acts on the sensor 100 arranged on the base portion 210. As a result, the deflection region 4 of the sensor 100 is distorted, and the magnetoresistive element arranged on the deflection region is also distorted. A voltage corresponding to the amount of distortion of the magnetoresistive element is output from the sensor 100. As described above, in the pressure sensor 200, the pressure applied to the base portion can be detected with high sensitivity by measuring the output.
 (実施の形態13)
 図51は、実施の形態12に係るマイクロフォンを備えた携帯情報端末を示す図である。図51を参照して、実施の形態12に係るマイクロフォン300について説明する。
(Embodiment 13)
FIG. 51 is a diagram showing a mobile information terminal provided with the microphone according to the twelfth embodiment. The microphone 300 according to the twelfth embodiment will be described with reference to FIG. 51.
 図51に示すように、実施の形態1に係るセンサ100を備えたマイクロフォン300は、携帯情報端末400に組み込まれている。マイクロフォン300に設けられたセンサ100のダイヤフラム部3は、携帯情報端末400の表示部410が設けられた面に対して実質的に平行となっている。なお、センサ100の配置は、適宜変更することができる。 As shown in FIG. 51, the microphone 300 provided with the sensor 100 according to the first embodiment is incorporated in the mobile information terminal 400. The diaphragm portion 3 of the sensor 100 provided on the microphone 300 is substantially parallel to the surface of the mobile information terminal 400 on which the display portion 410 is provided. The arrangement of the sensor 100 can be changed as appropriate.
 上記マイクロフォン300においては、センサ100を備えることで、高感度に広い周波数帯域で音を検知することができる。 By providing the sensor 100 in the microphone 300, it is possible to detect sound with high sensitivity in a wide frequency band.
 なお、マイクロフォン300は、携帯情報端末400以外にも、ICレコーダーやピンマイクロフォンなどにも組み込まれてもよい。 The microphone 300 may be incorporated into an IC recorder, a pin microphone, or the like in addition to the mobile information terminal 400.
 上述した実施の形態11から13においては、歪み検知センサ150、圧力センサ200、およびマイクロフォン300が、実施の形態1に係るセンサ100を備える場合を例示して説明したが、これに限定されず、上記実施の形態1から実施の形態10に係るセンサのいずれかを備えていればよい。 In the above-described embodiments 11 to 13, the case where the strain detection sensor 150, the pressure sensor 200, and the microphone 300 include the sensor 100 according to the first embodiment has been described as an example, but the present invention is not limited thereto. Any of the sensors according to the first to tenth embodiments may be provided.
 以上、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 As mentioned above, the embodiments disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is indicated by the claims and includes all modifications within the meaning and scope equivalent to the claims.
 1 基板、2 基部、3 ダイヤフラム部、4 たわみ領域、4A 第1領域、4B 第2領域、4a スリット、5 空洞部、10 磁気抵抗素子、11 第1磁気抵抗素子、12 第2磁気抵抗素子、13 第3磁気抵抗素子、14 第4磁気抵抗素子、20 下部電極層、21 ピニング層、22 ピン層、23 磁気結合層、24 リファレンス層、25 トンネルバリア層、26 フリー層、27 分離層、28 バイアス層、29 上部電極層、31 金属配線、41 第1辺部、42 第2辺部、43 第3辺部、44 第4辺部、51 第1キャンセル磁界生成部、52 第2キャンセル磁界生成部、53 第1絶縁層、54 第2絶縁層、55 電流制御部、61 基板、62 膜部、63 下部電極膜、64 積層膜、65 上部電極膜、66 絶縁膜、67 パッシベーション膜、100,100A,100B,100C,100D,100E,100F,100G,100H,100I,100X センサ、110 ベース部、110a 第1主面、110b 第2主面、111 貫通孔、120 カバー部、150 歪み検知センサ、200 圧力センサ、210 ベース部、220 封止部、300 マイクロフォン、400 携帯情報端末、410 表示部。 1 substrate, 2 base, 3 diaphragm, 4 deflection area, 4A 1st area, 4B 2nd area, 4a slit, 5 cavity, 10 magnetoresistive element, 11th magnetoresistive element, 12th second magnetoresistive element, 13th magnetoresistive element, 14th magnetoresistive element, 20 lower electrode layer, 21 pinning layer, 22 pin layer, 23 magnetic coupling layer, 24 reference layer, 25 tunnel barrier layer, 26 free layer, 27 separation layer, 28 Bias layer, 29 upper electrode layer, 31 metal wiring, 41 1st side, 42 2nd side, 43 3rd side, 44 4th side, 51 1st cancel magnetic field generator, 52 2nd cancel magnetic field generation Part, 53 1st insulating layer, 54 2nd insulating layer, 55 current control part, 61 substrate, 62 film part, 63 lower electrode film, 64 laminated film, 65 upper electrode film, 66 insulating film, 67 passion film, 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H, 100I, 100X sensor, 110 base part, 110a first main surface, 110b second main surface, 111 through hole, 120 cover part, 150 distortion detection sensor, 200 pressure sensor, 210 base part, 220 sealing part, 300 microphone, 400 mobile information terminal, 410 display part.

Claims (15)

  1.  たわみ領域を有する基板と、
     各々の重心が前記たわみ領域の外縁に沿うように、前記たわみ領域に配置された複数の磁気抵抗素子とを備え、
     前記複数の磁気抵抗素子は、第1ハーフブリッジ回路を構成する1つ以上の第1磁気抵抗素子および1つ以上の第2磁気抵抗素子、ならびに、第2ハーフブリッジ回路を構成する1つ以上の第3磁気抵抗素子および1つ以上の第4磁気抵抗素子を含み、
     前記第1ハーフブリッジ回路と前記第2ハーフブリッジ回路とによってフルブリッジ回路が構成されており、
     前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子は、それぞれ、前記たわみ領域のたわみに応じて磁化方向が変化するフリー層と、磁化方向が固定されたリファレンス層と、前記フリー層と前記リファレンス層との間に配置されたトンネルバリア層とを有し、
     前記フリー層には、前記たわみ領域に外力が印加されていない状態において磁化方向が所定の方向を向くようにバイアス磁界が印加されており、
     前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子のそれぞれにおいて、前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子の各重心と前記たわみ領域の前記外縁とを最短で結ぶ仮想直線に直交し、かつ、前記重心を通過する直線を基準線とし、
     前記基準線において、前記仮想直線と前記外縁との交点を前記重心から正面に見て前記重心から右に向かう方向を基準方向とした場合に、
     前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子のそれぞれにおいて、前記たわみ領域に外力が印加されていない状態において、前記基準方向から、前記バイアス磁界によって前記フリー層の磁化が向く方向までの反時計回りの角度が、135度±5度であり、
     前記第1磁気抵抗素子および前記第4磁気抵抗素子において、前記基準方向から前記リファレンス層の磁化方向までの反時計回りの角度が、45度±5度であり、
     前記第2磁気抵抗素子および前記第3磁気抵抗素子において、前記基準方向から前記リファレンス層の磁化方向までの反時計回りの角度が、225度±5度である、センサ。
    A substrate with a deflection area and
    A plurality of magnetoresistive elements arranged in the deflection region so that each center of gravity is along the outer edge of the deflection region is provided.
    The plurality of magnetoresistive elements include one or more first magnetoresistive elements and one or more second magnetoresistive elements constituting the first half-bridge circuit, and one or more members constituting the second half-bridge circuit. Includes a third magnetoresistive element and one or more fourth magnetoresistive elements
    A full bridge circuit is composed of the first half bridge circuit and the second half bridge circuit.
    The first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element each have a free layer whose magnetization direction changes according to the deflection of the deflection region and magnetization. It has a reference layer with a fixed direction and a tunnel barrier layer arranged between the free layer and the reference layer.
    A bias magnetic field is applied to the free layer so that the magnetization direction faces a predetermined direction in a state where no external force is applied to the deflection region.
    In each of the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element, the first magnetoresistive element, the second magnetoresistive element, and the third magnetism A straight line orthogonal to the shortest virtual straight line connecting each center of gravity of the resistance element and the fourth magnetic resistance element with the outer edge of the deflection region and passing through the center of gravity is set as a reference line.
    In the reference line, when the intersection of the virtual straight line and the outer edge is viewed from the center of gravity in front and the direction from the center of gravity to the right is set as the reference direction.
    In each of the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element, in a state where no external force is applied to the deflection region, from the reference direction. The counterclockwise angle to the direction in which the free layer is magnetized by the bias magnetic field is 135 degrees ± 5 degrees.
    In the first magnetoresistive element and the fourth magnetoresistive element, the counterclockwise angle from the reference direction to the magnetization direction of the reference layer is 45 degrees ± 5 degrees.
    A sensor having a counterclockwise angle of 225 degrees ± 5 degrees from the reference direction to the magnetization direction of the reference layer in the second magnetoresistive element and the third magnetoresistive element.
  2.  たわみ領域を有する基板と、
     各々の重心が、前記たわみ領域の外縁に沿うように前記たわみ領域に配置された複数の磁気抵抗素子とを備え、
     前記複数の磁気抵抗素子は、第1ハーフブリッジ回路を構成する1つ以上の第1磁気抵抗素子および1つ以上の第2磁気抵抗素子、ならびに、第2ハーフブリッジ回路を構成する1つ以上の第3磁気抵抗素子および1つ以上の第4磁気抵抗素子を含み、
     前記第1ハーフブリッジ回路と前記第2ハーフブリッジ回路によってフルブリッジ回路が構成されており、
     前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子は、それぞれ、前記たわみ領域のたわみに応じて磁化方向が変化するフリー層と、磁化方向が固定されたリファレンス層と、前記フリー層と前記リファレンス層とに挟まれたトンネルバリア層とを有し、
     前記フリー層には、前記たわみ領域に外力が印加されていない状態において磁化方向が所定の方向を向くようにバイアス磁界が印加されており、
     前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子のそれぞれにおいて、前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子の各重心と前記たわみ領域の前記外縁とを最短で結ぶ仮想直線に直交し、かつ、前記重心を通過する直線を基準線とし、
     前記基準線において、前記仮想直線と前記外縁との交点を前記重心から正面に見て前記重心から右に向かう方向を基準方向とした場合に、
     前記たわみ領域に外力が印加されていない状態において、前記基準方向から、前記バイアス磁界によって前記フリー層の磁化が向く方向までの時計回りの角度が、前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子のそれぞれにおいて、135度±5度であり、
     前記第1磁気抵抗素子および前記第4磁気抵抗素子において、前記基準方向から前記リファレンス層の磁化方向までの時計回りの角度が、225度±5度であり、
     前記第2磁気抵抗素子および前記第3磁気抵抗素子において、前記基準方向から前記リファレンス層の磁化方向までの時計回りの角度が、45度±5度である、センサ。
    A substrate with a deflection area and
    Each center of gravity is provided with a plurality of magnetoresistive elements arranged in the deflection region so as to be along the outer edge of the deflection region.
    The plurality of magnetoresistive elements include one or more first magnetoresistive elements and one or more second magnetoresistive elements constituting the first half-bridge circuit, and one or more members constituting the second half-bridge circuit. Includes a third magnetoresistive element and one or more fourth magnetoresistive elements
    A full bridge circuit is composed of the first half bridge circuit and the second half bridge circuit.
    The first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element each have a free layer whose magnetization direction changes according to the deflection of the deflection region and magnetization. It has a reference layer with a fixed direction and a tunnel barrier layer sandwiched between the free layer and the reference layer.
    A bias magnetic field is applied to the free layer so that the magnetization direction faces a predetermined direction in a state where no external force is applied to the deflection region.
    In each of the first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element, the first magnetoresistive element, the second magnetoresistive element, and the third magnetism A straight line orthogonal to the shortest virtual straight line connecting each center of gravity of the resistance element and the fourth magnetic resistance element with the outer edge of the deflection region and passing through the center of gravity is set as a reference line.
    In the reference line, when the intersection of the virtual straight line and the outer edge is viewed from the center of gravity in front and the direction from the center of gravity to the right is set as the reference direction.
    In a state where no external force is applied to the deflection region, the clockwise angle from the reference direction to the direction in which the magnetization of the free layer is directed by the bias magnetic field is the first magnetoresistive element and the second magnetoresistive sensor. It is 135 degrees ± 5 degrees in each of the element, the third magnetoresistive element, and the fourth magnetoresistive element.
    In the first magnetoresistive element and the fourth magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 225 degrees ± 5 degrees.
    In the second magnetoresistive element and the third magnetoresistive element, the clockwise angle from the reference direction to the magnetization direction of the reference layer is 45 degrees ± 5 degrees.
  3.  前記第1磁気抵抗素子、前記第2磁気抵抗素子、前記第3磁気抵抗素子、および前記第4磁気抵抗素子は、それぞれ、前記フリー層に前記バイアス磁界を印加するバイアス層と、前記バイアス層と前記フリー層との間に配置された分離層とをさらに有する、請求項1または2に記載のセンサ。 The first magnetoresistive element, the second magnetoresistive element, the third magnetoresistive element, and the fourth magnetoresistive element have a bias layer for applying the bias magnetic field to the free layer and the bias layer, respectively. The sensor according to claim 1 or 2, further comprising a separation layer arranged between the free layer and the free layer.
  4.  前記フリー層は、ディスク形状を有する、請求項1から3のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 3, wherein the free layer has a disk shape.
  5.  前記フリー層は、磁化渦構造を有し、
     前記フリー層に印加される前記バイアス磁界の強度は、前記フリー層と前記リファレンス層の間で作用する交換結合磁界の強度よりも大きい、請求項4に記載のセンサ。
    The free layer has a magnetized vortex structure and has a magnetized vortex structure.
    The sensor according to claim 4, wherein the strength of the bias magnetic field applied to the free layer is larger than the strength of the exchange coupling magnetic field acting between the free layer and the reference layer.
  6.  前記第1磁気抵抗素子および前記第2磁気抵抗素子における前記フリー層のディスク径と、前記第3磁気抵抗素子および前記第4磁気抵抗素子における前記フリー層のディスク径とが異なる、請求項4または5に記載のセンサ。 4 or claim 4, wherein the disk diameter of the free layer in the first magnetoresistive element and the second magnetoresistive element is different from the disk diameter of the free layer in the third magnetoresistive element and the fourth magnetoresistive element. The sensor according to 5.
  7.  前記第1磁気抵抗素子および前記第2磁気抵抗素子における感度と、前記第3磁気抵抗素子および前記第4磁気抵抗素子における感度とが互いに異なる、請求項1から6のいずれか1項に記載のセンサ。 The invention according to any one of claims 1 to 6, wherein the sensitivities of the first magnetoresistive element and the second magnetoresistive element and the sensitivities of the third magnetoresistive element and the fourth magnetoresistive element are different from each other. Sensor.
  8.  前記たわみ領域には、当該たわみ領域を周方向に複数に分割するスリットが設けられている、請求項1から7のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 7, wherein the deflection region is provided with a slit for dividing the deflection region into a plurality of parts in the circumferential direction.
  9.  前記たわみ領域は、互いに分離された第1領域および第2領域を含み、
     前記第1領域に、前記1つ以上の第1磁気抵抗素子および前記1つ以上の第2磁気抵抗素子が配置されており、
     前記第2領域に、前記1つ以上の第3磁気抵抗素子および前記1つ以上の第4磁気抵抗素子が配置されており、
     前記第1領域の共振周波数と、前記第2領域の共振周波数とが互いに異なる、請求項1から7のいずれか1項に記載のセンサ。
    The deflection region includes a first region and a second region separated from each other.
    The one or more first magnetoresistive elements and the one or more second magnetoresistive elements are arranged in the first region.
    In the second region, the one or more third magnetoresistive elements and the one or more fourth magnetoresistive elements are arranged.
    The sensor according to any one of claims 1 to 7, wherein the resonance frequency of the first region and the resonance frequency of the second region are different from each other.
  10.  前記たわみ領域は、互いに分離された第1領域および第2領域を含み、
     前記第1領域に、前記1つ以上の第1磁気抵抗素子および前記1つ以上の第2磁気抵抗素子が配置されており、
     前記第2領域に、前記1つ以上の第3磁気抵抗素子および前記1つ以上の第4磁気抵抗素子が配置されており、
     前記第1領域の面積と、前記第2領域の面積が互いに異なる、請求項1から8のいずれか1項に記載のセンサ。
    The deflection region includes a first region and a second region separated from each other.
    The one or more first magnetoresistive elements and the one or more second magnetoresistive elements are arranged in the first region.
    In the second region, the one or more third magnetoresistive elements and the one or more fourth magnetoresistive elements are arranged.
    The sensor according to any one of claims 1 to 8, wherein the area of the first region and the area of the second region are different from each other.
  11.  前記第1ハーフブリッジ回路からの出力および前記第2ハーフブリッジ回路からの出力のいずれか一方が飽和している場合に、前記第1ハーフブリッジ回路からの前記出力および前記第2ハーフブリッジ回路からの前記出力の他方を用いる、請求項9または10に記載のセンサ。 When either the output from the first half-bridge circuit or the output from the second half-bridge circuit is saturated, the output from the first half-bridge circuit and the output from the second half-bridge circuit The sensor according to claim 9 or 10, wherein the other of the outputs is used.
  12.  前記たわみ領域に外力が印加されることで発現する応力誘起異方性を相殺するキャンセル磁界を生成する第1キャンセル磁界生成部および第2キャンセル磁界生成部と、
     前記第1キャンセル磁界生成部および前記第2キャンセル磁界生成部に流れる電流を制御する電流制御部と、をさらに備えた、請求項1から11のいずれか1項に記載のセンサ。
    A first cancel magnetic field generator and a second cancel magnetic field generator that generate a cancel magnetic field that cancels the stress-induced anisotropy that appears when an external force is applied to the deflection region.
    The sensor according to any one of claims 1 to 11, further comprising a first cancel magnetic field generation unit and a current control unit that controls a current flowing through the second cancel magnetic field generation unit.
  13.  請求項1から12のいずれか1項に記載のセンサを備えた、歪検知センサ。 A distortion detection sensor including the sensor according to any one of claims 1 to 12.
  14.  請求項1から12のいずれか1項に記載のセンサを備えた、圧力センサ。 A pressure sensor including the sensor according to any one of claims 1 to 12.
  15.  請求項1から12のいずれか1項に記載のセンサを備えた、マイクロフォン。 A microphone provided with the sensor according to any one of claims 1 to 12.
PCT/JP2020/017025 2019-08-13 2020-04-20 Sensor, strain detection sensor, pressure sensor, and microphone WO2021029113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-148605 2019-08-13
JP2019148605 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021029113A1 true WO2021029113A1 (en) 2021-02-18

Family

ID=74569634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017025 WO2021029113A1 (en) 2019-08-13 2020-04-20 Sensor, strain detection sensor, pressure sensor, and microphone

Country Status (1)

Country Link
WO (1) WO2021029113A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995871A (en) * 2021-03-01 2021-06-18 歌尔微电子股份有限公司 MEMS sensor and electronic equipment
CN116930833A (en) * 2023-09-18 2023-10-24 江苏多维科技有限公司 Magnetic sensor and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246271A1 (en) * 2005-03-07 2006-11-02 Eckard Quandt Force sensor array having magnetostrictive magnetoresistive sensors and method for determining a force
US20070186666A1 (en) * 2004-07-05 2007-08-16 Manfred Ruehrig Sensor And Method For Producing A Sensor
JP2014102171A (en) * 2012-11-20 2014-06-05 Toshiba Corp Pressure sensor, microphone, blood pressure sensor and touch panel
JP2015061070A (en) * 2013-09-20 2015-03-30 株式会社東芝 Strain detection element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP2015059927A (en) * 2013-09-20 2015-03-30 株式会社東芝 Pressure sensor, microphone, blood pressure sensor, and touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070186666A1 (en) * 2004-07-05 2007-08-16 Manfred Ruehrig Sensor And Method For Producing A Sensor
US20060246271A1 (en) * 2005-03-07 2006-11-02 Eckard Quandt Force sensor array having magnetostrictive magnetoresistive sensors and method for determining a force
JP2014102171A (en) * 2012-11-20 2014-06-05 Toshiba Corp Pressure sensor, microphone, blood pressure sensor and touch panel
JP2015061070A (en) * 2013-09-20 2015-03-30 株式会社東芝 Strain detection element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP2015059927A (en) * 2013-09-20 2015-03-30 株式会社東芝 Pressure sensor, microphone, blood pressure sensor, and touch panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995871A (en) * 2021-03-01 2021-06-18 歌尔微电子股份有限公司 MEMS sensor and electronic equipment
CN116930833A (en) * 2023-09-18 2023-10-24 江苏多维科技有限公司 Magnetic sensor and method for manufacturing the same
CN116930833B (en) * 2023-09-18 2024-01-12 江苏多维科技有限公司 Magnetic sensor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5701807B2 (en) Pressure sensor and microphone
US8174261B2 (en) Magnetic film sensor with a deformable part
JP5271448B2 (en) Magnetic position detector
US7868613B2 (en) Magnetic sensor and manufacturing method thereof
AU2008216997A1 (en) Magnetic sensor, production process of the magnetic sensor and magnetic array suitable for the production process
EP3091364B1 (en) Magnetic sensor, method of manufacturing magnetic sensor, and method of designing magnetic sensor
JP2014074606A (en) Pressure sensor, acoustic microphone, blood pressure sensor and touch panel
WO2020208907A1 (en) Magnetoresistive element and magnetic sensor
US9322726B2 (en) Pressure sensor, acceleration sensor, and method for manufacturing pressure sensor
WO2021029113A1 (en) Sensor, strain detection sensor, pressure sensor, and microphone
JP2006269955A (en) Magnetic field detecting device
JP2020510823A (en) Single chip dual axis magnetoresistive angle sensor
JP2007024598A (en) Magnetic sensor
JP6200565B2 (en) Pressure sensor, acoustic microphone, blood pressure sensor, and touch panel
JP7057680B2 (en) Magnetic sensor and current sensor
JP6064656B2 (en) Magnetoresistive element for sensor and sensor circuit
JP4507932B2 (en) Magnetic sensor with giant magnetoresistive element
JP6923881B2 (en) Tunnel magnetoresistive element and its manufacturing method
JP4331630B2 (en) Magnetic sensor
JP7095813B2 (en) Sensors, strain detectors, pressure sensors, and microphones
JP6881413B2 (en) Magnetic sensor
JP2008224486A (en) Magnetic pressure sensor
JP3835445B2 (en) Magnetic sensor
JP5865986B2 (en) Pressure sensor and microphone
WO2021250924A1 (en) Magnetic sensor chip and magnetic sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP