JPH09503590A - 会話の品質向上のための背景雑音の低減 - Google Patents

会話の品質向上のための背景雑音の低減

Info

Publication number
JPH09503590A
JPH09503590A JP7504026A JP50402695A JPH09503590A JP H09503590 A JPH09503590 A JP H09503590A JP 7504026 A JP7504026 A JP 7504026A JP 50402695 A JP50402695 A JP 50402695A JP H09503590 A JPH09503590 A JP H09503590A
Authority
JP
Japan
Prior art keywords
component
noise
frequency
signal
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7504026A
Other languages
English (en)
Other versions
JP3626492B2 (ja
Inventor
ブラント マーティン ヘルフ
ピーター エル チュー
Original Assignee
ピクチャーテル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピクチャーテル コーポレイション filed Critical ピクチャーテル コーポレイション
Publication of JPH09503590A publication Critical patent/JPH09503590A/ja
Application granted granted Critical
Publication of JP3626492B2 publication Critical patent/JP3626492B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1063Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal using a notch filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Noise Elimination (AREA)

Abstract

(57)【要約】 人間の音に対する知覚の特性が、スペクトル・マスクおよび時間マスクを行うために使用され、会話信号に付加された知覚される雑音の強度を低減する。信号は、ブロック(2)に分割され、ノッチ・フィルタ(4)を通過して、雑音成分が低減され、先行するブロック(6)の一部を追加される。続いて、FFT(8)が、結果のブロックに施され、スペクトル成分は雑音評価器(20)に与えられる。続いて、各周波数成分は分析され、雑音かどうかが判断される。周波数成分の利得関数が決定され、スペクトル・バレー充填器(38)が、利得関数を処理するために使用される。その後、この関数は、FFT(12)の大きさの成分を修正するために使用される。続いて、逆FFT(14)において、信号は、時間領域に写像され、雑音の低減された信号フレームが得られる。

Description

【発明の詳細な説明】 会話の品質向上のための背景雑音の低減 発明の背景 本発明は、電話通信チャネルのようなチャネル上の音声情報の通信に関する。 音声送信システムに使用されるマイクロフォンは、典型的には、拾い集めるべ き音声とともに、雑音と呼ばれる周囲の音、すなわち背景音を拾い集める。マイ クロフォンから話し手まである距離がおかれている音声送信システム、例えば、 映像音声電話会議環境で使用されるシステムにおいては、マイクロフォンによっ て拾い集められる会話に背景雑音が付加されるので、背景雑音は、音声品質の劣 化の原因となる。それらの性質および使用目的によって、これらのシステムは、 それらのマイクロフォンの周囲にある全ての位置からの音を拾い集めなければな らず、これらの音は背景雑音を含んでいる。 HVACシステム、コンピュータ、および他の電子機器から発するファン雑音 (fan noise)は、ほとんどの電話会議環境における支配的な雑音源である。 優れた雑音抑制技術は、背景雑音が知覚されることを低減する一方、同時に会 話の質、すなわち会話の明瞭性に悪影響を与えない。一般に、本発明の目的は、 一つのマイクロフォンによって拾われる会話に付加される狭帯域または広帯域の 一定の雑音を抑制することにある。本発明の他の目的は、一つのマイクロフォン によって拾い集められる会話に付加されるファン雑音を低減することにある。 発明の要約 本発明の一特徴において、一般に、本発明は、入力音響信号の背景雑音を低減 するための装置に関する。この装置は、入力音響信号を複数の信号フレームに分 割するフレーム化装置、および前記信号フレームのそれぞれから雑音成分を除去 して、フィルタリングされた信号フレームを生成するノッチ・フィルタ・バンク を特徴として備えている。乗算器は、結合された信号フレームを乗じ、ウィンド ウ化された信号フレームを生成する。ここで、結合された信号フレームは、一つ のフィルタリングされた信号フレームに時間的に直前に先行するフィルタリング された信号フレーム内のいくつかの信号と結合された前記一つのフィルタリング された信号フレーム内の全信号を含んでいる。変換器は、前記ウィンドウ化され た信号フレームから周波数スペクトル成分を得、背景雑音評価器は、前記周波数 スペクトル成分を使用して、前記周波数スペクトル成分の雑音量である雑音評価 値を生成する。雑音抑制スペクトル修正器は、前記雑音評価値および前記周波数 スペクトル成分に基づいて利得乗法因数を生成する。遅延器は、前記周波数スペ クトル成分を遅延させ、遅延した周波数スペクトル成分を生成する。制御減衰器 は、前記利得乗法因数に基づいて前記周波数スペクトル成分を減衰させ、雑音の 低減された周波数成分を生成する。逆変換器は、前記雑音の低減された周波数成 分を時間領域に変換する。 好ましい実施形態においては、前記雑音抑制スペクトル修正器は、グローバル 判定機構、ローカル判定機構、検出器、分散機構およびスペクトル・バレー充填 器を備えている。 グローバル判定機構は、前記周波数スペクトル成分の各周波数成分に対して、 その周波数成分が主に雑音であるかどうかについての決定を行う。ローカル雑音 判定機構は、前記周波数スペクトル成分の各周波数成分に対して、周波数成分が 主として雑音成分である確度レベルを導出する。検出器は、前記確度レベルに基 づいて、各周波数成分に対して前記利得乗法因数を決定する。分散機構は、前記 決定された利得乗法因数の影響をスペクトル的および時間的に分散し、スペクト ル・バレー充填器は、その結果の周波数成分のスペクトルの谷間を検出し、充填 する。 また、この好ましい実施形態の変形例として、前記背景雑音評価器は、各周波 数スペクトル成分に対して雑音評価値を生成し、前記ローカル雑音判定機構は、 周波数成分のそれぞれとその対応する雑音評価値との比、および前記グローバル 判定機構によって行われた決定に基づいて確度レベルを導出する。 他の実施形態において、本発明は、後置ウィンドウおよび重ね合わせ加算機構 を特徴としてさらに備えている。後置ウィンドウは、滑らかにされた時間領域の 成分を生成して、前記雑音の低減された時間領域の成分の不連続性を最小化する 。 重ね合わせ加算機構は、前記滑らかにされた時間領域の成分の第1の部分を、滑 らかにされた時間領域の成分の先に格納された部分と組み合わせて出力し、前記 滑らかにされた周波数成分の前記第1の部分に含まれない部分からなる残りの部 分を格納する。 本装置の好ましい実施形態において、背景雑音評価器は、それぞれが背景雑音 評価値を生成する少なくとも二つの評価器、およびこれらの背景雑音評価値を比 較し、その一つを選択する比較器を含んでいる。これらの評価器の一方は稼働最 小評価器であり、他方の評価器は定常評価器である。 好ましい実施形態において、本装置は、ノッチ・フィルタ・バンクのためのノ ッチの位置を決定するノッチ・フィルタ機構も含んでいる。 図面の簡単な説明 図1は、本発明による雑音抑制システムのブロック図である。 図2〜図4は、図1のブロック図の部分部分を実現する詳細なブロック図であ る。 好ましい実施形態の説明 世界中の何百万人もの人々によって日常使用されている最もシンプルな雑音抑 制装置は、いわゆる「スケルチ」回路である。スケルチ回路は、ほとんどの市民 バンド・2ウェイ・ラジオの標準である。この回路は、受信信号のエネルギーが あるしきい値より下がると、システムのラウドスピーカを単純に接続解除するこ とにより作動する。このしきい値の値は、たいていは、マニュアルの制御ノブを 使用して、遠端(far end)が静寂になるときに背景雑音がスピーカに渡らない ようなレベルに固定される。この種の回路の問題は、遠端スピーカがスタートし 、続いてストップするように回路がオン・オフすると、雑音が存在し、続いて消 えることが明瞭に聞き取れるということである。雑音は広帯域で、小さな会話の エネルギーの存在する周波数をカバーするので、人が話しているのと同時に雑音 が聞き取られる。どんなものでも雑音抑制の行われることが好ましいが、スケル チ・ユニットの動作は、非常に混乱した効果を生み出す。 本発明の雑音抑制方法は、音の会話と非会話の部分の双方における背景雑音を 低減することによって、「スケルチ」コンセプトを著しく優れたものとする。 本発明によるアプローチは、人間の知覚作用に基づいている。スペクトル・マ スクおよび時間マスク(双方ともに以下に定義する)の原理を使用して、本発明 は、会話信号に付加または混合される雑音の知覚される大きさを低減する。 このアプローチは、例えば、抑制システムの処理後の会話出力と会話成分のみ (無雑音会話)との間の平均自乗誤差を最小化することが目的である他のアプロ ーチとは異なる。 本発明で使用される方法は、チャネルのエネルギーがしきい値を超えると、そ のチャネルの利得を上げ、チャネルのエネルギーがしきい値より下がると、利得 を下げるという「スケルチ」の概念を利用するが、本方法は、異なる周波数領域 において個別に処理を実行する。チャネルの利得は、入力信号のボリュームとそ れに対応する出力信号のボリュームとの比であるとみなすことができる。 さらに、本方法は、スペクトル・マスクを行うさまざまな心理音響学の原理を 利用する。特に、本方法は、ある周波数において大きな音があると、その周波数 の回りには、他の信号を聞き取ることができない所与の周波数帯域(臨界帯域と 呼ばれる)が存在することを基本的に述べている原理を利用する。すなわち、臨 界帯域にある他の信号は聞こえない。本発明の方法は、会話が遠端から受信され ている間、雑音の知覚作用を低減させる簡単な「スケルチ」回路よりもはるかに 効果的である。 また、本発明の方法は、一時的なマスクを行う特性を利用する。大きな音のバ ーストが発生すると、そのバースト後の200ミリ秒までの期間中、バーストのス ペクトル領域において耳の感度が減少する。別の音響効果は、バースト前の20ミ リ秒までの時間の間、耳の感度が減少するというものである(このように、人間 のヒアリングは、約20ミリ秒のパイプライン遅延を有する)。したがって、本発 明の一つのキーとなる要素は、十分大きな信号の発生前後の期間中、雑音に対す る耳の感度が減少するので、所与の帯域の利得をそれ以下に下げる信号しきい値 を、その帯域における十分大きな信号の発生前後において、一定期間小さくする ことができるというものである。 システムの概要 図1のブロック図を参照して、入力信号1は、まず、フレーマ(フレーム化装 置)2によって分割され、20ミリ秒のサンプル・フレームにされる(入力信号は 16kHzのレートでサンプリングされるので、各20msのフレームは320個のサンプル を含む)。本方法の計算の複雑さは、一時に個々のサンプルに処理を行わずに、 一時にサンプル・フレームのグループに処理を行うことにより大幅に減少する。 続いて、フレームにされた信号は、ノッチ・フィルタ4のバンクに入力する。ノ ッチ・フィルタ4は、典型的にはモータの回転周波数で発生するモータ雑音のよ うな狭帯域の雑音成分を除去するためのものである。ノッチが、十分疎らなスペ クトル密度で十分狭いならば、会話の音質は悪影響を受けない。続いて、ディジ タル信号の各フレームは、直前のディジタル信号フレームの終端からの一部と組 み合わされ、ウィンドウ化フレームが生成される。 好ましい実施形態においては、ディジタル信号の各フレーム(20ms)は、先行 するフレームの最後の12msと結合されて、32msの間隔を有するウィンドウ化フレ ームにされる。つまり、各ウィンドウ化フレームは、あるディジタル信号フレー ムからの320個のサンプルと、直前のフレームのフィルタリングされたサンプル のうちの最後の192個のサンプルとを組み合わせて備えている。続いて、この512 個のサンプルからなる会話セグメントは、乗算器6においてウィンドウを乗じら れて、512サンプル・フレームの開始部と終端部において信号の不連続性から生 じる問題が軽減される。続いて、高速フーリエ変換(FFT)8が、512個のサ ンプルからなるウィンドウ化フレームに施され、257個の成分の周波数スペクト ルが生成される。 変換される信号の最低周波数(D.C.)成分と最高周波数(サンプリング周波数を 2で割った値、すなわち8kHz)成分は、実数部のみを有し、他の255個の成分は 、実数部と虚数部の双方を有する。このスペクトル成分は、背景雑音評価器20に 与えられる。この評価器は、背景雑音のスペクトル・エネルギーを評価し、ノッ チ・フィルタ4のノッチを配置すべき背景雑音のスペクトルのピークを見つけ出 すためのものである。各周波数成分に対する信号強度のスペクトル評価器である 定常評価器(stationary estimator)24および背景雑音のスペクトル評価器であ る稼働最小評価器(running minimum estimator)22の評価値は、比較器28によっ て比較される。そして、特定の周波数成分が主に雑音からなるのか、信号と雑音 の混ざったものからなるのかについての判定が、判定機構32により各周波数に対 して行われることにより、さまざまな確度レベルが抽出される。これらの確度レ ベルに基づいて、周波数帯域の利得が、利得設定器34によって決定される。続い て、利得は、分散機構36によって、臨界帯域の周波数領域に分散され、スペクト ル的にも時間的にも、心理音響学的なマスク効果が利用される。スペクトル・バ レー充填器(spectral valley filler)38は、周波数成分利得関数におけるスペク トルの谷間(バレー:valley)を検出し、その谷間を埋めるために使用される。 雑音圧縮スペクトル修正器30からの最終的な周波数成分利得関数は、減衰器12に おいて、512ポイントFFTのスペクトル成分の大きさを修正するために使用さ れる。減衰器12におけるフレームは、主として利得を生成するために使用される 信号の後に続く1つの時間ユニットである。続いて、逆FFT(IFFT)14が 、信号を周波数領域から時間領域に逆写像する。その結果として雑音が低減され た信号の512ポイント・フレームは、乗算器16においてウィンドウを乗じられる 。続いて、その結果は、加算器18において先行フレームの信号に重ね合わせおよ び加算が施され、20ミリ秒、すなわち320個のサンプルの出力信号がライン40に 出力される。 この信号処理の流れにおける各ブロックの詳細な説明は、入力から出力へその 生起順に以下に示される。 上述したように、フレームにされた入力信号は、ノッチ・フィルタ4のバンク を介して引き出される。 図1および図2を参照して、ノッチ・フィルタ・バンク4は、無限インパルス 応答(IIR:Infinite Impulse Response)ディジタル・フィルタのカスケー ドからなる。各フィルタは、以下の式の応答を有する。 ここで、θ=π/8000×(ノッチの周波数)であり、rはノッチの幅を反映し た1より小さな値である。−3dB幅のノッチがωHzであるならば、r=1-(ω/2) (π/8000)となる。例示する好ましい実施形態において使用される帯域幅ωは、2 0Hzである。ノッチは、公称周波数に近い背景雑音エネルギーの最大ピークにお いて、約100 Hzごとに配置される。 ノッチ・フィルタリングは、新たな信号フレームの320個のサンプルに施され る。フィルタリング結果の320個のサンプルは、先行するフレームからのノッチ ・フィルタリングされた出力の最後の192個のサンプルに追加されて、全部で512 個のサンプルからなる拡張フレームが生成される。 図1および図2を参照して、フィルタ・バンク4から取り出されたノッチ・フ ィルタリング後の512サンプル・フレームは、次の式を用いてウィンドウを乗じ られる。 ここで、f(i)は、フィルタ・バンク4からの512サンプル・フレームのノッチ ・フィルタリングされた第i番目のサンプルの値である。W(i)は、FFT8に次 に与えられる512サンプルのウィンドウ化された出力結果の第i番目のサンプル の結果値である。乗算器6によってもたらされるウィンドウは、拡張フレームの 開始部と終了部におけるエッジ効果および不連続性を最小化するためのものであ る。 時間ウィンドウ化された512個のサンプル・ポイントは、FFT8に与えられ る。FFTの遍在性により、多くのディジタル信号処理(DSP)チップの製造 者が、FFTを実現するための高度に最適化されたアセンブリ言語コードを供給 している。 1フレーム・ディレイ10は、FFTの信号周波数成分を増幅でき、かつ、後に 発生する信号値に基づいて減衰器12で処理できるように導入されている。これは 、知覚される雑音を導入しない。その理由は、信号成分は、上述したように、そ れが実際に発生する前のそのスペクトルの20ミリ秒の近傍部分の周波数をマスク するからである。また、会話音のボリュームは、零の振幅から開始してしだいに 増大するので、この1フレームのディレイは、会話の発声開始のクリッピングを 防止する。 雑音によるFFTの成分は、減衰器12によって減衰するが、一方、信号による 成分の減衰量は少ないか、もしくは減衰せず、または増幅されることもある。上 述したように、各周波数に対して、実数成分と虚数成分がある。両成分は、雑音 抑制スペクトル修正モジュール30から見つけ出された単一の因数(factor)を乗じ られ、位相は、周波数成分の大きさが変更されても、その周波数成分に対して維 持される。 逆FFT14(IFFT)は、大きさの修正されたFFTに施され、長さが512 個のサンプルからなる周波数処理された拡張フレームが生成される。 乗算器16で使用されるウィンドウ化処理は、上述した乗算器6のウィンドウ化 処理と全く同じである。その目的は、周波数成分の減衰により発生する不連続性 を最小化することである。例えば、全ての周波数成分が1つを除いて零に設定さ れていると仮定する。IFFTを施した結果は正弦波になる。この正弦波は、大 きな値で始まり、大きな値で終わることがある。隣接するフレームには、この正 弦波成分が存在しないことがある。したがって、適切なウィンドウ化処理を行う ことなく、出力加算器18でこの信号に重ね合わせおよび加算が行われると、クリ ック音がフレームの開始部および終了部で聞こえることがある。しかしながら、 例えば、式2で定めたパラメータを使用して、正弦波を適切にウィンドウ化する ことによって、大きさがスムーズに増加しスムーズに減少する正弦波が聞こえる ことになる。 乗算器6および16によるフレームの前置ウィンドウ化処理および後置ウィンド ウ化処理のために、フレームの重ね合わせおよび加算処理は、フレームの開始部 および終了部において出力の大きさが減少することを防止するために必要となる 。 したがって、512個のサンプルからなる現在の拡張ウィンドウ化フレームの最初 の192個のサンプルは、先行の拡張ウィンドウ化フレームの最後の192個のサンプ ルに加えられる。続いて、現在の拡張フレームの次の128個のサンプル(8ミリ 秒)が出力される。続いて、現在の拡張ウィンドウ化フレームの最後の192個の サンプルは、次のフレームとの重ね合わせ/加算処理等に使用するために格納さ れる。 好ましい実施形態において、使用されるウィンドウ関数Wは、変調時間の超過 を避けるために、次の特性を有する。 W2+(重ね合わせ量だけシフトしたW2)=1 例えば、重ね合わせ量がフレームの1/2ならば、ウィンドウ関数Wは次の特性 を有する。 W2+(1/2だけシフトしたW2)=1 [背景雑音評価器20] 図1および図3を参照して、背景雑音評価器20および雑音抑制スペクトル修正 モジュール30は、次のように動作する。 背景雑音評価器20は、FFTの各周波数成分の評価を行い、背景雑音によるエ ネルギーの大きさの平均値を求めるためのものである。この背景雑音評価器によ り、環境が変わるごとに、ユーザがシステムをマニュアルで調整または操作する 必要はなくなる。背景雑音評価器は、信号/雑音環境を絶えず監視し、例えば、 エアコンのファンがオン・オフする等に応答して、自動的に背景雑音の評価値を 更新する。2つのアプローチが、ある特定の状況で使用される一方のアプローチ または他方のアプローチの結果とともに使用される。第1のアプローチは、より 正確ではあるが、背景雑音のみに対して1秒間隔を必要とする。第2のアプロー チは、正確さでは劣るが、どのような状況であっても、10秒で背景雑音評価値を 求める。 [定常評価器24] 図1および図3を参照して、第1のアプローチは、定常評価器24を使用して、 各フレームのスペクトル形状が他のフレームのスペクトル形状と非常に類似する 長いフレーム・シーケンスを探す。たぶん、このような状況は、部屋にいる人間 は静かにしており、ファンや回路の雑音による一定の背景雑音が主な信号源であ る場合にのみ生じ得る。このようなシーケンスが検出されると、各周波数の平均 の大きさは、FFTシーケンスの中央部分のフレームから取られる(シーケンス の開始部および終了部のフレームは、低レベルの会話成分を含んでいることがあ る)。この方法は、第2のアプローチ(後述)よりもはるかに正確に背景雑音の スペクトルを測定するが、背景雑音が比較的一定であることと、部屋にいる人間 がある一定期間会話をしていないことを必要とし、このような状況は、実際には あまり見られない状況である。 この評価器の詳細な処理は、次に示すとおりである。 1.図3を参照して、第1のアプローチによる方法は、現在の20msフレームのス ペクトル形状が先行フレームのスペクトル形状と類似しているかどうかを判断す る。まず、この方法は、ステップ240において、先行フレームのスペクトル形状 を計算する。 ここで、fcは、現在の20msフレームのフレーム番号である(この番号は、 連続フレームの一つごとに進められる)。iは、1000Hzの周波数帯域を示し、ki =i×32である。kは、512ポイントFFTの256個の周波数成分のインデック スである。R(k,f)とI(k,f)は、それぞれ、フレームfの第k番目の周波数成 分の実数成分と虚数成分である。 2.次に、現在のフレームのスペクトル形状Si(fc)が、ステップ242で決定さ れる。 ここで、この式は、上記式(3)と同じ意味を有する。Siは、現在のフレーム fcの第i番目の周波数成分の大きさである。 3.続いて、評価器24は、ステップ244および246において、以下の不等式が成立 するかどうかをチェックする。 または ここで、t1は低い方のしきい値である。好ましい実施形態においては、t1 =3である。不等式(5)または(6)が、iの4つの値よりも多い値に対して成立す るならば、現在のフレームfcは、信号として分類される。そうでなけば、評価 器は、次の不等式が成立するかどうかをチェックする。 または ここで、thは高い方のしきい値である。Niは、背景雑音評価値の第i番目 の周波数成分の大きさを示す。好ましい実施形態においては、th=4.5である。 iの1つまたは2つ以上の値に対して、いずれかの不等式が成立すると、現在の フレームfcは信号フレームとして分類される。そうでなければ、現在のフレー ムは、雑音として分類される。 4.ステップ252において、雑音に分類されたフレームが50個連続して発生する と(1秒間の雑音に相当する)、評価器24は、第10番目から第41番目のフレーム の周波数エネルギーを合計することにより、背景雑音の評価値を求める。このシ ーケンスの開始部分のフレームおよび終了部分のフレームを無視することにより 、信号が残りのフレームに存在しないという確度が増加する。評価器は、ステッ プ254において、次の式の値を求める。 ここで、k=0,1,2,...,255であり、fsは、第10番目の雑音に分類され たフレームの開始インデックスである。他の変数は、式(3)と同一の表記を有す る。値Bkは、第k番目の周波数に対する信号の雑音成分スペクトルの平均の 大きさを表す。 図1および図4を参照して、ノッチ・フィルタ・バンクのノッチを配置する場 所を決定するために、32個の雑音に分類されたフレームのみに対応するウィンド ウ化されていない20msの時間領域サンプルが互いに結合され、連続シーケンスを 形成する(ステップ260)。このシーケンスに対して、長いFFTが施される(ス テップ262)。約100 Hzごとに最大の大きさを有する成分が、突き止められる(ス テップ264)。この局所的に最大の大きさが生じる周波数が、ノッチの中心周波数 が置かれる位置に対応する(ステップ266)。ノッチは、1500Hz辺りまでのファン 雑音のみを減少させるのに有益である。その理由は、ファン雑音スペクトルは、 より高い周波数に対して強いピークが存在せず、かなり平坦になる傾向を有する からである。 [稼働最小評価器22] 会話信号が1秒間以上存在しないということがないか、背景雑音自体が一定の スペクトル形状でない場合がある。この場合には、定常評価器24(上述)は、背 景雑音評価値を生成しない。このような場合のために、稼働最小評価器22が、正 確さの点では劣るものの、背景雑音評価値を生成する。 稼働最小評価器によって使用される処理は、次のとおりである。 1.10秒間隔に渡って、各周波数成分kに対して、その周波数成分についての8 つの連続フレームのエネルギーを最小にする8つの連続フレームを見つけ出す。 すなわち、すべての周波数成分kに対して、以下のMk(fk)を最小にするフレ ームfkを見つけ出す。 ここで、fkは、上記10秒間隔内で発生する任意のフレーム番号である。一 般に、式(10)を最小にするfkは、異なる周波数成分kに対して異なる値をとる 。 2.以下の2つの状況が両方とも成立すると、先のステップで背景雑音スペクト ル評価値として求められた最小値Mkを使用する。 (a) 定常評価器による背景雑音スペクトル評価値の最後の更新から10秒以上が 経過している。 (b) 過去の背景雑音評価値(定常評価器または稼働最小評価器から求められた もの)と現在の稼働最小評価器との差Dが大きい。差Dを定義するために使用さ れる基準は、式(11)で与えられる。 ここで、max関数は、その2つの引数の大きい方の値を返す。Nkは、(稼働 最小評価器または定常最小評価器のいずれかからの)前の背景雑音評価値である 。Mkは、稼働最小評価器からの現在の背景雑音評価値である。 Dが、あるしきい値(例えば、好ましい実施形態においては3000)よりも大き く、上記条件(a)を満足しているならば、Mkは、新しい背景スペクトル評価値と して使用される。Mkを雑音評価値として使用することは、ノッチ・フィルタを 不作動にすべきことを示す。その理由は、ノッチの中心周波数の優れた評価が可 能でないからである。 [雑音抑制スペクトル修正器30] 図1を参照して、背景雑音評価値が求められると、現在のフレームのスペクト ルを背景雑音評価値のスペクトルと比較し、この比較に基づいて、出力信号の雑 音の知覚を減少させるために、現在のフレームのFFTの各周波数成分に対して 減衰処理を行わなければならない。 [グローバル会話信号対雑音検出器32] 任意の所与のフレームは、会話信号とそれ以外のもののいずれかを含んでいる 。グローバル会話信号対雑音検出器(Global speech versus noise detector)32 は、フレームが雑音であるかどうかについて二値の判定を行う。 会話信号が存在する場合に、マスク効果が不正確な信号対雑音宣言を目立たな くさせる傾向にあるので、しきい値を低くすることができる。一方、フレームが 雑音のみであるならば、周波数成分が雑音によるものか信号によるものかを決定 することの僅かな誤りが、いわゆる「きらめき」音(twinkling sound)を引き起 こすことになる。 例示の実施形態によると、フレーム内に会話信号が存在するかどうかを判断す るために、システムは、現在のフレームの第k番目の周波数成分の大きさSkと 背景雑音評価値の第k番目の周波数成分の大きさCkとを比較する。次に、(1 フレームに対して)kの7つの値より多い値についてSk>T×Ckならば、その フレームは会話信号のフレームと宣言される。そうでなければ、そのフレームは 雑音フレームと宣言される。ここで、Tは一定のしきい値である(好ましい実施 形態ではT=3)。 [個別周波数成分用ローカル会話信号対雑音検出器34] 上記節で説明したグローバル会話信号対雑音検出器32は、各周波数成分が雑音 かどうかについて二値判定を行うものである。一方、ローカル会話信号対雑音検 出器(Local speech versus noise detector)34は、各周波数成分が雑音であるか どうかについて幅のある判定を行う。これらの判定は、第k番目の周波数成分が 雑音であるという高い確度の判定から、第k番目の周波数成分が信号であるとい う高い確度の判定までの幅を有する。 この判定は、現在のフレームの第k番目周波数成分の大きさの、背景雑音スペ クトル評価値のうちのこれに対応する成分の大きさに対する比に基づいてなされ る。判定値をDkで示す。この実施形態において、判定値Dkは0から4まで変動 し、Dk=0の判定は、「その成分が雑音である確度が高い」ことに対応し、Dk =4の判定は、「その成分が信号である確度が高い」ことに対応する。 Dkの値は以下のように定められる。 ここで、現在のフレームに対して、Sk=R2(k)+I2(k)である。Nkは成分k の背景雑音評価値である。t1、t2、t3、t4に使用される値は、グローバル会 話信号検出器32が先行フレームを会話信号と宣言したか雑音と宣言したかに 依存して変化する。例示の実施形態において、雑音と宣言した場合には、t1=6 .3、t2=9.46、t3=18.9、t4=25.2であり、信号と宣言した場合には、これ らのしきい値は1/2に下げられ、t1=3.15、t2=4.73、t3=9.45、t4=12.6 にされる。 これらのDkは、制御される減衰器の利得乗法因数(gain multiplicative fact or)を調整する以下の処理に使用される。 [臨界帯域付近の周波数ビン(frequency bin)利得の時間スペクトル分散器36] 配列Akは、すべてのFFT周波数成分kに対する乗法因数(multiplicative f actor)を格納する。Akの要素は、FFT8から1フレーム・ディレイ10を介し て与えられるスペクトル成分を修正するために、制御減衰器12によって使用され る。Akの値は、ローカル会話信号対雑音検出器34で求められた判定値Dkに基づ いて変更される。 Akの値は、L<Ak<1の範囲に制限される。ここで、Lは、雑音低減量の下 限である(以下に説明する)。Lの値が小さいほど、より多くの雑音を低減する ことができる。しかしながら、一般に、雑音を多く低減するほど、人為的なもの (artifact)が同時に発生してくる。信号の信号対雑音比(SN比)を高くすると 、反対すべき人為的なものを会話信号内に生成することなく、Lの値を小さく設 定することができる。適度な14dBのSN比に対するLの良好な値は、0.25である 。会話の明瞭性に影響する反対すべき人為物を減らすために、SN比が低くなる につれて、Lの値を大きくすべきである。例えば、6dBのSN比では、Lの値を 0.5にする必要がある。会話のSN比が、システムの処理中に測定され、測定値 は、Lの値を決定するために使用される。 Akは、上記式(12)から導出されるように、先行フレームにおけるAkと現在の フレームのDkの値の関数として、各新フレームごとに変化する。第i番目のフ レームからのAkをAk iとすると、Ak i=G(Ak i-1,Dk)となる。ここで、関数 Gは、以下の式(13)で定義される。 ここで、β>1であり、Dkとともに増加する。β0<1である。 つまり、判定値Dk≧1ならば、先行フレームからのAkは、Dkの値の増加と ともに増加する1より大きな乗法因数を乗じられる。判定値Dk=0ならば、先 行フレームからのAkは、1より小さな値(代表的には0.8)の乗法因数を乗じら れる。 これは、時間的分散(拡張、拡散:temporal spreading)である。好ましい実 施形態では、時間的分散は、現在のフレーム前20mSから現在のフレーム後200ms まで存在する。 判定値Dk=4は、スペクトル成分kが会話信号を含む確度が高いことを意味 し、Akはその最大値1に設定される。 次に、Akのスペクトル分散(拡張、拡散:spectral spreading)が500 Hzよ りも大きな周波数に対して実行される。この分散は、この例示の実施形態におい ては中心周波数の1/6に等しい臨界帯域幅上で起こる。この理由は、心理音響学 の実験からきている。この実験は、所与の周波数において強い信号成分があると 、この信号成分は、その周波数の1/6の帯域幅における雑音に対してマスク効果 を有する、ということを示している。スペクトル分散は、次のようにして達成さ れる。 Dk≧1の判定値に対して、上述したように計算される臨界帯域幅のAkは、F (Dk)より小さくなることは許されない(Fは、以下で定義する)。本質的に、 雑音(および会話信号)の低減量がスペクトル領域で少なくなるように、臨界帯 域幅におけるAkに対する下限Lは大きくされる。典型的には、Lは0.25に等し く、F(Dk)は、次のように定められる。 F(4)=0.5 F(3)=0.4 F(2)=0.333 500 Hzより小さな周波数に対して、スペクトル分散は実行されない。実験では 、背景雑音スペクトルは、低い周波数において、回転音響効果により、多くのピ ークと谷間を有し、耳障りな粗い人為的なものは、これらの周波数においてスペ クトル分散を行うことが原因で生じることが示されている。 [スペクトル・バレー充填器38] 雑音低減方法の人為的なものの一つとして、残響感の増加がある。これは、残 響による信号のスペクトル消失点(spectral nulls)の深さが、利得乗法因数の配 列Akを導出するプロセスにおいて増加するという事実から起因する。この人為 的なものとの戦いを補助するために、残響に伴うスペクトル消失点(null)に対応 するAkの局所的最小値が増加させられる。500 Hzから上の周波数の範囲に対し て、Ak<Ak-4かつAk<Ak+4であるならば、k=16,17,18,…,251に対し て、次のようになる。 [減衰器12] 乗法因数配列の値がある特定のフレームについて決定されると、雑音対会話信 号の決定に反映するように周波数成分を調整することができる。 制御される減衰器12において、乗法因数配列Akは次のように使用される。遅 延変換された信号の実数および虚数の各周波数成分は、次のように増減される。 続いて、図1のブロック図に示すように、修正されたフーリエ成分Rn(k)およ びIn(k)には、逆FFT、ウィンドウ化および重ね合わせが行われ、最終的に、 雑音が低減された出力信号フレームが生成される。 これにより、審美的に満足され、雑音が低減されて知覚されない信号が生成さ れる。 本発明の好ましい特定の実施形態に対して付加し、減らし、削除する修正、お よび他の修正を行うことは、この技術分野の専門家(当業者)には明らかであり 、以下の請求の範囲に含まれるものである。

Claims (1)

  1. 【特許請求の範囲】 1.雑音成分を有する入力音響信号に背景雑音の知覚される抑制を行うための装 置であって、 前記入力音響信号を複数の信号フレームに分割するフレーム化装置、 前記信号フレームから狭帯域の雑音成分を除去して、フィルタリングされた 信号フレームを生成するノッチ・フィルタ・バンク、 一つのフィルタリングされた信号フレーム内の全信号を、前記一つのフィル タリングされた信号フレームに時間的に直前に先行するフィルタリングされた信 号フレーム内のいくつかの信号と結合し、ウィンドウ化された信号フレームを生 成するウィンド化装置、 前記ウィンドウ化された信号フレームから周波数スペクトル成分を得る変換 器、 前記周波数スペクトル成分を使用して、前記周波数スペクトル成分の雑音量 の雑音評価値を生成する雑音評価器、 前記雑音評価値および前記周波数スペクトル成分に基づいて、利得乗法因数 を生成する雑音抑制スペクトル修正器、 前記周波数スペクトル成分を遅延させ、遅延した周波数スペクトル成分を生 成する遅延器、 前記利得乗法因数に基づいて前記遅延した周波数スペクトル成分を減衰させ 、雑音の低減された周波数成分を生成する制御減衰器、および 前記雑音の低減された周波数成分を時間領域に変換する逆変換器、 を備えている装置。 2.前記雑音抑制スペクトル修正器が、 前記周波数スペクトル成分の各周波数成分に対して、その周波数成分が雑音 であるかどうかについての決定を行うグローバル判定機構、 前記周波数スペクトル成分の各周波数成分に対して、周波数成分が雑音成分 である確度レベルを導出するローカル雑音判定機構、 前記確度レベルに基づいて、各周波数成分に対して前記利得乗法因数を決定 する検出器、 前記利得乗法因数をスペクトル的および時間的に調整する分散機構、ならび に 前記周波数成分のスペクトルの谷間を検出および充填するスペクトル・バレ ー充填器、 を備えている請求の範囲第1項に記載の装置。 3.前記背景雑音評価器が、各周波数スペクトル成分に対して、対応する雑音評 価値を生成するものであり、 前記ローカル雑音判定機構が、 (a) 周波数成分のそれぞれとその対応する雑音評価値との比、および (b) 前記グローバル判定機構によって行われた決定、 に基づいて、確度レベルを導出するものである、 請求の範囲第2項に記載の装置。 4.前記分散機構が、前記利得乗法因数を前記確度レベルに基づいて調整するも のである請求の範囲第2項に記載の装置。 5.滑らかにされた時間領域の成分を生成して、前記雑音の低減された時間領域 の成分の不連続性を最小化する後置ウィンドウ、および 前記滑らかにされた時間領域の成分の第1の部分を、滑らかにされた時間領 域の成分の先に格納された部分と組み合わせて出力し、前記滑らかにされた時間 領域の成分の前記第1の部分に含まれない部分からなる残りの部分を格納する重 ね合わせ加算器、 をさらに備えている請求の範囲第1項に記載の装置。 6.滑らかにされた時間領域の成分を生成して、前記雑音の低減された時間領域 の成分の不連続性を最小化する後置ウィンドウ、および 前記滑らかにされた時間領域の成分の第1の部分を、滑らかにされた時間領 域の成分の先に格納された部分と組み合わせて出力し、前記滑らかにされた時間 領域の成分の前記第1の部分に含まれない部分からなる残りの部分を格納する重 ね合わせ加算器、 をさらに備えている請求の範囲第2項に記載の装置。 7.滑らかにされた時間領域の成分を生成して、前記雑音の低減された時間領域 の成分の不連続性を最小化する後置ウィンドウ、および 前記滑らかにされた時間領域の成分の第1の部分を、滑らかにされた時間領 域の成分の先に格納された部分と組み合わせて出力し、前記滑らかにされた時間 領域の成分の前記第1の部分に含まれない部分からなる残りの部分を格納する重 ね合わせ加算器、 をさらに備えている請求の範囲第3項に記載の装置。 8.雑音成分を有する入力音響信号に背景雑音の知覚される抑制を行うための装 置であって、 前記入力音響信号から抽出される信号のフレームから周波数スペクトル成分 を得る変換器、 各周波数成分に対して乗法利得因数を決定する検出器、 時間的分散およびスペクトル分散を生じさせるために、前記乗法利得因数を 調整する分散機構、ならびに 前記周波数成分を変換して、雑音の修正されたスペクトル信号を取り出す制 御減衰器、 を備えている装置。 9.入力音響信号の背景雑音の知覚を低減するための方法であって、 前記入力音響信号を複数の信号フレームに分割し、 前記信号フレームから狭帯域の雑音成分を除去して、フィルタリングされた 信号フレームを生成し、 一つのフィルタリングされた信号フレーム内の全信号を、前記一つのフィル タリングされた信号フレームに時間的に直前に先行するフィルタリングされた信 号フレーム内のいくつかの信号と結合し、ウィンドウ化された信号フレームを生 成し、 前記ウィンドウ化された信号フレームから周波数スペクトル成分を得、 前記周波数スペクトル成分を使用して、前記周波数スペクトル成分の雑音量 の雑音評価値を生成し、 前記雑音評価値および前記周波数スペクトル成分に基づいて、利得乗法因数 を生成し、 前記周波数スペクトル成分を遅延させ、遅延した周波数スペクトル成分を生 成し、 前記利得乗法因数に基づいて前記遅延した周波数スペクトル成分を減衰させ 、雑音の低減された周波数成分を生成し、 前記雑音の低減された周波数成分を時間領域に変換する、 ステップを備えている方法。 10.前記利得乗法因数を生成するステップが、 前記周波数スペクトル成分の各周波数成分に対して、その周波数成分が雑音 であるかどうかについての決定を行い、 前記周波数スペクトル成分の各周波数成分に対して、周波数成分が雑音成分 である確度レベルを導出し、 前記確度レベルに基づいて、各周波数成分に対して前記利得乗法因数を決定 し、 前記利得乗法因数をスペクトル的および時間的に調整し、 前記周波数成分のスペクトルの谷間を検出および充填する、 ステップを備えている請求の範囲第9項に記載の方法。 11.後置ウィンドウ化を行って、滑らかにされた時間領域の成分を生成し、 前記滑らかにされた時間領域の成分の第1の部分を、滑らかにされた時間領 域の成分の先に格納された部分と組み合わせて出力し、 前記滑らかにされた時間領域の成分の前記第1の部分に含まれない部分から なる残りの部分を格納する、 ステップをさらに備えている請求の範囲第9項に記載の方法。 12.後置ウィンドウ化を行って、滑らかにされた時間領域の成分を生成し、 前記滑らかにされた時間領域の成分の第1の部分を、滑らかにされた時間領 域の成分の先に格納された部分と組み合わせて出力し、 前記滑らかにされた時間領域の成分の前記第1の部分に含まれない部分から なる残りの部分を格納する、 ステップをさらに備えている請求の範囲第10項に記載の方法。 13.雑音成分を有する入力音響信号の背景雑音の知覚を低減するための方法であ って、 前記入力音響信号から抽出される信号のフレームから周波数スペクトル成分 を得、 各周波数成分に対して乗法利得因数を決定し、 時間的分散およびスペクトル分散を生じさせるために、前記乗法利得因数を 調整し、 前記周波数成分を変換して、雑音の修正されたスペクトル信号を取り出す、 ステップを備えている方法。
JP50402695A 1993-07-07 1994-06-06 会話の品質向上のための背景雑音の低減 Expired - Lifetime JP3626492B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8670793A 1993-07-07 1993-07-07
US08/086,707 1993-07-07
PCT/US1994/006367 WO1995002288A1 (en) 1993-07-07 1994-06-06 Reduction of background noise for speech enhancement

Publications (2)

Publication Number Publication Date
JPH09503590A true JPH09503590A (ja) 1997-04-08
JP3626492B2 JP3626492B2 (ja) 2005-03-09

Family

ID=22200351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50402695A Expired - Lifetime JP3626492B2 (ja) 1993-07-07 1994-06-06 会話の品質向上のための背景雑音の低減

Country Status (5)

Country Link
US (1) US5550924A (ja)
EP (1) EP0707763B1 (ja)
JP (1) JP3626492B2 (ja)
DE (1) DE69428119T2 (ja)
WO (1) WO1995002288A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514264A (ja) * 1999-11-15 2003-04-15 ノキア コーポレイション 雑音抑圧装置
JP2009535997A (ja) * 2006-05-04 2009-10-01 株式会社ソニー・コンピュータエンタテインメント コンソール上にファーフィールドマイクロフォンを有する電子装置におけるノイズ除去
US8738373B2 (en) 2006-08-30 2014-05-27 Fujitsu Limited Frame signal correcting method and apparatus without distortion

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223049A (ja) * 1995-02-14 1996-08-30 Sony Corp 信号符号化方法及び装置、信号復号化方法及び装置、情報記録媒体並びに情報伝送方法
JP3484801B2 (ja) * 1995-02-17 2004-01-06 ソニー株式会社 音声信号の雑音低減方法及び装置
JP3453898B2 (ja) * 1995-02-17 2003-10-06 ソニー株式会社 音声信号の雑音低減方法及び装置
US6001131A (en) * 1995-02-24 1999-12-14 Nynex Science & Technology, Inc. Automatic target noise cancellation for speech enhancement
JP3307138B2 (ja) * 1995-02-27 2002-07-24 ソニー株式会社 信号符号化方法及び装置、並びに信号復号化方法及び装置
JP3591068B2 (ja) * 1995-06-30 2004-11-17 ソニー株式会社 音声信号の雑音低減方法
US5960390A (en) * 1995-10-05 1999-09-28 Sony Corporation Coding method for using multi channel audio signals
US5659622A (en) * 1995-11-13 1997-08-19 Motorola, Inc. Method and apparatus for suppressing noise in a communication system
FI100840B (fi) * 1995-12-12 1998-02-27 Nokia Mobile Phones Ltd Kohinanvaimennin ja menetelmä taustakohinan vaimentamiseksi kohinaises ta puheesta sekä matkaviestin
JPH09212196A (ja) * 1996-01-31 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 雑音抑圧装置
US5825320A (en) * 1996-03-19 1998-10-20 Sony Corporation Gain control method for audio encoding device
US5778082A (en) * 1996-06-14 1998-07-07 Picturetel Corporation Method and apparatus for localization of an acoustic source
DE19629132A1 (de) * 1996-07-19 1998-01-22 Daimler Benz Ag Verfahren zur Verringerung von Störungen eines Sprachsignals
US6097820A (en) * 1996-12-23 2000-08-01 Lucent Technologies Inc. System and method for suppressing noise in digitally represented voice signals
SE9700772D0 (sv) * 1997-03-03 1997-03-03 Ericsson Telefon Ab L M A high resolution post processing method for a speech decoder
US7379961B2 (en) * 1997-04-30 2008-05-27 Computer Associates Think, Inc. Spatialized audio in a three-dimensional computer-based scene
US6035048A (en) * 1997-06-18 2000-03-07 Lucent Technologies Inc. Method and apparatus for reducing noise in speech and audio signals
FR2765715B1 (fr) * 1997-07-04 1999-09-17 Sextant Avionique Procede de recherche d'un modele de bruit dans des signaux sonores bruites
US6466912B1 (en) * 1997-09-25 2002-10-15 At&T Corp. Perceptual coding of audio signals employing envelope uncertainty
US6047234A (en) * 1997-10-16 2000-04-04 Navigation Technologies Corporation System and method for updating, enhancing or refining a geographic database using feedback
US6505057B1 (en) 1998-01-23 2003-01-07 Digisonix Llc Integrated vehicle voice enhancement system and hands-free cellular telephone system
US6157908A (en) * 1998-01-27 2000-12-05 Hm Electronics, Inc. Order point communication system and method
US6415253B1 (en) * 1998-02-20 2002-07-02 Meta-C Corporation Method and apparatus for enhancing noise-corrupted speech
US7306700B1 (en) 1998-04-27 2007-12-11 Akzo Nobel Nv Process for the production of paper
EP0953680A1 (en) * 1998-04-27 1999-11-03 Akzo Nobel N.V. A process for the production of paper
KR100403839B1 (ko) 1998-04-27 2003-11-01 악조 노벨 엔.브이. 제지 방법
US6088668A (en) * 1998-06-22 2000-07-11 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
US7072831B1 (en) * 1998-06-30 2006-07-04 Lucent Technologies Inc. Estimating the noise components of a signal
US7209567B1 (en) * 1998-07-09 2007-04-24 Purdue Research Foundation Communication system with adaptive noise suppression
US6453289B1 (en) * 1998-07-24 2002-09-17 Hughes Electronics Corporation Method of noise reduction for speech codecs
US6122610A (en) * 1998-09-23 2000-09-19 Verance Corporation Noise suppression for low bitrate speech coder
GB2342829B (en) * 1998-10-13 2003-03-26 Nokia Mobile Phones Ltd Postfilter
US6993480B1 (en) * 1998-11-03 2006-01-31 Srs Labs, Inc. Voice intelligibility enhancement system
US6718301B1 (en) 1998-11-11 2004-04-06 Starkey Laboratories, Inc. System for measuring speech content in sound
US6205422B1 (en) * 1998-11-30 2001-03-20 Microsoft Corporation Morphological pure speech detection using valley percentage
US6249757B1 (en) 1999-02-16 2001-06-19 3Com Corporation System for detecting voice activity
US7120579B1 (en) 1999-07-28 2006-10-10 Clear Audio Ltd. Filter banked gain control of audio in a noisy environment
DE19948308C2 (de) * 1999-10-06 2002-05-08 Cortologic Ag Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung
EP1219138B1 (en) * 1999-10-07 2004-03-17 Widex A/S Method and signal processor for intensification of speech signal components in a hearing aid
US7110923B2 (en) * 1999-11-04 2006-09-19 Verticalband, Limited Fast, blind equalization techniques using reliable symbols
US7143013B2 (en) * 1999-11-04 2006-11-28 Verticalband, Limited Reliable symbols as a means of improving the performance of information transmission systems
GB2356112B (en) * 1999-11-04 2002-02-06 Imperial College Increasing data transmission bit rates
US7085691B2 (en) * 1999-11-04 2006-08-01 Verticalband, Limited Reliable symbols as a means of improving the performance of information transmission systems
FI116643B (fi) * 1999-11-15 2006-01-13 Nokia Corp Kohinan vaimennus
US6473733B1 (en) * 1999-12-01 2002-10-29 Research In Motion Limited Signal enhancement for voice coding
AU2302401A (en) * 1999-12-09 2001-06-18 Frederick Johannes Bruwer Speech distribution system
WO2001050459A1 (en) * 1999-12-31 2001-07-12 Octiv, Inc. Techniques for improving audio clarity and intelligibility at reduced bit rates over a digital network
US7379962B1 (en) 2000-01-19 2008-05-27 Computer Associates Think, Inc. Spatialized audio in a three-dimensional computer-based scene
US7110951B1 (en) 2000-03-03 2006-09-19 Dorothy Lemelson, legal representative System and method for enhancing speech intelligibility for the hearing impaired
US6523003B1 (en) * 2000-03-28 2003-02-18 Tellabs Operations, Inc. Spectrally interdependent gain adjustment techniques
EP1139337A1 (en) * 2000-03-31 2001-10-04 Telefonaktiebolaget L M Ericsson (Publ) A method of transmitting voice information and an electronic communications device for transmission of voice information
KR20030007483A (ko) * 2000-03-31 2003-01-23 텔레폰악티에볼라겟엘엠에릭슨(펍) 음성 정보를 송신하는 방법 및 음성 정보 송신용 전자통신 장치
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
EP1168734A1 (en) * 2000-06-26 2002-01-02 BRITISH TELECOMMUNICATIONS public limited company Method to reduce the distortion in a voice transmission over data networks
JP2004507141A (ja) * 2000-08-14 2004-03-04 クリアー オーディオ リミテッド 音声強調システム
US20020075965A1 (en) * 2000-12-20 2002-06-20 Octiv, Inc. Digital signal processing techniques for improving audio clarity and intelligibility
US20030023429A1 (en) * 2000-12-20 2003-01-30 Octiv, Inc. Digital signal processing techniques for improving audio clarity and intelligibility
CN1244904C (zh) * 2001-05-08 2006-03-08 皇家菲利浦电子有限公司 声频信号编码方法和设备
US7236929B2 (en) * 2001-05-09 2007-06-26 Plantronics, Inc. Echo suppression and speech detection techniques for telephony applications
US20040243400A1 (en) * 2001-09-28 2004-12-02 Klinke Stefano Ambrosius Speech extender and method for estimating a wideband speech signal using a narrowband speech signal
JP4744874B2 (ja) * 2002-05-03 2011-08-10 ハーマン インターナショナル インダストリーズ インコーポレイテッド サウンドの検出および特定システム
US7103541B2 (en) * 2002-06-27 2006-09-05 Microsoft Corporation Microphone array signal enhancement using mixture models
US7697700B2 (en) * 2006-05-04 2010-04-13 Sony Computer Entertainment Inc. Noise removal for electronic device with far field microphone on console
US7013272B2 (en) * 2002-08-14 2006-03-14 Motorola, Inc. Amplitude masking of spectra for speech recognition method and apparatus
US7146315B2 (en) * 2002-08-30 2006-12-05 Siemens Corporate Research, Inc. Multichannel voice detection in adverse environments
US7433462B2 (en) * 2002-10-31 2008-10-07 Plantronics, Inc Techniques for improving telephone audio quality
US7191127B2 (en) * 2002-12-23 2007-03-13 Motorola, Inc. System and method for speech enhancement
US7885420B2 (en) * 2003-02-21 2011-02-08 Qnx Software Systems Co. Wind noise suppression system
US8271279B2 (en) 2003-02-21 2012-09-18 Qnx Software Systems Limited Signature noise removal
US8326621B2 (en) 2003-02-21 2012-12-04 Qnx Software Systems Limited Repetitive transient noise removal
US7949522B2 (en) * 2003-02-21 2011-05-24 Qnx Software Systems Co. System for suppressing rain noise
US8073689B2 (en) * 2003-02-21 2011-12-06 Qnx Software Systems Co. Repetitive transient noise removal
US7895036B2 (en) * 2003-02-21 2011-02-22 Qnx Software Systems Co. System for suppressing wind noise
US7725315B2 (en) * 2003-02-21 2010-05-25 Qnx Software Systems (Wavemakers), Inc. Minimization of transient noises in a voice signal
AU2003219487A1 (en) * 2003-04-02 2004-10-25 Magink Display Technologies Ltd. Psychophysical perception enhancement
US7272233B2 (en) * 2003-09-11 2007-09-18 Clarity Technologies, Inc. Acoustic shock prevention
US7224810B2 (en) * 2003-09-12 2007-05-29 Spatializer Audio Laboratories, Inc. Noise reduction system
US7454332B2 (en) * 2004-06-15 2008-11-18 Microsoft Corporation Gain constrained noise suppression
US20050285935A1 (en) * 2004-06-29 2005-12-29 Octiv, Inc. Personal conferencing node
US20050286443A1 (en) * 2004-06-29 2005-12-29 Octiv, Inc. Conferencing system
US20060023061A1 (en) * 2004-07-27 2006-02-02 Vaszary Mark K Teleconference audio quality monitoring
KR100677126B1 (ko) * 2004-07-27 2007-02-02 삼성전자주식회사 레코더 기기의 잡음 제거 장치 및 그 방법
US9779750B2 (en) 2004-07-30 2017-10-03 Invention Science Fund I, Llc Cue-aware privacy filter for participants in persistent communications
US7720232B2 (en) * 2004-10-15 2010-05-18 Lifesize Communications, Inc. Speakerphone
US7903137B2 (en) * 2004-10-15 2011-03-08 Lifesize Communications, Inc. Videoconferencing echo cancellers
US8116500B2 (en) * 2004-10-15 2012-02-14 Lifesize Communications, Inc. Microphone orientation and size in a speakerphone
US7760887B2 (en) * 2004-10-15 2010-07-20 Lifesize Communications, Inc. Updating modeling information based on online data gathering
US7826624B2 (en) * 2004-10-15 2010-11-02 Lifesize Communications, Inc. Speakerphone self calibration and beam forming
US7970151B2 (en) * 2004-10-15 2011-06-28 Lifesize Communications, Inc. Hybrid beamforming
US20060132595A1 (en) * 2004-10-15 2006-06-22 Kenoyer Michael L Speakerphone supporting video and audio features
US7720236B2 (en) * 2004-10-15 2010-05-18 Lifesize Communications, Inc. Updating modeling information based on offline calibration experiments
KR100677396B1 (ko) * 2004-11-20 2007-02-02 엘지전자 주식회사 음성인식장치의 음성구간 검출방법
US7292985B2 (en) * 2004-12-02 2007-11-06 Janus Development Group Device and method for reducing stuttering
US7991167B2 (en) * 2005-04-29 2011-08-02 Lifesize Communications, Inc. Forming beams with nulls directed at noise sources
US7970150B2 (en) * 2005-04-29 2011-06-28 Lifesize Communications, Inc. Tracking talkers using virtual broadside scan and directed beams
US7593539B2 (en) * 2005-04-29 2009-09-22 Lifesize Communications, Inc. Microphone and speaker arrangement in speakerphone
US8520861B2 (en) * 2005-05-17 2013-08-27 Qnx Software Systems Limited Signal processing system for tonal noise robustness
US20060269057A1 (en) * 2005-05-26 2006-11-30 Groove Mobile, Inc. Systems and methods for high resolution signal analysis and chaotic data compression
US7454335B2 (en) * 2006-03-20 2008-11-18 Mindspeed Technologies, Inc. Method and system for reducing effects of noise producing artifacts in a voice codec
JP4171922B2 (ja) * 2006-04-12 2008-10-29 船井電機株式会社 ミュート装置、液晶ディスプレイテレビ、及びミュート方法
GB2437559B (en) * 2006-04-26 2010-12-22 Zarlink Semiconductor Inc Low complexity noise reduction method
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
RS49875B (sr) * 2006-10-04 2008-08-07 Micronasnit, Sistem i postupak za slobodnu govornu komunikaciju pomoću mikrofonskog niza
EP1926085B1 (en) * 2006-11-24 2010-11-03 Research In Motion Limited System and method for reducing uplink noise
US9058819B2 (en) * 2006-11-24 2015-06-16 Blackberry Limited System and method for reducing uplink noise
US8249374B2 (en) * 2006-12-12 2012-08-21 University Of New Hampshire Systems and methods for adaptive multiresolution signal analysis with compact cupolets
JP5171842B2 (ja) * 2006-12-12 2013-03-27 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 時間領域データストリームを表している符号化および復号化のための符号器、復号器およびその方法
US8457768B2 (en) * 2007-06-04 2013-06-04 International Business Machines Corporation Crowd noise analysis
US8767975B2 (en) * 2007-06-21 2014-07-01 Bose Corporation Sound discrimination method and apparatus
US8611554B2 (en) * 2008-04-22 2013-12-17 Bose Corporation Hearing assistance apparatus
US8625704B1 (en) 2008-09-25 2014-01-07 Aquantia Corporation Rejecting RF interference in communication systems
US9912375B1 (en) 2008-09-25 2018-03-06 Aquantia Corp. Cancellation of alien interference in communication systems
US8442099B1 (en) 2008-09-25 2013-05-14 Aquantia Corporation Crosstalk cancellation for a common-mode channel
US8213635B2 (en) * 2008-12-05 2012-07-03 Microsoft Corporation Keystroke sound suppression
JP5141542B2 (ja) * 2008-12-24 2013-02-13 富士通株式会社 雑音検出装置及び雑音検出方法
US9055374B2 (en) * 2009-06-24 2015-06-09 Arizona Board Of Regents For And On Behalf Of Arizona State University Method and system for determining an auditory pattern of an audio segment
US8204742B2 (en) * 2009-09-14 2012-06-19 Srs Labs, Inc. System for processing an audio signal to enhance speech intelligibility
US8467881B2 (en) * 2009-09-29 2013-06-18 Advanced Bionics, Llc Methods and systems for representing different spectral components of an audio signal presented to a cochlear implant patient
GB0919672D0 (en) 2009-11-10 2009-12-23 Skype Ltd Noise suppression
US8737654B2 (en) 2010-04-12 2014-05-27 Starkey Laboratories, Inc. Methods and apparatus for improved noise reduction for hearing assistance devices
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
US9118469B2 (en) * 2010-05-28 2015-08-25 Aquantia Corp. Reducing electromagnetic interference in a received signal
US8891595B1 (en) 2010-05-28 2014-11-18 Aquantia Corp. Electromagnetic interference reduction in wireline applications using differential signal compensation
US8724678B2 (en) 2010-05-28 2014-05-13 Aquantia Corporation Electromagnetic interference reduction in wireline applications using differential signal compensation
US8457321B2 (en) 2010-06-10 2013-06-04 Nxp B.V. Adaptive audio output
US8792597B2 (en) 2010-06-18 2014-07-29 Aquantia Corporation Reducing electromagnetic interference in a receive signal with an analog correction signal
US9078077B2 (en) 2010-10-21 2015-07-07 Bose Corporation Estimation of synthetic audio prototypes with frequency-based input signal decomposition
US8924204B2 (en) 2010-11-12 2014-12-30 Broadcom Corporation Method and apparatus for wind noise detection and suppression using multiple microphones
JP5643686B2 (ja) * 2011-03-11 2014-12-17 株式会社東芝 音声判別装置、音声判別方法および音声判別プログラム
US9589580B2 (en) 2011-03-14 2017-03-07 Cochlear Limited Sound processing based on a confidence measure
US9264553B2 (en) 2011-06-11 2016-02-16 Clearone Communications, Inc. Methods and apparatuses for echo cancelation with beamforming microphone arrays
US8861663B1 (en) 2011-12-01 2014-10-14 Aquantia Corporation Correlated noise canceller for high-speed ethernet receivers
US8645142B2 (en) * 2012-03-27 2014-02-04 Avaya Inc. System and method for method for improving speech intelligibility of voice calls using common speech codecs
US9317458B2 (en) 2012-04-16 2016-04-19 Harman International Industries, Incorporated System for converting a signal
US8929468B1 (en) 2012-06-14 2015-01-06 Aquantia Corp. Common-mode detection with magnetic bypass
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
JP6054142B2 (ja) * 2012-10-31 2016-12-27 株式会社東芝 信号処理装置、方法およびプログラム
EP2747081A1 (en) * 2012-12-18 2014-06-25 Oticon A/s An audio processing device comprising artifact reduction
US9552825B2 (en) * 2013-04-17 2017-01-24 Honeywell International Inc. Noise cancellation for voice activation
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
DE112015003945T5 (de) 2014-08-28 2017-05-11 Knowles Electronics, Llc Mehrquellen-Rauschunterdrückung
US9554207B2 (en) 2015-04-30 2017-01-24 Shure Acquisition Holdings, Inc. Offset cartridge microphones
US9565493B2 (en) 2015-04-30 2017-02-07 Shure Acquisition Holdings, Inc. Array microphone system and method of assembling the same
CN108352166B (zh) * 2015-09-25 2022-10-28 弗劳恩霍夫应用研究促进协会 使用线性预测编码对音频信号进行编码的编码器和方法
CN106710589B (zh) * 2016-12-28 2019-07-30 百度在线网络技术(北京)有限公司 基于人工智能的语音特征提取方法及装置
US10367948B2 (en) 2017-01-13 2019-07-30 Shure Acquisition Holdings, Inc. Post-mixing acoustic echo cancellation systems and methods
CN112335261B (zh) 2018-06-01 2023-07-18 舒尔获得控股公司 图案形成麦克风阵列
US11297423B2 (en) 2018-06-15 2022-04-05 Shure Acquisition Holdings, Inc. Endfire linear array microphone
US11750985B2 (en) 2018-08-17 2023-09-05 Cochlear Limited Spatial pre-filtering in hearing prostheses
WO2020061353A1 (en) 2018-09-20 2020-03-26 Shure Acquisition Holdings, Inc. Adjustable lobe shape for array microphones
WO2020191380A1 (en) 2019-03-21 2020-09-24 Shure Acquisition Holdings,Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
US11558693B2 (en) 2019-03-21 2023-01-17 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition and voice activity detection functionality
CN113841419A (zh) 2019-03-21 2021-12-24 舒尔获得控股公司 天花板阵列麦克风的外壳及相关联设计特征
US10587439B1 (en) * 2019-04-12 2020-03-10 Rovi Guides, Inc. Systems and methods for modifying modulated signals for transmission
CN114051738B (zh) 2019-05-23 2024-10-01 舒尔获得控股公司 可操纵扬声器阵列、系统及其方法
US11302347B2 (en) 2019-05-31 2022-04-12 Shure Acquisition Holdings, Inc. Low latency automixer integrated with voice and noise activity detection
WO2021041275A1 (en) 2019-08-23 2021-03-04 Shore Acquisition Holdings, Inc. Two-dimensional microphone array with improved directivity
US12028678B2 (en) 2019-11-01 2024-07-02 Shure Acquisition Holdings, Inc. Proximity microphone
US11552611B2 (en) 2020-02-07 2023-01-10 Shure Acquisition Holdings, Inc. System and method for automatic adjustment of reference gain
CN111370017B (zh) * 2020-03-18 2023-04-14 苏宁云计算有限公司 一种语音增强方法、装置、系统
USD944776S1 (en) 2020-05-05 2022-03-01 Shure Acquisition Holdings, Inc. Audio device
WO2021243368A2 (en) 2020-05-29 2021-12-02 Shure Acquisition Holdings, Inc. Transducer steering and configuration systems and methods using a local positioning system
EP4285605A1 (en) 2021-01-28 2023-12-06 Shure Acquisition Holdings, Inc. Hybrid audio beamforming system
CN114171038B (zh) * 2021-12-10 2023-07-28 北京百度网讯科技有限公司 语音降噪方法、装置、设备及存储介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967283A (en) * 1974-02-13 1976-06-29 Automation Industries, Inc. Large area motion sensor
US4185168A (en) * 1976-05-04 1980-01-22 Causey G Donald Method and means for adaptively filtering near-stationary noise from an information bearing signal
US4696039A (en) * 1983-10-13 1987-09-22 Texas Instruments Incorporated Speech analysis/synthesis system with silence suppression
US4628529A (en) * 1985-07-01 1986-12-09 Motorola, Inc. Noise suppression system
US4630304A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
US4630305A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic gain selector for a noise suppression system
US4658426A (en) * 1985-10-10 1987-04-14 Harold Antin Adaptive noise suppressor
US4653102A (en) * 1985-11-05 1987-03-24 Position Orientation Systems Directional microphone system
US4811404A (en) * 1987-10-01 1989-03-07 Motorola, Inc. Noise suppression system
IL84948A0 (en) * 1987-12-25 1988-06-30 D S P Group Israel Ltd Noise reduction system
GB8801014D0 (en) * 1988-01-18 1988-02-17 British Telecomm Noise reduction
US4852175A (en) * 1988-02-03 1989-07-25 Siemens Hearing Instr Inc Hearing aid signal-processing system
US4912767A (en) * 1988-03-14 1990-03-27 International Business Machines Corporation Distributed noise cancellation system
US4868880A (en) * 1988-06-01 1989-09-19 Yale University Method and device for compensating for partial hearing loss
JPH03132221A (ja) * 1989-10-18 1991-06-05 Nippon Hoso Kyokai <Nhk> 音声混入雑音除去装置
US5146504A (en) * 1990-12-07 1992-09-08 Motorola, Inc. Speech selective automatic gain control
US5349549A (en) * 1991-09-30 1994-09-20 Sony Corporation Forward transform processing apparatus and inverse processing apparatus for modified discrete cosine transforms, and method of performing spectral and temporal analyses including simplified forward and inverse orthogonal transform processing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514264A (ja) * 1999-11-15 2003-04-15 ノキア コーポレイション 雑音抑圧装置
US7889874B1 (en) 1999-11-15 2011-02-15 Nokia Corporation Noise suppressor
JP2009535997A (ja) * 2006-05-04 2009-10-01 株式会社ソニー・コンピュータエンタテインメント コンソール上にファーフィールドマイクロフォンを有する電子装置におけるノイズ除去
US8738373B2 (en) 2006-08-30 2014-05-27 Fujitsu Limited Frame signal correcting method and apparatus without distortion

Also Published As

Publication number Publication date
EP0707763B1 (en) 2001-08-29
DE69428119T2 (de) 2002-03-21
US5550924A (en) 1996-08-27
EP0707763A1 (en) 1996-04-24
DE69428119D1 (de) 2001-10-04
EP0707763A4 (en) 1997-10-22
WO1995002288A1 (en) 1995-01-19
JP3626492B2 (ja) 2005-03-09

Similar Documents

Publication Publication Date Title
JP3626492B2 (ja) 会話の品質向上のための背景雑音の低減
TWI463817B (zh) 可適性智慧雜訊抑制系統及方法
US6591234B1 (en) Method and apparatus for adaptively suppressing noise
US6097820A (en) System and method for suppressing noise in digitally represented voice signals
US5305307A (en) Adaptive acoustic echo canceller having means for reducing or eliminating echo in a plurality of signal bandwidths
EP1065656B1 (en) Method for reducing noise in an input speech signal
US5400409A (en) Noise-reduction method for noise-affected voice channels
US4630305A (en) Automatic gain selector for a noise suppression system
US8396234B2 (en) Method for reducing noise in an input signal of a hearing device as well as a hearing device
EP2244254B1 (en) Ambient noise compensation system robust to high excitation noise
EP1080463B1 (en) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
JP2002542692A (ja) 外部音声活動検出を用いたノイズ抑制
EP1090382A1 (en) A noise suppressor having weighted gain smoothing
WO2002093876A2 (en) Final signal from a near-end signal and a far-end signal
JP2003520469A (ja) 雑音低減装置及び方法
US6999920B1 (en) Exponential echo and noise reduction in silence intervals
EP2647223A1 (en) Dynamic microphone signal mixer
US6970558B1 (en) Method and device for suppressing noise in telephone devices
EP3830823B1 (en) Forced gap insertion for pervasive listening
JPH06208395A (ja) ホルマント検出装置及び音声加工装置
JPH09311696A (ja) 自動利得調整装置
RU2589298C1 (ru) Способ повышения разборчивости и информативности звуковых сигналов в шумовой обстановке
WO2000048168A2 (en) Adaptive noise filter
Shruthi et al. Speech intelligibility prediction and near end listening enhancement for mobile appliciation
PORUBA Subtractive-type algorithm utilizing the human ear masking characteristics

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term