JPH0941095A - Iron-nickel alloy sheet for electronic parts and its production - Google Patents

Iron-nickel alloy sheet for electronic parts and its production

Info

Publication number
JPH0941095A
JPH0941095A JP19943995A JP19943995A JPH0941095A JP H0941095 A JPH0941095 A JP H0941095A JP 19943995 A JP19943995 A JP 19943995A JP 19943995 A JP19943995 A JP 19943995A JP H0941095 A JPH0941095 A JP H0941095A
Authority
JP
Japan
Prior art keywords
rolling
hardness
work hardening
cold rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19943995A
Other languages
Japanese (ja)
Other versions
JP3506289B2 (en
Inventor
Takeshi Hirabayashi
武 平林
Hiroki Nakanishi
寛紀 中西
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19943995A priority Critical patent/JP3506289B2/en
Publication of JPH0941095A publication Critical patent/JPH0941095A/en
Application granted granted Critical
Publication of JP3506289B2 publication Critical patent/JP3506289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Fe-Ni alloy sheet for electronic parts, such as lead frame, increased in strength without deteriorating the characteristics of the conventional materials. SOLUTION: This sheet is an Fe-Ni alloy sheet for electronic parts, which has a composition consisting of, by weight, 28-55% Ni and the balance essentially Fe or further containing <=12% Co and has a structure having the crystalline grains elongated by rolling in a secondary work hardening region and also has a hardness, by Vickers hardness, satisfying Hv>=220+0.5[Ni](%)+0.7[Co](%). This sheet can be obtained by performing final cold rolling at a rolling rate corresponding to the secondary work hardening region where hardness increases abruptly with the increase of rolling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リードフレーム等
の電子部品材料として使用するのに適したFe−Ni系
合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Fe-Ni alloy suitable for use as a material for electronic parts such as lead frames.

【0002】[0002]

【従来の技術】低熱膨張特性を持ち、加工性、耐食性に
優れているFe−Ni系合金は、電子部品用材料として
広く使用されている。例えば集積回路用素子のリードフ
レーム用材料してはFe−42Ni、Fe−50Ni、
Fe−29Ni−17Co(コバール)等のFe−Ni
系合金が使用されている。また特に低熱膨張特性を利用
する材料としてはFe−36Ni(インバー)、Fe−
31Ni−5Co(スーパーインバー)等が知られてい
る。
2. Description of the Related Art Fe-Ni alloys, which have low thermal expansion characteristics and excellent workability and corrosion resistance, are widely used as materials for electronic parts. For example, as a material for a lead frame of an integrated circuit device, Fe-42Ni, Fe-50Ni,
Fe-Ni such as Fe-29Ni-17Co (Kovar)
A series alloy is used. Fe-36Ni (Invar), Fe-
31Ni-5Co (Super Invar) and the like are known.

【0003】上述したようなFe−Ni系材料を電子部
品用途に適用する場合においては、材料には、例えばプ
レス打抜き加工やフォトエッチング加工のような、微細
な加工が施される。そして、リードフレームを代表とす
る電子部品材料においては、半導体装置の高集積化に伴
う薄板化および微細加工化がいっそう求められている。
このような薄板で微細加工を行ったFe−Ni系電子部
品材料では、強度不足が原因で組み立て、搬送、実装な
どの際に反り、曲がりなどが起こり易く、また使用中の
衝撃で座屈するなど種々問題がある。そのためFe−N
i系電子部品材料に対して、強度の向上が強く求められ
ている。
When the Fe-Ni-based material as described above is applied to electronic parts, the material is subjected to fine processing such as press punching or photoetching. In electronic component materials such as lead frames, further thinning and microfabrication have been required due to high integration of semiconductor devices.
Fe-Ni-based electronic component materials that have undergone microfabrication with such a thin plate are prone to warping and bending during assembly, transportation, mounting, etc. due to insufficient strength, and they also buckle due to shock during use. There are various problems. Therefore Fe-N
There is a strong demand for improvement in strength of i-based electronic component materials.

【0004】[0004]

【発明が解決しようとする課題】このような要求に対し
て、Fe−Ni系合金の強度の改良について多くの提案
がなされている。例えば、合金元素を添加して強度を高
める方法としては、Si、Mn、Crを含有させて強化
する試み(特開昭55−131155号)がある。しか
しこれは主要元素の他に酸化し易い強化元素を含有する
ため、表面酸化が起こり易くハンダ性、メッキ性をやや
劣化させる傾向がある。また、固溶強化の効果が著しい
Beを少量添加することによる高強度化の提案(特開平
2−159348号)がある。しかしBeは他の強化元
素に比較して著しく高価であるため少量でもコストの上
昇がある。また表面酸化によりハンダ性、メッキ性もや
や劣化する。
In response to such requirements, many proposals have been made for improving the strength of Fe-Ni alloys. For example, as a method for increasing the strength by adding an alloying element, there is an attempt to strengthen by adding Si, Mn, and Cr (JP-A-55-131155). However, since it contains a strengthening element that is easily oxidized, in addition to the main element, surface oxidation is likely to occur and the solderability and plating property tend to be slightly deteriorated. In addition, there is a proposal (Japanese Patent Laid-Open No. 2-159348) to increase the strength by adding a small amount of Be, which has a remarkable effect of solid solution strengthening. However, since Be is extremely expensive as compared with other strengthening elements, the cost increases even with a small amount. In addition, the soldering property and the plating property are slightly deteriorated due to the surface oxidation.

【0005】合金元素を添加する以外の強化機構を用い
るものとしては本出願人が先に提案した、Fe−Ni−
Coの2相組織強化によるもの(特開平3−16634
0号)がある。しかし2相組織の制御には高度な製造技
術が必要である。また最終冷間圧延前の焼鈍による結晶
粒の制御と所定の加工度で最終冷間圧延を行う高強度化
の提案(特開昭59−33857、特開平4−1601
12号)がある。この方法は加工硬化を利用するもので
あるため添加元素を必要とせず、製造が容易であるとい
う利点がある。しかし、これらの方法においても上述し
たさらなる高強度化を十分に満足するものとは言えな
い。
Fe-Ni-, which was previously proposed by the applicant of the present invention, uses a strengthening mechanism other than the addition of alloying elements.
By strengthening the two-phase structure of Co (Japanese Patent Laid-Open No. 3-16634)
0). However, controlling the two-phase structure requires advanced manufacturing technology. Further, it is proposed to control the crystal grains by annealing before the final cold rolling and to enhance the strength by performing the final cold rolling at a predetermined working ratio (JP-A-59-33857 and JP-A-4-1601).
12). Since this method uses work hardening, it has the advantage that it does not require additional elements and is easy to manufacture. However, even these methods cannot be said to sufficiently satisfy the above-mentioned further strengthening.

【0006】本発明は以上の点に鑑み、Fe−Ni系電
子部品用材料においてハンダ性、メッキ性を害すること
なく、またコストを大きく上げることなく、十分な高強
度を得るための製造方法を提供することを目的とする。
In view of the above points, the present invention provides a manufacturing method for obtaining a sufficiently high strength in a Fe-Ni-based electronic component material without impairing the solderability and the plating property and significantly increasing the cost. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者は、Fe−Ni
系合金の圧延工程の強度への影響について詳細な調査を
行った。そして特定の条件において圧延率を高くしてい
くと、一次加工硬化の後に急激に硬さが高くなり、強度
が高まる二次加工硬化領域が存在することを突き止め、
この領域の圧延率を適用すれば、ハンダ性、メッキ性を
害することなく、またコストを大きく上げることなく、
さらに強度の異方性も少なくできることを見出し本発明
に到達した。
Means for Solving the Problems The present inventor has proposed Fe-Ni
A detailed investigation was conducted on the influence of the alloys on the strength of the rolling process. Then, when the rolling rate is increased under specific conditions, the hardness rapidly increases after the primary work hardening, and it is found that there is a secondary work hardening region in which the strength is increased,
By applying the rolling rate in this region, without impairing the solderability and plating property, and without significantly increasing the cost,
Furthermore, they have found that the anisotropy of strength can be reduced, and have reached the present invention.

【0008】すなわち、本発明材料の製造方法は、重量
%にて、Ni28〜55%、あるいはさらにCoを12
%以下含み、残部実質的にFeである合金を、熱間圧延
を施した後に、あるいは熱間圧延後少なくとも1回以上
の冷間圧延と焼鈍を施した後に、圧延率に対して急激に
硬さが上昇する二次加工硬化領域に対応する圧延率でビ
ッカース硬さHV≧220+0.5[Ni](%)+
0.7[Co](%)、Coを含有しない場合は〔C
o〕=0として計算する、となるように最終冷間圧延を
施すものである。
That is, according to the method for producing the material of the present invention, Ni of 28 to 55% or Co of 12% by weight is used.
% Or less, and the balance being substantially Fe after hot rolling or after at least one cold rolling and annealing after hot rolling, the alloy is rapidly hardened against the rolling ratio. Vickers hardness HV ≧ 220 + 0.5 [Ni] (%) + at the rolling rate corresponding to the secondary work hardening region in which
0.7 [Co] (%), [C when not containing Co
o] = 0, and the final cold rolling is performed so that

【0009】本発明において、最終冷間圧延とは、その
後に再結晶温度以上を適用する焼鈍を施さない冷間圧延
を示すものである。したがって、再結晶温度以下の焼鈍
である歪取り焼鈍は、本発明の最終冷間圧延の後におこ
なっても差し支えないものである。さらに本発明におい
ては、最終冷間圧延前にビッカース硬さHV≧125+
0.5[Ni](%)+0.7[Co](%)、Coを
含有しない場合は〔Co〕=0として計算する、に調整
することにより、上述した二次加工硬化領域を容易に達
成することができ好ましいものとなる。
In the present invention, the term "final cold rolling" refers to cold rolling that is not followed by annealing at a recrystallization temperature or higher. Therefore, the strain relief annealing, which is the annealing at the recrystallization temperature or lower, can be performed after the final cold rolling of the present invention. Further, in the present invention, Vickers hardness HV ≧ 125 + before final cold rolling.
0.5 [Ni] (%) + 0.7 [Co] (%), when Co is not contained, [Co] = 0 is calculated, so that the above-mentioned secondary work hardening region can be easily adjusted. It can be achieved and becomes preferable.

【0010】上述した本発明の製造方法により得られる
本発明の電子部品用Fe−Ni系合金薄板は、Ni28
〜55%、あるいはさらにCoを12%以下含み残部実
質的にFeである組成を有し、組織は圧延により結晶粒
が展伸された組織であり、硬さがビッカース硬さでHV
≧220+0.5[Ni](%)+0.7[Co]
(%)を満足するものである。
The Fe-Ni alloy thin plate for electronic parts of the present invention obtained by the above-mentioned manufacturing method of the present invention is Ni28.
.About.55%, or further containing 12% or less of Co, and the balance being substantially Fe, the structure is a structure in which crystal grains are expanded by rolling, and the hardness is HV in Vickers hardness.
≧ 220 + 0.5 [Ni] (%) + 0.7 [Co]
(%) Is satisfied.

【0011】また、本発明の電子部品用Fe−Ni系合
金薄板は、二次加工硬化領域の適用により、水素雰囲気
中において900℃で15分間加熱したときに、X線回
折による結晶面の相対X線強度において(200)面の
強度が80%以上となる特性を有するものがよい。
Further, the Fe-Ni alloy thin plate for electronic parts of the present invention is applied with the secondary work hardening region, and when heated in a hydrogen atmosphere at 900 ° C. for 15 minutes, the relative crystal planes by X-ray diffraction. It is preferable that the X-ray has a characteristic that the intensity of the (200) plane is 80% or more.

【0012】[0012]

【発明の実施の形態】本発明の最大の特徴とするところ
は、最終冷間圧延を一次加工硬化に引き続いて加工硬化
する二次加工硬化領域で行うことで高強度化を行うこと
ある。本発明においては、この二次加工硬化領域での圧
延率を適用することにより、従来問題であった冷間加工
による歪の付与によって生ずる圧延方向と圧延直角方向
との強度の差、すなわち強度異方性を低減し、かつ薄板
の強度を飛躍的に高めることを可能にしたものである。
本発明で利用する二次加工硬化領域において強度異方性
が大きくならないのは、二次加工硬化領域以下の圧延率
では冷間圧延方向の影響で分布が偏っていた転位密度
が、二次加工硬化領域では圧延方向と圧延直角方向のい
ずれもが飽和するためと考えられる。さらに、この領域
では、硬さが急激に高まり、材料強度を著しく高めるこ
とが可能であり、強度の確保と異方性の低減という従来
にない二つの利点を得ることが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The greatest feature of the present invention is that the final cold rolling is performed in a secondary work hardening region in which work hardening is performed subsequent to primary work hardening, to enhance strength. In the present invention, by applying the rolling rate in this secondary work hardening region, the difference in strength between the rolling direction and the direction orthogonal to the rolling, which is caused by the strain imparted by cold working, which has been a conventional problem, that is, the strength difference. It is possible to reduce the directionality and dramatically increase the strength of the thin plate.
The strength anisotropy does not increase in the secondary work-hardening region used in the present invention because the dislocation density that is unevenly distributed due to the influence of the cold rolling direction at the rolling ratio of the secondary work-hardening region or less is the secondary workability. It is considered that both the rolling direction and the direction perpendicular to the rolling are saturated in the hardening region. Further, in this region, the hardness is sharply increased, and the material strength can be remarkably increased, and it is possible to obtain two unprecedented advantages of securing the strength and reducing the anisotropy.

【0013】具体的に二次加工硬化領域の一例を図1に
示しておく。図1はFe−42Niの冷間圧延率と硬さ
の関係を示すものである。図1においては、冷間圧延前
の硬さを予めビッカース硬度で152と高く設定したも
のである。図1に示すように、圧延率を高くすると、大
きく3つの領域に分けることができる。すなわち、低圧
延率領域においては圧延率にほぼ比例して硬さが高くな
っている(領域I)。そして圧延率が高くなると、圧延
率を高めても硬さがあまり高くならない鈍化領域となる
(領域II)。そして、さらに圧延率を高くすると、硬さ
が著しく高まる二次加工硬化領域となる(領域III)。
A concrete example of the secondary work hardening region is shown in FIG. FIG. 1 shows the relationship between the cold rolling rate and the hardness of Fe-42Ni. In FIG. 1, the hardness before cold rolling is set to a high Vickers hardness of 152 in advance. As shown in FIG. 1, when the rolling rate is increased, it can be roughly divided into three regions. That is, in the low rolling ratio region, the hardness increases in proportion to the rolling ratio (region I). Then, when the rolling rate becomes high, the hardness becomes not so high even if the rolling rate is increased, and it becomes a blunt region (region II). Then, when the rolling rate is further increased, it becomes a secondary work hardening region where the hardness is remarkably increased (region III).

【0014】本発明で利用するのは、上述した領域III
に対応する二次加工硬化領域である。二次加工硬化領域
は、図1に示す如き圧延率と硬さの関係を示す加工硬化
曲線を作成した場合に、硬さの増加率が低下から上昇に
転じる点すなわちその材料の加工硬化曲線の変曲点以上
として特定できるものである。ただし、図1は加工硬化
曲線の一例を示すもので材質と冷間開始時の材料の硬さ
(HV)によって曲線の形状は異なる。したがって、二次加
工硬化が始まる最終冷間圧延率は図1では約80%である
が、その値は一定でなく、上下に変化し得るものであ
る。たとえば、冷間圧延前の硬さがビッカース程度で1
74の場合、図2のaのような曲線になり、二次加工硬
化の開始の最終冷間圧延率は70%となる。また、冷間
圧延前の硬さがビッカース硬度で131の場合は図2の
bのような曲線になり、二次加工硬化の開始の最終冷間
圧延率は83%となる。望ましくは変曲点より5%以上
高い圧延率を利用する。そして、二次加工硬化領域で圧
延した材料は加熱再結晶させると(200)面の相対X
線強度が80%以上、望ましい圧延率の材料は90%以
上と著しく高くなるという特徴を持つ。
The present invention is applicable to the above-mentioned region III.
It is a secondary work hardening region corresponding to. The secondary work hardening region is the point at which the increase rate of hardness changes from decreasing to rising when a work hardening curve showing the relationship between rolling rate and hardness as shown in FIG. 1 is created, that is, the work hardening curve of the material. It can be specified as an inflection point or higher. However, Fig. 1 shows an example of the work hardening curve, and the material and the hardness of the material at the start of cold
The shape of the curve differs depending on (HV). Therefore, the final cold rolling rate at which the secondary work hardening starts is about 80% in FIG. 1, but the value is not constant and may change up and down. For example, the hardness before cold rolling is about Vickers 1
In the case of No. 74, the curve is as shown in FIG. 2A, and the final cold rolling rate at the start of secondary work hardening is 70%. When the hardness before cold rolling is 131 in Vickers hardness, a curve as shown in b of FIG. 2 is obtained, and the final cold rolling rate at the start of secondary work hardening is 83%. Desirably, a rolling rate of 5% or more higher than the inflection point is used. When the material rolled in the secondary work hardening region is heated and recrystallized, the relative X of the (200) plane is
A material having a linear strength of 80% or more and a material having a desired rolling rate is 90% or more, which is extremely high.

【0015】このような領域IIIでの圧延によってもな
お材料に残された強度異方性は、再結晶温度以下の適当
な条件で歪取り焼鈍を施すことによって、強度を大きく
低下させることなくさらに低減させることができる。
The strength anisotropy still left in the material by such rolling in the region III can be further improved by performing stress relief annealing under an appropriate condition of not higher than the recrystallization temperature without significantly lowering the strength. Can be reduced.

【0016】また最終冷間圧延の前においては、硬さが
できるだけ高いことが望ましい。本発明者はさらに最終
冷間圧延前の硬さが高い程、低い圧延率で二次加工硬化
領域に入ることを見出した。すなわちさらなる高強度を
得ることができる。
Further, it is desirable that the hardness is as high as possible before the final cold rolling. The present inventor has further found that the higher the hardness before the final cold rolling is, the lower the rolling rate falls into the secondary work hardening region. That is, higher strength can be obtained.

【0017】そして上述した方法により、硬さはビッカ
ース硬さでHV≧220+0.5[Ni](%)+0.
7[Co](%)、Coを含有しない場合は〔Co〕=
0として計算する、という従来にない高い硬さのFe−
Ni系合金薄板を得ることができる。本発明中の[N
i](%)、[Co](%)はそれぞれNi、Coの重
量百分率の値を示す。本発明において、硬さを規定した
のは硬さが強度にほほ比例するためであり、最も精度良
く材料を同定できるためである。上述した硬さを表す関
係式におけるNi、Coの係数は、それぞれの元素を添
加したとき得られる硬さから0.5、0.7と決定し
た。
Then, according to the above-mentioned method, the hardness is a Vickers hardness of HV ≧ 220 + 0.5 [Ni] (%) + 0.
7 [Co] (%), [Co] = when Co is not contained
Fe- with an unprecedentedly high hardness, calculated as 0
A Ni-based alloy thin plate can be obtained. [N in the present invention
i] (%) and [Co] (%) represent the weight percentage values of Ni and Co, respectively. In the present invention, the hardness is defined because the hardness is almost proportional to the strength, and the material can be identified most accurately. The coefficients of Ni and Co in the above-mentioned relational expression representing hardness were determined to be 0.5 and 0.7 from the hardness obtained when each element was added.

【0018】次に本発明の組成の限定理由を述べる。N
i含有量は、その材料を用いて製造される電子部品の熱
膨張係数を調整するものであり、その36%付近で熱膨
張係数を極小化する。Niは28%より少ないか55%
より多いと熱膨張が大きくなり過ぎ、Fe−Ni合金の
特徴の一つである低熱膨張のメリットがなくなる。但し
熱膨張特性の点においてはNiは一部Coで置換が可能
である。このためNi含有量は28〜55%に限定す
る。
Next, the reasons for limiting the composition of the present invention will be described. N
The i content adjusts the coefficient of thermal expansion of an electronic component manufactured by using the material, and minimizes the coefficient of thermal expansion in the vicinity of 36% thereof. Ni is less than 28% or 55%
When it is more, the thermal expansion becomes too large, and the merit of low thermal expansion, which is one of the features of the Fe-Ni alloy, is lost. However, in terms of thermal expansion characteristics, Ni can be partially replaced by Co. Therefore, the Ni content is limited to 28 to 55%.

【0019】Coは前述のように熱膨張の点でNiとの
置換が可能である。Coは他の元素のようにハンダ性、
メッキ性を害することはなく、Fe−Ni合金に固溶し
て焼鈍時の硬さを上昇させる効果があり、これによって
最終冷間圧延後の硬さも上昇させる。すなわちCoを添
加することによって、前記の二次硬化領域の圧延率で最
終冷間圧延を施す効果がさらに顕著となる。しかし12
%以上の添加では更なる効果は見られない。このためC
o含有量は12%以下に限定する。
As described above, Co can be replaced with Ni in terms of thermal expansion. Co is solderability like other elements,
It does not impair the plating property, has the effect of increasing the hardness during annealing by forming a solid solution in the Fe-Ni alloy, and thereby also increasing the hardness after the final cold rolling. That is, by adding Co, the effect of performing the final cold rolling at the rolling ratio in the secondary hardening region becomes more remarkable. But 12
No further effect is seen with the addition of more than%. For this reason C
The o content is limited to 12% or less.

【0020】以下に示す元素は、不純物もしくは添加物
としてFe−Ni系合金薄板中に含有する元素として規
定することが望ましい。Cは0.02%を超えると素材
のエッチング性を著しく劣化させ、さらに炭化物の過剰
析出によりハンダ性、メッキ性を悪くするため、0.0
2%以下とすることが望ましい。Mnは脱酸剤および加
工性向上の目的で添加されるが、1.0%を超えると熱
膨張係数を増大させ、またハンダ性、メッキ性を劣化さ
せるので1.0%以下が望ましい。Siは脱酸剤として
添加され、材料中に残存しない方が望ましいが、0.5
%までは熱膨張係数の極端な上昇や、ハンダ性、メッキ
性の極端な劣化は生じないので許容できる。また、耐食
性、強度、あるいは酸化被膜の付着特性の向上等の目的
でCr,Cu,Ti,Vなどの元素の添加を行なっても
良い。しかし、これらの元素はエッチング性、メッキ
性、ハンダ付け性等を劣化する元素であるため、添加す
る場合であっても、総量で10%以下とすることが望ま
しい。
The following elements are preferably specified as elements contained in the Fe-Ni alloy thin plate as impurities or additives. When C exceeds 0.02%, the etching property of the material is remarkably deteriorated, and the excessive precipitation of carbide deteriorates the solderability and plating property.
It is desirable to be 2% or less. Mn is added for the purpose of improving the deoxidizing agent and workability, but if it exceeds 1.0%, the coefficient of thermal expansion increases and the solderability and plating property deteriorate, so 1.0% or less is desirable. Si is added as a deoxidizer, and it is desirable that Si does not remain in the material.
%, An extreme increase in the coefficient of thermal expansion and an extreme deterioration in solderability and plating properties do not occur, so that it is acceptable. Further, elements such as Cr, Cu, Ti, and V may be added for the purpose of improving corrosion resistance, strength, or adhesion characteristics of the oxide film. However, since these elements are elements that deteriorate etching properties, plating properties, solderability, etc., even if added, it is desirable that the total amount be 10% or less.

【0021】なお、本発明の材料は、上述した極めて高
い硬さだけではなく、その材料を再結晶化熱処理した時
の再結晶集合組織によっても特定することが可能であ
る。実際の電子部品材料としては、使用する場合は、こ
のような再結晶化熱処理は行わないのであるが、本発明
の材料かどうかを判別する上では有効である。すなわ
ち、二次加工硬化領域で圧延された材料においては、こ
れを再結晶化熱処理を行うと、(200)面が従来にな
いほと強く集合した再結晶集合組織となる。なお、再結
晶化熱処理の条件が異なると、(200)面の集合度も
異なってくるくるため、本発明においては、900℃で
15分間加熱した時にX線回折による結晶面の相対X線
強度において(200)面の強度が80%以上と規定し
た。好ましくは90%以上である。なお、本発明におい
て相対X線強度とは、X線回折によって(111)、
(200)、(220)、(311)各面の回折X線強
度が得られ、その総和に対する各面の比によって定義さ
れる。
The material of the present invention can be specified not only by the extremely high hardness described above, but also by the recrystallization texture when the material is heat-treated for recrystallization. When used as an actual electronic component material, such recrystallization heat treatment is not performed, but it is effective in determining whether the material is the material of the present invention. That is, in the material rolled in the secondary work hardening region, when the material is subjected to recrystallization heat treatment, the (200) plane has a recrystallized texture in which the (200) plane is extremely strongly aggregated. Since the degree of aggregation of the (200) plane is different when the recrystallization heat treatment conditions are different, in the present invention, the relative X-ray intensity of the crystal plane by X-ray diffraction when heated at 900 ° C. for 15 minutes. The strength of the (200) plane was defined as 80% or more. It is preferably 90% or more. In the present invention, the relative X-ray intensity means (111) by X-ray diffraction,
The diffracted X-ray intensity of each of the (200), (220), and (311) planes is obtained and is defined by the ratio of each plane to the total sum.

【0022】[0022]

【実施例】以下、本発明を実施例により説明する。Fe
−Ni系合金として表1に示すFe−42Ni合金、F
e−36Ni合金、Fe−50Ni合金、Fe−31N
i−5Co合金、Fe−34Ni−10Co合金、Fe
−38Ni−5Co合金を真空高周波誘導炉にて溶解、
鋳造した後、鍛造、熱間圧延を厚さ3mmまで行い、表
面のスケール除去により厚さ2.5mmとした。
The present invention will be described below with reference to examples. Fe
Fe-42Ni alloy shown in Table 1 as a Ni-based alloy, F
e-36Ni alloy, Fe-50Ni alloy, Fe-31N
i-5Co alloy, Fe-34Ni-10Co alloy, Fe
Melting -38Ni-5Co alloy in a vacuum high frequency induction furnace,
After casting, forging and hot rolling were performed to a thickness of 3 mm, and the scale was removed on the surface to a thickness of 2.5 mm.

【0023】[0023]

【表1】 [Table 1]

【0024】熱間圧延後、中間行程を経ないで直接最終
冷間圧延を適用してFe−Ni系合金薄板を得る場合
は、この2.5mmの素材に表2に示す圧延率で最終冷
間圧延を施した。本発明の試料1、15、31、比較例
の試料19がこれに該当する。また熱間圧延後、冷間圧
延を施し、次いで焼鈍してから最終圧延を行ないFe−
Ni系合金薄板を得る場合はこの熱間圧延により得られ
た素材に、冷間圧延を1.5mm以下の厚さになるまで
施し、次に中間焼鈍を表に示す硬さになるように施した
後、表2に示すような圧延率で最終冷間圧延を施した。
When the final cold rolling is directly applied after the hot rolling without passing through the intermediate step to obtain the Fe-Ni alloy thin plate, the final cold rolling is applied to this 2.5 mm material at the rolling rate shown in Table 2. Hot rolled. The samples 1, 15 and 31 of the present invention and the sample 19 of the comparative example correspond to this. In addition, after hot rolling, cold rolling is performed, followed by annealing and then final rolling.
In order to obtain a Ni-based alloy thin plate, the material obtained by this hot rolling is subjected to cold rolling to a thickness of 1.5 mm or less, and then subjected to intermediate annealing so as to have the hardness shown in the table. After that, final cold rolling was performed at a rolling rate as shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に、上述した最終冷間圧延の圧延率、
図1と同様に評価した最終冷間圧延の領域、最終冷間圧
延前のビッカース硬さに加えて、最終冷間圧延で得られ
た最終ビッカース硬さ、ハンダ性、メッキ性、引張強
さ、異方性を測定した。前述したように、本発明の試料
は二次加工硬化領域(領域III)のものである。
Table 2 shows the rolling ratio of the final cold rolling described above,
In addition to the final cold rolling region evaluated in the same manner as in FIG. 1, the Vickers hardness before final cold rolling, the final Vickers hardness, solderability, plating property, and tensile strength obtained by final cold rolling, Anisotropy was measured. As described above, the sample of the present invention is in the secondary work hardening region (region III).

【0027】ハンダ性はフラックス処理後、235℃×
5秒ハンダ浴中に浸漬し、ハンダ濡れ面積が100%の
ものを○で評価した。メッキ性は脱脂、酸化処理後、厚
さ0.5μmのNiストライクメッキを施し、その上に
厚さ3μmのAgを施した後、450℃で3分間大気中
で加熱し、メッキ膨れおよび90度曲げて剥がれの無い
ものを○で評価した。機械的特性は、JISZ2241
に示される金属材料引張方法によって測定した。試験片
は各試料から圧延方向と圧延直角方向でJISZ220
1に示される13B号試験片を採取し、これをテンシロ
ン試験機を用いて、0.2%耐力は歪増加率1%/mi
nで引っ張り、オフセット法によって求め、その後歪増
加率20%/minで引張強さを求めた。表2中の引張
強さは圧延方向の値である。また、異方性は圧延直角方
向の0.2%耐力を“T”とし、それに対する圧延方向
の0.2%耐力を“L”とした時の100×(L−T)
/L(%)の値である。また、得られた試料を評価する
ために900℃で15分間加熱する再結晶化熱処理を施
した後の(200)面の相対X線強度に示す。
Solderability is 235 ° C. after flux treatment
It was immersed in a solder bath for 5 seconds, and a solder wetted area of 100% was evaluated as ◯. Plating is performed after degreasing and oxidation treatment, 0.5-μm-thick Ni strike plating, and 3 μm-thick Ag on top of it, then heating in air at 450 ° C. for 3 minutes, swelling and 90-degree plating Bent and not peeled off was evaluated by ○. Mechanical properties are JISZ2241
It was measured by the metal material tension method shown in. The test pieces are JISZ220 in the rolling direction and the direction perpendicular to the rolling direction from each sample.
No. 13B test piece shown in No. 1 was sampled, and 0.2% proof stress was strain increase rate 1% / mi using a Tensilon tester.
The tensile strength was determined by n, the tensile strength was determined by the offset method, and then the tensile strength was determined at a strain increase rate of 20% / min. The tensile strength in Table 2 is a value in the rolling direction. Further, the anisotropy is 100 × (L−T) when 0.2% proof stress in the direction perpendicular to the rolling is “T” and 0.2% proof stress in the rolling direction is “L”.
/ L (%) value. Further, in order to evaluate the obtained sample, the relative X-ray intensity of the (200) plane after the recrystallization heat treatment of heating at 900 ° C. for 15 minutes is shown.

【0028】表中のいかなる組成においても、最終冷間
圧延率を二次加工硬化領域(領域III)で施した本発明の
試料はいずれも最終の硬さ、引張強さが領域I、IIで施
した材料に比較して高く、優れた強度を示す。また表1
および表2に示す試料(3、4、5)、(10、11、
12)等の同一組成の合金グループ内での最終冷間圧延
率が同じものを比較すると、最終冷間圧延率が同じであ
っても最終冷間圧延前の硬さが高いものほど最終の硬
さ、引張強さが高くなり、より優れた強度を示すことが
わかる。全体的にNiを多く含むものほど高い強度が得
られ、またCoの添加によっても高い強度が得られるこ
とがわかる。本発明の試料の中でもより好ましい製造条
件を用いた2、26、31は、この組成では従来得られ
なかった高強度を達成している。最終冷間圧延を領域II
Iで最終冷間圧延を施した本発明の試料の強度異方性
は、領域Iで施した材料よりは大きいものの、領域IIで
施した材料と比較すると同等以下であり、二次加工硬化
領域で強度異方性が低減することがわかる。
In any of the compositions shown in the table, the final cold rolling reduction was performed in the secondary work hardening region (region III), and the samples of the present invention had the final hardness and tensile strength in the regions I and II. It is higher than the applied material and shows excellent strength. Table 1
And the samples (3, 4, 5) and (10, 11,
12) and the like having the same final cold rolling rate in the alloy group of the same composition, the higher the hardness before the final cold rolling is, the higher the final hardness is, even if the final cold rolling rate is the same. In other words, it can be seen that the tensile strength is increased and the strength is superior. It can be seen that the higher the Ni content, the higher the strength as a whole, and also the higher the strength by adding Co. Among the samples of the present invention, 2, 26 and 31, which used more preferable manufacturing conditions, achieved high strength which was not obtained by this composition. Final Cold Rolling Area II
Although the strength anisotropy of the sample of the present invention subjected to the final cold rolling in I is larger than that of the material applied in the region I, the strength anisotropy is equal to or less than that of the material applied in the region II. It can be seen that the strength anisotropy decreases.

【0029】また、表1に示す試料は電子部品材料とし
て不可欠なハンダ性、メッキ性は、いずれも良好であ
る。また本発明の試料は900℃で15分間加熱後の
(200)面の相対X線強度がいずれも80%以上と高
く、比較材料はいずれも80%より低い。加熱後の相対
X線強度によって本発明材料の特定が可能であることが
わかる。(200)面の相対X線強度が90%以上の本
発明の試料はより高い強度を有していることがわかる。
The samples shown in Table 1 have good solderability and plating properties which are indispensable as electronic component materials. Further, the samples of the present invention have high relative X-ray intensities of 80% or more on the (200) plane after heating at 900 ° C. for 15 minutes, and all of the comparative materials have lower than 80%. It is understood that the material of the present invention can be specified by the relative X-ray intensity after heating. It can be seen that the sample of the present invention in which the relative X-ray intensity of the (200) plane is 90% or more has higher intensity.

【0030】[0030]

【発明の効果】以上に述べたように本発明は、二次加工
硬化領域を適用することにより、エッチング性やハンダ
性を劣化する添加元素に依存することなく、極めて高い
強度を有すると共に、材料の異方性を抑制することが可
能である。したがって、本発明のFe−Ni系合金薄板
は、リードフレーム等の電子部品材料の薄板化に対応す
ることが可能であり、工業上の効果は極めて大きい。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, by applying the secondary work hardening region, the material has extremely high strength without depending on the additive element that deteriorates the etching property and the solder property, and the material is It is possible to suppress the anisotropy of. Therefore, the Fe-Ni alloy thin plate of the present invention can be applied to the thinning of electronic component materials such as lead frames, and has an extremely great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe−42Ni合金の最終冷間圧延率と硬さの
関係を示す図である。
FIG. 1 is a diagram showing a relationship between final cold rolling rate and hardness of an Fe-42Ni alloy.

【図2】Fe−42Ni合金の最終冷間圧延率と硬さの
関係を示す別の図である。
FIG. 2 is another diagram showing the relationship between the final cold rolling rate and hardness of the Fe-42Ni alloy.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、Ni28〜55%、残部実
質的にFeである組成を有し、組織は二次加工硬化領域
での圧延を経て結晶粒が展伸された組織であり、硬さが
ビッカース硬さでHV≧220+0.5[Ni](%)
を満足することを特徴とする電子部品用Fe−Ni系合
金薄板。
1. A composition having a composition of 28 to 55% by weight of Ni and the balance being substantially Fe, wherein the structure is a structure in which crystal grains are expanded through rolling in a secondary work hardening region, Vickers hardness is HV ≧ 220 + 0.5 [Ni] (%)
Fe-Ni alloy thin plate for electronic parts, which satisfies
【請求項2】 重量%にて、Ni28〜55%、Co1
2%以下、残部実質的にFeである組成を有し、組織は
二次加工硬化領域での圧延を経て結晶粒が展伸された組
織であり、硬さがビッカース硬さでHV≧220+0.
5[Ni](%)+0.7[Co](%)を満足するこ
とを特徴とする電子部品用Fe−Ni系合金薄板。
2. Ni-28 to 55%, Co1 in weight%
2% or less, the balance being substantially Fe, and the structure is a structure in which crystal grains are expanded by rolling in the secondary work hardening region, and the hardness is Vickers hardness HV ≧ 220 + 0.
An Fe-Ni alloy thin plate for electronic parts, which satisfies 5 [Ni] (%) + 0.7 [Co] (%).
【請求項3】 900℃で15分間加熱したときに、X
線回折による結晶面の相対X線強度において(200)
面の強度が80%以上となることを特徴とする請求項1
または2のいずれかに記載のFe−Ni系合金電子部品
用薄板。
3. When heated at 900 ° C. for 15 minutes, X
In the relative X-ray intensity of the crystal plane by line diffraction (200)
The surface strength is 80% or more.
Alternatively, the thin plate for Fe-Ni alloy electronic component according to any one of 2).
【請求項4】 重量%にて、Ni28〜55%、あるい
はさらにCoを12%以下含み、残部実質的にFeであ
る合金を、熱間圧延を施した後に、あるいは熱間圧延後
少なくとも1回以上の冷間圧延と焼鈍を施した後に、圧
延率に対して一次加工硬化の後で急激に硬さが上昇する
二次加工硬化領域に対応する圧延率でビッカース硬さH
V≧220+0.5[Ni](%)+0.7[Co]
(%)、Coを含有しない場合は〔Co〕=0として計
算する、となるように最終冷間圧延を施すことを特徴と
する電子部品用Fe−Ni系合金薄板の製造方法。
4. An alloy containing 28 to 55% by weight of Ni, or 12% or less of Co, with the balance being essentially Fe, is subjected to hot rolling or at least once after hot rolling. After the cold rolling and annealing described above, the Vickers hardness H at the rolling rate corresponding to the secondary work hardening region where the hardness rapidly increases after the primary work hardening with respect to the rolling rate.
V ≧ 220 + 0.5 [Ni] (%) + 0.7 [Co]
(%), When not containing Co, [Co] = 0 is calculated, and the final cold rolling is performed so that the Fe-Ni alloy thin plate for electronic parts is manufactured.
【請求項5】 最終冷間圧延前の熱間圧延あるいは焼鈍
をビッカース硬さHV≧125+0.5[Ni](%)
+1[Co](%)、Coを含有しない場合は〔Co〕
=0として計算する、を満足するように施すことを特徴
とする請求項4に記載の電子部品用Fe−Ni系合金薄
板の製造方法。
5. Vickers hardness HV ≧ 125 + 0.5 [Ni] (%) is used for hot rolling or annealing before final cold rolling.
+1 [Co] (%), [Co] when not containing Co
It calculates so that it may be set as = 0, and it applies so that it may satisfy, The manufacturing method of the Fe-Ni type alloy thin plate for electronic components of Claim 4.
JP19943995A 1995-08-04 1995-08-04 Fe-Ni-based alloy sheet for electronic parts and method for producing the same Expired - Fee Related JP3506289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19943995A JP3506289B2 (en) 1995-08-04 1995-08-04 Fe-Ni-based alloy sheet for electronic parts and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19943995A JP3506289B2 (en) 1995-08-04 1995-08-04 Fe-Ni-based alloy sheet for electronic parts and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0941095A true JPH0941095A (en) 1997-02-10
JP3506289B2 JP3506289B2 (en) 2004-03-15

Family

ID=16407841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19943995A Expired - Fee Related JP3506289B2 (en) 1995-08-04 1995-08-04 Fe-Ni-based alloy sheet for electronic parts and method for producing the same

Country Status (1)

Country Link
JP (1) JP3506289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101543A (en) * 2012-11-20 2014-06-05 Jx Nippon Mining & Metals Corp Metal mask material and metal mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101543A (en) * 2012-11-20 2014-06-05 Jx Nippon Mining & Metals Corp Metal mask material and metal mask

Also Published As

Publication number Publication date
JP3506289B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3506289B2 (en) Fe-Ni-based alloy sheet for electronic parts and method for producing the same
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JP7294336B2 (en) Fe-Ni alloy sheet
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JPH04202642A (en) Fe-ni alloy having high strength and low thermal expansion and excellent in plating suitability, solderability, and repeated bendability and its production
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JPH07216510A (en) High strength lead frame material and its production
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP3251691B2 (en) Fe-Ni alloy material for lead frame and manufacturing method
JPH04231418A (en) Production of lead frame material
JPH0681035A (en) Production of lead frame material
JP2550784B2 (en) High strength and low thermal expansion Fe-Ni-Co alloy excellent in plating property, soldering property and cyclic bending property, and method for producing the same
JP3284732B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for a color picture tube having excellent magnetic properties and method of manufacturing the same
JP3383549B2 (en) Method for producing Fe-Ni alloy thin plate
JPH04191316A (en) Manufacture of lead frame material
JP3363689B2 (en) Shadow mask material excellent in press formability and method of manufacturing shadow mask
JP2830472B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance, repeated bending characteristics, and etching properties, and method for producing the same
JPH04160112A (en) Production of lead frame material
JPH04221039A (en) Alloy material for lead frame and its production
JPH04221020A (en) Manufacture of lead frame
JPH05271876A (en) High strength lead frame material and its manufacture

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees