JPH0940459A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0940459A
JPH0940459A JP7212805A JP21280595A JPH0940459A JP H0940459 A JPH0940459 A JP H0940459A JP 7212805 A JP7212805 A JP 7212805A JP 21280595 A JP21280595 A JP 21280595A JP H0940459 A JPH0940459 A JP H0940459A
Authority
JP
Japan
Prior art keywords
mol
terms
composition
expressed
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7212805A
Other languages
Japanese (ja)
Other versions
JP3385136B2 (en
Inventor
Katsuyuki Horie
克之 堀江
Yasuyuki Inomata
康之 猪又
Kunihiko Hirohashi
邦彦 広橋
Koichi Chazono
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP21280595A priority Critical patent/JP3385136B2/en
Publication of JPH0940459A publication Critical patent/JPH0940459A/en
Application granted granted Critical
Publication of JP3385136B2 publication Critical patent/JP3385136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a dielectric porcelain composition capable of densifying it at a low burning temp. and also having good electrical characteristics. SOLUTION: 0.003-0.035pt.mol. Bi (expressed in terms of Bi2 O3 ), 0.0005-0.0050pt. mol. Mn (expressed in terms of MnO2 ), 0.002-0.040pt.mol. Ag (expressed in terms of Ag2 O) and 0.005-0.04pt.mol. B (expressed in terms of B2 O3 ) are incorporated in a fundamental composition expressed by the formula, (Ba1-x Znx )O.n(Ti1-y Siy ) O2 (where 0.05<=x<=0.25, 0.01<=y<=0.15, 3<=n<=6) based on 1 mol of the fundamental composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体磁器組成
物、具体的には積層コンデンサ、積層LCフィルタ、誘
電体共振器等に好適に用いられる誘電体磁器組成物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition, specifically a dielectric ceramic composition suitable for use in a laminated capacitor, a laminated LC filter, a dielectric resonator and the like.

【0002】[0002]

【従来の技術】従来、誘電体共振器等に用いられている
誘電体磁器組成物としては、例えば、特開昭57−69
607号公報に示されるように、BaO−xTiO2
おいて3.9≦x≦4.1である組成物100wt%に
対して、1〜26wt%のZnOを添加し混合焼成して
得られる誘電体磁器組成物が知られている。
2. Description of the Related Art As a conventional dielectric ceramic composition used for a dielectric resonator or the like, for example, JP-A-57-69 is known.
No. 607, a dielectric material obtained by adding 1-26 wt% ZnO to 100 wt% of a composition of 3.9 ≦ x ≦ 4.1 in BaO—xTiO 2 and mixing and firing the mixture. Porcelain compositions are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の誘電体磁器組成物は、焼成温度が1200℃のよう
に高くないと緻密な磁器が得られにくいうえ、電気特性
もばらつきが生じ易かった。そこで、本発明は、低い焼
成温度で緻密化できると共に良好な電気特性を有する誘
電体磁器組成物を提供することを目的とする。
However, in the conventional dielectric ceramic composition described above, if the firing temperature is as high as 1200 ° C., it is difficult to obtain a dense ceramic, and the electric characteristics are likely to vary. Therefore, an object of the present invention is to provide a dielectric ceramic composition that can be densified at a low firing temperature and that has good electric characteristics.

【0004】[0004]

【課題を解決するための手段】本発明の誘電体磁器組成
物は、上記目的を達成すべく、一般式(Ba1-x 、Zn
x )O・n(Ti1-y 、Siy )O2 (但し、0.05
≦x≦0.25、0.01≦y≦0.15、3≦n≦
6)で表される基本組成物1モルに対し、BiをBi2
3換算で0.003〜0.035モル部、MnをMn
2 換算で0.0005〜0.0050モル部、Agを
Ag2 O換算で0.002〜0.040モル部、BをB
23換算で0.005〜0.040モル部含有すること
を特徴とする。
The dielectric ceramic composition of the present invention has the general formula (Ba 1-x , Zn
x ) O.n (Ti 1-y , Si y ) O 2 (however, 0.05
≦ x ≦ 0.25, 0.01 ≦ y ≦ 0.15, 3 ≦ n ≦
Bi to Bi 2 with respect to 1 mol of the basic composition represented by 6).
0.003 to 0.035 mol part in terms of O 3 , Mn is Mn
0.0005 to 0.0050 parts by mole O 2 terms, 0.002 to 0.040 part by mol of Ag with Ag 2 O in terms of the B B
It is characterized by containing 0.005 to 0.040 parts by mol in terms of 2 O 3 .

【0005】前記基本組成物の組成範囲を前記のように
限定した理由は次のとおりである。nが3より小さいか
または6より大きいと、950℃以下の焼成で緻密化し
ない。また、xが0.05より小さいと、950℃以下
の焼成で緻密化せず、また、0.25を越えると、Q値
が低く、共振点が見いだせないと共に抵抗率が悪化す
る。また、yが0.01より小さいと、950℃以下の
焼成で緻密化せず、また、0.15を越えると、Q値が
低く、共振点が見いだせないと共に抵抗率が悪化するか
らである。
The reason for limiting the composition range of the basic composition as described above is as follows. When n is smaller than 3 or larger than 6, densification does not occur by firing at 950 ° C. or lower. Further, when x is less than 0.05, densification does not occur by firing at 950 ° C. or less, and when it exceeds 0.25, the Q value is low, a resonance point cannot be found, and the resistivity deteriorates. Further, if y is less than 0.01, densification will not be achieved by firing at 950 ° C. or lower, and if it exceeds 0.15, the Q value will be low, a resonance point will not be found, and the resistivity will deteriorate. .

【0006】また、前記Bi、Mn、Ag、B成分の組
成範囲を前記のように限定した理由は次のとおりであ
る。BiがBi23換算で0.003モル部より小さい
と、950℃以下の焼成で緻密化せず、また、0.03
5モル部を越えると、Q値が低く、共振点が見いだせな
いと共に抵抗率が悪化する。また、MnがMnO2 換算
で0.0005モル部より小さいと、950℃以下の焼
成で緻密化せず、また、0.0050モル部を越える
と、Q値が低く、共振点が見いだせないと共に抵抗率が
悪化する。また、AgがAg2 O換算で0.002モル
部より小さいと、950℃以下の焼成で緻密化せず、ま
た、0.040モル部を越えると、Q値が低く、共振点
が見いだせないと共に抵抗率が悪化する。また、BがB
23換算で0.005モル部より小さいと、950℃以
下の焼成で緻密化せず、また、0.040モル部を越え
ると、Q値が低く、共振点が見いだせないからである。
The reason why the composition ranges of the Bi, Mn, Ag and B components are limited as described above is as follows. If Bi is smaller than 0.003 mol part in terms of Bi 2 O 3 , it will not be densified by firing at 950 ° C. or lower, and will be 0.03
When it exceeds 5 mol parts, the Q value is low, the resonance point cannot be found, and the resistivity is deteriorated. Further, if Mn is less than 0.0005 parts by mol in terms of MnO 2 , it will not be densified by firing at 950 ° C. or less, and if it exceeds 0.0050 parts by mol, the Q value will be low and no resonance point will be found. Resistivity deteriorates. Further, when Ag is less than 0.002 parts by mole in terms of Ag 2 O, densification does not occur by firing at 950 ° C. or less, and when it exceeds 0.040 parts by mole, the Q value is low and no resonance point can be found. At the same time, the resistivity deteriorates. Also, B is B
This is because if it is less than 0.005 mol part in terms of 2 O 3 , it will not be densified by firing at 950 ° C. or less, and if it exceeds 0.040 mol part, the Q value will be low and no resonance point will be found.

【0007】[0007]

【実施例】以下、本発明について、実施例および比較例
に基づいて説明する。まず、BaCO3 およびTiO2
をそれぞれBaおよびTiで計算して等モル量秤量し、
これらをZrO2 ビーズおよび水を分散媒としてボール
ミル内で分散せしめ湿式混合した。次いで、この混合物
を脱水、乾燥した後、空気中で、800〜1200℃、
4時間仮焼した。この仮焼物を先の分散時と同じ条件で
分散せしめ湿式粉砕し、かくして得られた粉砕粒子が
0.3μm以下の均一な粒子であることをSEM観察お
よび粒度分布計により確認した後、脱水、乾燥し、粉体
を得た。
EXAMPLES The present invention will be described below based on Examples and Comparative Examples. First, BaCO 3 and TiO 2
Are calculated with Ba and Ti, and equimolar amounts are weighed,
These were dispersed in a ball mill using ZrO 2 beads and water as a dispersion medium and wet-mixed. Then, this mixture is dehydrated and dried, and then in air at 800 to 1200 ° C.
It was calcined for 4 hours. This calcined product was dispersed under the same conditions as the above dispersion and wet-milled, and it was confirmed by SEM observation and particle size distribution analyzer that the pulverized particles thus obtained were uniform particles of 0.3 μm or less, followed by dehydration, It was dried to obtain a powder.

【0008】次いで、上記粉体とTiO2 、ZnO、S
iO2 、MnO2 、Bi23、Ag2 OおよびB2
3を、以下の表1に示すような所定の比率になるように
秤量し、これらをボールミル内で先と同様にして湿式混
合せしめた後、脱水、乾燥し、空気中で、600℃〜9
00℃、4時間仮焼せしめた。この仮焼物を先と同様に
して湿式粉砕し、脱水、乾燥した。次に、この乾燥物に
ポリビニルアルコールを添加し、60メッシュフルイで
造粒した。造粒物を金型に詰め、油圧プレスにより、1
5mmφ×高さ1mmおよび15mmφ×高さ6mmの
2種類の大きさに成型し(成型圧力:1〜3t/cm
2 )、組成に応じて900〜1200℃の範囲の温度で
空気中で焼成し、下記表1に示す各配合組成の燒結体を
得た。このようにして得られた焼結体についてインクテ
ストにより緻密化の度合を評価した。次に、15mmφ
×高さ1mmの大きさに成型した成型体の焼結体(円板
状)の両平面にAg電極材料ペーストを塗布し、焼付け
て、銀電極を形成した。これを、比誘電率εr 、静電容
量の温度係数τε、抵抗率測定のための試料とした。
Then, the above powder and TiO 2 , ZnO, S
iO 2 , MnO 2 , Bi 2 O 3 , Ag 2 O and B 2 O
3 was weighed so as to have a predetermined ratio as shown in Table 1 below, wet-mixed in a ball mill in the same manner as above, dehydrated and dried, and then in air at 600 ° C to 9 ° C.
It was calcined at 00 ° C for 4 hours. This calcined product was wet pulverized, dehydrated and dried in the same manner as above. Next, polyvinyl alcohol was added to this dried product and granulated with a 60 mesh screen. Pack the granulated material in a mold and press 1 with a hydraulic press.
Molded into two sizes of 5 mmφ x height 1 mm and 15 mmφ x height 6 mm (molding pressure: 1-3 t / cm
2 ), depending on the composition, it was fired in the air at a temperature in the range of 900 to 1200 ° C. to obtain a sintered body having each composition shown in Table 1 below. The degree of densification of the thus obtained sintered body was evaluated by an ink test. Next, 15 mmφ
The Ag electrode material paste was applied to both planes of a sintered body (disk shape) of a molded body that was molded to a height of 1 mm, and baked to form a silver electrode. This was used as a sample for measuring relative permittivity ε r , temperature coefficient τ ε of capacitance, and resistivity.

【0009】[0009]

【表1】 [Table 1]

【0010】前記表1中、*を付していない試料は本発
明の範囲内の組成を有する実施例を示すものであり、ま
た、*を付した試料は本発明の範囲外の組成を有する比
較例を示すものである。上記のようにして得られた電極
付き試料について電気特性を測定した。比誘電率ε
r は、25℃、1MHzの条件でLCZメータを用いて
測定した。また、静電容量の温度係数τε(ppm/
℃)は、これらの電極付き試料を恒温槽に入れ、温度を
20℃から85℃まで変化させ、20℃での静電容量
(C20)を基準とし、これと85℃での静電容量
(C85)とから、以下の式に基づいて計算した。また、
抵抗率(Ω・cm)は、150℃で測定した試料の絶縁
抵抗値と試料寸法から算出した。
In Table 1 above, the samples without * indicate examples having compositions within the scope of the present invention, and the samples with * have compositions outside the scope of the present invention. It shows a comparative example. The electrical characteristics of the electrode-attached sample obtained as described above were measured. Relative permittivity ε
r was measured using an LCZ meter under the conditions of 25 ° C. and 1 MHz. In addition, the temperature coefficient of capacitance τε (ppm /
℃), put these samples with electrodes in a constant temperature bath, change the temperature from 20 ℃ to 85 ℃, the capacitance at 20 ℃ (C 20 ) as a reference, and the capacitance at 85 ℃ (C 85 ) and calculated according to the following formula. Also,
The resistivity (Ω · cm) was calculated from the insulation resistance value of the sample measured at 150 ° C. and the sample size.

【0011】[0011]

【数1】 [Equation 1]

【0012】また、15mmφ×高さ6mmの大きさに
成型した成型体の焼結体については、誘電体円柱共振器
として、誘電体円柱共振器法(25℃で測定)によりそ
の共振点における波形からQf積を算出した。なお、共
振周波数は3.5〜4.5GHzであった。以上の評価
結果および測定結果を前記表1に示した。これらの結果
から明らかなように、本発明の誘電体磁器組成物は、9
50℃以下の焼成温度で緻密化可能であり、また、得ら
れた焼結体から作製された電極付き試料は、比誘電率ε
r 、Qf積および抵抗率が高かった。
Further, regarding the sintered body of the molded body molded into a size of 15 mmφ × height 6 mm, the waveform at the resonance point by the dielectric cylinder resonator method (measured at 25 ° C.) is used as the dielectric cylinder resonator. The Qf product was calculated from The resonance frequency was 3.5 to 4.5 GHz. The above evaluation results and measurement results are shown in Table 1 above. As is clear from these results, the dielectric ceramic composition of the present invention is
It is possible to densify at a firing temperature of 50 ° C. or less, and the sample with an electrode made from the obtained sintered body has a relative dielectric constant ε.
The r , Qf product and resistivity were high.

【0013】なお、上記実施例および比較例において、
焼結体の組成は、焼成後の燒結体のICP分析の結果、
配合時の組成とほぼ同等であることがわかった。また、
上記実施例では、BaCO3 とTiO2 とを混合、仮
焼、粉砕して原料粉体を得ているが、この原料粉体の代
わりに、出発原料として、0.3μm以下の粒径を有す
る市販のBaTiO3 を使用しても同様の結果が得られ
た。また、BaCO3 、TiO2 、ZnO、SiO2
MnO2 、Bi23、Ag2 OおよびB23を全て一括
混合し、仮焼してもよい。また、MnO2 の代わりに、
MnO、Mn3 4 、MnCO3 、Mn(OH)2 等を
使用することも可能である。また、Ag2 Oの代わり
に,Ag、等を使用することも可能である。また、B2
3の代わりに、ホウ素を含むガラス(例えば、B23
とPbO、SiO2 、Na2 O、ZnO等から選ばれた
ものとを含むガラス)等を使用することも可能である。
In the above examples and comparative examples,
The composition of the sintered body is the result of ICP analysis of the sintered body after firing,
It was found that the composition was almost the same as the composition at the time of compounding. Also,
In the above embodiment, BaCO 3 and TiO 2 are mixed, calcined and crushed to obtain a raw material powder. Instead of this raw material powder, the starting material has a particle size of 0.3 μm or less. Similar results were obtained using commercially available BaTiO 3 . In addition, BaCO 3 , TiO 2 , ZnO, SiO 2 ,
MnO 2 , Bi 2 O 3 , Ag 2 O and B 2 O 3 may all be mixed together and calcined. Also, instead of MnO 2 ,
It is also possible to use MnO, Mn 3 O 4 , MnCO 3 , Mn (OH) 2, and the like. It is also possible to use Ag or the like instead of Ag 2 O. Also, B 2
Glass containing boron instead of O 3 (for example, B 2 O 3
And glass selected from PbO, SiO 2 , Na 2 O, ZnO, etc.) and the like can also be used.

【0014】[0014]

【発明の効果】以上説明したように、本発明の誘電体磁
器組成物によれば、基本組成物にBi、Mn、Agおよ
びBを一定量含有せしめたものは、950℃以下の低い
焼成温度で緻密化可能であるので、電力費、炉材、サ
ヤ、セッタ等のコスト低減が可能となり、また、安価な
Cu、Ag等を電極として用いることも可能となる。特
に高周波領域(GHz帯)での利用を考えると、Agは
周知の通り抵抗率の低い導体材料であるので、Ag導体
との一体焼成が可能であることは非常に有意義である。
As described above, according to the dielectric ceramic composition of the present invention, the basic composition containing Bi, Mn, Ag and B in a certain amount has a low firing temperature of 950 ° C. or lower. Since it can be densified, it is possible to reduce the power cost, the cost of the furnace material, the sheath, the setter and the like, and it is also possible to use inexpensive Cu, Ag and the like as the electrode. Particularly considering the use in a high frequency region (GHz band), Ag is a conductor material having a low resistivity as is well known, and therefore it is very significant that it can be integrally fired with an Ag conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茶園 広一 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koichi Koichi 6-16-20 Ueno 6-16 Ueno, Taito-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式:(Ba1-x 、Znx )O・n
(Ti1-y 、Siy )O2 (但し、0.05≦x≦0.
25、0.01≦y≦0.15、3≦n≦6)で表され
る基本組成物1モルに対し、BiをBi23換算で0.
003〜0.035モル部、MnをMnO2 換算で0.
0005〜0.0050モル部、AgをAg2 O換算で
0.002〜0.040モル部、BをB23換算で0.
005〜0.040モル部含有することを特徴とする誘
電体磁器組成物。
1. A general formula: (Ba 1-x , Zn x ) O.n
(Ti 1-y , Si y ) O 2 (where 0.05 ≦ x ≦ 0.
25, 0.01 ≦ y ≦ 0.15, 3 ≦ n ≦ 6), based on 1 mol of the basic composition, Bi was calculated to be 0.2 in terms of Bi 2 O 3 .
003 to 0.035 mol part, and Mn of MnO 2 conversion of 0.
0005 to 0.0050 parts by mole, Ag 0.002 to 0.040 parts by mole in terms of Ag 2 O, and B 0.1% in terms of B 2 O 3 .
A dielectric ceramic composition containing 005 to 0.040 parts by mol.
JP21280595A 1995-07-28 1995-07-28 Dielectric porcelain composition Expired - Fee Related JP3385136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21280595A JP3385136B2 (en) 1995-07-28 1995-07-28 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21280595A JP3385136B2 (en) 1995-07-28 1995-07-28 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0940459A true JPH0940459A (en) 1997-02-10
JP3385136B2 JP3385136B2 (en) 2003-03-10

Family

ID=16628669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21280595A Expired - Fee Related JP3385136B2 (en) 1995-07-28 1995-07-28 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3385136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043162A (en) * 2006-07-31 2007-02-15 Ngk Insulators Ltd Electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043162A (en) * 2006-07-31 2007-02-15 Ngk Insulators Ltd Electronic component

Also Published As

Publication number Publication date
JP3385136B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JPH05211007A (en) Dielectric porcelain composition for microwave
JP2974829B2 (en) Microwave dielectric porcelain composition
CA1251037A (en) Dielectric ceramic composition
JP3002613B2 (en) Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same
JPH0940459A (en) Dielectric porcelain composition
JPH0940457A (en) Dielectric porcelain composition
JPH0940458A (en) Dielectric porcelain composition
JP2501649B2 (en) Microwave dielectric ceramics
JPS6256361A (en) Dielectric ceramic composition
JPH0571538B2 (en)
JP3467874B2 (en) Dielectric porcelain composition
JP3467876B2 (en) Dielectric porcelain composition
JPH08225366A (en) Dielectric porcelain composition
JPH08225365A (en) Dielectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH0855519A (en) Dielectric ceramic composition
JPH0828128B2 (en) Dielectric porcelain composition
JPH0971462A (en) Dielectric porcelain composition
JPH05298922A (en) Dielectric ceramic for microwave
JPH06150719A (en) Dielectric ceramic composition
JPH0524904A (en) Dielectric porcelain composition for high frequency
JPH06162822A (en) Dielectric porcelain composition
JPH0517222A (en) Porcelain composition for temperature compensation
JPH07182922A (en) Dielectric ceramic composition
JPS6031793B2 (en) dielectric porcelain composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021118

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees