JPH08225365A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH08225365A
JPH08225365A JP7058255A JP5825595A JPH08225365A JP H08225365 A JPH08225365 A JP H08225365A JP 7058255 A JP7058255 A JP 7058255A JP 5825595 A JP5825595 A JP 5825595A JP H08225365 A JPH08225365 A JP H08225365A
Authority
JP
Japan
Prior art keywords
composition
formula
enables
porcelain composition
dielectric porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7058255A
Other languages
Japanese (ja)
Inventor
Katsuyuki Horie
克之 堀江
Koichi Chazono
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP7058255A priority Critical patent/JPH08225365A/en
Publication of JPH08225365A publication Critical patent/JPH08225365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To produce a dielectric porcelain composition capable of being produced in a fine state by low temperature sintering and having excellent electric characteristics by replacing a part of Ba with Zn and a part of Ti with Si in a BaO-TiO2 dielectric porcelain composition. CONSTITUTION: BaCO3 , TiO2 , ZnO and SiO2 are weighed out so that the composition expressed by the formula (0.05<=x<=0.25; 0.01<=y<=0.15; 3<=n<=6) is obtained, and the mixture is sintered. This mixture enables the production of a porcelain having the composition of the formula at a low temperature of <=1050 deg.C in a fine state. Further, the incorporation of Bi in an amount of 0.003-0.035mol in terms of Bi2 O3 or Mn in an amount of 0.0005-0.005mol in terms of MnO2 based on 1mol of the composition of the formula enables the production of a porcelain composition at further lower sintering temperature such as <=1025 deg.C in a fine state. Accordingly, this enables the reduction of the cost of electricity, a furnace material, a sagger, a setter, etc., and the use of a less expensive electrode made of Cu, Ag, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体磁器組成物、具
体的には積層コンデンサ、積層LCフィルタ、誘電体共
振器等に好適に用いられる温度補償用誘電体磁器組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition, specifically a temperature compensating dielectric porcelain composition suitable for use in a laminated capacitor, a laminated LC filter, a dielectric resonator and the like.

【0002】[0002]

【従来の技術】従来、誘電体共振器などに用いられてい
る誘電体磁器組成物としては、例えば、特開平57−6
9607号公報に示されるように、BaO−xTiO2
において3.9≦x≦4.1である組成物100wt%
に対して、1〜26wt%のZnOを添加し混合焼成し
て得られる誘電体磁器が知られている。
2. Description of the Related Art As a conventional dielectric ceramic composition used for a dielectric resonator or the like, for example, JP-A-57-6 is known.
As disclosed in Japanese Patent Publication No. 9607, BaO-xTiO 2
100% by weight of the composition wherein 3.9 ≦ x ≦ 4.1 in
On the other hand, a dielectric porcelain obtained by adding 1 to 26 wt% ZnO and mixing and firing is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の誘電体磁器は、焼成温度が1200℃のように高く
ないと緻密な磁器が得られにくいうえ、電気特性もばら
つきが生じ易かった。そこで、本発明は、低い焼成温度
で緻密化できると共に良好な電気特性を有する誘電体磁
器組成物を提供することを目的とする。
However, in the above-mentioned conventional dielectric ceramics, unless the firing temperature is as high as 1200 ° C., it is difficult to obtain a dense ceramic, and the electric characteristics easily vary. Therefore, an object of the present invention is to provide a dielectric ceramic composition that can be densified at a low firing temperature and that has good electric characteristics.

【0004】[0004]

【課題を解決するための手段】本発明の誘電体磁器組成
物は、上記目的を達成すべく、一般式(Ba1-x 、Zn
x)O・n(Ti1-y 、Siy)O2 で表される組成を有
し、xが0.05≦x≦0.25、yが0.01≦y≦
0.15、nが3≦n≦6であることを特徴とする。上
記組成を有する基本組成物1モルに対し、BiをBi2
3に換算して0.003〜0.035モル部含有する
ことを特徴とする。又、上記組成を有する基本組成物1
モルに対し、MnをMnO2 に換算して0.0005〜
0.0050モル部含有することを特徴とする。
The dielectric ceramic composition of the present invention has the general formula (Ba 1-x , Zn
x ) O.n (Ti 1-y , Si y ) O 2 and x is 0.05 ≦ x ≦ 0.25 and y is 0.01 ≦ y ≦
0.15 and n is 3 ≦ n ≦ 6. Bi is added to Bi 2 with respect to 1 mol of the basic composition having the above composition.
It is characterized by containing 0.003 to 0.035 parts by mol in terms of O 3 . Also, the basic composition 1 having the above composition
0.0005 to Mn converted to MnO 2 with respect to moles
It is characterized by containing 0.0050 parts by mol.

【0005】[0005]

【作用】本発明の誘電体磁器組成物によれば、基本組成
物については1050℃以下、又基本組成物にMn又は
Biを一定量含有せしめたものについてはさらに低い1
025℃以下の低温焼成で緻密化可能であるので、電力
費、炉材、サヤ、セッタ等のコスト低減が可能となり、
又安価なCu、Ag等を電極として用いることも可能と
なる。次に、本発明の誘電体磁器組成物の組成範囲を前
記のように限定した理由を説明する。nが3より小さく
又6より大きいと、基本組成物の場合1050℃以下又
基本組成物にBi又はMnを含有せしめた場合1025
℃以下の焼成で緻密化しない。xが0.05より小さい
と、基本組成物の場合1050℃以下又基本組成物にB
i又はMnを含有せしめた場合1025℃以下の焼成で
緻密化せず、又0.25を越えると、基本組成物の場合
も基本組成物にBi又はMnを含有せしめた場合も、Q
値が極めて小さい。
According to the dielectric ceramic composition of the present invention, the basic composition is 1050 ° C. or lower, and the basic composition containing a certain amount of Mn or Bi is lower.
Since it can be densified by firing at a low temperature of 025 ° C or less, it is possible to reduce the cost of electric power, furnace material, sheath, setter, etc.
It is also possible to use inexpensive Cu, Ag or the like as an electrode. Next, the reason for limiting the composition range of the dielectric ceramic composition of the present invention as described above will be explained. When n is smaller than 3 or larger than 6, 1050 ° C. or lower in the case of the basic composition or 1025 in the case of containing Bi or Mn in the basic composition.
Does not densify by firing below ℃. When x is less than 0.05, the basic composition is 1050 ° C. or lower, and the basic composition is B
When i or Mn is contained, it is not densified by firing at 1025 ° C. or lower, and when it exceeds 0.25, both in the basic composition and in the case where Bi or Mn is contained in the basic composition, Q
The value is extremely small.

【0006】yが0.01より小さいと、基本組成物の
場合1050℃以下又基本組成物にBi又はMnを含有
せしめた場合1025℃以下の焼成で緻密化せず、又
0.15を越えると、基本組成物の場合も基本組成物に
Bi又はMnを含有せしめた場合も、Q値が極めて小さ
い。Bi23が0.003モル部より小さいと、102
5℃以下の焼成で緻密化せず、又0.035モル部を越
えると、Q値が極めて小さい。MnO2 が0.0005
モル部より小さいと、1025℃以下の焼成で緻密化せ
ず、又0.0050モル部を越えると、抵抗率が悪化す
る。
When y is less than 0.01, the basic composition does not become densified by firing at 1050 ° C. or lower, or when the basic composition contains Bi or Mn at 1025 ° C. or lower, and exceeds 0.15. In addition, the Q value is extremely small both in the case of the basic composition and in the case of including Bi or Mn in the basic composition. When Bi 2 O 3 is less than 0.003 parts by mol, 102
If it is not densified by firing at 5 ° C. or lower, and if it exceeds 0.035 parts by mole, the Q value is extremely small. MnO 2 is 0.0005
If it is smaller than the molar part, it will not be densified by firing at 1025 ° C. or lower, and if it exceeds 0.0050 molar part, the resistivity will be deteriorated.

【0007】[0007]

【実施例】以下、本発明の実施例及び比較例について説
明する。まず、上記一般式で表される基本組成物につい
て説明する。BaCO3 及びTiO2 をBa及びTiで
計算して等モル量秤量し、これらをZrO2 ビーズ及び
水を分散媒としてボールミル内で分散せしめた。次い
で、この分散物を脱水、乾燥した後、空気中で800〜
1200℃、4時間仮焼した。仮焼物を先の分散時と同
じ条件で湿式粉砕し、かくして得られた分散粒子が0.
3μm以下の均一な粒子であることをSEM観察及び粒
度分布計により確認した後、脱水、乾燥し、粉体を得
た。
EXAMPLES Examples and comparative examples of the present invention will be described below. First, the basic composition represented by the above general formula will be described. BaCO 3 and TiO 2 were calculated using Ba and Ti and weighed in equimolar amounts, and these were dispersed in a ball mill using ZrO 2 beads and water as a dispersion medium. Next, this dispersion is dehydrated and dried, and then 800-
It was calcined at 1200 ° C. for 4 hours. The calcined product was wet pulverized under the same conditions as the above dispersion, and the dispersed particles thus obtained had a particle size of 0.
After confirming by SEM observation and particle size distribution analyzer that the particles are uniform particles of 3 μm or less, they were dehydrated and dried to obtain a powder.

【0008】次いで、上記粉体とTiO2 、ZnO及び
SiO2 を、表1に示すような所定の比率になるように
秤量し、これらをボールミル内で湿式分散せしめた後、
脱水、乾燥し、空気中で600℃〜900℃、4時間仮
焼せしめた。この仮焼物を湿式粉砕し、脱水、乾燥し
た。次に、この乾燥物にポリビニルアルコールを添加
し、32メッシュフルイで造粒した。造粒物を金型に詰
め、油圧プレスにより、15mmφ×高さ1mmに成型
し(成型圧力:1t/cm2 )、組成に応じて900〜
1200℃の範囲の温度で空気中で焼成し、所望の配合
組成の燒結体を得た。このようにして得られた焼結体に
ついてインクテストにより緻密化の度合を評価した。次
に、これらの焼結体の両表面にIn−Ga合金を塗布
し、電極を形成した。
Next, the above powder and TiO 2 , ZnO and SiO 2 were weighed so as to have a predetermined ratio as shown in Table 1 and wet-dispersed in a ball mill.
It was dehydrated, dried, and calcined in air at 600 ° C. to 900 ° C. for 4 hours. This calcined product was wet pulverized, dehydrated and dried. Next, polyvinyl alcohol was added to this dried product and granulated with a 32 mesh screen. The granulated product is packed in a mold and molded by a hydraulic press into a size of 15 mmφ × height 1 mm (molding pressure: 1 t / cm 2 ), depending on the composition, 900-
Firing was performed in the air at a temperature in the range of 1200 ° C. to obtain a sintered product having a desired composition. The degree of densification of the thus obtained sintered body was evaluated by an ink test. Next, an In-Ga alloy was applied to both surfaces of these sintered bodies to form electrodes.

【0009】[0009]

【表1】 [Table 1]

【0010】前記表1中、*を付した試料は本発明の範
囲外の組成を有する比較例を示すものである。得られた
電極試料について電気特性を測定した。比誘電率εr
びQ値は、25℃、1MHzの条件でLCZメータを用
いて測定した。又、静電容量の温度係数は、これらの電
極を恒温槽に入れ、温度を20℃から85℃まで変化さ
せ、20℃での静電容量(C20)を基準とし、これと8
5℃での静電容量(C85)とから、次式に基づいて計算
した。抵抗率は、150℃で測定した試料の絶縁抵抗値
と試料寸法から算出した。
In Table 1, the samples marked with * are comparative examples having compositions outside the scope of the present invention. The electrical characteristics of the obtained electrode sample were measured. The relative permittivity ε r and Q value were measured using an LCZ meter under the conditions of 25 ° C. and 1 MHz. Moreover, the temperature coefficient of the capacitance is determined by putting these electrodes in a constant temperature bath, changing the temperature from 20 ° C. to 85 ° C., and using the capacitance (C 20 ) at 20 ° C. as a reference.
It was calculated based on the following formula from the electrostatic capacity (C 85 ) at 5 ° C. The resistivity was calculated from the insulation resistance value of the sample measured at 150 ° C. and the sample size.

【0011】[0011]

【数1】 [Equation 1]

【0012】以上の評価結果及び測定結果を前記表1に
示した。これらの結果から明らかなように、本発明の基
本組成物は、1050℃以下の焼成温度で緻密化可能で
あり、又得られた焼結体から作製された電極は、比誘電
率εr 及びQ値が高かった。次に、上記基本組成物にさ
らにMn又はBiを含有せしめるため、上記実施例で得
られた粉体とTiO2 、ZnO、SiO2 及びMnO2
又はBi23を、表2及び表3に示すような所定の比率
になるように秤量し、上記実施例に記載の方法に従って
燒結体を得、次いで電極を作製した。得られた電極試料
について電気特性を測定し、それぞれ表2及び表3に示
す。
The above evaluation results and measurement results are shown in Table 1 above. As is clear from these results, the basic composition of the present invention can be densified at a firing temperature of 1050 ° C. or lower, and the electrode prepared from the obtained sintered body has a relative dielectric constant ε r and The Q value was high. Next, in order to further contain Mn or Bi in the above basic composition, the powder obtained in the above example and TiO 2 , ZnO, SiO 2 and MnO 2 were added.
Alternatively, Bi 2 O 3 was weighed so as to have a predetermined ratio as shown in Tables 2 and 3, and a sintered body was obtained according to the method described in the above example, and then an electrode was produced. The electrical characteristics of the obtained electrode sample were measured and are shown in Table 2 and Table 3, respectively.

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】前記表2及び表3中、*を付した試料は本
発明の範囲外の組成を有する比較例を示すものである。
表2から明らかなように、Biを含有する本発明の組成
物の場合は、1025℃以下の焼成温度で緻密化可能で
あり、又比誘電率及びQ値が高かった。又、表3から明
らかなように、Mnを含有する本発明の組成物の場合
は、1025℃以下の焼成温度で緻密化可能であり、又
比誘電率及びQ値が高かった。
In Tables 2 and 3, the samples marked with * are comparative examples having compositions outside the scope of the present invention.
As is clear from Table 2, in the case of the Bi-containing composition of the present invention, densification was possible at a firing temperature of 1025 ° C. or lower, and the relative dielectric constant and Q value were high. Further, as is clear from Table 3, in the case of the composition of the present invention containing Mn, densification was possible at a firing temperature of 1025 ° C. or lower, and the relative permittivity and Q value were high.

【0016】なお、上記実施例及び比較例において、焼
結体の組成は、焼成後の燒結体のICP分析の結果、配
合時の組成とほぼ同等であることがわかった。なお、上
記実施例では、BaCO3 とTiO2 とを混合、仮焼、
粉砕して原料粉体を得ているが、この原料粉体の代わり
に、出発原料として好ましくは0.3μm以下の粒径を
有する市販のBaTiO3 を使用しても同様の結果が得
られた。又、BaCO3 、TiO2 、ZnO、SiO2
及びMnO2 又はBi23を全て一括で混合分散し、仮
焼しても良い。但し、この場合、燒結性が若干劣る。
又、MnO2 の代わりに、MnO、Mn3 4 、MnC
3 、Mn(OH)2等を使用することも可能である。
In the above Examples and Comparative Examples, the composition of the sintered body was found by ICP analysis of the sintered body after firing to be almost the same as the composition at the time of compounding. In the above example, BaCO 3 and TiO 2 were mixed, calcined,
Although the raw material powder was obtained by pulverization, the same result was obtained even when a commercially available BaTiO 3 having a particle size of 0.3 μm or less was used as a starting raw material instead of the raw material powder. . In addition, BaCO 3 , TiO 2 , ZnO, SiO 2
Alternatively, MnO 2 or Bi 2 O 3 may be mixed and dispersed all at once and calcined. However, in this case, the sintering property is slightly inferior.
Also, instead of MnO 2 , MnO, Mn 3 O 4 , MnC
It is also possible to use O 3 , Mn (OH) 2, or the like.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
基本組成物の場合1050℃以下又Bi又はMnを含む
場合1025℃以下のように低い焼成温度で緻密化した
磁器組成物が得られるので、電力費、炉材、サヤ、セッ
タ等のコスト低減が可能となり、又安価なCu、Ag等
を電極として用いることも可能となる。
As described above, according to the present invention,
Since a densified porcelain composition can be obtained at a low firing temperature of 1050 ° C. or lower in the case of the basic composition and 1025 ° C. or lower in the case of containing Bi or Mn, it is possible to reduce the power cost, the cost of the furnace material, the sheath, the setter, etc. It is also possible to use inexpensive Cu, Ag, etc. as electrodes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Ba1-x 、Znx)O・n(T
1-y、Siy)O2で表される組成を有し、xが0.0
5≦x≦0.25、yが0.01≦y≦0.15、nが
3≦n≦6であることを特徴とする誘電体磁器組成物。
1. A general formula (Ba 1-x , Zn x ) O.n (T
i 1-y , Si y ) O 2 , and x is 0.0
A dielectric ceramic composition, wherein 5 ≦ x ≦ 0.25, y is 0.01 ≦ y ≦ 0.15, and n is 3 ≦ n ≦ 6.
【請求項2】 前記組成を有する基本組成物1モルに対
し、BiをBi23に換算して0.003〜0.035
モル部含有することを特徴とする請求項1記載の誘電体
磁器組成物。
2. The amount of Bi converted into Bi 2 O 3 is 0.003 to 0.035 with respect to 1 mol of the basic composition having the above composition.
The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition is contained in a molar part.
【請求項3】 前記組成を有する基本組成物1モルに対
し、MnをMnO2に換算して0.0005〜0.00
50モル部含有することを特徴とする請求項1記載の誘
電体磁器組成物。
3. Mn converted to MnO 2 with respect to 1 mol of the basic composition having the above composition is 0.0005 to 0.00.
The dielectric ceramic composition according to claim 1, which contains 50 parts by mol.
JP7058255A 1995-02-23 1995-02-23 Dielectric porcelain composition Pending JPH08225365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7058255A JPH08225365A (en) 1995-02-23 1995-02-23 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7058255A JPH08225365A (en) 1995-02-23 1995-02-23 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH08225365A true JPH08225365A (en) 1996-09-03

Family

ID=13079047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7058255A Pending JPH08225365A (en) 1995-02-23 1995-02-23 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH08225365A (en)

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
JP4188488B2 (en) Dielectric porcelain composition
US5561090A (en) Dielectric ceramic composition for high frequencies and method for preparation of the same
JPH05211007A (en) Dielectric porcelain composition for microwave
KR960004395B1 (en) Electricity magnetic composition using high frequency
JP2974829B2 (en) Microwave dielectric porcelain composition
JP3385136B2 (en) Dielectric porcelain composition
JPH08225365A (en) Dielectric porcelain composition
JP3445879B2 (en) Dielectric porcelain composition
JPS6256361A (en) Dielectric ceramic composition
JP2902926B2 (en) Dielectric porcelain composition
JP2676778B2 (en) Dielectric porcelain composition
JPH08225366A (en) Dielectric porcelain composition
JP2974924B2 (en) Dielectric porcelain composition
JPH0571538B2 (en)
JP2977707B2 (en) High frequency dielectric ceramic composition
JP2531548B2 (en) Porcelain composition for temperature compensation
JP3450919B2 (en) Dielectric ceramic composition for temperature compensation
JPH06309926A (en) Dielectric ceramic composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH0940457A (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JPH0828128B2 (en) Dielectric porcelain composition
JPS62243207A (en) Dielectric porcelain compound
JPH06333422A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030324