JPH0936422A - Group iii nitride semiconductor light emitting element - Google Patents
Group iii nitride semiconductor light emitting elementInfo
- Publication number
- JPH0936422A JPH0936422A JP20918295A JP20918295A JPH0936422A JP H0936422 A JPH0936422 A JP H0936422A JP 20918295 A JP20918295 A JP 20918295A JP 20918295 A JP20918295 A JP 20918295A JP H0936422 A JPH0936422 A JP H0936422A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- layer
- group iii
- iii nitride
- nitride semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は紫外線発光の効率を
向上させた3族窒化物半導体を用いた発光素子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a group III nitride semiconductor with improved efficiency of ultraviolet light emission.
【0002】[0002]
【従来技術】従来、3族窒化物半導体を用いた紫外線発
光素子は、発光層にInGaN 又はAlGaN が用いられてい
た。発光層にInGaN を用いた場合には、Inの組成比が
5.5%以下の時、バンド間発光で波長380nm以下
の紫外線が得られている。又、発光層にAlGaN を用いた
場合には、Alの組成比が16%程度で、亜鉛とシリコン
とを発光中心として添加して、ドナー・アクセプタ対発
光により、波長380nmの紫外線が得られている。2. Description of the Related Art Conventionally, in an ultraviolet light emitting device using a Group III nitride semiconductor, InGaN or AlGaN has been used for a light emitting layer. When InGaN is used for the light emitting layer, ultraviolet light having a wavelength of 380 nm or less is obtained by band-to-band emission when the In composition ratio is 5.5% or less. When AlGaN is used for the light emitting layer, the composition ratio of Al is about 16%, zinc and silicon are added as emission centers, and ultraviolet rays having a wavelength of 380 nm are obtained by donor-acceptor pair emission. There is.
【0003】[0003]
【発明が解決しようとする課題】しかし、これらの構造
の発光素子は、まだ、発光効率が低いという問題があ
る。即ち、発光層にInGaN を用いた場合には、低温成長
のために発光層の結晶性が悪く、発光効率が低い。又、
発光層にAlGaN を用いた場合には、格子定数のミスフィ
ットによる転位のために、発光効率が低くなる。However, the light emitting device having such a structure still has a problem that the light emitting efficiency is low. That is, when InGaN is used for the light emitting layer, the crystallinity of the light emitting layer is poor due to low temperature growth, and the light emitting efficiency is low. or,
When AlGaN is used for the light emitting layer, the light emission efficiency decreases due to dislocation due to misfit of the lattice constant.
【0004】本発明は上記の課題を解決するために成さ
れたものであり、その目的は、3族窒化物化合物半導体
を用いた紫外線発光素子の発光効率を向上させることで
ある。The present invention has been made to solve the above problems, and an object thereof is to improve the luminous efficiency of an ultraviolet light emitting device using a Group III nitride compound semiconductor.
【0005】[0005]
【課題を解決するための手段】請求項1に記載の発明
は、発光層に3族窒化物半導体を用いた発光素子におい
て、発光層は、AlX2Ga1-X2N から成るバリア層とAlX1Ga
1-X1N (X1 <X2) から成る井戸層とを交互に積層させた
量子井戸で構成され、発光層にアクセプタ不純物とドナ
ー不純物とを添加したことを特徴とする。尚、量子井戸
構造の繰り返し回数は1回でも多数回でも良い。According to a first aspect of the present invention, in a light emitting device using a group III nitride semiconductor in the light emitting layer, the light emitting layer includes a barrier layer made of Al X2 Ga 1 -X2 N and an Al layer. X1 Ga
The quantum well is composed of quantum wells in which well layers made of 1-X1 N (X1 <X2) are alternately stacked, and an acceptor impurity and a donor impurity are added to the light emitting layer. The quantum well structure may be repeated once or many times.
【0006】又、請求項2、3、4の発明は、アクセプ
タ不純物とドナー不純物とを井戸層とバリア層とでどの
ように添加するかを規定したものである。即ち、請求項
2の発明は、各井戸層にのみアクセプタ不純物とドナー
不純物とを共に添加したものである。請求項3の発明
は、隣接する井戸層に、アクセプタ不純物とドナー不純
物とを交互に添加したものである。又、請求項4の発明
は、井戸層にアクセプタ不純物をバリア層にドナー不純
物を添加するか、逆に、井戸層にドナー不純物を添加す
るか、バリア層にアクセプタ不純物を添加したものであ
る。Further, the inventions of claims 2, 3, and 4 define how to add the acceptor impurity and the donor impurity in the well layer and the barrier layer. That is, the invention of claim 2 is such that the acceptor impurity and the donor impurity are added only to each well layer. According to the third aspect of the present invention, acceptor impurities and donor impurities are alternately added to the adjacent well layers. According to the invention of claim 4, an acceptor impurity is added to the well layer and a donor impurity is added to the barrier layer, or conversely, a donor impurity is added to the well layer or an acceptor impurity is added to the barrier layer.
【0007】請求項5の発明は、アクセプタ不純物を亜
鉛とし、ドナー不純物をシリコンとしたものである。
又、請求項6の発明は、発光層を、アクセプタ不純物を
添加したp伝導型のAlX3Ga1-X3N (X1 ≦X3) から成るp
層と、ドナー不純物を添加したn伝導型のAlX4Ga1-X4N
(X1 ≦X4) から成るn層とで挟んだ構造を特徴とする。
さらに、請求項7の発明は、p層に添加したアクセプタ
不純物をマグネシウムとし、n層に添加したドナー不純
物をシリコンとしたものである。According to a fifth aspect of the invention, zinc is used as the acceptor impurity and silicon is used as the donor impurity.
In the invention of claim 6, the light emitting layer is made of p-conductivity-type Al X3 Ga 1 -X3 N (X1 ≤ X3) with acceptor impurities added.
Layer and n-conductivity type Al X4 Ga 1-X4 N doped with donor impurities
The structure is characterized by being sandwiched between n layers of (X1 ≤ X4).
Furthermore, in the invention of claim 7, the acceptor impurity added to the p layer is magnesium, and the donor impurity added to the n layer is silicon.
【0008】尚、発光層のAlのモル組成比は15%以上
とし、井戸層の厚さは50Å〜200Åの範囲が望まし
い。50Å以下だと不純物拡散が起こり、200Å以上
だと量子効果が発生しなくなるので望ましくない。又、
バリア層の厚さは50Å〜200Åの範囲が望ましい。
50Å以下だと井戸層にキャリアを閉じ込める効率が下
がるため望ましくなく、200Å以上だと量子効果が発
生しなくなるので望ましくない。200Å以上だとノン
ドープの場合には抵抗が大きくなり、又、ドープした場
合には転位によるクラックが入るので望ましくない。
又、発光層に添加するアクセプタ不純物とドナー不純物
の濃度は1×1017/cm3 〜1×1020/cm3 の範囲が
望ましい。1×1017/cm3 以下であると、発光中心不
足により発光効率が低下し、1×1020/cm3 以上とな
ると、結晶性が悪くなり、又、オージェ効果が発生する
ので望ましくない。It is desirable that the molar composition ratio of Al in the light emitting layer is 15% or more and the thickness of the well layer is in the range of 50Å to 200Å. If it is less than 50Å, impurity diffusion will occur, and if it is more than 200Å, the quantum effect will not occur, which is not desirable. or,
The thickness of the barrier layer is preferably in the range of 50Å to 200Å.
If it is 50 Å or less, the efficiency of confining carriers in the well layer decreases, and if it is 200 Å or more, the quantum effect does not occur, which is not preferable. If it is 200 Å or more, the resistance becomes large in the case of non-doping, and cracking due to dislocations occurs in the case of doping, which is not desirable.
The concentration of acceptor impurities and donor impurities added to the light emitting layer is preferably in the range of 1 × 10 17 / cm 3 to 1 × 10 20 / cm 3 . When it is 1 × 10 17 / cm 3 or less, the luminous efficiency is lowered due to lack of emission centers, and when it is 1 × 10 20 / cm 3 or more, the crystallinity deteriorates and the Auger effect occurs, which is not desirable.
【0009】[0009]
【発明の作用及び効果】発光層にInGaN よりも結晶性の
良いAlGaN を用い、発光層を量子井戸構造の歪超格子と
することで、格子定数のミスフィットの伝搬を防止して
井戸層の結晶性を向上させ、これにより発光効率を向上
させた。特に、結晶性の良い井戸層にアクセプタ不純物
とドナー不純物とを共に添加して、アクセプタ準位とド
ナー準位とによる対発光により、紫外線の発光効率を大
きく向上させることができた。[Advantageous Effects of the Invention] By using AlGaN, which has better crystallinity than InGaN, for the light emitting layer and using the strained superlattice of the quantum well structure for the light emitting layer, propagation of the lattice constant misfit is prevented and the well layer The crystallinity was improved, and thus the luminous efficiency was improved. In particular, the acceptor impurity and the donor impurity were added together to the well layer having good crystallinity, and the light emission efficiency of ultraviolet rays could be greatly improved by counter-emission by the acceptor level and the donor level.
【0010】[0010]
【実施例】第1実施例 図1において、発光ダイオード10は、サファイア基板
1を有しており、そのサファイア基板1上に500 ÅのAl
N のバッファ層2が形成されている。そのバッファ層2
の上には、順に、膜厚約2.0 μm、電子濃度2 ×1018/c
m3のシリコンドープGaN から成る高キャリア濃度n+ 層
3、膜厚約1.0 μm、電子濃度 2×1018/cm3のシリコン
ドープのAl0.3Ga0.7N から成るn層4、全膜厚約0.11μ
mの発光層5、膜厚約1.0 μm、ホール濃度5 ×1017/c
m3、濃度1 ×1020/cm3にマグネシウムがドープされたAl
0.3Ga0.7N から成るp層61、膜厚約0.2 μm、ホール
濃度 7×1017/cm3、マグネシウム濃度 2×1020/cm3のマ
グネシウムドープのGaN から成るコンタクト層62が形
成されている。そして、コンタクト層62上にコンタク
ト層62に接合するNiから成る電極7が形成されてい
る。さらに、高キャリア濃度n+ 層3の表面の一部は露
出しており、その露出部上にその層3に接合するNiから
成る電極8が形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment In FIG. 1, a light emitting diode 10 has a sapphire substrate 1 on which 500.degree.
An N 2 buffer layer 2 is formed. The buffer layer 2
On the top, in order, a film thickness of about 2.0 μm and an electron concentration of 2 × 10 18 / c
High carrier concentration n + layer 3 made of m 3 silicon-doped GaN, film thickness about 1.0 μm, n layer 4 made of silicon-doped Al 0.3 Ga 0.7 N with electron concentration 2 × 10 18 / cm 3 , total film thickness about 0.11μ
m emission layer 5, film thickness about 1.0 μm, hole concentration 5 × 10 17 / c
m 3 , Al doped with magnesium at a concentration of 1 × 10 20 / cm 3
A p-layer 61 made of 0.3 Ga 0.7 N, a contact layer 62 made of magnesium-doped GaN having a film thickness of about 0.2 μm, a hole concentration of 7 × 10 17 / cm 3 and a magnesium concentration of 2 × 10 20 / cm 3 are formed. . Then, the electrode 7 made of Ni and bonded to the contact layer 62 is formed on the contact layer 62. Further, a part of the surface of the high carrier concentration n + layer 3 is exposed, and an electrode 8 made of Ni and bonded to the layer 3 is formed on the exposed portion.
【0011】発光層5の詳細な構成は、図2に示すよう
に、膜厚約100 ÅのAl0.25Ga0.75Nから成る6層のバリ
ア層51と膜厚約100 ÅのAl0.2Ga0.8N から成る5層の
井戸層52とが交互に積層された多重量子井戸構造で、
全膜厚約0.11μmである。又、井戸層52には、亜鉛と
シリコンが、それぞれ、5 ×1018/cm3の濃度に添加され
ている。As shown in FIG. 2, the detailed structure of the light emitting layer 5 includes six barrier layers 51 made of Al 0.25 Ga 0.75 N having a film thickness of about 100 Å and Al 0.2 Ga 0.8 N having a film thickness of about 100 Å. A multi-quantum well structure in which five well layers 52 composed of
The total film thickness is about 0.11 μm. Further, zinc and silicon are added to the well layer 52 at a concentration of 5 × 10 18 / cm 3 , respectively.
【0012】次に、この構造の発光ダイオード10の製
造方法について説明する。上記発光ダイオード10は、
有機金属化合物気相成長法( 以下「M0VPE 」と記す) に
よる気相成長により製造された。用いられたガスは、NH
3 とキャリアガスH2又はN2 とトリメチルガリウム(Ga
(CH3)3)(以下「TMG 」と記す) とトリメチルアルミニ
ウム(Al(CH3)3)(以下「TMA 」と記す) とシラン(SiH4)
とジエチル亜鉛( 以下「DEZ 」と記す) とシクロペンタ
ジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg 」と記
す)である。Next, a method of manufacturing the light emitting diode 10 having the above structure will be described. The light emitting diode 10 is
It was manufactured by vapor phase growth by an organometallic compound vapor phase growth method (hereinafter referred to as “M0VPE”). The gas used was NH
3 and carrier gas H 2 or N 2 and trimethylgallium (Ga
(CH 3) 3) (hereinafter referred to as "TMG") and trimethylaluminum (Al (CH 3) 3) ( hereinafter referred to as "TMA") and silane (SiH 4)
And diethyl zinc (hereinafter referred to as "DEZ") and cyclopentadienyl magnesium (Mg (C 5 H 5) 2) ( hereinafter referred to as "CP 2 Mg").
【0013】まず、有機洗浄及び熱処理により洗浄した
a面を主面とする厚さ100 〜400 μmの単結晶のサファ
イア基板1をM0VPE 装置の反応室に載置されたサセプタ
に装着する。次に、常圧でH2を流速2 liter/分で反応室
に流しながら温度1100℃でサファイア基板1を気相エッ
チングした。First, a single crystal sapphire substrate 1 having a thickness of 100 to 400 μm, which is cleaned by organic cleaning and heat treatment and whose main surface is a-plane, is mounted on a susceptor placed in a reaction chamber of a M0VPE apparatus. Next, the sapphire substrate 1 was subjected to gas phase etching at a temperature of 1100 ° C. while flowing H 2 at a flow rate of 2 liter / min at normal pressure into the reaction chamber.
【0014】次に、温度を 400℃まで低下させて、H2を
20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5
モル/分で供給してAlN のバッファ層2が約 500Åの厚
さに形成された。次に、サファイア基板1の温度を1150
℃に保持し、H2を20 liter/分、NH3 を10 liter/分、
TMG を 1.7×10-4ル/分、H2ガスにより0.86ppm に希釈
されたシランを200ml/分で30分供給して、膜厚約2.2
μm、電子濃度 2×1018/cm3のシリコンドープのGaN か
ら成る高キャリア濃度n+ 層3を形成した。[0014] Next, by lowering the temperature to 400 ° C., and H 2
20 liter / min, NH 3 10 liter / min, TMA 1.8 × 10 -5
The buffer layer 2 of AlN was formed at a thickness of about 500Å by supplying at a mol / min. Next, the temperature of the sapphire substrate 1 is set to 1150.
° C, H 2 at 20 liter / min, NH 3 at 10 liter / min,
TMG was supplied at 1.7 × 10 −4 l / min, and silane diluted to 0.86 ppm with H 2 gas was supplied at 200 ml / min for 30 minutes to obtain a film thickness of about 2.2 μm.
[mu] m, thereby forming an electron concentration of 2 × 10 18 / cm high carrier concentration n + layer 3 made of GaN of silicon doped 3.
【0015】次に、サファイア基板1の温度を1100℃に
保持し、N2又はH2を10 liter/分、NH3 を 10liter/
分、TMG を1.12×10-4モル/分、TMA を0.47×10-4モル
/分、及び、H2ガスにより0.86ppm に希釈されたシラン
を10×10-9mol/分で、60分供給して、膜厚約1 μm、濃
度1 ×1018/cm3のシリコンドープのAl0.3Ga0.7N から成
るn層4を形成した。Next, the temperature of the sapphire substrate 1 is maintained at 1100 ° C., N 2 or H 2 is 10 liter / min, and NH 3 is 10 liter / min.
Min, TMG 1.12 × 10 -4 mol / min, TMA 0.47 × 10 -4 mol / min, and silane diluted to 0.86 ppm with H 2 gas at 10 × 10 -9 mol / min for 60 min. Then, the n layer 4 made of silicon-doped Al 0.3 Ga 0.7 N having a film thickness of about 1 μm and a concentration of 1 × 10 18 / cm 3 was formed.
【0016】その後、サファイア基板1の温度を1100℃
に保持し、N2又はH2を20 liter/分、NH3 を10 liter/
分、TMG を 1×10-5モル/分、TMA を0.39×10-4モル/
分で3分間導入してAl0.25Ga0.75N から成る厚さ100
Åのバリア層51を形成した。次に、N2又はH2を20 lit
er/分、NH3 を10 liter/分、TMG を 1×10-5モル/
分、TMA を0.31×10-4モル/分で、且つ、H2ガスにより
0.86ppm に希釈されたシランを10×10-9mol/分、DEZ を
2×10-4モル/分で、3分間導入してAl0.2Ga0.8N から
成る厚さ100Åのシリコンと亜鉛が、それぞれ、 5×
1018/cm3の濃度に添加された井戸層52を形成した。こ
のような手順の繰り返しにより、図6に示すように、バ
リア層51と井戸層52とを交互に5層だけ積層たし多
重量子井戸構造で、全体の厚さ0.11μmの発光層5を形
成した。After that, the temperature of the sapphire substrate 1 is set to 1100 ° C.
And N 2 or H 2 at 20 liter / min, NH 3 at 10 liter / min.
Min, TMG 1 x 10 -5 mol / min, TMA 0.39 x 10 -4 mol / min
Introduced for 3 minutes at a thickness of 100 consisting of Al 0.25 Ga 0.75 N
The barrier layer 51 was formed. Next, 20 lit N 2 or H 2
er / min, NH 3 10 liter / min, TMG 1 × 10 -5 mol / min
Min, TMA 0.31 × 10 -4 mol / min and by H 2 gas
Silane diluted to 0.86ppm at 10 × 10 -9 mol / min, DEZ
Introduced for 3 minutes at 2 × 10 -4 mol / min, silicon and zinc with a thickness of 100 Å consisting of Al 0.2 Ga 0.8 N are 5 ×, respectively.
A well layer 52 having a concentration of 10 18 / cm 3 was formed. By repeating such a procedure, as shown in FIG. 6, a light emitting layer 5 having a total thickness of 0.11 μm is formed by alternately stacking five layers of barrier layers 51 and well layers 52 and having a multiple quantum well structure. did.
【0017】続いて、温度を1100℃に保持し、N2又はH2
を20 liter/分、NH3 を 10liter/分、TMG を1.12×10
-4モル/分、TMA を0.47×10-4モル/分、及び、CP2Mg
を2×10-4モル/分で60分間導入し、膜厚約1.0 μmの
マグネシウム(Mg)ドープのAl0.3Ga0.7N から成るp層6
1を形成した。p層61のマグネシウムの濃度は1 ×10
20/cm3である。この状態では、p層61は、まだ、抵抗
率108 Ωcm以上の絶縁体である。Subsequently, the temperature is maintained at 1100 ° C. and N 2 or H 2
20 liter / min, NH 3 10 liter / min, TMG 1.12 × 10
-4 mol / min, 0.47 × 10 -4 mol / min of TMA and CP 2 Mg
Was introduced at a rate of 2 × 10 −4 mol / min for 60 minutes, and a p-layer 6 made of magnesium (Mg) -doped Al 0.3 Ga 0.7 N with a thickness of about 1.0 μm was formed.
1 was formed. The concentration of magnesium in the p-layer 61 is 1 × 10
It is 20 / cm 3 . In this state, the p layer 61 is still an insulator having a resistivity of 10 8 Ωcm or more.
【0018】続いて、温度を1100℃に保持し、N2又はH2
を20 liter/分、NH3 を 10liter/分、TMG を1.12×10
-4モル/分、及び、CP2Mg を 4×10-4モル/分の割合で
4分間導入し、膜厚約0.2 μmのマグネシウム(Mg)ドー
プのGaN から成るコンタクト層62を形成した。コンタ
クト層62のマグネシウムの濃度は 2×1020/cm3であ
る。この状態では、コンタクト層62は、まだ、抵抗率
108 Ωcm以上の絶縁体である。Subsequently, the temperature was maintained at 1100 ° C. and N 2 or H 2 was added.
20 liter / min, NH 3 10 liter / min, TMG 1.12 × 10
-4 mol / min and CP 2 Mg at a rate of 4 × 10 -4 mol / min
This was introduced for 4 minutes to form a contact layer 62 made of GaN doped with magnesium (Mg) and having a thickness of about 0.2 μm. The magnesium concentration of the contact layer 62 is 2 × 10 20 / cm 3 . In this state, the contact layer 62 still has a resistivity
It is an insulator of 10 8 Ωcm or more.
【0019】このようにして、図2に示す断面構造のウ
エハが得られた。次に、このウエハを、450℃で45
分間、熱処理した。この熱処理により、コンタクト層6
2、p層61は、それぞれ、ホール濃度 7×1017/cm3,
5×1017/cm3、抵抗率 2Ωcm,0.8 Ωcm のp伝導型半
導体となった。このようにして、多層構造のウエハが得
られた。In this way, a wafer having a sectional structure shown in FIG. 2 was obtained. Next, this wafer is subjected to 45 ° C. at 45 ° C.
Heat treated for minutes. By this heat treatment, the contact layer 6
2, the p-layer 61 has a hole concentration of 7 × 10 17 / cm 3 ,
It became a p-conductivity type semiconductor with 5 × 10 17 / cm 3 and a resistivity of 2 Ωcm and 0.8 Ωcm. Thus, a wafer having a multilayer structure was obtained.
【0020】次に、図3に示すように、コンタクト層6
2の上に、スパッタリングによりSiO2層9を2000Åの厚
さに形成し、そのSiO2層9上にフォトレジスト10を塗
布した。そして、フォトリソグラフにより、図3に示す
ように、コンタクト層62上において、高キャリア濃度
n+ 層3に対する電極形成部位A' のフォトレジスト1
0を除去した。次に、図4に示すように、フォトレジス
ト10によって覆われていないSiO2層9をフッ化水素酸
系エッチング液で除去した。Next, as shown in FIG. 3, the contact layer 6
A SiO 2 layer 9 having a thickness of 2000 Å was formed on the No. 2 layer by sputtering, and a photoresist 10 was applied on the SiO 2 layer 9. Then, by photolithography, as shown in FIG. 3, on the contact layer 62, the photoresist 1 of the electrode formation site A ′ for the high carrier concentration n + layer 3 is formed.
0 was removed. Next, as shown in FIG. 4, the SiO 2 layer 9 not covered with the photoresist 10 was removed with a hydrofluoric acid-based etching solution.
【0021】次に、フォトレジスト10及びSiO2層9に
よって覆われていない部位のコンタクト層62、p層6
1、発光層5、n層4を、真空度0.04Torr、高周波電力
0.44W/cm2 、BCl3ガスを10 ml/分の割合で供給しドライ
エッチングした後、Arでドライエッチングした。この工
程で、図5に示すように、高キャリア濃度n+ 層3に対
する電極取出しのための孔Aが形成された。Next, the contact layer 62 and the p layer 6 which are not covered with the photoresist 10 and the SiO 2 layer 9 are formed.
1, light emitting layer 5, n layer 4, vacuum degree 0.04 Torr, high frequency power
0.44 W / cm 2 and BCl 3 gas were supplied at a rate of 10 ml / min for dry etching, and then Ar was used for dry etching. In this step, as shown in FIG. 5, a hole A for taking out the electrode for the high carrier concentration n + layer 3 was formed.
【0022】次に、試料の上全面に、一様にNiを蒸着
し、フォトレジストの塗布、フォトリソグラフィ工程、
エッチング工程を経て、図1に示すように、高キャリア
濃度n+ 層3及びコンタクト層62に対する電極8,7
を形成した。その後、上記の如く処理されたウエハを各
チップに切断して、発光ダイオードチップを得た。Next, Ni is vapor-deposited uniformly on the entire surface of the sample, and a photoresist is applied, a photolithography process,
Through the etching process, as shown in FIG. 1, the electrodes 8 and 7 for the high carrier concentration n + layer 3 and the contact layer 62 are formed.
Was formed. Then, the wafer treated as described above was cut into each chip to obtain a light emitting diode chip.
【0023】このようにして得られた発光素子は、駆動
電流20mAで、発光ピーク波長 380nm、発光強度2mWであ
った。この発光効率は3%であり、従来の構成のものに
比べて10倍に向上した。The light emitting device thus obtained had a driving current of 20 mA, an emission peak wavelength of 380 nm and an emission intensity of 2 mW. The luminous efficiency was 3%, which was 10 times higher than that of the conventional structure.
【0024】上記の実施例では、発光層5のバリア層5
1のバンドギャップが両側に存在するp層61とn層4
のバンドギャップよりも小さくなるようなダブルヘテロ
接合に形成されている。上記実施例ではダブルヘテロ接
合構造を用いたが、シングルヘテロ接合構造であっても
良い。さらに、p層を形成するのに熱処理を用いたが、
電子線照射によってp型化しても良い。In the above embodiment, the barrier layer 5 of the light emitting layer 5 is used.
P layer 61 and n layer 4 having a band gap of 1 on both sides
Is formed in a double heterojunction that is smaller than the band gap. Although the double heterojunction structure is used in the above embodiment, a single heterojunction structure may be used. Further, heat treatment was used to form the p-layer,
You may make it p-type by electron beam irradiation.
【0025】第2実施例 上記第1実施例では、各井戸層52に亜鉛とシリコンと
を同時に添加している。第2実施例の発光ダイオード1
00の発光層5は、図6に示すように、複数の井戸層5
20に、順に交互に、シリコンと亜鉛を添加したもので
ある。この構造において、アクセプタ準位とドナー準位
による対発光が可能となり、紫外線の発光効率が向上す
る。 このようにして得られた発光素子は、駆動電流20
mAで、発光ピーク波長 380nm、発光強度5mWであった。
この発光効率は7%であり、従来の構成のものに比べて
25倍に向上した。 Second Embodiment In the first embodiment, zinc and silicon are simultaneously added to each well layer 52. Light emitting diode 1 of second embodiment
As shown in FIG. 6, a plurality of well layers 5
20 is obtained by adding silicon and zinc alternately in order. In this structure, paired light emission by the acceptor level and the donor level becomes possible, and the luminous efficiency of ultraviolet rays is improved. The light emitting device thus obtained has a driving current of 20
With mA, the emission peak wavelength was 380 nm and the emission intensity was 5 mW.
The luminous efficiency was 7%, which was 25 times higher than that of the conventional structure.
【0026】第3実施例 第3実施例の発光ダイオード200は、図7に示すよう
に、全ての井戸層521に亜鉛を添加し、全てのバリア
層511にシリコンを添加したものである。この構造に
おいて、アクセプタ準位とドナー準位による対発光が可
能となり、紫外線の発光効率が向上する。尚、逆に、全
ての井戸層521にシリコンを添加し、全てのバリア層
511に亜鉛を添加するようにしても良い。このように
して得られた発光素子は、駆動電流20mAで、発光ピーク
波長 370nm、発光強度5mWであった。この発光効率は7
%であり、従来の構成のものに比べて25倍に向上し
た。 Third Embodiment As shown in FIG. 7, the light emitting diode 200 according to the third embodiment has zinc added to all the well layers 521 and silicon added to all the barrier layers 511. In this structure, paired light emission by the acceptor level and the donor level becomes possible, and the luminous efficiency of ultraviolet rays is improved. Conversely, silicon may be added to all the well layers 521, and zinc may be added to all the barrier layers 511. The light emitting device thus obtained had a driving current of 20 mA, an emission peak wavelength of 370 nm and an emission intensity of 5 mW. This luminous efficiency is 7
%, Which is 25 times higher than that of the conventional configuration.
【0027】第4実施例 上記の全ての実施例において、バリア層51、510、
511にはマグネシウムが添加されていないが、マグネ
シウムを添加した後の、熱処理、又は、電子線照射処理
によりp型化しても良い。このようにして得られた発光
素子は、駆動電流20mAで、発光ピーク波長 380nm、発光
強度10mWであった。この発光効率は15%であり、従
来の構成のものに比べて50倍に向上した。 Fourth Embodiment In all the above embodiments, the barrier layers 51, 510,
Although magnesium is not added to 511, the p-type may be formed by heat treatment or electron beam irradiation treatment after adding magnesium. The light emitting device thus obtained had a driving current of 20 mA, an emission peak wavelength of 380 nm and an emission intensity of 10 mW. The luminous efficiency was 15%, which was 50 times higher than that of the conventional structure.
【0028】上記の実施例は発光素子として、全て発光
ダイオードを示したが、レーザダイオードでも良い。In the above embodiments, all light emitting diodes are shown as light emitting elements, but laser diodes may be used.
【図1】本発明の具体的な第1実施例に係る発光ダイオ
ードの構成を示した構成図。FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a first specific example of the present invention.
【図2】同実施例の発光ダイオードの製造工程を示した
断面図。FIG. 2 is a cross-sectional view showing a manufacturing process of the light emitting diode of the same embodiment.
【図3】同実施例の発光ダイオードの製造工程を示した
断面図。FIG. 3 is a cross-sectional view showing a manufacturing process of the light emitting diode of the embodiment.
【図4】同実施例の発光ダイオードの製造工程を示した
断面図。FIG. 4 is a cross-sectional view showing a manufacturing process of the light emitting diode of the same embodiment.
【図5】同実施例の発光ダイオードの製造工程を示した
断面図。FIG. 5 is a cross-sectional view showing the manufacturing process of the light emitting diode of the same embodiment.
【図6】第2実施例に係る発光ダイオードの構成を示し
た構成図。FIG. 6 is a configuration diagram showing a configuration of a light emitting diode according to a second embodiment.
【図7】第3実施例に係る発光ダイオードの構成を示し
た構成図。FIG. 7 is a configuration diagram showing a configuration of a light emitting diode according to a third embodiment.
10,100,200…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度n+ 層 4…n層 5…発光層 51,510,511…バリア層 52,520,521…井戸層 61…p層 62…コンタクト層 7,8…電極10, 100, 200 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... N layer 5 ... Light emitting layer 51, 510, 511 ... Barrier layer 52, 520, 521 ... Well layer 61 ... p layer 62 ... contact layer 7, 8 ... electrode
Claims (7)
子において、 前記発光層は、AlX2Ga1-X2N から成るバリア層とAlX1Ga
1-X1N (X1 <X2) から成る井戸層とを交互に積層させた
量子井戸で構成され、前記発光層にアクセプタ不純物と
ドナー不純物とを添加したことを特徴とする3族窒化物
半導体発光素子。1. A light emitting device using a Group III nitride semiconductor as a light emitting layer, wherein the light emitting layer comprises a barrier layer made of Al X2 Ga 1 -X2 N and an Al X1 Ga layer.
A group III nitride semiconductor light-emitting device comprising a quantum well in which well layers made of 1-X1 N (X1 <X2) are alternately stacked, and an acceptor impurity and a donor impurity are added to the light emitting layer. element.
タ不純物と前記ドナー不純物とが共に添加されているこ
とを特徴とする請求項1に記載の3族窒化物半導体発光
素子。2. The Group III nitride semiconductor light emitting device according to claim 1, wherein the acceptor impurity and the donor impurity are added only to each well layer of the light emitting layer.
セプタ不純物と前記ドナー不純物とが交互に添加されて
いることを特徴とする請求項1に記載の3族窒化物半導
体発光素子。3. The group III nitride semiconductor light emitting device according to claim 1, wherein the acceptor impurity and the donor impurity are alternately added to a well layer adjacent to the light emitting layer.
タ不純物が、前記発光層の前記バリア層には前記ドナー
不純物が、逆に、前記井戸層には前記ドナー不純物が、
前記バリア層には前記アクセプタ不純物が、それぞれ、
添加されていることを特徴とする請求項1に記載の3族
窒化物半導体発光素子。4. The well layer of the light emitting layer contains the acceptor impurity, the barrier layer of the light emitting layer contains the donor impurity, and conversely, the well layer contains the donor impurity.
The barrier layer contains the acceptor impurities,
The group III nitride semiconductor light emitting device according to claim 1, wherein the group III nitride semiconductor light emitting device is added.
ドナー不純物はシリコンであることを特徴とする請求項
1乃至請求項4のいずれかの請求項に記載の3族窒化物
半導体発光素子。5. The Group III nitride semiconductor light emitting device according to claim 1, wherein the acceptor impurity is zinc and the donor impurity is silicon.
れたp伝導型のAlX3Ga1-X3N (X1 ≦X3) から成るp層
と、ドナー不純物が添加されたn伝導型のAlX4Ga1-X4N
(X1 ≦X4) から成るn層とで挟まれていることを特徴と
する請求項1に記載の3族窒化物半導体発光素子。6. The light emitting layer comprises ap layer made of p - conductivity type Al X3 Ga 1 -X3 N (X1 ≤X3) doped with an acceptor impurity and an n-conductivity type Al X4 doped with a donor impurity. Ga 1-X4 N
The group III nitride semiconductor light emitting device according to claim 1, wherein the group III nitride semiconductor light emitting device is sandwiched by an n layer composed of (X1 ≤ X4).
不純物はマグネシウムであり、前記n層に添加されてい
る前記ドナー不純物はシリコンであることを特徴とする
請求項6に記載の3族窒化物半導体発光素子。7. The Group III nitride according to claim 6, wherein the acceptor impurity added to the p layer is magnesium, and the donor impurity added to the n layer is silicon. Semiconductor light emitting device.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20918295A JP3557742B2 (en) | 1995-07-24 | 1995-07-24 | Group III nitride semiconductor light emitting device |
DE69637304T DE69637304T2 (en) | 1995-03-17 | 1996-03-14 | A semiconductor light-emitting device consisting of a III-V nitride compound |
EP96104051A EP0732754B1 (en) | 1995-03-17 | 1996-03-14 | Light-emitting semiconductor device using group III nitride compound |
US08/616,884 US5945689A (en) | 1995-03-17 | 1996-03-18 | Light-emitting semiconductor device using group III nitride compound |
TW085110285A TW385555B (en) | 1995-03-17 | 1996-08-21 | Light-emitting semiconductor device using group III nitride compound |
US09/346,935 US6288416B1 (en) | 1995-03-17 | 1999-07-02 | Light-emitting semiconductor device using group III nitride compound |
US09/909,895 US6645785B2 (en) | 1995-03-17 | 2001-07-23 | Light-emitting semiconductor device using group III nitride compound |
US10/617,792 US20040018657A1 (en) | 1995-03-17 | 2003-07-14 | Light-emitting semiconductor device using group III nitride compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20918295A JP3557742B2 (en) | 1995-07-24 | 1995-07-24 | Group III nitride semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0936422A true JPH0936422A (en) | 1997-02-07 |
JP3557742B2 JP3557742B2 (en) | 2004-08-25 |
Family
ID=16568705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20918295A Expired - Fee Related JP3557742B2 (en) | 1995-03-17 | 1995-07-24 | Group III nitride semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3557742B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423984B1 (en) | 1998-09-10 | 2002-07-23 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride compound semiconductor |
US6617061B2 (en) * | 1999-12-06 | 2003-09-09 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device |
JP2011151422A (en) * | 2009-12-10 | 2011-08-04 | Dowa Electronics Materials Co Ltd | P-TYPE AlGaN LAYER, AND GROUP-III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT |
-
1995
- 1995-07-24 JP JP20918295A patent/JP3557742B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423984B1 (en) | 1998-09-10 | 2002-07-23 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride compound semiconductor |
US6853009B2 (en) | 1998-09-10 | 2005-02-08 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride compound semiconductor |
US7045809B2 (en) | 1998-09-10 | 2006-05-16 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride compound semiconductor |
US6617061B2 (en) * | 1999-12-06 | 2003-09-09 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device |
JP2011151422A (en) * | 2009-12-10 | 2011-08-04 | Dowa Electronics Materials Co Ltd | P-TYPE AlGaN LAYER, AND GROUP-III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT |
Also Published As
Publication number | Publication date |
---|---|
JP3557742B2 (en) | 2004-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3209096B2 (en) | Group III nitride compound semiconductor light emitting device | |
JPH09153645A (en) | Group-iii nitride semiconductor light-emitting device | |
JP3712770B2 (en) | Method for manufacturing group 3 nitride semiconductor and semiconductor device | |
JP3795624B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
JPH07263748A (en) | Iii group nitride semiconductor light emitting element and manufacture of it | |
JPH0897471A (en) | Group-iii nitride semiconductor light emitting device | |
JP3753793B2 (en) | Group 3 nitride compound semiconductor light emitting device | |
JPH06151968A (en) | Nitrogen-iii group semiconductor luminous element and manufacture thereof | |
JPH06151965A (en) | Nitrogen-iii compound semiconductor luminous element and manufacture thereof | |
JP3772707B2 (en) | Method for manufacturing group 3 nitride compound semiconductor light emitting device | |
JPH1012922A (en) | Group iii nitride semiconductor light emitting element | |
JPH0936423A (en) | Group iii nitride semiconductor light emitting element | |
JP3336855B2 (en) | Group III nitride compound semiconductor light emitting device | |
JP2005085932A (en) | Light-emitting diode and its manufacturing method | |
JP3198678B2 (en) | Nitrogen-3 group element compound semiconductor light emitting device | |
JP3637662B2 (en) | Group 3 nitride semiconductor light emitting device | |
JPH0992880A (en) | Group iii nitride semiconductor light emitting device | |
JP3557742B2 (en) | Group III nitride semiconductor light emitting device | |
JP3727091B2 (en) | Group 3 nitride semiconductor device | |
JP3564811B2 (en) | Group III nitride semiconductor light emitting device | |
JPH08125222A (en) | Method for manufacture of group iii nitride semiconductor | |
JP2663814B2 (en) | Nitrogen-3 element compound semiconductor light emitting device | |
JPH07297447A (en) | Group iii nitride semiconductor light emitting element | |
JP2004158893A (en) | 3 group nitride semiconductor light emitting device | |
JPH07312445A (en) | Iii group nitride semiconductor light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040316 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040510 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080528 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090528 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |