JP3637662B2 - Group 3 nitride semiconductor light emitting device - Google Patents

Group 3 nitride semiconductor light emitting device Download PDF

Info

Publication number
JP3637662B2
JP3637662B2 JP35305095A JP35305095A JP3637662B2 JP 3637662 B2 JP3637662 B2 JP 3637662B2 JP 35305095 A JP35305095 A JP 35305095A JP 35305095 A JP35305095 A JP 35305095A JP 3637662 B2 JP3637662 B2 JP 3637662B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
nitride semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35305095A
Other languages
Japanese (ja)
Other versions
JPH09186362A (en
Inventor
慎也 浅見
正好 小池
茂雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP35305095A priority Critical patent/JP3637662B2/en
Priority to TW090200903U priority patent/TW492578U/en
Priority to KR1019960037785A priority patent/KR100289595B1/en
Publication of JPH09186362A publication Critical patent/JPH09186362A/en
Application granted granted Critical
Publication of JP3637662B2 publication Critical patent/JP3637662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はバンド端発光の効率を向上させた3族窒化物半導体を用いた発光素子に関する。
【0002】
【従来技術】
従来、3族窒化物半導体を用いたバンド端発光による発光素子として、発光層にIn0.08Ga0.92N又はSiが添加されたIn0.08Ga0.92Nを用いた素子が知られている。この素子では、Siのドナーレベルと価電子帯との間、又は、価電子帯と伝導帯との間での電子・正孔再結合により波長380nmの光を発光する。
【0003】
【発明が解決しようとする課題】
しかし、この構造の発光素子は、発光層に注入するキャリアの濃度が低く、電子・正孔再結合が起こり難く、発光効率が良くない。
【0004】
本発明は上記の課題を解決するために成されたものであり、その目的は、3族窒化物化合物半導体発光素子においてバンド端発光の発光効率を向上させることである。
【0005】
【課題を解決するための手段】
請求項1の発明は、p層、n層、p層とn層とに挟まれた発光層を有し、各層が3族窒化物半導体から成る発光素子において、発光層にドナー不純物とアクセプタ不純物とを共に1 × 10 17 5 × 10 18 /cm 3 の濃度で添加し、発光層の厚さを15〜200nmとし、出力される光をドナー不純物レベルと価電子帯、伝導帯とアクセプタ不純物レベル間、又は、伝導帯と価電子帯との間の電子の遷移による発光波長としたことを特徴とする。発光層の厚さを15〜200nmとすることで、注入されたキャリアの閉じ込め効果が向上する。この結果、不純物レベルの存在に応じて、ドナー不純物レベルと価電子帯、伝導帯とアクセプタ不純物レベル間、伝導帯と価電子帯との間の電子の遷移が増加し、不純物レベルとバンド端間又はバンド間の発光強度及び発光効率が増加する。発光層の厚さが1nmよりも薄い場合には結晶性が良くなく望ましくない。但し、15nmより薄いと界面の良好な均一性を得るのが困難となるので、15nm以上の厚さがより望ましい。又、発光層の厚さが200nmよりも厚くなると注入されたキャリアの閉じ込め効果が低下し望ましくない。
【0006】
又、発光層は、4元系、3元系、2元系、即ち、一般式AlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)で表現される3族窒化物半導体を用いることが可能である。組成比は、発光波長と禁制帯幅との関係及び格子整合の観点から適正に選択すれば良い。又、少なくとも1周期以上の量子井戸構造としても良い。特に、380nm付近の発光を得るには、発光層をGaxIn1-xN(0≦x≦1)とするのが望ましい。
【0007】
発光層の厚さを15〜200nmとして、ドナー不純物とアクセプタ不純物とを共に添加することで、ドナー不純物だけを添加した場合に比べて、ドナー不純物レベルと価電子帯との間の遷移がより大きくなることが確認されている。
【0008】
ドナー不純物には、シリコン(Si)、テルル(Te)、イオウ(S)、又は、セレン(Se)を用い、アクセプタ不純物には、マグネシウム(Mg)、又は、亜鉛(Zn)を用いることができる。これらは、発光波長と禁制帯幅との関係で選択すれば良い。
【0009】
【実施例】
〔第1実施例〕
図1において、発光ダイオード10は、サファイア基板1を有しており、そのサファイア基板1上に500ÅのAlNのバッファ層2が形成されている。そのバッファ層2の上には、順に、膜厚約5.0μm、濃度5×1018/cm3のシリコンドープGaNから成る高キャリア濃度n+層3、膜厚約0.5μm、濃度5×1017/cm3のシリコンドープのGaNから成るn層4、膜厚が約50nmでシリコンと亜鉛が、それぞれ、5×1018/cm3にドープされたIn0.08Ga0.92Nから成る発光層5、膜厚約0.5μm、ホール濃度5×1017/cm3、濃度5×1020/cm3にマグネシウムがドープされたAl0.08Ga0.92Nから成るp層61、膜厚約1μm、ホール濃度7×1018/cm3、マグネシウム濃度5×1021/cm3のマグネシウムドープのGaNから成るコンタクト層62が形成されている。そして、コンタクト層62上にコンタクト層62に接合するNiから成る電極7が形成されている。さらに、高キャリア濃度n+層3の表面の一部は露出しており、その露出部上にその層3に接合するNiから成る電極8が形成されている。
【0010】
次に、この構造の発光ダイオード10の製造方法について説明する。
上記発光ダイオード10は、有機金属化合物気相成長法(以下「M0VPE」と記す)による気相成長により製造された。
用いられたガスは、NH3とキャリアガスH2又はN2とトリメチルガリウム(Ga(CH3)3)(以下「TMG」と記す)とトリメチルアルミニウム(Al(CH3)3)(以下「TMA」と記す)とトリメチルインジウム(In(CH3)3)(以下「TMI」と記す)とシラン(SiH4)とシクロペンタジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg」と記す)とジエチル亜鉛(Zn(C2H5)2)(以下、「DEZ」と記す)である。
【0011】
まず、有機洗浄及び熱処理により洗浄したa面を主面とする厚さ100〜400μmの単結晶のサファイア基板1をM0VPE装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2Liter/分で反応室に流しながら温度1100℃でサファイア基板1を気相エッチングした。
【0012】
次に、温度を400℃まで低下させて、H2を20Liter/分、NH3を10Liter/分、TMAを1.8×10-5モル/分で供給してAlNのバッファ層2が約500Åの厚さに形成された。次に、サファイア基板1の温度を1150℃に保持し、H2を20Liter/分、NH3を10Liter/分、TMGを1.7×10-4 モル/分、H2ガスにより0.86ppmに希釈されたシランを200ml/分で70分供給して、膜厚約5μm、濃度5×1018/cm3のシリコンドープのGaNから成る高キャリア濃度n+層3を形成した。
【0013】
次に、サファイア基板1の温度を1100℃に保持し、N2又はH2を10Liter/分、NH3を10Liter/分、TMGを1.12×10-4モル/分、及び、H2ガスにより0.86ppmに希釈されたシランを10×10-9mol/分で、30分供給して、膜厚約0.5μm、濃度5×1017/cm3のシリコンドープのGaNから成るn層4を形成した。
【0014】
続いて、温度を850℃に保持し、N2又はH2を20Liter/分、NH3を10Liter/分、TMGを1.53×10-4モル/分、及び、TMIを0.02×10-4モル/分、H2ガスにより0.86ppmに希釈されたシランを10×10-8mol/分で、DEZを2×10-4モル/分で、15分間供給して厚さ50nmのシリコンと亜鉛が、それぞれ、5×1018/cm3にドープされたIn0.08Ga0.92Nから成る活性層5を形成した。
【0015】
続いて、温度を1100℃に保持し、N2又はH2を20Liter/分、NH3を10Liter/分、TMGを1.12×10-4モル/分、TMAを0.47×10-4モル/分、及び、CP2Mgを2×10-4モル/分で30分間導入し、膜厚約0.5μmのマグネシウム(Mg)ドープのAl0.08Ga0.92Nから成るp層61を形成した。p層61のマグネシウムの濃度は5×1020/cm3である。この状態では、p層61は、まだ、抵抗率108Ωcm以上の絶縁体である。
【0016】
続いて、温度を1100℃に保持し、N2又はH2を20Liter/分、NH3を10Liter/分、TMGを1.12×10-4モル/分、及び、CP2Mgを4×10-3モル/分の割合で4分間導入し、膜厚約1μmのマグネシウム(Mg)ドープのGaNから成るコンタクト層62を形成した。コンタクト層62のマグネシウムの濃度は5×1021/cm3である。この状態では、コンタクト層62は、まだ、抵抗率108Ωcm以上の絶縁体である。
【0017】
このようにして得られたウエハに、反射電子線回折装置を用いて電子線を照射した。電子線照射条件は、加速電圧10kv、試料電流1μA、ビームの移動速度0.2mm/sec、ビーム径60μmφ、真空度2.1×10-5Torrである。この電子線照射により、コンタクト層62、p層61は、それぞれ、ホール濃度7×1017/cm3,5×1017/cm3、抵抗率2Ωcm,0.8Ωcmのp伝導型半導体となった。このようにして、多層構造のウエハが得られた。
【0018】
次に、図2に示すように、コンタクト層62の上に、スパッタリングによりSiO2層9を2000Åの厚さに形成し、そのSiO2層9上にフォトレジスト10を塗布した。そして、フォトリソグラフにより、図2に示すように、コンタクト層62上において、高キャリア濃度n+層3に対する電極形成部位A'のフォトレジスト10を除去した。次に、図3に示すように、フォトレジスト10によって覆われていないSiO2層9をフッ化水素酸系エッチング液で除去した。
【0019】
次に、フォトレジスト10及びSiO2層9によって覆われていない部位のコンタクト層62、p層61、発光層5、n層4を、真空度0.04Torr、高周波電力0.44W/cm2、BCl3ガスを10ml/分の割合で供給しドライエッチングした後、Arでドライエッチングした。この工程で、図4に示すように、高キャリア濃度n+層3に対する電極取出しのための孔Aが形成された。
【0020】
次に、試料の上全面に、一様にNiを蒸着し、フォトレジストの塗布、フォトリソグラフィ工程、エッチング工程を経て、図1に示すように、高キャリア濃度n+層3及びコンタクト層62に対する電極8,7を形成した。その後、上記の如く処理されたウエハを各チップに切断して、発光ダイオードチップを得た。
【0021】
このようにして得られた発光素子は、駆動電流20mAで、発光ピーク波長380nm、発光強度2mWであった。この発光効率は3%であり、従来の構成のものに比べて10倍に向上した。
【0022】
又、以上のように製造された発光ダイオード10の発光スペクトルを測定した。図5の曲線X1に示す。380nmのピーク波長が得られていることが分かる。一方、Siドナー準位とZnアクセプタ準位間の発光に相当する440nm付近にも発光が見られるが、380nmの発光強度は440nmの発光強度に比べて約5倍程大きいことが理解される。
【0023】
比較のために、発光層5におけるSiとZnの濃度を上記実施例と同一にして、発光層5の厚さを400nmにした発光ダイオードの発光スペクトルを測定した。その結果を図5の曲線X2に示す。この場合には、逆に、440nmの発光が支配的であり、その強度は、380nmの発光強度に比べて約5倍程大きい。このことは、発光層5の厚さが400nmの場合には、380nmの発光強度を増加させる効果がないことを意味している。
【0024】
さらに、発光層5にSiだけを上記実施例と同一濃度に添加して、発光層5の厚さを300nmにした発光ダイオードを製造し、その発光ダイオードの発光スペクトルを測定した。その結果を、図5の曲線X3に示す。この場合には、Znが添加されていないので、440nmの発光は見られないが、380nmの発光強度は、発光層5にSiとZnを共に添加した場合の曲線X2と同程度に得られている。このことは、発光層5の厚さが300nmでは、Siドナー準位と価電子帯間の遷移が未だ小さいことを意味している。発光層5の厚さが200nm以下となると、380nmの発光強度が約5倍以上大きくなることが確認されている。
【0025】
注入されたキャリアの閉じ込め効果を大きくすることができる発光層5の厚さは200nm以下であり、1nmよりも薄くなると結晶性が悪くなるため、逆に、発光効率は低下する。よって、発光層5の厚さは1〜200nmの範囲が望ましい。又、界面の均一性を向上させるには、15〜200nmの範囲がより望ましい。さらに、発光層5に添加するSiとZnの濃度は、1×1017〜5×1018/cm3の時に、380nm以下の紫外線領域の発光強度を増加させることができる。
【0026】
このように、本発明は、発光層5の厚さを1〜200nmとすることで、ドナー不純物レベルと価電子帯、伝導帯とアクセプタ不純物レベル間、又は、伝導帯と価電子帯との間の電子の遷移を増加させることで、発光効率の向上と発光波長の制御を可能としたものである。
【0027】
発光層5にIn0.08Ga0.92Nを用いたが、Al0.03Ga0.89In0.08N等の4元系の3族窒化物半導体を用いてもよい。又、添加する不純物はSi,Zn以外の元素も用いることが可能でる。要は、要求される発光波長に応じて、禁制帯幅、添加する不純物の種類を考慮して決定すれば良い。即ち、上記実施例では、発光波長は紫外線領域であるが、発光波長を青や緑と言った可視領域となるように禁制帯幅を決めても良い。又、発光層はAlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)を少なくとも1層以上積層した量子井戸構造であっても良い。さらに、発光層5は他の層3、4、61等と格子整合しているのが良い。
尚、上記実施例では、発光ダイオードについて示したが、本発明をレーザダイオードにも応用することができる。
【図面の簡単な説明】
【図1】 本発明の具体的な実施例に係る発光ダイオードの構成を示した構成図。
【図2】 同実施例の発光ダイオードの製造工程を示した断面図。
【図3】 同実施例の発光ダイオードの製造工程を示した断面図。
【図4】 同実施例の発光ダイオードの製造工程を示した断面図。
【図5】 発光層の厚さを変化させた各種の発光ダイオードの発光スペクトルを示した測定図。
【符号の説明】
10…発光ダイオード
1…サファイア基板
2…バッファ層
3…高キャリア濃度n+
4…n層
5…発光層
61…p層
62…コンタクト層
7,8…電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device using a group III nitride semiconductor with improved band edge emission efficiency.
[0002]
[Prior art]
Conventionally, as a light-emitting element according to the band edge emission using group III nitride semiconductor, an In 0.08 Ga 0.92 N or Si is used an added In 0.08 Ga 0.92 N elements are known in the emission layer. In this device, light having a wavelength of 380 nm is emitted by electron-hole recombination between the Si donor level and the valence band, or between the valence band and the conduction band.
[0003]
[Problems to be solved by the invention]
However, a light-emitting element having this structure has a low concentration of carriers injected into the light-emitting layer, electron-hole recombination hardly occurs, and light emission efficiency is not good.
[0004]
The present invention has been made to solve the above-described problems, and an object of the present invention is to improve the light emission efficiency of band edge emission in a group 3 nitride compound semiconductor light emitting device.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a light emitting device having a p layer, an n layer, a light emitting layer sandwiched between the p layer and the n layer, and each layer made of a group III nitride semiconductor. Are added at a concentration of 1 × 10 17 to 5 × 10 18 / cm 3 , the thickness of the light emitting layer is 15 to 200 nm, and the output light is the donor impurity level and valence band, conduction band and acceptor impurity It is characterized by the emission wavelength due to the transition of electrons between the levels or between the conduction band and the valence band. By setting the thickness of the light emitting layer to 15 to 200 nm, the confinement effect of injected carriers is improved. As a result, depending on the presence of the impurity level, the transition of electrons between the donor impurity level and the valence band, between the conduction band and the acceptor impurity level, between the conduction band and the valence band increases, and between the impurity level and the band edge. Alternatively, the emission intensity and emission efficiency between bands increase. When the thickness of the light emitting layer is less than 1 nm, the crystallinity is not good, which is not desirable. However, if it is thinner than 15 nm, it is difficult to obtain good uniformity of the interface, so a thickness of 15 nm or more is more desirable. Further, if the thickness of the light emitting layer is greater than 200 nm, the effect of confining injected carriers is lowered, which is not desirable.
[0006]
Further, the light emitting layer is quaternary, ternary, binary, i.e., the general formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ It is possible to use a group III nitride semiconductor represented by 1). The composition ratio may be appropriately selected from the viewpoint of the relationship between the emission wavelength and the forbidden band width and the lattice matching. Moreover, it is good also as a quantum well structure of at least 1 period or more. In particular, in order to obtain light emission around 380 nm, it is desirable that the light emitting layer is Ga x In 1-x N (0 ≦ x ≦ 1).
[0007]
When the thickness of the light emitting layer is set to 15 to 200 nm and both the donor impurity and the acceptor impurity are added, the transition between the donor impurity level and the valence band is larger than when only the donor impurity is added. It has been confirmed that
[0008]
Silicon (Si), tellurium (Te), sulfur (S), or selenium (Se) can be used as the donor impurity, and magnesium (Mg) or zinc (Zn) can be used as the acceptor impurity. . These may be selected based on the relationship between the emission wavelength and the forbidden bandwidth.
[0009]
【Example】
[First embodiment]
In FIG. 1, a light emitting diode 10 has a sapphire substrate 1, and a 500 Å AlN buffer layer 2 is formed on the sapphire substrate 1. Of On the buffer layer 2, in turn, a film thickness of about 5.0 .mu.m, a concentration 5 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3, a thickness of about 0.5 [mu] m, the concentration 5 × 10 17 / cm 3 n layer 4 made of GaN of silicon doped, thickness silicon and zinc at about 50nm, respectively, 5 × 10 18 / cm 3 emitting layer 5 made of doped in 0.08 Ga 0.92 n, the membrane Thickness of about 0.5 μm, hole concentration of 5 × 10 17 / cm 3 , p layer 61 of Al 0.08 Ga 0.92 N doped with magnesium at a concentration of 5 × 10 20 / cm 3 , film thickness of about 1 μm, hole concentration of 7 × 10 A contact layer 62 made of GaN doped with magnesium having a density of 18 / cm 3 and a magnesium concentration of 5 × 10 21 / cm 3 is formed. An electrode 7 made of Ni that is bonded to the contact layer 62 is formed on the contact layer 62. Further, a part of the surface of the high carrier concentration n + layer 3 is exposed, and an electrode 8 made of Ni bonded to the layer 3 is formed on the exposed portion.
[0010]
Next, a method for manufacturing the light emitting diode 10 having this structure will be described.
The light emitting diode 10 was manufactured by vapor phase epitaxy using an organometallic compound vapor phase epitaxy (hereinafter referred to as “M0VPE”).
The gases used were NH 3 and carrier gas H 2 or N 2 , trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”) and trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”). ), Trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ), and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 ”). Mg ”) and diethylzinc (Zn (C 2 H 5 ) 2 ) (hereinafter referred to as“ DEZ ”).
[0011]
First, a single-crystal sapphire substrate 1 having a thickness of 100 to 400 μm and having a surface a cleaned by organic cleaning and heat treatment is mounted on a susceptor mounted in a reaction chamber of an M0VPE apparatus. Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at a flow rate of 2 Liter / min at normal pressure.
[0012]
Next, the temperature is lowered to 400 ° C., H 2 is supplied at 20 Liters / minute, NH 3 is supplied at 10 Liters / minute, and TMA is supplied at 1.8 × 10 −5 mol / minute, and the AlN buffer layer 2 is about 500 mm thick. Formed. Next, the temperature of the sapphire substrate 1 was kept at 1150 ° C., and H 2 was diluted to 20 Liter / min, NH 3 was 10 Liter / min, TMG was 1.7 × 10 −4 mol / min, and diluted to 0.86 ppm with H 2 gas. Silane was supplied at 200 ml / min for 70 minutes to form a high carrier concentration n + layer 3 made of silicon-doped GaN having a film thickness of about 5 μm and a concentration of 5 × 10 18 / cm 3 .
[0013]
Next, the temperature of the sapphire substrate 1 is maintained at 1100 ° C., N 2 or H 2 is 10 Liter / min, NH 3 is 10 Liter / min, TMG is 1.12 × 10 −4 mol / min, and H 2 gas is 0.86. Si-diluted ppm was supplied at 10 × 10 −9 mol / min for 30 minutes to form an n-layer 4 made of silicon-doped GaN with a film thickness of about 0.5 μm and a concentration of 5 × 10 17 / cm 3 . .
[0014]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 Liter / min, NH 3 is 10 Liter / min, TMG is 1.53 × 10 −4 mol / min, and TMI is 0.02 × 10 −4 mol / min. Silane diluted to 0.86 ppm with H 2 gas at 10 × 10 −8 mol / min and DEZ at 2 × 10 −4 mol / min for 15 minutes to supply silicon and zinc with a thickness of 50 nm, Each of the active layers 5 made of In 0.08 Ga 0.92 N doped to 5 × 10 18 / cm 3 was formed.
[0015]
Subsequently, the temperature is maintained at 1100 ° C., N 2 or H 2 is 20 Liter / min, NH 3 is 10 Liter / min, TMG is 1.12 × 10 −4 mol / min, TMA is 0.47 × 10 −4 mol / min, Then, CP 2 Mg was introduced at 2 × 10 −4 mol / min for 30 minutes to form a p-layer 61 composed of magnesium (Mg) -doped Al 0.08 Ga 0.92 N with a film thickness of about 0.5 μm. The concentration of magnesium in the p layer 61 is 5 × 10 20 / cm 3 . In this state, the p layer 61 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0016]
Subsequently, the temperature is maintained at 1100 ° C., N 2 or H 2 is 20 Liter / min, NH 3 is 10 Liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 4 × 10 −3. A contact layer 62 made of GaN doped with magnesium (Mg) having a thickness of about 1 μm was formed by introducing it at a rate of mol / min for 4 minutes. The concentration of magnesium in the contact layer 62 is 5 × 10 21 / cm 3 . In this state, the contact layer 62 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0017]
The wafer thus obtained was irradiated with an electron beam using a reflection electron beam diffractometer. The electron beam irradiation conditions are an acceleration voltage of 10 kv, a sample current of 1 μA, a beam moving speed of 0.2 mm / sec, a beam diameter of 60 μmφ, and a degree of vacuum of 2.1 × 10 −5 Torr. By this electron beam irradiation, the contact layer 62 and the p layer 61 became p-conduction type semiconductors having a hole concentration of 7 × 10 17 / cm 3 , 5 × 10 17 / cm 3 , and resistivity of 2 Ωcm and 0.8 Ωcm, respectively. In this way, a wafer having a multilayer structure was obtained.
[0018]
Next, as shown in FIG. 2, a SiO 2 layer 9 having a thickness of 2000 mm was formed on the contact layer 62 by sputtering, and a photoresist 10 was applied on the SiO 2 layer 9. Then, by photolithography, as shown in FIG. 2, the photoresist 10 at the electrode formation site A ′ with respect to the high carrier concentration n + layer 3 was removed on the contact layer 62. Next, as shown in FIG. 3, the SiO 2 layer 9 not covered with the photoresist 10 was removed with a hydrofluoric acid etching solution.
[0019]
Next, the contact layer 62, the p layer 61, the light emitting layer 5, and the n layer 4 at portions not covered with the photoresist 10 and the SiO 2 layer 9 are subjected to a degree of vacuum of 0.04 Torr, a high frequency power of 0.44 W / cm 2 , and BCl 3. Gas was supplied at a rate of 10 ml / min for dry etching, followed by dry etching with Ar. In this step, as shown in FIG. 4, a hole A for extracting an electrode from the high carrier concentration n + layer 3 was formed.
[0020]
Next, Ni is uniformly vapor-deposited on the entire upper surface of the sample, and after applying a photoresist, a photolithography process, and an etching process, as shown in FIG. 1, the high carrier concentration n + layer 3 and the contact layer 62 are applied. Electrodes 8 and 7 were formed. Thereafter, the wafer processed as described above was cut into each chip to obtain a light emitting diode chip.
[0021]
The light-emitting element thus obtained had a drive current of 20 mA, an emission peak wavelength of 380 nm, and an emission intensity of 2 mW. The luminous efficiency was 3%, which was 10 times higher than that of the conventional configuration.
[0022]
Further, the emission spectrum of the light emitting diode 10 manufactured as described above was measured. This is shown by the curve X1 in FIG. It can be seen that a peak wavelength of 380 nm is obtained. On the other hand, although light emission is also observed in the vicinity of 440 nm corresponding to light emission between the Si donor level and the Zn acceptor level, it is understood that the light emission intensity at 380 nm is about five times larger than the light emission intensity at 440 nm.
[0023]
For comparison, the emission spectrum of a light-emitting diode in which the Si and Zn concentrations in the light-emitting layer 5 were the same as those in the above example and the thickness of the light-emitting layer 5 was 400 nm was measured. The result is shown by a curve X2 in FIG. In this case, conversely, the emission at 440 nm is dominant, and the intensity is about five times larger than the emission intensity at 380 nm. This means that when the thickness of the light emitting layer 5 is 400 nm, there is no effect of increasing the light emission intensity of 380 nm.
[0024]
Further, only Si was added to the light emitting layer 5 at the same concentration as in the above example to produce a light emitting diode having a thickness of 300 nm, and the emission spectrum of the light emitting diode was measured. The result is shown by a curve X3 in FIG. In this case, since no Zn was added, no emission of 440 nm was observed, but the emission intensity of 380 nm was obtained to the same extent as the curve X2 when both Si and Zn were added to the light emitting layer 5. Yes. This means that when the thickness of the light emitting layer 5 is 300 nm, the transition between the Si donor level and the valence band is still small. It has been confirmed that when the thickness of the light emitting layer 5 is 200 nm or less, the light emission intensity at 380 nm is increased about 5 times or more.
[0025]
The thickness of the light emitting layer 5 that can increase the confinement effect of the injected carriers is 200 nm or less, and if it becomes thinner than 1 nm, the crystallinity deteriorates, and conversely, the light emission efficiency decreases. Therefore, the thickness of the light emitting layer 5 is desirably in the range of 1 to 200 nm. In order to improve the uniformity of the interface, the range of 15 to 200 nm is more desirable. Furthermore, when the concentration of Si and Zn added to the light emitting layer 5 is 1 × 10 17 to 5 × 10 18 / cm 3 , the light emission intensity in the ultraviolet region of 380 nm or less can be increased.
[0026]
Thus, in the present invention, by setting the thickness of the light emitting layer 5 to 1 to 200 nm, between the donor impurity level and the valence band, between the conduction band and the acceptor impurity level, or between the conduction band and the valence band. By increasing the transition of electrons, it is possible to improve the light emission efficiency and control the light emission wavelength.
[0027]
In 0.08 Ga 0.92 N is used for the light emitting layer 5, but a quaternary group III nitride semiconductor such as Al 0.03 Ga 0.89 In 0.08 N may be used. Further, elements other than Si and Zn can be used as impurities to be added. In short, it may be determined in consideration of the forbidden band width and the type of impurities to be added according to the required emission wavelength. That is, in the above embodiment, the emission wavelength is in the ultraviolet region, but the forbidden bandwidth may be determined so that the emission wavelength is in a visible region such as blue or green. Further, the light emitting layer may be a quantum well structure formed by stacking Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) at least one or more layers . Further, the light emitting layer 5 is preferably lattice-matched with the other layers 3, 4, 61 and the like.
Although the light emitting diode is shown in the above embodiment, the present invention can be applied to a laser diode.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a specific embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the same example.
FIG. 3 is a cross-sectional view showing a manufacturing process of the light-emitting diode of the same example.
4 is a cross-sectional view showing a manufacturing process of the light-emitting diode according to the embodiment. FIG.
FIG. 5 is a measurement diagram showing emission spectra of various light emitting diodes in which the thickness of the light emitting layer is changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n <+> layer 4 ... n layer 5 ... Light emitting layer 61 ... p layer 62 ... Contact layer 7, 8 ... Electrode

Claims (4)

p層、n層、p層とn層とに挟まれた発光層を有し、各層が3族窒化物半導体から成る発光素子において、
前記発光層には、ドナー不純物とアクセプタ不純物とが共に1 × 10 17 5 × 10 18 /cm 3 の濃度で添加されており、
前記発光層の厚さを15〜200nmとし、出力される光をドナー不純物レベルと価電子帯、伝導帯とアクセプタ不純物レベル間、又は、伝導帯と価電子帯との間の電子の遷移による発光波長としたことを特徴とする3族窒化物半導体発光素子。
In a light-emitting element having a p-layer, an n-layer, and a light-emitting layer sandwiched between the p-layer and the n-layer, each layer made of a group 3 nitride semiconductor,
Both the donor impurity and the acceptor impurity are added to the light emitting layer at a concentration of 1 × 10 17 to 5 × 10 18 / cm 3 ,
The light emitting layer has a thickness of 15 to 200 nm, and the emitted light is emitted by transition of electrons between a donor impurity level and a valence band, between a conduction band and an acceptor impurity level, or between a conduction band and a valence band. A group 3 nitride semiconductor light emitting device characterized by having a wavelength.
前記発光層はAlxGayIn1-x-yN(0≦x≦1, 0≦y≦1, 0≦x+y≦1)を少なくとも1層以上積層した量子井戸構造であることを特徴とする請求項1に記載の3族窒化物半導体発光素子。The light-emitting layer and being a Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) a quantum well structure formed by laminating at least one layer The group III nitride semiconductor light-emitting device according to claim 1. 前記発光層はGaxIn1-xN(0≦x≦1)であることを特徴とする請求項1に記載の3族窒化物半導体発光素子。2. The group III nitride semiconductor light emitting device according to claim 1, wherein the light emitting layer is Ga x In 1-x N (0 ≦ x ≦ 1). 前記ドナー不純物はシリコン(Si)、テルル(Te)、イオウ(S)、又は、セレン(Se)であり、前記アクセプタ不純物は、マグネシウム(Mg)、又は、亜鉛(Zn)であることを特徴とする請求項1に記載の3族窒化物半導体発光素子。The donor impurity is silicon (Si), tellurium (Te), sulfur (S), or selenium (Se), and the acceptor impurity is magnesium (Mg) or zinc (Zn). The group III nitride semiconductor light-emitting device according to claim 1.
JP35305095A 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device Expired - Fee Related JP3637662B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35305095A JP3637662B2 (en) 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device
TW090200903U TW492578U (en) 1995-12-28 1996-08-21 Light emitting device of nitride semiconductor for the element of the third family in periodic table
KR1019960037785A KR100289595B1 (en) 1995-12-28 1996-09-02 Group III-nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35305095A JP3637662B2 (en) 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09186362A JPH09186362A (en) 1997-07-15
JP3637662B2 true JP3637662B2 (en) 2005-04-13

Family

ID=18428234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35305095A Expired - Fee Related JP3637662B2 (en) 1995-12-28 1995-12-28 Group 3 nitride semiconductor light emitting device

Country Status (3)

Country Link
JP (1) JP3637662B2 (en)
KR (1) KR100289595B1 (en)
TW (1) TW492578U (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445127B1 (en) 1998-02-17 2002-09-03 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction
JP2009081379A (en) * 2007-09-27 2009-04-16 Showa Denko Kk Group iii nitride semiconductor light-emitting device
JP2012089678A (en) * 2010-10-19 2012-05-10 Showa Denko Kk Group iii nitride semiconductor device and multi-wavelength light emitting group iii nitride semiconductor layer
JP2012089651A (en) * 2010-10-19 2012-05-10 Showa Denko Kk Group iii nitride semiconductor device, multi-wavelength light emitting group iii nitride semiconductor layer, and method for manufacturing multi-wavelength light emitting group iii nitride semiconductor layer
CN103081138A (en) 2011-05-18 2013-05-01 松下电器产业株式会社 Nitride semiconductor light-emitting element and manufacturing method therefor
CN105428448B (en) * 2015-09-29 2018-06-08 北京大学 A kind of bi-component grading structure solar cell and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101587B2 (en) * 1989-03-01 1994-12-12 日本電信電話株式会社 Semiconductor light emitting element
JP2564024B2 (en) * 1990-07-09 1996-12-18 シャープ株式会社 Compound semiconductor light emitting device

Also Published As

Publication number Publication date
KR100289595B1 (en) 2001-06-01
JPH09186362A (en) 1997-07-15
TW492578U (en) 2002-06-21
KR970054564A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
US5959401A (en) Light-emitting semiconductor device using group III nitride compound
JP2666237B2 (en) Group III nitride semiconductor light emitting device
US20010002048A1 (en) Light-emitting device using group III nitride group compound semiconductor
US5700713A (en) Light emitting semiconductor device using group III nitride compound and method of producing the same
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
JP3753793B2 (en) Group 3 nitride compound semiconductor light emitting device
JPH06151965A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP3772707B2 (en) Method for manufacturing group 3 nitride compound semiconductor light emitting device
US5953581A (en) Methods for manufacturing group III nitride compound semiconductor laser diodes
JP3341576B2 (en) Group III nitride compound semiconductor light emitting device
JP3637662B2 (en) Group 3 nitride semiconductor light emitting device
JP3336855B2 (en) Group III nitride compound semiconductor light emitting device
JPH0936423A (en) Group iii nitride semiconductor light emitting element
EP0911888B1 (en) Light emitting semiconductor device using group III nitrogen compound
JP3016241B2 (en) Group III nitride semiconductor light emitting device
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JP3307094B2 (en) Group III nitride semiconductor light emitting device
JP3481305B2 (en) Group III nitride semiconductor light emitting device
JP3557742B2 (en) Group III nitride semiconductor light emitting device
JPH07297447A (en) Group iii nitride semiconductor light emitting element
JP3025760B2 (en) Gallium nitride based semiconductor laser device and method of manufacturing the same
JPH06291367A (en) Light emitting element of nitrogen-group iii element compound semiconductor
JP3341484B2 (en) Group III nitride semiconductor light emitting device
JPH1027923A (en) Group-iii nitride semiconductor light emitting element
JP3494841B2 (en) Group III nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees