JP3712770B2 - Method for manufacturing group 3 nitride semiconductor and semiconductor device - Google Patents

Method for manufacturing group 3 nitride semiconductor and semiconductor device Download PDF

Info

Publication number
JP3712770B2
JP3712770B2 JP2585296A JP2585296A JP3712770B2 JP 3712770 B2 JP3712770 B2 JP 3712770B2 JP 2585296 A JP2585296 A JP 2585296A JP 2585296 A JP2585296 A JP 2585296A JP 3712770 B2 JP3712770 B2 JP 3712770B2
Authority
JP
Japan
Prior art keywords
layer
single crystal
temperature
semiconductor
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2585296A
Other languages
Japanese (ja)
Other versions
JPH09199759A (en
Inventor
誠二 永井
史郎 山崎
正好 小池
茂雄 森
勇 赤崎
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2585296A priority Critical patent/JP3712770B2/en
Publication of JPH09199759A publication Critical patent/JPH09199759A/en
Application granted granted Critical
Publication of JP3712770B2 publication Critical patent/JP3712770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は3族窒化物半導体を用いた発光素子に関する。
【0002】
【従来技術】
従来、青色のレーザダイオードとして、サファイア基板上にバッファ層を形成して、そのバッファ層上にAlGaInN 系の化合物半導体のダブルヘテロ接合を形成した構造のものが知られている。その化合物半導体は直接遷移型であることから発光効率が高いこと、光の3原色の1つである青色を発光色とすること等から注目されている。
【0003】
【発明が解決しようとする課題】
しかし、従来の上記構造のレーザダイオードは、バッファ層を用いているものの、異種物質の基板上にAlGaInN 系の化合物半導体を成長させたものであるため、結晶性が未だに良くない。即ち、この格子欠陥は基板面から発光層へ垂直に貫通しており、発光層での格子欠陥密度は109 〜1010/cm2程度存在している。この格子欠陥密度が高いことが、発光効率を低下させ、動作寿命を短縮させている。
本発明は、上記課題を解決するために成されたものであり、その目的は、異種物質基板上に成長させるAlGaInN 系の化合物半導体の結晶性を改善し、その化合物半導体を用いた半導体素子の特性を改善することである。
【0004】
【課題を解決するための手段】
本発明は、異種物質の基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を成長させる方法において、基板上に単結晶が成長しない温度でAlx1GaY1In1-X1-Y1N(0≦X1≦1, 0≦Y1≦1, 0≦X1+Y1 ≦1)を形成したバッファ層と、単結晶が成長する温度でAlx2GaY2In1-X2-Y2N(0≦X2≦1, 0≦Y2≦1, 0≦X2+Y2 ≦1,X1=X2,Y1=Y2 を含む) を形成した単結晶層とを交互に3層以上積層させ、その上に単結晶が成長する温度で目的とするAlx3GaY3In1-X3-Y3N(0≦X3≦1, 0≦Y3≦1, 0≦X3+Y3 ≦1, X1又はX2=X3, Y1又はY2=Y3 を含む) から成る層を形成したことを特徴とする。又、他の発明の特徴は、そのように形成したAlx3GaY3In1-X3-Y3Nの層を素子層の基底層とした半導体素子である。
【0005】
この構成により、基板面から縦に延びる格子欠陥がバッファ層と単結晶層との繰り返しにより途中で遮断され、目的とする単結晶の層には至らない。特に基板面からの転位がバッファ層の単結晶の50〜1000Åに閉じ込められ、上の層に伝搬されることを防ぐ。よって、素子を形成するための半導体層における格子欠陥密度は低くなり、異種物質の基板上にも良質なAlx3GaY3In1-X3-Y3Nから成る単結晶半導体が得られる。又、その単結晶の半導体を基底層として素子を形成した場合には、素子を形成する層の結晶性が高くなり、素子の特性を向上させることができる。特に、発光素子を形成した場合には、発光効率、素子寿命、発光輝度を改善することができる。
【0006】
請求項1、5のように、バッファ層の厚さを100〜1000Å、単結晶層の厚さを500〜3000Åとすることで、又、請求項2、6のように、バッファ層の成長温度を350〜800℃とすることで、格子欠陥が基板面から目的とする半導体層に伸びることを効率良く防止できる。
また、単結晶層の厚さが3000Åを越えると歪が大きくなり好ましくない。
【0007】
バッファ層と単結晶層は、一般式AlxGaYIn1-X-YNの4元、3元、2元の窒化物半導体とすることができる。特に、請求項3のように、バッファ層をAlN 、単結晶層をGaN とすることで、目的とするGaN の層の格子欠陥密度を大きく低下させることができる。又、基板には、サファイア又はSiC 等を用いることができる。
尚、バッファ層と単結晶層との繰り返し数は任意である。
また、最後のバッファ層成層後そのまま昇温し、単結晶層を成長させることが、単結晶の結晶性からも、工程の簡易性からも好ましい。
【0008】
【実施例】
サファイア基板上に次のように目的とするAlx3GaY3In1-X3-Y3Nから成る層を形成した。各層は、有機金属化合物気相成長法( 以下「M0VPE 」と記す) による気相成長により形成された。
用いられたガスは、NH3 とキャリアガスH2又はN2とトリメチルガリウム(Ga(CH3)3)(以下「TMG 」と記す) とトリメチルアルミニウム(Al(CH3)3)(以下「TMA 」と記す) である。
【0009】
まず、有機洗浄及び熱処理により洗浄した厚さ100 〜400 μmの単結晶のサファイア基板1をM0VPE 装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2 liter/分で反応室に流しながら温度1100℃でサファイア基板1を気相エッチングした。
【0010】
次に、温度を 400℃まで低下させて、H2を20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5モル/分で供給して図1に示す様に AlNのバッファ層21が約 500Åの厚さに形成された。次に、サファイア基板1の温度を1150℃に保持し、H2を20 liter/分、NH3 を10 liter/分、TMG を 1.7×10-4モル/分で供給して、膜厚約0.3 μmのGaN から成る単結晶層31を形成した。
【0011】
次に、サファイア基板1の温度を、再度、 400℃まで低下させて、バッファ層21の形成と同一条件で、 500Åの厚さのAlN から成るバッファ層22を形成した。次に、サファイア基板1の温度を、再度、1150℃に上げて、単結晶層31の形成と同一条件で、厚さ0.3 μmのGaN から成る単結晶層32を形成した。さらに、サファイア基板1の温度を、再度、 400℃まで低下させて、その単結晶層32の上に、同様に、バッファ層23を形成した。そして、サファイア基板1の温度を、再度、1150℃に上げて、単結晶層31の形成と同一条件で、厚さ1.5 μmのGaN から成る目的とする単結晶層33を形成した。
【0012】
この単結晶層33をKOH によりエッチングして、エッチピット法により表面の転位密度を電子走査顕微鏡で撮像して測定した。その結果は、8×105 cm2 であった。従来のように、サファイア基板1上に1層のAlN から成るバッファ層22を形成し、その上に目的とするGaN から成る単結晶層を形成した場合のエッチピット密度が4×107 /cm2であるので、本実施例の製造方法により、エッチピット密度は1/50に低下した。
【0013】
バッファ層を多層構造とすることで、エッチピットを減少できる理由は、次のように考えられる。ピットの形状は電子顕微鏡による観察により六角形である。AlN のバッファ層上に形成されるGaN の成長初期は、六角形の島状結晶である。その後、結晶成長と共にバッファ層はGaN に覆われることになるが、格子欠陥部分は残されてやはり六角形のピットとなるものと考えられる。しかし、AlN のバッファ層とGaN の単結晶層を多重周期構造とすることで、AlN 層がGaN 層とうまく干渉して格子欠陥が塞がれたものと思われる。
【0014】
上記実施例では、バッファ層にはAlN を用いたが他の2元系のGaN 、InN や3元系のAlGaN 、InGaN 、4元系のAlGaInN 等を用いることができる。この場合にバッファ層は単結晶が成長しない低い温度で形成され、その厚さは100 〜1000Åが望ましい。又、バッファ層上に形成される単結晶層の物質は、バッファ層と物質及び組成比が同一でも、異種物質又は同種物質でも組成比が異なるものでも良い。この単結晶層には、GaN の他、任意組成比の3元系のAlGaN 、InGaN 、任意組成比の4元系のAlGaInN を用いることができる。この単結晶層の成長温度は単結晶が成長できる温度である。一般的に、厚さは500 〜3000Åの範囲が望ましい。又、バッファ層と単結晶層との繰り返し回数は任意である。
【0015】
さらに、目的とする単結晶の半導体層は、2元、3元、4元系の3族窒化物半導体Alx3GaY3In1-X3-Y3N(0≦X3≦1, 0≦Y3≦1, 0≦X3+Y3 ≦1)を用いることができる。
【0016】
次に、本製造方法を用いてレーザダイオード10を製造した。
図1において、レーザダイオード10は、サファイア基板1を有しており、そのサファイア基板1上に中間層2が形成されている。中間層2は、図1に示す構造と同一である。即ち、中間層2は、厚さ500 ÅのAlN から成るバッファ層21、厚さ0.3 μm から成る単結晶層31、500 ÅのAlN から成るバッファ層22、厚さ0.3 μm から成る単結晶層32、500 ÅのAlN から成るバッファ層23の多層構造で構成されている。
【0017】
そして、その中間層2の上には、順に、電子濃度2 ×1018/cm3のシリコンドープGaN から成る高キャリア濃度n+ 層3、電子濃度 2×1018/cm3のシリコンドープのAlGaN から成るn伝導型のクラッド層4、膜厚約0.05μmのInGaN から成る活性層5、ホール濃度1×1018/cm3、濃度2×1020/cm3にマグネシウムがドープされたAlGaN から成るp伝導型のクラッド層61、ホール濃度1×1018/cm3、マグネシウム濃度 2×1020/cm3のマグネシウムドープのGaN から成るコンタクト層62が形成されている。そして、コンタクト層62上にはSiO2層9が形成され、SiO2層9の窓部を介してコンタクト層62に接合するNiから成る電極7が形成されている。さらに、高キャリア濃度n+ 層3の上にその層3に接合するNiから成る電極8が形成されている。
【0018】
次に、この構造のレーザダイオード10の製造方法について説明する。
上記レーザダイオード10は、上述したM0VPE による気相成長により製造された。
用いられたガスは、NH3 とキャリアガスH2又はN2とTMG とTMA とトリメチルインジウム(In(CH3)3)(以下「TMI 」と記す) と、シラン(SiH4)とシクロペンタジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg 」と記す)である。
【0019】
まず、有機洗浄及び熱処理により洗浄した厚さ100 〜400 μmの単結晶のサファイア基板1をM0VPE 装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2 liter/分で反応室に流しながら温度1100℃でサファイア基板1を気相エッチングした。
【0020】
次に、温度を 400℃まで低下させて、H2を20 liter/分、NH3 を10 liter/分、TMA を 1.8×10-5モル/分で供給してAlN のバッファ層21を約 500Åの厚さに形成した。次に、サファイア基板1の温度を1150℃に保持し、H2を20 liter/分、NH3 を10 liter/分、TMG を 1.7×10-4ル/分で、4分間供給して、膜厚約0.3 μmのGaN から成る単結晶層31を形成した。
【0021】
次に、サファイア基板1の温度を、再度、 400℃まで低下させて、バッファ層21の形成と同一条件で、 500Åの厚さのAlN から成るバッファ層22を形成した。次に、サファイア基板1の温度を、再度、1150℃に上げて、単結晶層31の形成と同一条件で、厚さ0.3 μmのGaN から成る単結晶層32を形成した。さらに、サファイア基板1の温度を、再度、 400℃まで低下させて、その単結晶層32の上に、同様に、バッファ層23を形成した。
【0022】
次に、サファイア基板1の温度を1150℃に保持し、H2を20 liter/分、NH3 を10 liter/分、TMG を 1.7×10-4ル/分、H2ガスにより0.86ppm に希釈されたシランを200ml/分で供給して、膜厚約2.2 μm、電子濃度 2×1018/cm3のシリコンドープのGaN から成る高キャリア濃度n+ 層3を形成した。
【0023】
次に、サファイア基板1の温度を1100℃に保持し、N2又はH2を10 liter/分、NH3 を10 liter/分、TMG を1.12×10-4モル/分、TMA を0.47×10-4モル/分、及び、H2ガスにより0.86ppm に希釈されたシランを10×10-9mol/分で供給して、濃度2×1018/cm3のシリコンドープのAlGaN から成るn伝導型のクラッド層4を形成した。
【0024】
続いて、温度を850 ℃に保持し、N2又はH2を20 liter/分、NH3 を10 liter/分、TMG を1.53×10-4モル/分、及び、TMI を0.02×10-4モル/分で供給して、0.05μmのInGaN から成る活性層5を形成した。
【0025】
続いて、温度を1100℃に保持し、N2又はH2を20 liter/分、NH3 を10 liter/分、TMG を1.12×10-4モル/分、TMA を0.47×10-4モル/分、及び、CP2Mg を2 ×10-4モル/分で供給して、マグネシウム(Mg)ドープのAlGaN から成るp伝導型のクラッド層61を形成した。クラッド層61のマグネシウムの濃度は2×1020/cm3である。この状態では、クラッド層61は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0026】
続いて、温度を1100℃に保持し、N2又はH2を20 liter/分、NH3 を10 liter/分、TMG を1.12×10-4モル/分、及び、CP2Mg を 4×10-4モル/分で供給して、膜厚約0.2 μmのマグネシウム(Mg)ドープのGaN から成るコンタクト層62を形成した。コンタクト層62のマグネシウムの濃度は 2×1020/cm3である。この状態では、コンタクト層62は、まだ、抵抗率108 Ωcm以上の絶縁体である。
【0027】
次に、電子線照射により、コンタクト層62、クラッド層61は、ホール濃度1×1018/cm3、抵抗率 2Ωcmのp伝導型半導体となった。このようにして、多層構造のウエハが得られた。
【0028】
次に、コンタクト層62の上に、スパッタリングによりSiO2層9を2000Åの厚さに形成し、そのSiO2層9上にフォトレジストを塗布した。そして、フォトリソグラフにより、コンタクト層62上において、高キャリア濃度n+ 層3に対する電極形成部位のフォトレジストを除去した。次に、フォトレジストによって覆われていないSiO2層9をフッ化水素酸系エッチング液で除去した。
【0029】
次に、フォトレジスト及びSiO2層9によって覆われていない部位のコンタクト層62、クラッド層61、活性層5、クラッド層4を、真空度0.04Torr、高周波電力0.44W/cm2 、BCl3ガスを10 ml/分の割合で供給しドライエッチングした後、Arでドライエッチングした。この工程で、高キャリア濃度n+ 層3に対する電極取出しのための孔Aが形成された。
【0030】
次に、SiO2層9に対して、フォトレジストの塗布、フォトリソグラフィ工程、湿式エッチングを行い、SiO2層9のコンタクト層62の電極形成部位に窓を形成した。
【0031】
次に、試料の上全面に、一様にNiを蒸着し、フォトレジストの塗布、フォトリソグラフィ工程、エッチング工程を経て、高キャリア濃度n+ 層3及びコンタクト層62に対する電極8,7を形成した。その後、上記の如く処理されたウエハをレーザのキャビティの長さ方向に短冊状に切断し、その方向に直角にへき開してレーザダイオードチップを形成した。
【0032】
このように中間層2を低温成長のAlN から成るバッファ層の多重層とすることで、高キャリア濃度n+ 層3、クラッド層4、活性層5、クラッド層61、コンタクト層62の結晶性を向上させることができた。
【0033】
尚、中間層2は、製造方法の実施例で示したように、種種の変形が考えられる。又、上記の実施例では、活性層5の構造をInGaN の単層としたが、それぞれ、厚さが100 ÅのInGaN とGaN とで構成された多重量子井戸構造でも良い。活性層5の厚さは100 〜1000Åである。
本実施例では、レーザダイオードについて説明したが、発光ダイオード、受光素子等の光素子を含む各種のGaN 系電子デバイスに適用できることは言うまでもない。
【0034】
又、クラッド層4、61、活性層5は、一般的に、AlxGayIn1-x-yNでも良い。組成比x:y:1−x−yはレーザの発振波長に応じて決定される。
【0035】
p型化は、電子線照射の他、熱処理、N2プラズマガス中での熱処理、レーザ照射により行うことができる。
【図面の簡単な説明】
【図1】本発明の具体的な実施例に係る製造方法を示した半導体層の断面図。
【図2】本発明の具体的な実施例に係るレーザダイオードの構成を示した構成図。
【符号の説明】
10…レーザダイオード
1…サファイア基板
2…中間層
21,22,23…バッファ層
31,32…単結晶層
3…高キャリア濃度n+
4…クラッド層
5…活性層
61…クラッド層
62…コンタクト層
7,8…電極
9…SiO2
[0001]
[Industrial application fields]
The present invention relates to a light emitting device using a group 3 nitride semiconductor.
[0002]
[Prior art]
Conventionally, a blue laser diode having a structure in which a buffer layer is formed on a sapphire substrate and an AlGaInN based compound semiconductor double heterojunction is formed on the buffer layer is known. Since the compound semiconductor is a direct transition type, it has been attracting attention because of its high luminous efficiency and the fact that one of the three primary colors of light is blue.
[0003]
[Problems to be solved by the invention]
However, although the conventional laser diode having the above structure uses a buffer layer, an AlGaInN-based compound semiconductor is grown on a substrate of a different material, so that the crystallinity is still not good. That is, this lattice defect penetrates perpendicularly from the substrate surface to the light emitting layer, and the lattice defect density in the light emitting layer is about 10 9 to 10 10 / cm 2 . The high density of lattice defects reduces the light emission efficiency and shortens the operating life.
The present invention has been made to solve the above-mentioned problems, and its object is to improve the crystallinity of an AlGaInN-based compound semiconductor grown on a foreign material substrate, and to improve the semiconductor element using the compound semiconductor. It is to improve the characteristics.
[0004]
[Means for Solving the Problems]
The present invention relates to a method for growing a group III nitride semiconductor (including Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) on a substrate of a different material. A buffer layer formed with Al x1 Ga Y1 In 1-X1-Y1 N (0 ≦ X1 ≦ 1, 0 ≦ Y1 ≦ 1, 0 ≦ X1 + Y1 ≦ 1) at a temperature at which the single crystal does not grow on the single crystal, A single layer of Al x2 Ga Y2 In 1-X2-Y2 N (including 0 ≦ X2 ≦ 1, 0 ≦ Y2 ≦ 1, 0 ≦ X2 + Y2 ≦ 1, X1 = X2, Y1 = Y2) at the growth temperature Three or more crystal layers are alternately stacked, and the target Al x3 Ga Y3 In 1-X3-Y3 N (0 ≦ X3 ≦ 1, 0 ≦ Y3 ≦ 1, 0 at the temperature at which the single crystal grows on it. ≦ X3 + Y3 ≦ 1, X1 or X2 = X3, Y1 or Y2 = Y3 is included). Another feature of the present invention is a semiconductor device in which the Al x3 Ga Y3 In 1-X3-Y3 N layer thus formed is used as a base layer of the device layer.
[0005]
With this configuration, lattice defects extending vertically from the substrate surface are interrupted in the middle by repetition of the buffer layer and the single crystal layer, and do not reach the target single crystal layer. In particular, dislocations from the substrate surface are confined to 50 to 1000 mm of the single crystal of the buffer layer and are prevented from propagating to the upper layer. Therefore, the density of lattice defects in the semiconductor layer for forming the element is reduced, and a single crystal semiconductor made of high-quality Al x3 Ga Y3 In 1-X3-Y3 N can be obtained on a substrate made of a different material. Further, in the case where an element is formed using the single crystal semiconductor as a base layer, the crystallinity of the layer in which the element is formed becomes high, and the characteristics of the element can be improved. In particular, when a light emitting element is formed, light emission efficiency, element life, and light emission luminance can be improved.
[0006]
As in claim 1, 5, 100 to 1000 Å the thickness of the buffer layer, the thickness of the single crystal layer by a 500 to 3000 Å, also as of claim 2, 6, the growth temperature of the buffer layer By setting the temperature to 350 to 800 ° C., it is possible to efficiently prevent the lattice defects from extending from the substrate surface to the target semiconductor layer.
Further, if the thickness of the single crystal layer exceeds 3000 mm, the distortion becomes undesirably large.
[0007]
Buffer layer and the single crystal layer has the general formula Al x Ga Y In 1-XY N 4, ternary, can be a binary nitride semiconductor. In particular, as claimed in claim 3, a buffer layer AlN, a single crystal layer by the GaN, it is possible to greatly reduce the lattice defect density of the GaN layer of interest. In addition, sapphire or SiC can be used for the substrate.
Note that the number of repetitions of the buffer layer and the single crystal layer is arbitrary.
Further, it is preferable from the standpoint of crystallinity of the single crystal and the simplicity of the process that the temperature is increased as it is after the last buffer layer formation to grow the single crystal layer.
[0008]
【Example】
The target layer of Al x3 Ga Y3 In 1-X3-Y3 N was formed on the sapphire substrate as follows. Each layer was formed by vapor phase growth using an organic metal compound vapor phase growth method (hereinafter referred to as “M0VPE”).
The gases used were NH 3 and carrier gas H 2 or N 2 , trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”) and trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”). ”).
[0009]
First, a single crystal sapphire substrate 1 having a thickness of 100 to 400 μm cleaned by organic cleaning and heat treatment is mounted on a susceptor mounted in a reaction chamber of an M0VPE apparatus. Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100 ° C. while flowing H 2 at normal pressure and a flow rate of 2 liter / min into the reaction chamber.
[0010]
Next, the temperature is lowered to 400 ° C., H 2 is supplied at 20 liter / min, NH 3 is supplied at 10 liter / min, and TMA is supplied at 1.8 × 10 −5 mol / min, and as shown in FIG. The buffer layer 21 was formed to a thickness of about 500 mm. Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., H 2 is supplied at 20 liter / min, NH 3 is supplied at 10 liter / min, and TMG is supplied at 1.7 × 10 −4 mol / min to obtain a film thickness of about 0.3 A single crystal layer 31 made of μm GaN was formed.
[0011]
Next, the temperature of the sapphire substrate 1 was lowered again to 400 ° C., and a buffer layer 22 made of AlN having a thickness of 500 mm was formed under the same conditions as the formation of the buffer layer 21. Next, the temperature of the sapphire substrate 1 was again raised to 1150 ° C., and a single crystal layer 32 made of GaN having a thickness of 0.3 μm was formed under the same conditions as the formation of the single crystal layer 31. Further, the temperature of the sapphire substrate 1 was lowered again to 400 ° C., and the buffer layer 23 was similarly formed on the single crystal layer 32. Then, the temperature of the sapphire substrate 1 was again raised to 1150 ° C., and the target single crystal layer 33 made of GaN having a thickness of 1.5 μm was formed under the same conditions as the formation of the single crystal layer 31.
[0012]
This single crystal layer 33 was etched with KOH, and the dislocation density on the surface was measured with an electron scanning microscope by the etch pit method. The result was 8 × 10 5 cm 2 . As in the prior art, when the buffer layer 22 made of one layer of AlN is formed on the sapphire substrate 1 and the single crystal layer made of the target GaN is formed thereon, the etch pit density is 4 × 10 7 / cm. 2, so the manufacturing method of this embodiment, the etch pit density was reduced to 1/50.
[0013]
The reason why the etch pits can be reduced by making the buffer layer a multi-layer structure is considered as follows. The shape of the pit is a hexagon when observed with an electron microscope. The initial growth of GaN formed on the AlN buffer layer is hexagonal island crystals. After that, the buffer layer is covered with GaN as the crystal grows, but it is thought that the lattice defect part is left and becomes hexagonal pits. However, the AlN buffer layer and the single crystal layer of GaN have a multi-periodic structure, so the AlN layer interferes well with the GaN layer and the lattice defects are blocked.
[0014]
In the above embodiment, AlN is used for the buffer layer, but other binary GaN, InN, ternary AlGaN, InGaN, quaternary AlGaInN, or the like can be used. In this case, the buffer layer is formed at a low temperature at which the single crystal does not grow, and the thickness is preferably 100 to 1000 mm. The material of the single crystal layer formed on the buffer layer may be the same as the buffer layer and the material and the composition ratio, or may be a different material or the same material and the composition ratio may be different. In addition to GaN, ternary AlGaN and InGaN having an arbitrary composition ratio and quaternary AlGaInN having an arbitrary composition ratio can be used for the single crystal layer. The growth temperature of the single crystal layer is a temperature at which the single crystal can be grown. Generally, the thickness is preferably in the range of 500 to 3000 mm. The number of repetitions of the buffer layer and the single crystal layer is arbitrary.
[0015]
Further, the target single crystal semiconductor layer is a binary, ternary or quaternary group III nitride semiconductor Al x3 Ga Y3 In 1-X3-Y3 N (0 ≦ X3 ≦ 1, 0 ≦ Y3 ≦ 1 , 0 ≦ X3 + Y3 ≦ 1).
[0016]
Next, the laser diode 10 was manufactured using this manufacturing method.
In FIG. 1, a laser diode 10 has a sapphire substrate 1, and an intermediate layer 2 is formed on the sapphire substrate 1. The intermediate layer 2 has the same structure as that shown in FIG. That is, the intermediate layer 2 includes a buffer layer 21 made of AlN having a thickness of 500 mm, a single crystal layer 31 made of 0.3 μm thick, a buffer layer 22 made of AlN having a thickness of 500 mm, and a single crystal layer 32 made of 0.3 μm thick. The buffer layer 23 is made of a multi-layer structure of 500 Al AlN.
[0017]
Then, the on the intermediate layer 2, in turn, the electron concentration of 2 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3, silicon-doped electron concentration of 2 × 10 18 / cm 3 AlGaN An n-conducting clad layer 4, an active layer 5 made of InGaN having a thickness of about 0.05 μm, and a hole concentration of 1 × 10 18 / cm 3 and a concentration of 2 × 10 20 / cm 3 of AlGaN doped with magnesium. A p-conduction type clad layer 61, a contact layer 62 made of magnesium-doped GaN having a hole concentration of 1 × 10 18 / cm 3 and a magnesium concentration of 2 × 10 20 / cm 3 are formed. An SiO 2 layer 9 is formed on the contact layer 62, and an electrode 7 made of Ni that is bonded to the contact layer 62 through a window portion of the SiO 2 layer 9 is formed. Furthermore, an electrode 8 made of Ni bonded to the layer 3 is formed on the high carrier concentration n + layer 3.
[0018]
Next, a method for manufacturing the laser diode 10 having this structure will be described.
The laser diode 10 was manufactured by vapor phase growth using M0VPE.
The gases used were NH 3 and carrier gas H 2 or N 2 , TMG, TMA, trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ) and cyclopentadidiene. Enilmagnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 Mg”).
[0019]
First, a single crystal sapphire substrate 1 having a thickness of 100 to 400 μm cleaned by organic cleaning and heat treatment is mounted on a susceptor mounted in a reaction chamber of an M0VPE apparatus. Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100 ° C. while flowing H 2 at normal pressure and a flow rate of 2 liter / min into the reaction chamber.
[0020]
Next, the temperature is lowered to 400 ° C., and H 2 is supplied at 20 liter / min, NH 3 is supplied at 10 liter / min, and TMA is supplied at 1.8 × 10 −5 mol / min, so that the buffer layer 21 of AlN is about 500 mm. The thickness was formed. Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., H 2 is supplied at 20 liter / min, NH 3 is supplied at 10 liter / min, and TMG is supplied at 1.7 × 10 −4 liter / min for 4 minutes to form a film. A single crystal layer 31 made of GaN having a thickness of about 0.3 μm was formed.
[0021]
Next, the temperature of the sapphire substrate 1 was lowered again to 400 ° C., and a buffer layer 22 made of AlN having a thickness of 500 mm was formed under the same conditions as the formation of the buffer layer 21. Next, the temperature of the sapphire substrate 1 was again raised to 1150 ° C., and a single crystal layer 32 made of GaN having a thickness of 0.3 μm was formed under the same conditions as the formation of the single crystal layer 31. Further, the temperature of the sapphire substrate 1 was lowered again to 400 ° C., and the buffer layer 23 was similarly formed on the single crystal layer 32.
[0022]
Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.7 × 10 −4 liter / min, and diluted to 0.86 ppm with H 2 gas. The supplied silane was supplied at 200 ml / min to form a high carrier concentration n + layer 3 made of silicon-doped GaN having a film thickness of about 2.2 μm and an electron concentration of 2 × 10 18 / cm 3 .
[0023]
Next, the temperature of the sapphire substrate 1 is maintained at 1100 ° C., N 2 or H 2 is 10 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and TMA is 0.47 × 10. -4 mol / min and n-conductivity composed of silicon-doped AlGaN with a concentration of 2 × 10 18 / cm 3 by supplying silane diluted to 0.86 ppm with H 2 gas at 10 × 10 -9 mol / min A mold cladding layer 4 was formed.
[0024]
Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.53 × 10 −4 mol / min, and TMI is 0.02 × 10 −4. The active layer 5 made of 0.05 μm InGaN was formed by supplying at a mol / min.
[0025]
Subsequently, the temperature is maintained at 1100 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and TMA is 0.47 × 10 −4 mol / min. Then, CP 2 Mg was supplied at 2 × 10 −4 mol / min to form a p-conductivity type cladding layer 61 made of magnesium (Mg) -doped AlGaN. The concentration of magnesium in the cladding layer 61 is 2 × 10 20 / cm 3 . In this state, the clad layer 61 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0026]
Subsequently, the temperature is maintained at 1100 ° C., N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 4 × 10. The contact layer 62 made of GaN doped with magnesium (Mg) and having a thickness of about 0.2 μm was formed at a rate of −4 mol / min. The concentration of magnesium in the contact layer 62 is 2 × 10 20 / cm 3 . In this state, the contact layer 62 is still an insulator having a resistivity of 10 8 Ωcm or more.
[0027]
Next, by electron beam irradiation, the contact layer 62 and the cladding layer 61 became p-conductivity type semiconductors having a hole concentration of 1 × 10 18 / cm 3 and a resistivity of 2 Ωcm. In this way, a wafer having a multilayer structure was obtained.
[0028]
Next, a SiO 2 layer 9 having a thickness of 2000 mm was formed on the contact layer 62 by sputtering, and a photoresist was applied on the SiO 2 layer 9. Then, the photoresist at the electrode formation site with respect to the high carrier concentration n + layer 3 was removed on the contact layer 62 by photolithography. Next, the SiO 2 layer 9 not covered with the photoresist was removed with a hydrofluoric acid etching solution.
[0029]
Next, the contact layer 62, the clad layer 61, the active layer 5 and the clad layer 4 at portions not covered with the photoresist and the SiO 2 layer 9 are subjected to a vacuum degree of 0.04 Torr, a high frequency power of 0.44 W / cm 2 , and a BCl 3 gas. Was supplied at a rate of 10 ml / min for dry etching and then dry etching with Ar. In this step, a hole A for extracting an electrode for the high carrier concentration n + layer 3 was formed.
[0030]
Next, a photoresist was applied to the SiO 2 layer 9, a photolithography process, and wet etching were performed, and a window was formed in the electrode formation portion of the contact layer 62 of the SiO 2 layer 9.
[0031]
Next, Ni was uniformly deposited on the entire upper surface of the sample, and electrodes 8 and 7 for the high carrier concentration n + layer 3 and the contact layer 62 were formed through a photoresist coating, a photolithography process, and an etching process. . Thereafter, the wafer processed as described above was cut into strips in the length direction of the laser cavity and cleaved at right angles to the direction to form a laser diode chip.
[0032]
In this way, the intermediate layer 2 is formed as a multiple layer of buffer layers made of low-temperature grown AlN, so that the crystallinity of the high carrier concentration n + layer 3, the cladding layer 4, the active layer 5, the cladding layer 61, and the contact layer 62 can be improved. I was able to improve.
[0033]
The intermediate layer 2 may be variously modified as shown in the examples of the manufacturing method. In the above embodiment, the structure of the active layer 5 is a single layer of InGaN. However, a multiple quantum well structure composed of InGaN and GaN each having a thickness of 100 mm may be used. The thickness of the active layer 5 is 100 to 1000 mm.
In the present embodiment, the laser diode has been described, but it goes without saying that it can be applied to various GaN-based electronic devices including optical elements such as a light emitting diode and a light receiving element.
[0034]
Further, the cladding layer 4, 61, the active layer 5 is generally may be Al x Ga y In 1-xy N. The composition ratio x: y: 1-xy is determined according to the oscillation wavelength of the laser.
[0035]
The p-type can be formed by electron beam irradiation, heat treatment, heat treatment in N 2 plasma gas, or laser irradiation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor layer illustrating a manufacturing method according to a specific embodiment of the present invention.
FIG. 2 is a configuration diagram showing the configuration of a laser diode according to a specific embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Laser diode 1 ... Sapphire substrate 2 ... Intermediate layers 21, 22, 23 ... Buffer layers 31, 32 ... Single crystal layer 3 ... High carrier concentration n + layer 4 ... Cladding layer 5 ... Active layer 61 ... Cladding layer 62 ... Contact Layers 7, 8 ... electrode 9 ... SiO 2 layer

Claims (9)

異種物質の基板上に3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を成長させる方法において、
前記基板上に単結晶が成長しない温度でAlx1GaY1In1-X1-Y1N(0≦X1≦1, 0≦Y1≦1, 0≦X1+Y1 ≦1)を形成した厚さ100〜1000Åのバッファ層と、単結晶が成長する温度でAlx2GaY2In1-X2-Y2N(0≦X2≦1, 0≦Y2≦1, 0≦X2+Y2 ≦1,X1=X2,Y1=Y2 を含む) を形成した厚さ500〜3000Åの単結晶層とを交互に3層以上積層させ、その上に単結晶が成長する温度で目的とするAlx3GaY3In1-X3-Y3N(0≦X3≦1, 0≦Y3≦1, 0≦X3+Y3≦1, X1又はX2=X3, Y1又はY2=Y3 を含む) から成る層を形成したことを特徴とする3族窒化物半導体の製造方法。
In a method of growing a group III nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) on a substrate of a different material,
Al x1 Ga Y1 In 1-X1-Y1 N (0 ≦ X1 ≦ 1, 0 ≦ Y1 ≦ 1, 0 ≦ X1 + Y1 ≦ 1) formed at a temperature at which a single crystal does not grow on the substrate 100 to 100 and 1000Å buffer layer, Al x2 Ga Y2 in 1- X2-Y2 N (0 ≦ X2 ≦ 1 at a temperature single crystal is grown, 0 ≦ Y2 ≦ 1, 0 ≦ X2 + Y2 ≦ 1, X1 = X2, Y1 Three or more single crystal layers having a thickness of 500 to 3000 mm, which are formed at a temperature at which the single crystal grows on the target Al x3 Ga Y3 In 1-X3-Y3 Group III nitride characterized by forming a layer of N (including 0 ≦ X3 ≦ 1, 0 ≦ Y3 ≦ 1, 0 ≦ X3 + Y3 ≦ 1, X1 or X2 = X3, Y1 or Y2 = Y3) A method for manufacturing a semiconductor.
前記バッファ層の成長温度は350〜800℃であることを特徴とする請求項1に記載の3族窒化物半導体の製造方法。  The method for producing a group III nitride semiconductor according to claim 1, wherein the growth temperature of the buffer layer is 350 to 800 ° C. 前記バッファ層はAlN であり、前記単結晶層はGaN であることを特徴とする請求項1に記載の3族窒化物半導体の製造方法。  2. The method for producing a group III nitride semiconductor according to claim 1, wherein the buffer layer is AlN and the single crystal layer is GaN. 前記基板は、サファイア又はSiC であることを特徴とする請求項1に記載の3族窒化物半導体の製造方法。  2. The method for producing a group III nitride semiconductor according to claim 1, wherein the substrate is sapphire or SiC. 異種物質の基板上に形成した3族窒化物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0 を含む) を素子層とした半導体素子において、
前記基板と前記素子層との間に、
前記基板上に単結晶が成長しない温度で形成されたAlx1GaY1In1-X1-Y1N(0≦X1≦1, 0≦Y1≦1, 0≦X1+Y1 ≦1)から成る厚さ100〜1000Åのバッファ層と、単結晶が成長する温度で形成されたAlx2GaY2In1-X2-Y2N(0≦X2≦1, 0≦Y2≦1, 0≦X2+Y2 ≦1,X1=X2,Y1=Y2 を含む) から成る厚さ500〜3000Åの単結晶層とを交互に3層以上積層させた中間層が介在されていることを特徴とする半導体素子。
In a semiconductor device using a group III nitride semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) formed on a substrate of a different material as an element layer,
Between the substrate and the element layer,
Thickness formed of Al x1 Ga Y1 In 1-X1-Y1 N (0 ≦ X1 ≦ 1, 0 ≦ Y1 ≦ 1, 0 ≦ X1 + Y1 ≦ 1) formed at a temperature at which no single crystal grows on the substrate Al x2 Ga Y2 In 1-X2-Y2 N (0 ≦ X2 ≦ 1, 0 ≦ Y2 ≦ 1, 0 ≦ X2 + Y2 ≦ 1, formed with a buffer layer of 100 to 1000 mm and a temperature at which a single crystal grows A semiconductor element characterized in that an intermediate layer in which three or more single crystal layers having a thickness of 500 to 3000 積 層 are alternately stacked is interposed between X1 = X2 and Y1 = Y2.
前記バッファ層の成長温度は350〜800℃であることを特徴とする請求項5に記載の半導体素子。The semiconductor element according to claim 5 , wherein the growth temperature of the buffer layer is 350 to 800 ° C. 前記バッファ層はAlN であり、前記単結晶層はGaN であることを特徴とする請求項5に記載の半導体素子。6. The semiconductor device according to claim 5 , wherein the buffer layer is AlN and the single crystal layer is GaN. 前記基板は、サファイア又はSiC であることを特徴とする請求項5に記載の半導体素子。The semiconductor device according to claim 5 , wherein the substrate is sapphire or SiC. 前記素子層は光素子の基底層であることを特徴とする請求項5に記載の半導体素子。The semiconductor element according to claim 5 , wherein the element layer is a base layer of an optical element.
JP2585296A 1996-01-19 1996-01-19 Method for manufacturing group 3 nitride semiconductor and semiconductor device Expired - Fee Related JP3712770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2585296A JP3712770B2 (en) 1996-01-19 1996-01-19 Method for manufacturing group 3 nitride semiconductor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2585296A JP3712770B2 (en) 1996-01-19 1996-01-19 Method for manufacturing group 3 nitride semiconductor and semiconductor device

Publications (2)

Publication Number Publication Date
JPH09199759A JPH09199759A (en) 1997-07-31
JP3712770B2 true JP3712770B2 (en) 2005-11-02

Family

ID=12177372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2585296A Expired - Fee Related JP3712770B2 (en) 1996-01-19 1996-01-19 Method for manufacturing group 3 nitride semiconductor and semiconductor device

Country Status (1)

Country Link
JP (1) JP3712770B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
JP4783483B2 (en) * 1997-11-07 2011-09-28 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Semiconductor substrate and method for forming semiconductor substrate
TW398084B (en) * 1998-06-05 2000-07-11 Hewlett Packard Co Multilayered indium-containing nitride buffer layer for nitride epitaxy
JP4298023B2 (en) * 1998-10-28 2009-07-15 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Nitride semiconductor multilayer deposition substrate and method for forming nitride semiconductor multilayer deposition substrate
US6829273B2 (en) 1999-07-16 2004-12-07 Agilent Technologies, Inc. Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP4850324B2 (en) * 1999-07-16 2012-01-11 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Nitride semiconductor device and nitride semiconductor laser device
KR20020084194A (en) 2000-03-14 2002-11-04 도요다 고세이 가부시키가이샤 Production method of iii nitride compound semiconductor and iii nitride compound semiconductor element
JP2001274376A (en) * 2000-03-24 2001-10-05 Furukawa Electric Co Ltd:The Low-resistant garium nitride buffer layer
US6495894B2 (en) * 2000-05-22 2002-12-17 Ngk Insulators, Ltd. Photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
FR2810159B1 (en) * 2000-06-09 2005-04-08 Centre Nat Rech Scient THICK LAYER OF GALLIUM NITRIDE OR MIXED NITRIDE OF GALLIUM AND ANOTHER METAL, PROCESS FOR PREPARING THE SAME, AND ELECTRONIC OR OPTOELECTRONIC DEVICE COMPRISING SUCH A LAYER
US6841808B2 (en) 2000-06-23 2005-01-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same
JP4749583B2 (en) * 2001-03-30 2011-08-17 豊田合成株式会社 Manufacturing method of semiconductor substrate
KR100583163B1 (en) * 2002-08-19 2006-05-23 엘지이노텍 주식회사 Nitride semiconductor and fabrication method for thereof
KR100504180B1 (en) * 2003-01-29 2005-07-28 엘지전자 주식회사 crystal growth method of nitride compound semiconductor
KR100624449B1 (en) 2004-12-08 2006-09-18 삼성전기주식회사 Semiconductor emitting device with approved and manufacturing method for the same
KR100887067B1 (en) * 2006-02-14 2009-03-04 삼성전기주식회사 Manufacturing Method for Semiconductor Emitting Device with nano pattern structure
US7534638B2 (en) 2006-12-22 2009-05-19 Philips Lumiled Lighting Co., Llc III-nitride light emitting devices grown on templates to reduce strain
JP5309451B2 (en) * 2007-02-19 2013-10-09 サンケン電気株式会社 Semiconductor wafer, semiconductor device, and manufacturing method
JP5309452B2 (en) * 2007-02-28 2013-10-09 サンケン電気株式会社 Semiconductor wafer, semiconductor device, and manufacturing method
JP2008211246A (en) * 2008-04-25 2008-09-11 Ngk Insulators Ltd Epitaxial substrate and semiconductor laminate structure
GB2487531A (en) * 2011-01-20 2012-08-01 Sharp Kk Substrate system consisting of a metamorphic transition region comprising a laminate of AlxGa1-x N and the same material as the substrate.
JP5917849B2 (en) * 2011-07-29 2016-05-18 住友化学株式会社 Semiconductor substrate and electronic device
KR102015907B1 (en) * 2013-01-24 2019-08-29 삼성전자주식회사 Semiconductor light emitting device

Also Published As

Publication number Publication date
JPH09199759A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP3712770B2 (en) Method for manufacturing group 3 nitride semiconductor and semiconductor device
JP3594826B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US6635901B2 (en) Semiconductor device including an InGaAIN layer
JP3909811B2 (en) Nitride semiconductor device and manufacturing method thereof
KR100568298B1 (en) Nitride based semiconductor having improved external quantum efficiency and fabrication method thereof
JP2001160627A (en) Group iii nitride compound semiconductor light emitting element
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH11135832A (en) Gallium nitride group compound semiconductor and manufacture therefor
JPH1027924A (en) Nitride-group-iii element compound light emitting element
JPH11220169A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP2002145700A (en) Sapphire substrate, semiconductor device, electronic part and crystal growing method
JP4530234B2 (en) Semiconductor light emitting device
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
CN109686821B (en) Preparation method of epitaxial wafer of light-emitting diode
JP2005085932A (en) Light-emitting diode and its manufacturing method
JP2003243702A (en) Semiconductor light emitting element and its manufacturing method
JPH09266326A (en) Iii group nitride compound semiconductor light emitting device
JP4548117B2 (en) Semiconductor light emitting device manufacturing method, integrated semiconductor light emitting device manufacturing method, image display device manufacturing method, and lighting device manufacturing method
JP3712789B2 (en) Group 3 nitride semiconductor substrate and device manufacturing method
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3564811B2 (en) Group III nitride semiconductor light emitting device
JP2000332293A (en) Iii-v nitride semiconductor light emitting element and its manufacture
JP3672585B2 (en) Method for manufacturing group 3 nitride semiconductor
JP3727091B2 (en) Group 3 nitride semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees