JPH0935710A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0935710A
JPH0935710A JP7179834A JP17983495A JPH0935710A JP H0935710 A JPH0935710 A JP H0935710A JP 7179834 A JP7179834 A JP 7179834A JP 17983495 A JP17983495 A JP 17983495A JP H0935710 A JPH0935710 A JP H0935710A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
capacity
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7179834A
Other languages
Japanese (ja)
Inventor
Harunari Shimamura
治成 島村
Shoichiro Watanabe
庄一郎 渡邊
Yoshiaki Nitta
芳明 新田
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7179834A priority Critical patent/JPH0935710A/en
Publication of JPH0935710A publication Critical patent/JPH0935710A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which lithium is not deposited in the surface of a negative electrode and which has large capacity by using a specific composite oxide for the negative electrode of a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution. SOLUTION: Lix InO2 belongs to a pyramidal quadratic system (a space group I 41/and, a lattice constant a0 , b0 is 4.312Å, Co is 9.342Å), and a movable lithium ion is accommodated in the gap position of an oxide unit formed of oxygen 6 coordination around an In ion at a center. The theoretical capacity obtained from the formula weight of the material is 272mAh/g, assuming two electron reaction and however, since a filling density is as high as approximately 3.55g/cc, it can be expected that capacity per volume is 933mAh/cc, so that the capacity of a negative electrode may be made larger. Also, the detachable reaction of a lithium ion is more precise potential than the dissolution deposition potential of metallic lithium and therefore, lithium is not deposited, so that a large-capacity nonaqueous electrolyte secondary battery may be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、特に負極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-aqueous electrolyte secondary battery, especially a negative electrode.

【0002】[0002]

【従来の技術】非水電解液二次電池は、小型、軽量で、
かつ高エネルギー密度を有するため、機器のポータブル
化、コードレス化が進む中で、その期待は高まってい
る。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are small and lightweight,
Moreover, since it has a high energy density, its expectations are increasing as the equipment becomes more portable and cordless.

【0003】従来、非水電解液二次電池用の正極活物質
としてLiCoO2、LiNiO2などのリチウム含有金
属酸化物が提案されている。一方、負極としては金属リ
チウム、リチウム合金、リチウムイオンを吸蔵・放出す
ることのできる黒鉛材料などが提案され、一部実用化さ
れている。
Hitherto, lithium-containing metal oxides such as LiCoO 2 and LiNiO 2 have been proposed as positive electrode active materials for non-aqueous electrolyte secondary batteries. On the other hand, as the negative electrode, metallic lithium, a lithium alloy, a graphite material capable of occluding and releasing lithium ions, and the like have been proposed, and some of them have been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
金属リチウムを用いた負極では、充電時において負極極
板表面に金属リチウムが針状結晶となって析出し、この
針状結晶がセパレーターを突き破り、正極と接触して内
部短絡を起こすことがあった。この問題を解決するため
に、黒鉛材料を負極に用いる検討がなされている。この
場合、炭素は理論的にC6Li(炭素原子6個に対して
Li原子1個)までLiイオンを吸蔵し理論容量は37
2mAh/gであると言われているが、電池構成上から
推算される体積あたりの容量は、例えば充填密度を1.
5g/cm3とすると558mAh/cc程度である。
したがって、体積的にこれ以上の高容量化は困難であっ
た。
However, in the conventional negative electrode using metallic lithium, metallic lithium is deposited as needle-like crystals on the surface of the negative electrode plate during charging, and the needle-like crystals pierce the separator, There was a case in which an internal short circuit occurred due to contact with the positive electrode. In order to solve this problem, studies have been made on using a graphite material for the negative electrode. In this case, carbon theoretically occludes Li ions up to C 6 Li (1 Li atom for 6 carbon atoms), and the theoretical capacity is 37.
It is said that it is 2 mAh / g, but the capacity per volume estimated from the battery configuration is, for example, a packing density of 1.
At 5 g / cm 3 , it is about 558 mAh / cc.
Therefore, it is difficult to increase the capacity further in terms of volume.

【0005】本発明は、このような課題を解決するもの
で、負極の表面で金属リチウムが針状に析出することを
防止するとともに、充電時に負極として黒鉛材料を用い
た時の一般式C6Liで規定される体積あたりの容量を
越えることのできる負極を提供するものである。
The present invention solves such a problem, and prevents metallic lithium from acicularly depositing on the surface of the negative electrode, and has the general formula C 6 when a graphite material is used as the negative electrode during charging. It is intended to provide a negative electrode capable of exceeding the capacity per volume defined by Li.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
ために、本発明の非水電解液二次電池は、負極に一般式
LixInO2(0≦x≦2.0)で表される複合酸化物
を用いるものである。
In order to solve these problems, in the non-aqueous electrolyte secondary battery of the present invention, the negative electrode is represented by the general formula Li x InO 2 (0 ≦ x ≦ 2.0). It uses a complex oxide.

【0007】[0007]

【作用】LixInO2は正方晶系(空間群I41/am
d、格子定数a0,b0が4.312オングストロームc0
が9.342オングストローム)に属し、中心Inイオ
ンのまわりに酸素6配位で構成された酸化物ユニットの
隙間位置に可動リチウムイオンが収容されている。この
材料の式量から得られる理論容量は、2電子反応と仮定
するとおよそ272mAh/gであるが、極板作製時の
充填密度が約3.55g/ccと高いため、体積あたり
の容量は933mAh/cc程度が期待でき、負極の高
容量化が可能となる。
[Function] Li x InO 2 is tetragonal (space group I41 / am
d, the lattice constants a 0 and b 0 are 4.312 angstrom c 0
Is 9.342 angstroms), and movable lithium ions are accommodated in the gap position of the oxide unit composed of oxygen 6-coordination around the central In ion. The theoretical capacity obtained from the formula weight of this material is about 272 mAh / g assuming a two-electron reaction, but since the packing density during electrode plate fabrication is high at about 3.55 g / cc, the capacity per volume is 933 mAh. / Cc can be expected, and the capacity of the negative electrode can be increased.

【0008】また、リチウムイオンの挿脱反応は金属リ
チウムの溶解析出電位より貴な電位で起こるため、リチ
ウムの析出は起こらない。
Further, since the insertion / removal reaction of lithium ions occurs at a potential nobler than the dissolution / deposition potential of metallic lithium, the deposition of lithium does not occur.

【0009】上記により、負極表面にリチウムの析出が
起こらず、かつ高容量の非水電解液二次電池を提供する
ことが可能となる。
From the above, it is possible to provide a high-capacity non-aqueous electrolyte secondary battery in which lithium is not deposited on the negative electrode surface.

【0010】[0010]

【実施例】以下、図面と共に本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1に本発明の負極を評価するための評価
用電池の縦断面図を示す。図1において、1は耐有機電
解液性のステンレス鋼板を加工した電池ケース、2は同
材料の封口板、3は同材料の集電体で、電池ケース1の
内面にスポット溶接されている。4は金属リチウムで、
封口板2の内部に圧着されている。5は本発明の負極で
あり、6は微孔性のポリプロピレン製セパレーター、7
はポリプロピレン製絶縁ガスケットである。この評価用
電池の寸法は直径20mm、電池総高1.6mmであ
る。
FIG. 1 shows a vertical sectional view of an evaluation battery for evaluating the negative electrode of the present invention. In FIG. 1, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate made of the same material, and 3 is a current collector made of the same material, which is spot-welded to the inner surface of the battery case 1. 4 is metallic lithium,
It is crimped inside the sealing plate 2. 5 is a negative electrode of the present invention, 6 is a microporous polypropylene separator, 7
Is an insulating gasket made of polypropylene. The dimensions of the battery for evaluation are 20 mm in diameter and 1.6 mm in total battery height.

【0012】負極活物質としては、酸化インジウムと炭
酸リチウムをモル比1:1の割合で乾式混合し、空気流
通下1150℃で1時間焼成して得た。前記複合酸化物
90重量部に対し、導電材としてアセチレンブラック5
重量部、結着剤としてポリフッ化ビニリデン10重量部
を混合して得られる合剤の所定量を集電体3の上に成形
して電極とし、これを110℃で減圧乾燥した後、負極
として電池に組立てた。電解液は炭酸エチレン、1、3
−ジメトキシエタンの等体積混合溶媒に溶質として六フ
ッ化リン酸リチウムを1モル/リットルの濃度で溶解し
て用いた。上記負極は電池の組み立て後、充電すること
により電気化学的にリチウムイオンを挿入し、一般式L
xInO2(0≦x≦2.0)となる。
The negative electrode active material was obtained by dry-mixing indium oxide and lithium carbonate in a molar ratio of 1: 1 and firing the mixture at 1150 ° C. for 1 hour under air flow. Acetylene black 5 as a conductive material based on 90 parts by weight of the complex oxide.
Parts by weight, and a predetermined amount of a mixture obtained by mixing 10 parts by weight of polyvinylidene fluoride as a binder is molded on the current collector 3 to form an electrode, which is then dried under reduced pressure at 110 ° C. and then used as a negative electrode. It was assembled into a battery. Electrolyte is ethylene carbonate, 1, 3
Lithium hexafluorophosphate was used as a solute dissolved in a mixed solvent of equal volumes of dimethoxyethane at a concentration of 1 mol / liter. After the battery is assembled, the above-mentioned negative electrode is charged with lithium ions electrochemically by charging to obtain the compound of the general formula L
i x InO 2 (0 ≦ x ≦ 2.0).

【0013】これらの評価用電池を常温(20℃)で
0.5mA/cm2として、電圧2.0Vから0Vの範
囲で充放電試験を行い、放電容量とサイクル特性につい
て検討した。図2に本発明および従来の電池のサイクル
に対する放電容量を示す。図2からわかるように、従来
の黒鉛材料を用いた場合の容量を100とすると、本発
明の複合酸化物を用いた場合にはおよそ1.2倍程度高
い容量が得られ、その後のサイクルテストにおいても従
来品と同程度の劣化率であり、従来品よりも高容量な特
性を維持していることがわかる。理論的には約2倍の容
量が得られるはずであるが、電池として実質的に使用可
能な単極の電位領域を観るとおよそ従来の黒鉛に対して
1.2倍程度の容量増加となった。
A charging / discharging test was carried out at a voltage of 2.0 V to 0 V with these evaluation batteries at 0.5 mA / cm 2 at room temperature (20 ° C.), and the discharge capacity and cycle characteristics were examined. FIG. 2 shows the discharge capacities of the batteries of the present invention and the conventional battery with respect to cycles. As can be seen from FIG. 2, assuming that the capacity of the conventional graphite material is 100, the capacity of the composite oxide of the present invention is about 1.2 times higher, and the subsequent cycle test is performed. The deterioration rate is similar to that of the conventional product, and it can be seen that the characteristics with higher capacity than the conventional product are maintained. Theoretically, about twice the capacity should be obtained, but when we look at the potential range of a single electrode that can be used practically as a battery, the capacity increase is about 1.2 times that of conventional graphite. It was

【0014】また、リチウム含有量を検討したところ、
0V(リチウム基準)まで電解還元反応させると、充電
初期においてLixInO2のx値はおよそ2.0までリ
チウムは含有されるが、放電ではx値は0にまで戻らず
およそ0.2程度のリチウムが負極活物質内に残存す
る。この初期的なリチウムの負極内への残存は黒鉛を用
いた場合にも同様に起こる。このため、2サイクル目か
ら若干の容量劣化は見られるもののx値はおよそ0.2
ないし0.3から2.0までの放電容量が得られ、従来
の黒鉛材料よりも高容量な特性が得られる。したがっ
て、本発明の複合酸化物を負極として用いた場合の可動
リチウム量をx値で表現すると0≦x≦2.0で規定さ
れる。また、この複合酸化物を用いた負極の電極表面か
らは針状のリチウムが観測されることはなかった。
When the lithium content was examined,
When the electrolytic reduction reaction is performed up to 0 V (lithium standard), lithium is contained until the x value of Li x InO 2 is about 2.0 at the initial stage of charging, but the x value does not return to 0 and is about 0.2 at the time of discharging. Lithium remains in the negative electrode active material. This initial remaining of lithium in the negative electrode also occurs when graphite is used. Therefore, although the capacity deteriorates slightly from the second cycle, the x value is about 0.2.
A discharge capacity of 0.3 to 2.0 can be obtained, and higher capacity characteristics than conventional graphite materials can be obtained. Therefore, when the amount of movable lithium when the composite oxide of the present invention is used as a negative electrode is expressed by an x value, it is defined as 0 ≦ x ≦ 2.0. In addition, needle-like lithium was not observed from the electrode surface of the negative electrode using this composite oxide.

【0015】なお、本発明における効果は、LiCoO
2、LiNiO2、LiMn24などを用いた場合や、本
実施例で用いた以外のリチウムイオン電池用有機電解液
を用いた場合でも同様に認められる。
The effect of the present invention is that LiCoO
The same is observed when 2 , 2 , LiNiO 2 , LiMn 2 O 4 or the like is used, or when an organic electrolytic solution for a lithium ion battery other than that used in this example is used.

【0016】[0016]

【発明の効果】以上のように、本発明では一般式Lix
InO2(0≦x≦2.0)で表される複合酸化物を負
極としているので、高容量を有し、さらに充放電反応に
伴う負極の電極表面上の針状結晶を抑え得る非水電解液
二次電池が提供できる。
As described above, in the present invention, the general formula Li x
Since the composite oxide represented by InO 2 (0 ≦ x ≦ 2.0) is used as the negative electrode, it has a high capacity and is capable of suppressing needle-like crystals on the electrode surface of the negative electrode due to charge / discharge reaction. An electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】評価用電池の縦断面図FIG. 1 is a longitudinal sectional view of an evaluation battery.

【図2】サイクル特性を示す図FIG. 2 is a diagram showing cycle characteristics.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 負極 6 セパレーター 7 ガスケット 1 Battery Case 2 Sealing Plate 3 Current Collector 4 Metal Lithium 5 Negative Electrode 6 Separator 7 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 一広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Okamura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極と、負極と、非水電解液とからなる非
水電解液二次電池であり、前記負極に一般式LixIn
2(0≦x≦2.0)で表される複合酸化物を用いた
ことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the negative electrode has the general formula Li x In.
A non-aqueous electrolyte secondary battery comprising a composite oxide represented by O 2 (0 ≦ x ≦ 2.0).
JP7179834A 1995-07-17 1995-07-17 Nonaqueous electrolyte secondary battery Pending JPH0935710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179834A JPH0935710A (en) 1995-07-17 1995-07-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179834A JPH0935710A (en) 1995-07-17 1995-07-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0935710A true JPH0935710A (en) 1997-02-07

Family

ID=16072719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179834A Pending JPH0935710A (en) 1995-07-17 1995-07-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0935710A (en)

Similar Documents

Publication Publication Date Title
JP3172388B2 (en) Lithium secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3187929B2 (en) Lithium secondary battery
US7438991B2 (en) Nonaqueous electrolyte secondary cell and method for charging same
JPH1027626A (en) Lithium secondary battery
JPH08236155A (en) Lithium secondary battery
JP3258841B2 (en) Lithium secondary battery
JPH07335261A (en) Lithium secondary battery
JPH06342673A (en) Lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JPH08171936A (en) Lithium secondary battery
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JPH0636799A (en) Lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JPH1125973A (en) Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same
JPH0935710A (en) Nonaqueous electrolyte secondary battery
JP2000277113A (en) Lithium secondary battery
JPH11162520A (en) Nonaqueous electrolyte secondary battery