JPH093541A - Production of grain oriented silicon steel sheet with extremely high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet with extremely high magnetic flux density

Info

Publication number
JPH093541A
JPH093541A JP7150423A JP15042395A JPH093541A JP H093541 A JPH093541 A JP H093541A JP 7150423 A JP7150423 A JP 7150423A JP 15042395 A JP15042395 A JP 15042395A JP H093541 A JPH093541 A JP H093541A
Authority
JP
Japan
Prior art keywords
annealing
magnetic flux
flux density
steel sheet
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7150423A
Other languages
Japanese (ja)
Other versions
JP3434936B2 (en
Inventor
Norito Abe
憲人 阿部
Yosuke Kurosaki
洋介 黒崎
Kentarou Chikuma
顯太郎 筑摩
Hidekazu Nanba
英一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15496618&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH093541(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15042395A priority Critical patent/JP3434936B2/en
Publication of JPH093541A publication Critical patent/JPH093541A/en
Application granted granted Critical
Publication of JP3434936B2 publication Critical patent/JP3434936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To stably obtain a grain oriented silicon steel sheet having extremely high magnetic flux density by using a steel slab having a Bi-added specific composition as a starting material and specifying the flow rate of atmospheric gas at finish annealing. CONSTITUTION: A slab, having a composition consisting of, by weight, 0.03-0.15% C, 2.5-4.0% Si, 0.02-0.30% Mn, 0.005-0.040% S and/or Se, 0.015-0.040% acid soluble Al, 0.0030-0.0150% N, 0.0005-0.05% Bi, and the balance Fe, is heated and hot-rolled. The resulting hot rolled plate is finished to product sheet thickness by being subjected to hot rolled plate annealing and to finish cold rolling, or by being cold-rolled plural times while process-annealed between cold rolling stages, or by being subjected to hot rolled plate annealing and then cold-rolled plural times while process-annealed between cold rolling stages. Then, decarburizing annealing is performed. After the application of a separation agent at annealing, finish annealing is done. In this manufacturing method, the flow rate of atmospheric gas at finish annealing is regulated to a value in the range satisfying (flow rate of atmospheric gas)/(furnace volume steel sheet volume)>=0.5Nm<3> /(h.m<3> ). By this method, the grain oriented silicon steel sheet with extremely high magnetic flux density, having >=1.92T magnetic flux density B8 , can be stably obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て用いられる{110}<001>方位集積度を高度に
発達させた超高磁束密度一方向性電磁鋼板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having a highly developed {110} <001> orientation integration used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性が優れていることが要求され
ている。励磁特性を表す数値としては、通常800A/
mの磁場における磁束密度B(これをB8 と以下示す)
が使用される。また鉄損特性を表す代表数値としては、
17/50 (周波数50Hzにおいて1.7Tまで磁化さ
せた時の単位1kgあたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The value that shows the excitation characteristics is usually 800 A /
Magnetic flux density B in a magnetic field of m (this is shown below as B 8 )
Is used. Also, as a representative numerical value showing the iron loss characteristic,
W 17/50 (iron loss per unit of 1 kg when magnetized to 1.7 T at a frequency of 50 Hz) is used.

【0003】磁束密度は鉄損特性の重要支配因子であ
り、一般的にいって磁束密度が高いほど鉄損はよい。た
だしあまり磁束密度が高くなると、二次再結晶粒が大き
くなることに起因して異常渦電流損失が大きくなり鉄損
を悪くすることがある。これに対しては、磁区制御する
ことによって二次再結晶粒に関係なく鉄損を改善するこ
とができる。
[0003] The magnetic flux density is an important controlling factor of the iron loss characteristics. Generally speaking, the higher the magnetic flux density, the better the iron loss. However, when the magnetic flux density is too high, abnormal eddy current loss is increased due to an increase in secondary recrystallized grains, and iron loss may be deteriorated. On the other hand, iron loss can be improved by controlling the magnetic domains regardless of the secondary recrystallized grains.

【0004】一方向性電磁鋼板は製造工程の仕上焼鈍に
おいて、二次再結晶を起こさせて鋼板面に{110}、
圧延方向に<001>を有するいわゆるGoss組織を
発達させることによって得られる。そのなかでB8
1.88Tの優れた励磁特性を持つものは高磁束密度一
方向性電磁鋼板と呼ばれている。
[0004] In the finish annealing in the manufacturing process, the grain-oriented electrical steel sheet causes secondary recrystallization to cause {110} on the steel sheet surface.
It is obtained by developing a so-called Goss structure having <001> in the rolling direction. Among them, B 8
Those having excellent excitation characteristics of 1.88T are called high magnetic flux density unidirectional magnetic steel sheets.

【0005】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、特公昭40−15644号公報、および
特公昭51−13469号公報が挙げられる。Goss
組織の二次再結晶を起こさせる主なインヒビターとして
前者においてはMnSおよびAlNを、後者においては
MnS、MnSe、Sb等を用いている。これらの製造
方法による製品は、現在世界的に生産されている。特公
昭40−15644号公報によればその製造方法は、熱
延板焼鈍をした後、冷延率80〜95%の一回冷延を行
うことを特徴としている。
As a typical method for producing a high magnetic flux density unidirectional electrical steel sheet, there are JP-B-40-15644 and JP-B-51-13469. Goss
MnS and AlN are used in the former, and MnS, MnSe, Sb, etc. are used in the latter as main inhibitors that cause secondary recrystallization of the tissue. Products produced by these manufacturing methods are currently produced worldwide. According to Japanese Examined Patent Publication No. 40-15644, the manufacturing method is characterized in that after the hot-rolled sheet is annealed, the cold-rolling rate is 80-95% once.

【0006】ところで最近、B8 ≧1.92Tの極めて
優れた励磁特性を持つ超高磁束密度一方向性電磁鋼板が
報告されている。その代表的例としては特開平6−88
174号公報が挙げられる。またその製造方法の代表的
例としては特開平6−88171号公報が挙げられる。
いずれもスラブ中にBiを含むことを特徴としている
が、その他は特公昭40−15644号公報で述べられ
ている製造方法と変わりなく、大きな制約もない。
By the way, recently, an ultrahigh magnetic flux density unidirectional electrical steel sheet having an extremely excellent excitation characteristic of B 8 ≧ 1.92T has been reported. As a typical example thereof, Japanese Patent Laid-Open No. 6-88
No. 174 publication is cited. Further, as a typical example of the manufacturing method thereof, there is JP-A-6-88171.
All of them are characterized by containing Bi in the slab, but the others are the same as the manufacturing method described in Japanese Patent Publication No. 40-15644 and there are no major restrictions.

【0007】[0007]

【発明が解決しようとする課題】しかし、鋼中にBiを
含むと、これによると考えられる二次再結晶不良や、二
次再結晶しても{110}<001>方位集積度の低下
が生じて、B8 ≧1.92Tの励磁特性が得られない場
合が少なくない。本発明は、かかる問題を回避し、極め
て磁束密度の高い一方向性電磁鋼板を安定的に製造する
ことを目的とする。
However, if Bi is contained in the steel, secondary recrystallization failure that is considered to be caused by this or reduction of {110} <001> orientation integration degree may occur even after secondary recrystallization. It often happens that the exciting characteristic of B 8 ≧ 1.92T cannot be obtained. An object of the present invention is to avoid such a problem and to stably manufacture a grain-oriented electrical steel sheet having an extremely high magnetic flux density.

【0008】[0008]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1)重量%で、C:0.03〜0.15%、Si:2.
5〜4.0%、Mn:0.02〜0.30%、Sおよ
び、またはSe:0.005〜0.040%、酸可溶性
Al:0.015〜0.040%、N:0.0030〜
0.0150%、Bi:0.0005〜0.05%、残
部:Feおよび不可避的不純物からなるスラブを出発材
として加熱した後熱延し、熱延板焼鈍後仕上げ冷延、あ
るいは中間焼鈍を含む複数の冷延、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延によって製品板厚に仕上げ
た後に、脱炭焼鈍し、焼鈍分離材を塗布後、仕上焼鈍を
する超高磁束密度一方向性電磁鋼板の製造方法におい
て、仕上げ焼鈍における雰囲気ガス流量を以下に示す範
囲とすることを特徴とするB8 ≧1.92Tの超高磁束
密度一方向性電磁鋼板の製造方法。 雰囲気ガス流量/(炉内容積−鋼板体積)≧0.5Nm3
/(h・m3
The features of the present invention are as follows. 1) wt%, C: 0.03 to 0.15%, Si: 2.
5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0.005 to 0.040%, acid-soluble Al: 0.015 to 0.040%, N: 0. 0030 ~
0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and slab consisting of unavoidable impurities are heated as a starting material, then hot rolled, hot rolled sheet annealed, then finish cold rolled, or intermediate annealed. After finishing the product sheet thickness by multiple cold rolling including multiple cold rolling including hot-rolled sheet annealing or intermediate annealing after annealing, decarburization annealing, after applying an annealing separator, finish annealing is performed. In the method for producing a grain-oriented electrical steel sheet, the method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet having B 8 ≧ 1.92 T, characterized in that the atmospheric gas flow rate in finish annealing is set in the following range. Atmospheric gas flow rate / (furnace volume-steel plate volume) ≧ 0.5 Nm 3
/ (H ・ m 3 )

【0009】2)重量%で、C:0.03〜0.15
%、Si:2.5〜4.0%、Mn:0.02〜0.3
0%、Sおよび、またはSe:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N:
0.0030〜0.0150%、Sn:0.05〜0.
50%、Bi:0.0005〜0.05%、残部:Fe
および不可避的不純物からなるスラブを出発材とした前
記1)記載の超高磁束密度一方向性電磁鋼板の製造方
法。
2) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.3%
0%, S and / or Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sn: 0.05 to 0.
50%, Bi: 0.0005 to 0.05%, balance: Fe
And the method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet according to 1), which uses a slab made of unavoidable impurities as a starting material.

【0010】3)重量%で、C:0.03〜0.15
%、Si:2.5〜4.0%、Mn:0.02〜0.3
0%、Sおよび、またはSe:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N:
0.0030〜0.0150%、Sn:0.05〜0.
50%、Cu:0.01〜0.10%、Bi:0.00
05〜0.05%、残部:Feおよび不可避的不純物か
らなるスラブを出発材とした前記1)記載の超高磁束密
度一方向性電磁鋼板の製造方法。
3) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.3%
0%, S and / or Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sn: 0.05 to 0.
50%, Cu: 0.01 to 0.10%, Bi: 0.00
The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to 1) above, wherein a slab consisting of 05 to 0.05% and the balance: Fe and inevitable impurities is used as a starting material.

【0011】4)重量%で、C:0.03〜0.15
%、Si:2.5〜4.0%、Mn:0.02〜0.3
0%、Sおよび、またはSe:0.005〜0.040
%、酸可溶性Al:0.015〜0.040%、N:
0.0030〜0.0150%、Sbおよび、またはM
o:0.0030〜0.3%、Bi:0.0005〜
0.05%、残部:Feおよび不可避的不純物からなる
スラブを出発材とした前記1)記載の超高磁束密度一方
向性電磁鋼板の製造方法。
4) C: 0.03 to 0.15 by weight%
%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.3%
0%, S and / or Se: 0.005-0.040
%, Acid-soluble Al: 0.015 to 0.040%, N:
0.0030 to 0.0150%, Sb and / or M
o: 0.0030 to 0.3%, Bi: 0.0005 to
The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to 1) above, wherein a slab consisting of 0.05% and the balance of Fe and inevitable impurities is used as a starting material.

【0012】以下本発明を詳細に説明する。まず本発明
の成分条件について説明する。Cは0.03%未満で
は、熱延に先立つスラブ加熱時において結晶粒が異常粒
成長し、製品において線状細粒と呼ばれる二次再結晶不
良を起こすので好ましくない。一方0.15%を超えた
場合では、冷延後の脱炭焼鈍において脱炭時間が長時間
必要となり経済的でないばかりでなく、脱炭が不完全と
なりやすく、製品での磁気時効と呼ばれる磁性不良を起
こすので好ましくない。
The present invention will be described in detail below. First, the component conditions of the present invention will be described. If C is less than 0.03%, crystal grains grow abnormally during slab heating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, when the content exceeds 0.15%, decarburization annealing after cold rolling requires a long time for decarburization, which is not economical, and the decarburization is likely to be incomplete, resulting in a magnetic aging called magnetic aging in products. It is not preferable because it causes defects.

【0013】Siは鋼の電気抵抗を高めて鉄損の一部を
構成する渦電流損失を低減するのに極めて有効な元素で
あるが、2.5%未満では製品の渦電流損失を抑制でき
ない。また4.0%を超えた場合では、加工性が著しく
劣化して常温での冷延が困難になるので好ましくない。
Si is an extremely effective element for increasing the electric resistance of steel and reducing the eddy current loss that constitutes a part of iron loss, but if it is less than 2.5%, the eddy current loss of the product cannot be suppressed. . Further, if it exceeds 4.0%, the workability is remarkably deteriorated and cold rolling at room temperature becomes difficult, which is not preferable.

【0014】Mnは二次再結晶を左右するインヒビター
と呼ばれるMnSおよび、またはMnSeを形成する重
要な元素である。0.02%未満では二次再結晶を生じ
させるのに必要なMnSの絶対量が不足するので好まし
くない。一方0.30%を超えた場合は、スラブ加熱時
の固溶が困難になるばかりでなく、熱延時の析出サイズ
が粗大化しやすくインヒビターとしての最適サイズ分布
が損なわれて好ましくない。
Mn is an important element that forms MnS and / or MnSe called an inhibitor that influences secondary recrystallization. If it is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, which is not preferable. On the other hand, if it exceeds 0.30%, not only is it difficult to form a solid solution during heating of the slab, but also the precipitation size during hot rolling tends to become coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable.

【0015】Sおよび、またはSeは上掲したMnとM
nSおよび、またはMnSeを形成する重要な元素であ
る。上記範囲を逸脱すると十分なインヒビター効果が得
られないので0.005〜0.040%に限定する必要
がある。
S and / or Se are Mn and M listed above.
It is an important element that forms nS and / or MnSe. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so it is necessary to limit the content to 0.005 to 0.040%.

【0016】酸可溶性Alは、高磁束密度一方向性電磁
鋼板のための主要インヒビター構成元素であり、0.0
15%未満では量的に不足してインヒビター強度が不足
するので好ましくない。一方0.040%超ではインヒ
ビターとして析出させるAlNが粗大化し、結果として
インヒビター強度を低下させるので好ましくない。
Acid-soluble Al is a main inhibitor constituent element for high magnetic flux density grain-oriented electrical steel sheet, and is 0.0
If it is less than 15%, it is not preferable because the amount is insufficient and the inhibitor strength is insufficient. On the other hand, if it exceeds 0.040%, AlN precipitated as an inhibitor becomes coarse, and as a result, the inhibitor strength is lowered, which is not preferable.

【0017】Nは上掲した酸可溶性AlとAlNを形成
する重要な元素である。上記範囲を逸脱すると十分なイ
ンヒビター効果が得られないので0.0030〜0.0
150%に限定する必要がある。
N is an important element which forms AlN with the acid-soluble Al mentioned above. If it deviates from the above range, a sufficient inhibitory effect cannot be obtained, so 0.0030 to 0.0
It must be limited to 150%.

【0018】更にSnについては薄手製品の二次再結晶
を安定して得る元素として有効であり、また二次再結晶
粒を小さくする作用もある。この効果を得るためには、
0.05%以上の添加が必要であり、0.50%を超え
た場合にはその作用が飽和するのでコストアップの点か
ら0.50%以下に限定する。
Further, Sn is effective as an element for stably obtaining secondary recrystallization of thin products, and also has an action of reducing secondary recrystallized grains. To get this effect,
It is necessary to add 0.05% or more, and if it exceeds 0.50%, the action is saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less.

【0019】CuについてはSn添加鋼の一次被膜向上
元素として有効である。0.01%未満では効果が少な
く、0.10%を超えると製品の磁束密度が低下するの
で好ましくない。
Cu is effective as an element for improving the primary coating of Sn-added steel. If it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product is undesirably reduced.

【0020】Sbおよび、またはMoについては薄手製
品の二次再結晶を安定して得る元素として有効である。
この効果を得るためには、0.0030%以上の添加が
必要であり、0.30%を超えた場合にはその作用が飽
和するのでコストアップの点から0.30%以下に限定
する。
Sb and / or Mo are effective as elements for stably obtaining secondary recrystallization of thin products.
In order to obtain this effect, it is necessary to add 0.0030% or more. If it exceeds 0.30%, the effect is saturated, so that the content is limited to 0.30% or less from the viewpoint of cost increase.

【0021】Biは本発明であるB≧8 ≧1.92Tの
超高磁束密度一方向性電磁鋼板の製造において、そのス
ラブ中に必須の元素である。すなわち磁束密度向上効果
がある0.0005%未満ではその効果が充分に得られ
ず、また0.05%を超えた場合は磁束密度向上効果が
飽和するだけでなく、熱延コイルの端部に割れが発生す
るので好ましくない。
Bi is an essential element in the slab in the production of the superhigh magnetic flux density grain-oriented electrical steel sheet of B ≧ 8 ≧ 1.92T according to the present invention. That is, if the magnetic flux density improving effect is less than 0.0005%, the effect is not sufficiently obtained, and if it exceeds 0.05%, not only the magnetic flux density improving effect is saturated, but also at the end of the hot rolled coil. It is not preferable because cracks occur.

【0022】次に本発明の製造工程について説明する。
上記のごとく成分を調整した超高磁束密度一方向性電磁
鋼板製造用溶鋼は、通常の方法で鋳造する。特に鋳造方
法に限定はない。次いで通常の熱間圧延によって熱延コ
イルに圧延される。
Next, the manufacturing process of the present invention will be described.
The molten steel for producing an ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above is cast by a usual method. There is no particular limitation on the casting method. Then, it is rolled into a hot rolled coil by ordinary hot rolling.

【0023】引き続いて、熱延板焼鈍後仕上げ冷延、あ
るいは中間焼鈍を含む複数の冷延、あるいは熱延板焼鈍
後中間焼鈍を含む複数の冷延によって製品板厚に仕上げ
るわけであるが、仕上げ冷延前の焼鈍では結晶組織の均
質化と、AlNの析出制御を行う。
Subsequently, the product sheet thickness is finished by hot-rolled sheet annealing followed by finish cold-rolling, a plurality of cold-rolled sheets including intermediate annealing, or a plurality of cold-rolled sheets including hot-rolled sheet annealing and intermediate annealing. In the annealing before finish cold rolling, the crystal structure is homogenized and AlN precipitation is controlled.

【0024】冷延後に連続脱炭焼鈍を施し、MgOを主
成分とする焼鈍分離材を塗布後、仕上げ焼鈍をするわけ
であるが、この時の雰囲気ガス流量を以下に示す範囲と
することを本発明は特徴としている。 雰囲気ガス流量/(炉内容積−鋼板体積)≧0.5Nm3
/(h・m3 ) 仕上げ焼鈍後には、連続歪取り焼鈍・二次被膜塗布およ
び焼き付けを行う。更に必要に応じてレーザ照射、溝等
の磁区細分化処理を施す。
After cold rolling, continuous decarburization annealing is performed, and an annealing separator containing MgO as a main component is applied, followed by finish annealing. At this time, the atmospheric gas flow rate should be within the range shown below. The present invention is characterized. Atmospheric gas flow rate / (furnace volume-steel plate volume) ≧ 0.5 Nm 3
/ (H · m 3 ) After finish annealing, continuous strain relief annealing / secondary coating application and baking are performed. Further, laser irradiation and magnetic domain subdivision processing such as grooves are performed if necessary.

【0025】以下に、仕上げ焼鈍時の雰囲気ガス流量を
上記の範囲にした理由を述べる。本発明者らは、超高磁
束密度一方向性電磁鋼板を安定して製造するために、仕
上げ焼鈍時の雰囲気ガス流量に注目して以下の実験を行
った。
The reason why the atmospheric gas flow rate during finish annealing is set within the above range will be described below. The present inventors conducted the following experiments by paying attention to the atmospheric gas flow rate during finish annealing in order to stably manufacture an ultra-high magnetic flux density unidirectional electrical steel sheet.

【0026】[実験1] C:0.079%、Si:3.26%、Mn:0.08
%、S:0.025%、酸可溶性Al:0.025%、
N:0.0086%、Bi:0〜0.0200% 以上を含有する0.5m3 のスラブを通常工程でMgO
を主成分とする焼鈍分離材塗布まで行った。その後、炉
内容積が1m3 の仕上げ焼鈍炉に挿入し、窒素:水素=
1:3で構成される雰囲気ガスの流量を0.1〜10Nm
3 として仕上げ焼鈍し、さらに後工程処理を行い、得ら
れた鋼板のB8 値を測定した。図1にBi含有量と、雰
囲気ガス流量/(炉内容積−鋼板体積)の値と、得られ
た鋼板のB8 値を示す。
[Experiment 1] C: 0.079%, Si: 3.26%, Mn: 0.08
%, S: 0.025%, acid-soluble Al: 0.025%,
N: 0.0086%, Bi: 0-0.0200% A slab of 0.5 m 3 containing at least MgO
The process was performed up to the application of the annealing separation material containing as a main component. After that, the furnace was inserted into a finishing annealing furnace with a volume of 1 m 3 , and nitrogen: hydrogen =
The flow rate of the atmosphere gas composed of 1: 3 is 0.1 to 10 Nm.
Finish annealing was performed as 3 , and the post-process was further performed, and the B 8 value of the obtained steel sheet was measured. 1 and Bi content, the atmosphere gas flow rate / - shows the value of (furnace capacity steel volume), the B 8 value of the resulting steel sheet.

【0027】図から明らかなように、Bi含有量が5p
pm未満の場合は、雰囲気ガス流量/(炉内容積−鋼板
体積)<0.5Nm3 /(h・m3 )でも、磁束密度は
0.5Nm3 /(h・m3 )以上とした場合のそれと差異
が認められない。しかしBi含有量が5ppm以上の場
合、雰囲気ガス流量/(炉内容積−鋼板体積)<0.5
Nm3 /(h・m3 )とした場合では、B8 <1.92T
であるのに対して、0.5Nm3 /(h・m3 )以上とし
た場合ではB8 ≧1.92Tとなっている。
As is clear from the figure, the Bi content is 5 p
When it is less than pm, even if the atmospheric gas flow rate / (furnace volume-steel plate volume) <0.5 Nm 3 / (h · m 3 ), the magnetic flux density is 0.5 Nm 3 / (h · m 3 ) or more No difference is seen with that. However, when the Bi content is 5 ppm or more, the atmospheric gas flow rate / (internal furnace volume-steel plate volume) <0.5
In the case of Nm 3 / (h · m 3 ), B 8 <1.92T
On the other hand, in the case of 0.5 Nm 3 / (h · m 3 ) or more, B 8 ≧ 1.92T.

【0028】これは、仕上げ焼鈍中に生じている脱Bi
挙動が仕上げ焼鈍中の雰囲気ガス流れに大きく影響して
おり、このことが二次再結晶開始前の結晶粒成長や、イ
ンヒビターの分解にも影響を及ぼして、{110}<0
01>方位集積度の低い状態や二次再結晶不良を引き起
こしていると考えられる。
This is due to the removal of Bi generated during finish annealing.
The behavior has a great influence on the atmosphere gas flow during the finish annealing, and this also affects the grain growth before the initiation of secondary recrystallization and the decomposition of the inhibitor, {110} <0.
01> It is considered that this is causing a low degree of orientation integration and secondary recrystallization failure.

【0029】仕上げ焼鈍は一般的にコイル状で行われ
る。そのためコイルの内外周部、上下部では雰囲気ガス
との接触状態が大きく違うことは容易に想像できる。こ
の接触状態の差異は、コイル各部での脱Bi挙動の差異
を生むと考えられる。Biが必要以上に地鉄中、あるい
は表面酸化層中に滞在すると、二次再結晶開始前の結晶
粒成長を抑制すると考えられる。これによって二次再結
晶開始がより低温側で生じて{110}<001>方位
以外の結晶粒が二次再結晶し、集積度の低い製品になる
と考えられる。
The finish annealing is generally performed in a coil shape. Therefore, it can be easily imagined that the contact state with the atmospheric gas is greatly different between the inner and outer peripheral portions and the upper and lower portions of the coil. It is considered that this difference in the contact state causes a difference in the Bi removal behavior in each part of the coil. It is considered that when Bi stays in the base iron or the surface oxide layer more than necessary, it suppresses the crystal grain growth before the initiation of secondary recrystallization. It is considered that this causes the initiation of secondary recrystallization on the lower temperature side and secondary recrystallization of crystal grains other than the {110} <001> orientation, resulting in a product with a low degree of integration.

【0030】またBiの必要以上の地鉄中、あるいは表
面酸化層中での滞在は、インヒビターの分解を遅延さ
せ、それによって二次再結晶開始温度が上昇するとも考
えられる。このことは{110}<001>方位以外の
結晶粒を正常粒成長が生じやすくなるため、二次再結晶
不良の原因になると考えられる。
It is also considered that the excessive residence of Bi in the base iron or in the surface oxide layer delays the decomposition of the inhibitor, which raises the secondary recrystallization onset temperature. This is considered to cause secondary recrystallization failure because normal grain growth is likely to occur in crystal grains other than the {110} <001> orientation.

【0031】以上の実験1の結果から、仕上げ焼鈍時の
雰囲気ガス流量を以下に示す範囲とすることが、{11
0}<001>方位集積度の極めて優れた超高磁束密度
一方向性電磁鋼板の製造に極めて重要であることが判明
した。 雰囲気ガス流量/(炉内容積−鋼板体積)≧0.5Nm3
/(h・m3 ) なお雰囲気ガス流量/(炉内容積−鋼板体積)の上限値
は、特に限定されるものではないが、コストの観点から
20Nm3 /(h・m3 )以下とすることが望ましい。ま
た雰囲気ガスについては窒素と水素の混合ガスが望まし
いが、その混合比は特に限定されるものではない。
From the results of Experiment 1 above, it is possible to set the atmospheric gas flow rate during finish annealing within the following range: {11
It has been found that it is extremely important for the production of an ultrahigh magnetic flux density grain-oriented electrical steel sheet having a very high degree of 0} <001> orientation integration. Atmospheric gas flow rate / (furnace volume-steel plate volume) ≧ 0.5 Nm 3
/ (H · m 3 ) The upper limit value of the atmospheric gas flow rate / (furnace internal volume-steel plate volume) is not particularly limited, but is 20 Nm 3 / (h · m 3 ) or less from the viewpoint of cost. Is desirable. The atmosphere gas is preferably a mixed gas of nitrogen and hydrogen, but the mixing ratio thereof is not particularly limited.

【0032】このような考えに基づいて、図1において
もっとも好ましい範囲を表示した。Biの含有量は0.
001〜0.01%、雰囲気ガス流量/(炉内容積−鋼
板体積)は1.0以上20以下(Nm3 /(h・m3 ))
である。
Based on such an idea, the most preferable range is shown in FIG. The content of Bi is 0.
001 to 0.01%, atmosphere gas flow rate / (furnace volume-steel plate volume) is 1.0 or more and 20 or less (Nm 3 / (h · m 3 ))
It is.

【0033】高磁束密度一方向性電磁鋼板の製造におい
て、仕上げ焼鈍中のガス流量を制御することは、これま
でにも述べられている。例えば、特開平2−12581
5号公報が挙げられる。これは仕上げ焼鈍中のガス流量
を2cc/分・kg以上とすることによって、地鉄中と
フォルステライト中のS、Se、Nの純化が著しく改善
されて、磁束密度や鉄損特性が向上するとしている。
Controlling the gas flow rate during finish annealing in the manufacture of high magnetic flux density grain-oriented electrical steel sheets has been previously described. For example, Japanese Patent Laid-Open No. 12581/1991
No. 5 publication is mentioned. This is because when the gas flow rate during finish annealing is set to 2 cc / min · kg or more, the purification of S, Se, and N in the base iron and forsterite is significantly improved, and the magnetic flux density and iron loss characteristics are improved. I am trying.

【0034】これに対し本発明は、地鉄中のBiの仕上
げ焼鈍における挙動が二次再結晶挙動に多大な影響を及
ぼすと考え、その挙動を仕上げ焼鈍中のガス流量によっ
て制御しようとするものであり、従来技術とはまったく
異なる。
On the other hand, the present invention considers that the behavior of Bi in the base steel during finish annealing has a great influence on the secondary recrystallization behavior, and the behavior is controlled by the gas flow rate during finish annealing. Which is completely different from the prior art.

【0035】[0035]

【実施例】【Example】

[実施例1]C:0.078%、Si:3.23%、M
n:0.08%、S:0.025%、酸可溶性Al:
0.025%、N:0.0084%、Bi:0.002
6%を含有する0.4m3 のスラブを1350℃で加熱
後直ちに熱延して2.4mm厚の熱延コイルとした。
[Example 1] C: 0.078%, Si: 3.23%, M
n: 0.08%, S: 0.025%, acid-soluble Al:
0.025%, N: 0.0084%, Bi: 0.002
A 0.4 m 3 slab containing 6% was heated at 1350 ° C. and immediately hot rolled to give a hot rolled coil of 2.4 mm thickness.

【0036】熱延コイルに1100℃の焼鈍を施し、一
回冷延で0.220mm厚とした後、850℃で脱炭焼鈍
を行った。次にMgOを主成分とする焼鈍分離材を塗布
した後、炉内容積が1m3 の仕上げ焼鈍炉に挿入し、窒
素:水素=1:1で構成された雰囲気ガスの流量を0.
2Nm3 /hと0.6Nm3 /hとして焼鈍した。その後、
二次被膜塗布を行った。
The hot rolled coil was annealed at 1100 ° C., cold rolled once to a thickness of 0.220 mm, and then decarburized and annealed at 850 ° C. Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finish annealing furnace having a furnace internal volume of 1 m 3 , and the flow rate of an atmosphere gas composed of nitrogen: hydrogen = 1: 1 was adjusted to 0.
Annealed at 2 Nm 3 / h and 0.6 Nm 3 / h. afterwards,
A secondary coating was applied.

【0037】雰囲気ガス流量/(炉内容積−鋼板体積)
と磁束密度B8 を表1に示す。
Atmosphere gas flow rate / (furnace volume-steel plate volume)
The magnetic flux density B 8 is shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1より明らかなように、雰囲気ガス流量
/(炉内容積−鋼板体積)を1.00Nm3 /(h・
3 )とすることで極めて優れた磁束密度が得られてい
る。
As is clear from Table 1, the atmospheric gas flow rate / (furnace volume-steel plate volume) was 1.00 Nm 3 / (h.
m 3 ), an extremely excellent magnetic flux density is obtained.

【0040】表1に示す試料にレーザ照射による磁区制
御を行った後の鉄損値W17/50 を表2に示す。
Table 2 shows the iron loss value W 17/50 after magnetic domain control was performed on the samples shown in Table 1 by laser irradiation.

【0041】[0041]

【表2】 [Table 2]

【0042】表2より明らかなように、磁区細分処理後
の鉄損特性も極めて優れており、工業的に非常に価値の
高い有益なものといえる。
As is clear from Table 2, the iron loss characteristics after the magnetic domain subdivision treatment are also extremely excellent, and can be said to be industrially very valuable and useful.

【0043】[実施例2]C:0.076%、Si:
3.28%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.028%、N:0.0080%、S
n:0.12%、Bi:0.0031%を含有する0.
65m3 のスラブを1330℃で加熱後直ちに熱延して
2.3mm厚の熱延コイルとした。酸洗後1.60mmに予
備冷延し、1000℃の焼鈍後0.200mmとした。
[Example 2] C: 0.076%, Si:
3.28%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.028%, N: 0.0080%, S
n: 0.12%, Bi: 0.0031% in 0.1%.
A 65 m 3 slab was heated at 1330 ° C. and immediately hot rolled to form a hot rolled coil having a thickness of 2.3 mm. After pickling, it was pre-cold rolled to 1.60 mm and annealed at 1000 ° C. to 0.200 mm.

【0044】次にMgOを主成分とする焼鈍分離材を塗
布した後、炉内容積が1m3 の仕上げ焼鈍炉に挿入し、
窒素:水素=3:1で構成された雰囲気ガスの流量を
0.1Nm3 /hと20.0Nm3 /hとして焼鈍した。そ
の後、二次被膜塗布を行った。雰囲気ガス流量/(炉内
容積−鋼板体積)と磁束密度B8 を表3に示す。
Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finishing annealing furnace having a furnace internal volume of 1 m 3 .
Annealing was performed with the flow rate of the atmosphere gas composed of nitrogen: hydrogen = 3: 1 set to 0.1 Nm 3 / h and 20.0 Nm 3 / h. Then, a secondary coating was applied. Atmosphere gas flow rate / - (the furnace capacity steel volume) and the magnetic flux density B 8 shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】表3より明らかなように、雰囲気ガス流量
/(炉内容積−鋼板体積)を0.57Nm3 /(h・
3 )とすることで極めて優れた磁束密度が得られてい
る。
As is clear from Table 3, the atmospheric gas flow rate / (furnace volume-steel plate volume) was 0.57 Nm 3 / (h ·
m 3 ), an extremely excellent magnetic flux density is obtained.

【0047】[実施例3]C:0.078%、Si:
3.30%、Mn:0.08%、S:0.025%、酸
可溶性Al:0.033%、N:0.0084%、S
n:0.16%、Cu:0.060%を含有する溶鋼に
Bi:0.0115%添加含有した1m3 のスラブを1
350℃で加熱後直ちに熱延して2.5mm厚の熱延コイ
ルとした。熱延コイルに1050℃の焼鈍を施し、98
0℃の中間焼鈍を挟む二回冷延で0.220mm厚とした
後、840℃で脱炭焼鈍を行った。
[Example 3] C: 0.078%, Si:
3.30%, Mn: 0.08%, S: 0.025%, acid-soluble Al: 0.033%, N: 0.0084%, S
1 m 3 slab containing Bi: 0.0115% added to molten steel containing n: 0.16% and Cu: 0.060%
Immediately after heating at 350 ° C., hot rolling was performed to obtain a hot rolled coil having a thickness of 2.5 mm. The hot rolled coil is annealed at 1050 ° C and then 98
After twice cold rolling sandwiching an intermediate annealing of 0 ° C to a thickness of 0.220 mm, decarburization annealing was performed at 840 ° C.

【0048】次にMgOを主成分とする焼鈍分離材を塗
布した後、炉内容積が1.5m3 の仕上げ焼鈍炉に挿入
し、窒素:水素=1:3で構成された雰囲気ガスの流量
を0.2Nm3 /hと0.25Nm3 /hとして焼鈍した。
その後、二次被膜塗布を行った。雰囲気ガス流量/(炉
内容積−鋼板体積)と磁束密度B8 を表4に示す。
Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finishing annealing furnace having a furnace internal volume of 1.5 m 3 , and the flow rate of an atmosphere gas composed of nitrogen: hydrogen = 1: 3. Was annealed at 0.2 Nm 3 / h and 0.25 Nm 3 / h.
Then, a secondary coating was applied. Atmosphere gas flow rate / - (the furnace capacity steel volume) and the magnetic flux density B 8 shown in Table 4.

【0049】[0049]

【表4】 [Table 4]

【0050】表4より明らかなように、雰囲気ガス流量
/(炉内容積−鋼板体積)を0.5Nm3 /(h・m3
とすることで極めて優れた磁束密度が得られている。
As is clear from Table 4, the atmospheric gas flow rate / (furnace volume-steel plate volume) was 0.5 Nm 3 / (h · m 3 ).
As a result, an extremely excellent magnetic flux density is obtained.

【0051】[実施例4]C:0.078%、Si:
3.30%、Mn:0.08%、Se:0.025%、
酸可溶性Al:0.025%、N:0.0084%、S
b:0.022%、Mo:0.014%、Bi:0.0
080%を含有する0.5m3 のスラブを1330℃で
加熱後直ちに熱延して2.3mm厚の熱延コイルとした。
1000℃の中間焼鈍を挟む二回冷延で0.220mm厚
とした後、860℃で脱炭焼鈍を行った。
[Example 4] C: 0.078%, Si:
3.30%, Mn: 0.08%, Se: 0.025%,
Acid-soluble Al: 0.025%, N: 0.0084%, S
b: 0.022%, Mo: 0.014%, Bi: 0.0
A 0.5 m 3 slab containing 080% was heated at 1330 ° C. and immediately hot rolled to give a hot rolled coil having a thickness of 2.3 mm.
After twice cold rolling with an intermediate anneal at 1000 ° C. sandwiched to a thickness of 0.220 mm, decarburization anneal was performed at 860 ° C.

【0052】次にMgOを主成分とする焼鈍分離材を塗
布した後、炉内容積が1.0m3 の仕上げ焼鈍炉に挿入
し、窒素:水素=3:1で構成された雰囲気ガスの流量
を0.1Nm3 /hと10.0Nm3 /hとして焼鈍した。
その後、二次被膜塗布を行った。雰囲気ガス流量/(炉
内容積−鋼板体積)と磁束密度B8 を表5に示す。
Next, after applying an annealing separation material containing MgO as a main component, it was inserted into a finishing annealing furnace having a furnace internal volume of 1.0 m 3 , and the flow rate of an atmosphere gas composed of nitrogen: hydrogen = 3: 1. Was annealed at 0.1 Nm 3 / h and 10.0 Nm 3 / h.
Then, a secondary coating was applied. Atmosphere gas flow rate / (furnace capacity - steel volume) and showing a magnetic flux density B 8 in Table 5.

【0053】[0053]

【表5】 [Table 5]

【0054】表5より明らかなように、雰囲気ガス流量
/(炉内容積−鋼板体積)を20.0Nm3 /(h・
3 )とすることで極めて優れた磁束密度が得られてい
る。
As is clear from Table 5, the atmospheric gas flow rate / (furnace internal volume-steel plate volume) was 20.0 Nm 3 / (h ·
m 3 ), an extremely excellent magnetic flux density is obtained.

【0055】[0055]

【発明の効果】以上説明した通り本発明は、Biを添加
含有した一方向性電磁鋼板の製造方法において、仕上げ
焼鈍における雰囲気ガス流量を調整することによって、
超高磁束密度一方向性電磁鋼板が得られるとともに、磁
区細分化処理後の鉄損特性も極めて優れており、工業的
に非常に価値の高いものといえる。
As described above, according to the present invention, in the method for producing a grain-oriented electrical steel sheet containing Bi, by adjusting the atmospheric gas flow rate in finish annealing,
The ultrahigh magnetic flux density unidirectional electrical steel sheet is obtained, and the iron loss characteristics after the magnetic domain refinement treatment are also extremely excellent, which is industrially very valuable.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi含有量と雰囲気ガス流量/(炉内容積−鋼
板体積)と磁束密度B8 の相関を示す図表である。
FIG. 1 is a table showing the correlation between Bi content, atmospheric gas flow rate / (furnace volume-steel plate volume), and magnetic flux density B 8 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 難波 英一 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Eiichi Namba 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo Shin Nippon Steel Co., Ltd. Hirohata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材として加熱した後熱延し、熱延板焼鈍後仕上げ冷延、
あるいは中間焼鈍を含む複数の冷延、あるいは熱延板焼
鈍後中間焼鈍を含む複数の冷延によって製品板厚に仕上
げた後に、脱炭焼鈍し、焼鈍分離材を塗布後、仕上焼鈍
をする超高磁束密度一方向性電磁鋼板の製造方法におい
て、仕上げ焼鈍における雰囲気ガス流量を以下に示す範
囲とすることを特徴とするB8 ≧1.92Tの超高磁束
密度一方向性電磁鋼板の製造方法。 雰囲気ガス流量/(炉内容積−鋼板体積)≧0.5Nm3
/(h・m3
1. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005 to 0.040%, acid-soluble Al: 0.015 to 0.040%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05%, balance: Fe and unavoidable impurities After heating with a slab as a starting material, hot rolling, hot-rolled sheet annealing and finish cold rolling,
Alternatively, after finishing the product sheet thickness by a plurality of cold rolling including intermediate annealing or a plurality of cold rolling including hot rolled sheet annealing and intermediate annealing, decarburization annealing, after applying an annealing separation material, finish annealing is performed. In the method for producing a high magnetic flux density unidirectional electrical steel sheet, the method for producing an ultrahigh magnetic flux density unidirectional electrical steel sheet having B 8 ≧ 1.92 T, characterized in that the atmospheric gas flow rate in finish annealing is set to the range shown below. . Atmospheric gas flow rate / (furnace volume-steel plate volume) ≧ 0.5 Nm 3
/ (H ・ m 3 )
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材とした請求項1記載の超高磁束密度一方向性電磁鋼板
の製造方法。
2. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005-0.040%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sn: 0.05-0.50%, Bi: 0.0005-0. 05% Balance: The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein a slab composed of Fe and unavoidable impurities is used as a starting material.
【請求項3】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sn:0.05〜0.50%、 Cu:0.01〜0.10%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材とした請求項1記載の超高磁束密度一方向性電磁鋼板
の製造方法。
3. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005-0.040%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sn: 0.05-0.50%, Cu: 0.01-0. 10%, Bi: 0.0005-0.05% The balance: The manufacturing method of the super-high magnetic flux density grain-oriented electrical steel sheet of Claim 1 which used the slab which consists of Fe and inevitable impurities as a starting material.
【請求項4】 重量%で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 Sおよび、またはSe:0.005〜0.040%、 酸可溶性Al:0.015〜0.040%、 N :0.0030〜0.0150%、 Sbおよび、またはMo:0.0030〜0.3%、 Bi:0.0005〜0.05% 残部:Feおよび不可避的不純物からなるスラブを出発
材とした請求項1記載の超高磁束密度一方向性電磁鋼板
の製造方法。
4. By weight%, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S and or Se: 0. 005-0.040%, acid-soluble Al: 0.015-0.040%, N: 0.0030-0.0150%, Sb and / or Mo: 0.0030-0.3%, Bi: 0. The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein a starting material is a slab containing the balance: Fe and unavoidable impurities.
JP15042395A 1995-06-16 1995-06-16 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3434936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15042395A JP3434936B2 (en) 1995-06-16 1995-06-16 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15042395A JP3434936B2 (en) 1995-06-16 1995-06-16 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH093541A true JPH093541A (en) 1997-01-07
JP3434936B2 JP3434936B2 (en) 2003-08-11

Family

ID=15496618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15042395A Expired - Lifetime JP3434936B2 (en) 1995-06-16 1995-06-16 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3434936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
WO2020067136A1 (en) 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2022186357A1 (en) 2021-03-03 2022-09-09 Jfeスチール株式会社 Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981223B2 (en) 2001-07-16 2011-07-19 Nippon Steel Corporation Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
WO2020067136A1 (en) 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
KR20210042144A (en) 2018-09-27 2021-04-16 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2022186357A1 (en) 2021-03-03 2022-09-09 Jfeスチール株式会社 Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method
KR20230136178A (en) 2021-03-03 2023-09-26 제이에프이 스틸 가부시키가이샤 Method for determining final annealing conditions for grain-oriented electrical steel sheets and method for manufacturing grain-oriented electrical steel sheets using the determination method

Also Published As

Publication number Publication date
JP3434936B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3527309B2 (en) Heating method of slab for ultra high magnetic flux density unidirectional electrical steel sheet
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3388116B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

EXPY Cancellation because of completion of term