JPH0935261A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0935261A
JPH0935261A JP15672395A JP15672395A JPH0935261A JP H0935261 A JPH0935261 A JP H0935261A JP 15672395 A JP15672395 A JP 15672395A JP 15672395 A JP15672395 A JP 15672395A JP H0935261 A JPH0935261 A JP H0935261A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
substrate
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15672395A
Other languages
Japanese (ja)
Inventor
Shinichi Ogawa
伸一 小川
Hiroshi Osawa
弘 大澤
Hideo Yashima
秀夫 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15672395A priority Critical patent/JPH0935261A/en
Priority to US08/621,450 priority patent/US5582878A/en
Publication of JPH0935261A publication Critical patent/JPH0935261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for producing a magnetic recording medium by which the sliding durability of the substrate of the medium and a magnetic head is improved. CONSTITUTION: When a magnetic recording medium is produced using a glass or silicon substrate, the substrate is textured by irradiation with laser beams from UV laser in a circular band shape before a magnetic layer, etc., are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置等の
磁気記録媒体の製造方法に関し、さらに詳しくは磁気デ
ィスク(以下、HDという)と磁気ヘッドとの間の摺動
耐久性を向上させた磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium such as a magnetic disk device, and more particularly, it improves sliding durability between a magnetic disk (hereinafter referred to as HD) and a magnetic head. The present invention relates to a method for manufacturing a magnetic recording medium.

【0002】[0002]

【従来の技術】磁気記録の高密度化の進歩はまさに日進
月歩の勢いであり、かつて10年で10倍といわれたハ
ードディスク・ドライブ(HDD)の記録密度向上速度
が最近では10年で100倍という声も聞かれている。
HDDは俗にウィンチェスター様式と呼ばれる、HD/
磁気ヘッド間の接触摺動−ヘッド浮上−接触摺動を基本
動作とするCSS(接触起動停止)方式が主流である。
この方式はHDDの高記録密度化を一気に加速した画期
的なものであるが、一方で深刻なトライボロジー上の課
題を持ち込む端緒にもなった。近年の記録密度の向上
は、ディスクの回転速度の増加と磁気ヘッドの浮上高さ
の低減を伴い、CSS方式における摺動耐久性/安定性
やHD表面の平滑性への要求はますます強まっている現
状である。磁気ヘッド/HD間の摺動耐久性を向上させ
る鍵は、材料強度向上と潤滑性も含めた摩擦係数低下に
あるが、HDの側で言えば、従来トップコート技術の検
討〔ダイヤモンドライクカーボン(DLC)保護膜、各
種塗布潤滑剤等〕と並んでHD表面の粗面化によって摩
擦係数を低減させる努力が払われてきた。これはテクス
チャ処理と呼ばれ、接触面積の実効的低減によって摩擦
係数を下げてCSS耐久性/安定性を高めることを目的
としたものである。粗面化は基本的にはHD表面に所定
範囲の高低差を有する凹凸を形成することである。この
テクスチャ処理はHD製造技術の重要な要素技術となっ
ている。
2. Description of the Related Art The progress of high-density magnetic recording has been steadily increasing, and the speed of improving the recording density of a hard disk drive (HDD), which was once said to be 10 times in 10 years, has recently been 100 times in 10 years. Voices have also been heard.
HDD is commonly referred to as Winchester style, HD /
The CSS (contact start / stop) method, which has a basic operation of contact sliding between magnetic heads, head levitation, and contact sliding, is the mainstream.
This method is an epoch-making method that accelerates the increase in the recording density of HDDs at the same time, but on the other hand, it has also become the beginning of introducing serious tribological problems. The recent increase in recording density is accompanied by an increase in disk rotation speed and a decrease in the flying height of the magnetic head, and the demand for CSS-based sliding durability / stability and HD surface smoothness is increasing. It is the present situation. The key to improving the sliding durability between the magnetic head and the HD is to lower the coefficient of friction, including the improvement in material strength and lubricity. However, from the HD perspective, the conventional topcoat technology [diamond-like carbon ( Efforts have been made to reduce the coefficient of friction by roughening the HD surface along with DLC (protective film, various coating lubricants, etc.). This is called texturing, and is intended to lower the coefficient of friction and increase CSS durability / stability by effectively reducing the contact area. The roughening is basically forming unevenness having a height difference within a predetermined range on the HD surface. This texture processing is an important elemental technology of HD manufacturing technology.

【0003】上記テクスチャ技術は、当然のことながら
基板材質と不可分の関係にあり、従来のNi−P被覆A
l基板の場合には、研磨粉等を用いた機械的研磨によっ
て凹凸を形成する手法が主流であった。また、ガラス基
板等ではリソグラフィー、或いはそれと印刷技法を組み
合わせたエッチング技術等が提案され、一部では実用化
されている。
[0003] The above-mentioned texture technique is, of course, inseparable from the material of the substrate.
In the case of 1 substrate, a method of forming irregularities by mechanical polishing using a polishing powder or the like has been mainly used. Further, for glass substrates and the like, lithography, etching techniques combining printing techniques with it, and the like have been proposed, and some have been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】テクスチャ技術全般に
言えることとして、精密な凹凸制御と並んで工程上の効
率性も必要要件であるが、両者はしばしば拮抗する関係
にあり、特に前述のようなHDDの高記録密度化が驚く
べき速さで進行している現今の状勢下では、従来技術は
所定仕様を満足しきれないだけではなく、もはや工夫や
改良の蓄積ではカバーし得ない様々な問題点を露呈しつ
つある。例えば、機械研磨法では既に微細加工制御の限
界付近にあり、凹凸の高低のみならず、ゾーンテクスチ
ャリング等で重要になるテクスチャ領域の精密制御でも
根本的な困難に遭遇している。具体的には一定の割合で
発生する所定範囲外の高低差を示す凹凸(過研磨、バリ
等)の発生や、テクスチャ境界のぼやけ等である。ま
た、リソグラフィ的手法は、精密制御の点では問題ない
ものの、工程の複雑さが避けられず、それが効率面での
アキレス腱になっている。他方、HDDの高記録容量
化、高品質化は必然的にHD製造環境の高いクリーン度
達成を包含するものであり、各種汚染物、塵埃の高いレ
ベルでの除去/排除が各工程に対する至上目標となって
いる現状である。この観点からすれば各工程が乾式であ
ることが望ましく、この乾式テクスチャリングに対して
大きな期待が持たれている。レーザ光を物質加工や測定
に応用する試みはレーザの発明当初から始まったと言え
るが、昨今のレーザ光源の発達/開発は基本特性やハン
ドリング性の目覚ましい向上をもたらし、高エネルギー
加工から超微細加工、精密測定まで利用技術の広い裾野
を形成している。レーザビームによって物質を成膜し、
或いは物質表面を加工するレーザアブレーション(爆
蝕)ないしレーザエッチングは80年代から盛んに検討
されている技術であるが、これによってテクスチャを施
す、所謂レーザテクスチャ技術が最近関心を集めている
(例えばUSP5062021、特開昭62−2097
88号公報)。これはレーザビームの特徴を生かして形
成する個々の表面凹凸の精密制御が可能である上、基本
的に乾式過程であるという利点がある。さらに基板材質
に合わせたレーザ種ないし波長、エネルギー密度を選択
できる自由度/汎用性も具備しているといえる。しかし
ながら、ガラス、珪素等の所謂代替基板の場合、レーザ
種ないし波長、エネルギー密度を限定しない単純なレー
ザビームの照射/アブレーションでは、飛散微粒子の再
付着や過蝕による凹凸形状の不整等が起り、クラック発
生やCSS特性を却って悪化させる等の問題を発生する
確率が高い。
As can be said of the texture technology in general, the efficiency of the process is a necessary requirement along with the precise unevenness control, but the two are often in an antagonistic relationship, and in particular, as described above, Under the current trend of high recording density of HDDs, which is proceeding at an amazing speed, the conventional technology cannot not only satisfy the specified specifications, but also various problems that can no longer be covered by accumulating ideas and improvements. The point is being revealed. For example, the mechanical polishing method is already near the limit of fine processing control, and not only the height of the unevenness but also the precision control of the texture area, which is important in zone texturing and the like, has encountered fundamental difficulties. Specifically, it is the occurrence of irregularities (overpolishing, burrs, etc.) that show height differences outside a predetermined range that occur at a fixed rate, and blurring of texture boundaries. In addition, although the lithographic technique has no problem in terms of precision control, the complexity of the process is inevitable, which is the Achilles tendon in terms of efficiency. On the other hand, higher recording capacity and higher quality of the HDD necessarily implies higher cleanliness of the HD manufacturing environment, and removal / elimination of various contaminants and dust at a high level is the highest goal for each process. It is the present situation. From this point of view, it is desirable that each process is dry, and there are great expectations for this dry texturing. Attempts to apply laser light to material processing and measurement can be said to have begun since the beginning of the invention of the laser, but the recent development / development of laser light sources has brought about remarkable improvements in basic characteristics and handling properties. It forms a wide base of application technology up to precise measurement. The material is deposited by laser beam,
Alternatively, laser ablation (erosion) or laser etching for processing a material surface has been actively studied since the 1980's, and a so-called laser texture technique for performing texturing by using the technique has recently attracted attention (for example, US Pat. No. 5,620,221). JP-A-62-2097
No. 88). This has the advantage that it is possible to precisely control the individual surface irregularities formed utilizing the characteristics of the laser beam and that it is basically a dry process. Further, it can be said that it has a degree of freedom / versatility that a laser type or wavelength and an energy density can be selected according to the substrate material. However, in the case of a so-called alternative substrate such as glass and silicon, irradiation / ablation of a simple laser beam that does not limit the laser type, wavelength, and energy density causes irregularities in irregularities due to reattachment of scattering fine particles or excessive corrosion, and the like. There is a high probability that problems such as cracks and CSS characteristics will be worsened.

【0005】[0005]

【課題を解決するための手段】本発明は、上記に鑑み提
案されたもので、ガラス基板又は珪素基板を用いた磁気
記録媒体の製造方法に関し、YAGレーザの高調波、エ
キシマレーザ等に代表される紫外線レーザを用い、基板
に対して当該レーザビームを輪帯状として照射すること
により、テクスチャ加工を施すことを特徴とする磁気記
録媒体の製造方法に関するものである。
The present invention has been proposed in view of the above, and relates to a method of manufacturing a magnetic recording medium using a glass substrate or a silicon substrate, and is represented by a harmonic of a YAG laser, an excimer laser, or the like. The present invention relates to a method for manufacturing a magnetic recording medium, characterized in that the substrate is irradiated with the laser beam in the form of a ring using an ultraviolet laser.

【0006】一般に、セラミックスや高分子材料等の物
質にレーザビームを照射する時、レーザビームのエネル
ギー密度が一定の閾値を越えると急激に加工深さが増大
する(図1に示すようなレーザダメージの非線形性)
が、その閾値以下の領域でパルスビーム照射を連続的に
施すと、コーン状構造体と呼ばれる円錐状突起物が形成
されることが知られている(例えばジャーナル・オブ・
アプライド・フィジックス誌、49巻、453頁、19
86年)。本発明者等は前述の問題に関して、レーザ照
射条件、照射雰囲気等について詳細に検討を加えた結
果、課題解決の要諦はレーザビームで形成される基板上
の凹凸の形状制御であり、レーザビームのエネルギー密
度分布を工夫することにより図2(A),(B)で示さ
れる所期形状の構造物を適宜に形成し得ることを見いだ
して本発明に至った。
Generally, when a material such as ceramics or polymer material is irradiated with a laser beam, if the energy density of the laser beam exceeds a certain threshold value, the working depth rapidly increases (laser damage as shown in FIG. 1). Non-linearity)
However, it is known that when the pulse beam irradiation is continuously performed in a region below the threshold value, a conical projection called a conical structure is formed (for example, Journal of
Applied Physics, 49, 453, 19
1986). Regarding the above-mentioned problems, the inventors of the present invention have made a detailed study on laser irradiation conditions, irradiation atmospheres, etc., and as a result, the key to solving the problem is the shape control of the unevenness on the substrate formed by the laser beam, The inventors have found that the structure having the desired shape shown in FIGS. 2A and 2B can be appropriately formed by devising the energy density distribution, and the present invention has been completed.

【0007】即ち、本発明では、YAGやエキシマ等に
よる紫外線レーザを輪帯状のビームに変えて基板に照射
することにより、図2(A)に示すような所期の形状を
有する突起部を形成でき、磁気ヘッド/HD間の起動−
摺動−浮上−摺動−停止を繰り返す所謂CSS特性に優
れたテクスチャ処理を基板に施すものである。図3に
は、本発明で用いられる輪帯状のレーザビームと従来の
スポット状レーザビームで加工されたガラス表面の図2
(A),(B)で示される凹凸形状の出現頻度を示す。
レーザビームのエネルギー密度が一定の値を越えると、
突起部〔図2(A)〕の出現頻度が急減する。スポット
状レーザビームを照射して基板に加工を施す場合、エネ
ルギーの集中が一定でないために凹凸の形成が不安定
で、本発明で求める所期の突起部を選択的に形成するこ
とが困難である。一方、本発明では、エネルギー密度の
分布が輪帯状となったレーザビームを基板に照射するた
め、形成される突起部の広がりがコントロールされる
上、爆蝕による堆積物が中央に集まり易くなって、より
高く、より形状ムラの少ない突起部が形成されるという
利点がある。レーザ光をこのような輪帯状ビームに整形
するには幾つかの手法がありそれぞれに長所を有する
が、総合的見地からアキシコンプリズムによる方法、マ
スクによる方法、グレーティングによって収束光を作る
方法等が本発明の場合に有用であることが判った。特に
前2者の場合にはアキシコンプリズムやマスクの選択、
ビーム照射の幾何学的条件、レーザエネルギ密度等の調
整により、形成される突起部の大きさやの形状制御を適
宜に行うことができる。突起部の加工は、輪帯状ビーム
の照射間隔が重ならない範囲で行うことが望ましい。ビ
ームが重なりあうと不定形の凹凸が形成され易くHDの
摺動耐久性が低下する。逆に、ビームの照射間隔を一定
以上に広げた場合、凹凸の形成されない領域が拡大し磁
気ヘッドとHDとの接触面積増加をもたらし摺動耐久性
が悪化する。同様に、突起部高さを一定以上の高さとし
た場合、磁気ヘッドとHDとの衝突が生じ易くなり、摺
動耐久性が悪化する。実用上(磁気記録媒体の基板表面
のテクスチャとして)に適した突起部の大きさは、外半
径1〜50μm、高さ1〜100nmが好ましく、この
突起部の基板表面に対する占有面積の割合は0.1〜9
9.9%であることが望ましい。尚、本発明はガラス基
板、珪素基板等を対象とするものであるが、このような
テクスチャ処理は磁性層或いは炭素保護層に対する粗面
化に応用することも可能である。また、従来のNi−P
被覆Al基板にも適用することができる。
That is, according to the present invention, a projection having a desired shape as shown in FIG. 2A is formed by irradiating a substrate with an ultraviolet laser such as YAG or excimer changed into a ring-shaped beam and irradiating the substrate. Yes, start-up between magnetic head and HD-
The substrate is subjected to a texture treatment which is excellent in so-called CSS characteristics in which sliding-floating-sliding-stop is repeated. FIG. 3 shows the glass surface processed by the annular laser beam used in the present invention and the conventional spot laser beam.
The appearance frequency of the uneven shape shown by (A) and (B) is shown.
When the energy density of the laser beam exceeds a certain value,
The frequency of appearance of the protrusion [FIG. 2 (A)] decreases sharply. When a substrate is processed by irradiating with a spot-shaped laser beam, the concentration of energy is not constant, so the formation of irregularities is unstable, making it difficult to selectively form the desired protrusions required by the present invention. is there. On the other hand, in the present invention, since the substrate is irradiated with a laser beam having an annular energy density distribution, the spread of the projections formed is controlled, and the deposits due to explosion erosion are easily collected in the center. However, there is an advantage that a protrusion having a higher height and less unevenness in shape is formed. There are several methods for shaping laser light into such a ring-shaped beam, and each has its advantages, but from a comprehensive point of view, methods such as an axicon prism method, a mask method, and a method of producing converged light by a grating are available. It has been found useful in the present case. Especially in the former two cases, selection of axicon prism and mask,
By adjusting the geometrical conditions of beam irradiation, the laser energy density, and the like, the size and shape of the protrusions to be formed can be controlled appropriately. It is desirable to process the protrusions within a range in which the irradiation intervals of the annular beams do not overlap. If the beams overlap with each other, irregular irregularities are likely to be formed and the sliding durability of the HD is deteriorated. On the contrary, when the irradiation interval of the beam is widened to a certain value or more, the area where no concavities and convexities are formed expands and the contact area between the magnetic head and the HD increases, which deteriorates the sliding durability. Similarly, when the height of the protrusion is set to a certain height or more, collision between the magnetic head and the HD easily occurs, and sliding durability deteriorates. The size of the protrusion suitable for practical use (as the texture of the substrate surface of the magnetic recording medium) is preferably an outer radius of 1 to 50 μm and a height of 1 to 100 nm, and the ratio of the area occupied by the protrusion to the substrate surface is 0. 1-9
It is desirable to be 9.9%. Although the present invention is intended for glass substrates, silicon substrates, etc., such texturing can also be applied to roughening a magnetic layer or a carbon protective layer. In addition, conventional Ni-P
It can also be applied to a coated Al substrate.

【0008】上記のようにガラス基板や珪素基板等に紫
外線レーザを輪帯状のビームに変えて基板に照射してテ
クスチャを施した後、下地層、磁性層等を順次成膜して
形成した磁気記録媒体は、優れた摺動耐久性を有し、高
い耐久性を求められるその使用に際してもクラック等を
生ずることがないので、高い信頼性を有する磁気ディス
ク装置等の磁気記録装置の作製に貢献することができ
る。尚、ガラス基板や珪素基板等の上に成膜する各層、
下地膜、磁性膜、保護膜、潤滑膜などは、特にその材質
や組成、成膜方法等を限定するものではなく、公知の材
料、公知の方法を適宜に選定、組み合わせて使用するこ
とができる。
As described above, a glass substrate, a silicon substrate, or the like is formed by converting an ultraviolet laser into a ring-shaped beam, irradiating the substrate to give a texture, and then sequentially forming an underlayer, a magnetic layer and the like to form a magnetic layer. The recording medium has excellent sliding durability and does not cause cracks or the like even when it is used, which requires high durability, so it contributes to the production of highly reliable magnetic recording devices such as magnetic disk devices. can do. Each layer formed on a glass substrate, a silicon substrate, or the like,
The undercoating film, magnetic film, protective film, lubricating film, etc. are not particularly limited in material, composition, film forming method, etc., and known materials and known methods can be appropriately selected and used in combination. .

【0009】[0009]

【実施例】以下、本発明の実施例を示す。尚、表面粗さ
の測定には触針式粗さ計を用い、スタイラス0.5μ
m、カットオフ0.25mmにて行なった。
EXAMPLES Examples of the present invention will be shown below. In addition, the stylus 0.5μ was used for the measurement of the surface roughness using a stylus type roughness meter.
m, cutoff 0.25 mm.

【0010】〈実施例1〉YAGレーザの第四高調波
(266nm)とアキシコンプリズムとを用い、ソーダ
ライムガラス基板表面にエネルギー密度0.2J/cm
2 、パルス幅20nsにて50パルス照射した。輪帯状
ビームの外径10μm、輪帯幅2μmであった。この結
果、Rp(突起部高さ)25nm、Rv(凹部深さ)≧
−1nm、外半径7μm、Sm(突起部平均間隔)〜2
5μmの表面突起が95%の割合で得られた。引き続
き、基板温度200℃にて下地層としてCr100n
m,磁性層としてCo17Cr4 Ta合金20nm、保護
層としてカーボン20nmを逐次スパッタ成膜し、さら
にPFPE(パーフルオロポリエーテル)系潤滑剤を塗
布成膜して実施例1の磁気記録媒体を作製した。
Example 1 Using a fourth harmonic (266 nm) of a YAG laser and an axicon prism, an energy density of 0.2 J / cm was applied to the surface of a soda-lime glass substrate.
2. 50 pulses were applied with a pulse width of 20 ns. The outer diameter of the annular beam was 10 μm and the annular width was 2 μm. As a result, Rp (protrusion height) 25 nm, Rv (recess depth) ≧
-1 nm, outer radius 7 μm, Sm (average spacing between protrusions) ~ 2
Surface protrusions of 5 μm were obtained at a rate of 95%. Subsequently, at a substrate temperature of 200 ° C., Cr100n was used as an underlayer.
m, a Co 17 Cr 4 Ta alloy 20 nm as a magnetic layer, and a carbon 20 nm as a protective layer are sequentially sputter-deposited, and a PFPE (perfluoropolyether) -based lubricant is applied to form a film to obtain the magnetic recording medium of Example 1. It was made.

【0011】〈実施例2〉KrFエキシマレーザ(24
8nm)とマスクとを用い、ソーダライムガラス基板表
面にエネルギー密度0.1J/cm2 、輪帯状ビームの
外径10μm,輪帯幅2μmの条件で、パルス幅15n
sのパルスビームを80回照射した結果、Rp23n
m、Rv≧−1nm、外半径6μm、Sm〜35μmの
表面突起を90%の割合で得た。引き続き、前記実施例
1と同様にして実施例2の磁気記録媒体を作製した。
Example 2 KrF excimer laser (24
8 nm) and a mask, and a pulse width of 15 n under the conditions of an energy density of 0.1 J / cm 2 , an annular beam outer diameter of 10 μm and an annular width of 2 μm on the surface of a soda lime glass substrate.
As a result of irradiating the s pulse beam 80 times, Rp23n
m, Rv ≧ -1 nm, outer radius 6 μm, and Sm-35 μm surface protrusions were obtained at a rate of 90%. Subsequently, a magnetic recording medium of Example 2 was manufactured in the same manner as in Example 1.

【0012】〈実施例3〉YAGレーザの第四高調波
(266nm)とアキシコンプリズムとを用い、基板を
珪素基板とし、レーザ光のエネルギー密度を0.02J
/cm2 とした以外は前記実施例1と同様にしてレーザ
光照射を行った結果、Rp27nm、Rv≧−1.5n
m、外半径5.5μm、Sm〜40μmの表面突起を8
5%の割合で得た。引き続き、前記実施例1と同様にし
て実施例3の磁気記録媒体を作製した。
<Embodiment 3> The fourth harmonic (266 nm) of a YAG laser and an axicon prism are used, the substrate is a silicon substrate, and the energy density of laser light is 0.02 J.
/ Except that the cm 2 is a result of to the laser beam irradiation in the same manner as in Example 1, Rp27nm, Rv ≧ -1.5n
m, outer radius 5.5 μm, 8 surface protrusions of Sm-40 μm
Obtained at a rate of 5%. Subsequently, a magnetic recording medium of Example 3 was manufactured in the same manner as in Example 1.

【0013】〈実施例4〉KrFエキシマレーザ(24
8nm)とマスクとを用い、基板を珪素基板とし、エネ
ルギー密度を0.03J/cm2 とした以外は前記実施
例2と同様にしてレーザ光照射を行った結果、Rp30
nm、Rv≧−2nm、外半径5.5μm、Sm〜40
μmの表面突起を80%の割合で得た。引き続き、前記
実施例1と同様にして実施例4の磁気記録媒体を作製し
た。
Example 4 KrF excimer laser (24
Laser beam irradiation was performed in the same manner as in Example 2 except that the substrate was a silicon substrate and the energy density was 0.03 J / cm 2 , using Rp30.
nm, Rv ≧ -2 nm, outer radius 5.5 μm, Sm-40
80 μm surface protrusions of μm were obtained. Subsequently, the magnetic recording medium of Example 4 was manufactured in the same manner as in Example 1.

【0014】〈比較例1〉YAGレーザの第四高調波
(266nm)の直径10μmのビームをソーダライム
ガラス基板表面にエネルギー密度0.2J/cm2 、パ
ルス幅20nsにて50パルス照射した。Rp28n
m、Rv≧−1nm、外半径7μm、Sm〜35μmの
表面突起は50%の割合で得られたが、残部はRv−1
00nmの凹形状であった。引き続き、前記実施例1と
同様にして比較例1の磁気記録媒体を作製した。
COMPARATIVE EXAMPLE 1 A YAG laser beam of the fourth harmonic (266 nm) having a diameter of 10 μm was applied to the surface of a soda-lime glass substrate for 50 pulses at an energy density of 0.2 J / cm 2 and a pulse width of 20 ns. Rp28n
m, Rv ≧ -1 nm, outer radius 7 μm, and surface protrusions with Sm to 35 μm were obtained at a rate of 50%, and the balance was Rv-1.
The concave shape was 00 nm. Subsequently, a magnetic recording medium of Comparative Example 1 was manufactured in the same manner as in Example 1.

【0015】〈比較例2〉YAGレーザの第四高調波
(266nm)の直径10μmのビームを珪素基板表面
にエネルギー密度0.02J/cm2 、パルス幅20n
sにて50パルス照射した。Rp25nm、Rv≧−1
nm、外半径5.5μm、Sm〜35μmの表面突起は
40%の割合で得られたが、残部はRv−150nmの
凹形状であった。引き続き、前記実施例1と同様にして
比較例2の磁気記録媒体を作製した。
<Comparative Example 2> A beam of a YAG laser fourth harmonic (266 nm) having a diameter of 10 μm was applied to the surface of a silicon substrate at an energy density of 0.02 J / cm 2 and a pulse width of 20 n.
S s was irradiated for 50 pulses. Rp25nm, Rv ≧ -1
nm, the outer radius was 5.5 μm, and the surface protrusions with Sm to 35 μm were obtained at a rate of 40%, and the rest were concave with Rv-150 nm. Subsequently, a magnetic recording medium of Comparative Example 2 was produced in the same manner as in Example 1 above.

【0016】〈比較例3〉KrFエキシマレーザ(24
8nm)とマスクとを用い、ソーダライムガラス基板表
面にエネルギー密度0.2J/cm2 、直径10μm、
パルス幅15nmのレーザビームで80回照射した結
果、Rp27nm、Rv≧−1nm、外半径6μm、S
m〜40μmの表面突起は40%の割合で得られたが、
残部はRv−150nmの凹形状であった。。引き続
き、前記実施例1と同様にして比較例3の磁気記録媒体
を作製した。
<Comparative Example 3> KrF excimer laser (24
8 nm) and a mask, an energy density of 0.2 J / cm 2 , a diameter of 10 μm, and a soda lime glass substrate surface,
As a result of irradiation with a laser beam having a pulse width of 15 nm 80 times, Rp27 nm, Rv ≧ -1 nm, outer radius 6 μm, S
The surface protrusions of m to 40 μm were obtained at a rate of 40%,
The rest was a concave shape of Rv-150 nm. . Subsequently, a magnetic recording medium of Comparative Example 3 was prepared in the same manner as in Example 1.

【0017】〈比較例4〉KrFエキシマレーザ(24
8nm)とマスクとを用い、珪素基板表面にエネルギー
密度0.03J/cm2 、直径10μm、パルス幅15
nmにて80回照射した結果、Rp23nm、Rv≧−
1nm、外半径5.5μm、Sm〜40μmの表面突起
は30%の割合で得られたが、残部はRv−100nm
の凹形状であった。引き続き、前記実施例1と同様にし
て比較例4の磁気記録媒体を作製した。
<Comparative Example 4> KrF excimer laser (24
8 nm) and a mask, the energy density is 0.03 J / cm 2 , the diameter is 10 μm, and the pulse width is 15 on the surface of the silicon substrate.
As a result of irradiating 80 times at 80 nm, Rp23 nm, Rv ≧ −
Surface protrusions having a diameter of 1 nm, an outer radius of 5.5 μm, and Sm of 40 μm were obtained at a rate of 30%, and the balance was Rv-100 nm.
It was a concave shape. Subsequently, a magnetic recording medium of Comparative Example 4 was produced in the same manner as in Example 1.

【0018】〈比較例5〉アルミ基板に従来の機械的テ
スクスチャを施し、Rp25nm、Rv−30nm以
上、Sm2.2μmとなるようにし、引き続き実施例1
と同様にして比較例5の磁気記録媒体を作製した。
<Comparative Example 5> A conventional mechanical texture is applied to an aluminum substrate so that Rp is 25 nm, Rv-30 nm or more, and Sm is 2.2 μm.
A magnetic recording medium of Comparative Example 5 was produced in the same manner as in.

【0019】表1に前記実施例1,2,3,4及び比較
例1,2,3,4,5の各磁気ディスクのCSS特性と
してのCSS10000回後のスティクション値を示
す。尚、CSS測定機は市販のCSSテスターを用い、
磁気ヘッドにはAl23−TiCスライダヘッドを用
いた。
Table 1 shows stiction values after CSS 10,000 times as CSS characteristics of the magnetic disks of Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4, 5. In addition, the CSS measuring machine uses a commercially available CSS tester,
An Al 2 O 3 —TiC slider head was used as the magnetic head.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より明らかなように本発明の実施例1
〜4の磁気記録媒体は比較例1〜5の磁気記録媒体と比
較してスティクション値が格段に低下し、従来技術によ
り作製されたディスクより優れたCSS特性を有してい
ることがわかる。
As is clear from Table 1, Example 1 of the present invention
It can be seen that the magnetic recording media of Nos. 4 to 4 have markedly lower stiction values as compared with the magnetic recording media of Comparative Examples 1 to 5, and have better CSS characteristics than the disks manufactured by the conventional technique.

【0022】以上本発明を実施例に基づいて説明した
が、本発明は上記実施例に限定されるものではなく、特
許請求の範囲に記載の構成を変更しない限りどのように
でも実施することができる。
Although the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments, and can be carried out in any manner as long as the configuration described in the claims is not changed. it can.

【0023】[0023]

【発明の効果】以上説明したように、本発明は、ガラス
基板、珪素基板等の上に下地層、磁性層、保護層、潤滑
層等を逐次成膜してなる磁気記録媒体(HD)の製造方
法に関し、レーザ光を用いて基板に所要形状の凹凸粗面
を形成するレーザテクスチャ技術を提供するものであ
る。本発明では、従来の機械テクスチャで問題となって
いた凹凸形状や深さの非制御性、バリの発生を完全に防
止できる。また、リソグラフィ技術のような多数の工程
とレジスト、洗浄液といった廃棄物の発生を伴わないた
め、設備コストの低減につながる。他方、従来のレーザ
加工法であるスポット状レーザビームでは、ガラス基
板、珪素基板等へのエネルギー集中が一定でないために
凹凸形状が不安定で、所期の突起形状を選択的に形成す
ることが困難であり、しばしば過大なアブレーションに
よる窪みが発生して薄肉で高い耐久性が求められる基板
にクラックを生じさせる原因ともなったが、輪帯状レー
ザビームを用いる本発明では、基板内のエネルギー密度
を輪帯状に分布させるため、形状むらの少ない突起形状
の卓越したテクスチャ加工が容易となる。この発明によ
り、高記録密度/高耐久性を要求される次世代HDにお
ける、高効率で制御性に優れたテクスチャ処理技術が得
られる。
As described above, the present invention provides a magnetic recording medium (HD) in which an underlayer, a magnetic layer, a protective layer, a lubricating layer and the like are sequentially formed on a glass substrate, a silicon substrate or the like. Regarding a manufacturing method, the present invention provides a laser texture technique for forming a roughened surface having a desired shape on a substrate by using a laser beam. According to the present invention, it is possible to completely prevent the non-controllability of the uneven shape and the depth and the occurrence of burrs, which are problems in the conventional mechanical texture. Moreover, since many processes such as lithography technology and generation of waste such as resist and cleaning liquid are not involved, the facility cost can be reduced. On the other hand, with a spot-shaped laser beam, which is a conventional laser processing method, the uneven shape is unstable because the energy concentration on the glass substrate, silicon substrate, etc. is not constant, and the desired projection shape can be selectively formed. Although it is difficult and often causes dents due to excessive ablation to cause cracks in a substrate that is thin and requires high durability, in the present invention using a ring-shaped laser beam, the energy density in the substrate is reduced. Since it is distributed in the shape of a band, it is easy to perform outstanding texturing of protrusions with less unevenness. According to the present invention, a texture processing technique with high efficiency and excellent controllability can be obtained in a next-generation HD requiring high recording density and high durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板加工におけるレーザエネルギ密度と加工深
さとの関係を示す相関図である。
FIG. 1 is a correlation diagram showing the relationship between laser energy density and processing depth in substrate processing.

【図2】本発明において基板に形成されるテクスチャの
拡大側面図であり、(A)本発明において形成される突
起部の形状、(B)加工閾値以上のエネルギー密度で形
成される凹部の形状である。
FIG. 2 is an enlarged side view of a texture formed on a substrate in the present invention, (A) a shape of a protrusion formed in the present invention, and (B) a shape of a recess formed with an energy density equal to or higher than a processing threshold. Is.

【図3】輪帯状レーザビームとスポット状レーザビーム
とでソーダライムガラス表面に形成されるテクスチャの
相違を示すもので、図2で示す凹凸形状の割合と基板に
照射されるレーザエネルギー密度との関係を示す相関図
である。
FIG. 3 shows the difference in texture formed on the surface of soda lime glass between the ring-shaped laser beam and the spot-shaped laser beam, and shows the ratio of the uneven shape shown in FIG. 2 and the laser energy density applied to the substrate. It is a correlation diagram which shows a relationship.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板又は珪素基板を用いた磁気記
録媒体の製造方法において、磁性層等の成膜に先立っ
て、紫外線レーザを用い、基板に対して当該レーザビー
ムを輪帯状として照射することにより、テクスチャ加工
を施すことを特徴とする磁気記録媒体の製造方法。
1. A method of manufacturing a magnetic recording medium using a glass substrate or a silicon substrate, wherein an ultraviolet laser is used to irradiate the substrate with the laser beam in a ring shape prior to film formation of a magnetic layer or the like. A method for manufacturing a magnetic recording medium, characterized in that:
【請求項2】 アキシコンプリズムを透過させて得た輪
帯状ビームのレーザ光を照射することを特徴とする請求
項1記載の磁気記録媒体の製造方法。
2. The method of manufacturing a magnetic recording medium according to claim 1, wherein a laser beam of an annular beam obtained by passing through the axicon prism is irradiated.
【請求項3】 マスクの介在によって得た輪帯状ビーム
のレーザ光を照射することを特徴とする請求項1記載の
磁気記録媒体の製造方法。
3. A method for manufacturing a magnetic recording medium according to claim 1, wherein laser light of a ring-shaped beam obtained by interposing a mask is irradiated.
【請求項4】 レーザビームによって基板表面に形成さ
れる突起部の大きさが、外半径1〜50μm、高さ1〜
100nmであり、上記突起部の基板表面に対する占有
面積の割合が0.1〜99.9%であることを特徴とす
る請求項1又は2又は3記載の磁気記録媒体の製造方
法。
4. The size of the protrusion formed on the substrate surface by the laser beam has an outer radius of 1 to 50 μm and a height of 1 to
4. The method for manufacturing a magnetic recording medium according to claim 1, wherein the thickness of the magnetic recording medium is 100 nm, and the ratio of the area occupied by the protrusion to the substrate surface is 0.1 to 99.9%.
JP15672395A 1995-03-24 1995-06-01 Production of magnetic recording medium Pending JPH0935261A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15672395A JPH0935261A (en) 1995-03-24 1995-06-01 Production of magnetic recording medium
US08/621,450 US5582878A (en) 1995-03-24 1996-03-25 Process for producing magnetic recording medium

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8999295 1995-03-24
JP7-89992 1995-05-18
JP14241195 1995-05-18
JP7-142411 1995-05-18
JP15672395A JPH0935261A (en) 1995-03-24 1995-06-01 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0935261A true JPH0935261A (en) 1997-02-07

Family

ID=27306289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15672395A Pending JPH0935261A (en) 1995-03-24 1995-06-01 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0935261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470476B2 (en) * 2002-10-23 2008-12-30 Hoya Corporation Glass substrate for magnetic recording medium and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470476B2 (en) * 2002-10-23 2008-12-30 Hoya Corporation Glass substrate for magnetic recording medium and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5582878A (en) Process for producing magnetic recording medium
US6147322A (en) Laser texturing magnetic recording medium with ultra-fine texture pattern
JPH0935261A (en) Production of magnetic recording medium
JPH09237419A (en) Production of magnetic recording medium
JPH097167A (en) Production of magnetic recording medium
JPH0935257A (en) Production of magnetic recording medium
JPH03252922A (en) Magnetic disk device, magnetic recording medium and production of magnetic recording medium
JPH10112022A (en) Production of magnetic recording medium
JPH0877554A (en) Magnetic recording medium and substrate
JP3629275B2 (en) Method for forming texture in magnetic recording medium by laser irradiation using multiple lens focusing
US5945197A (en) Laser texturing of magnetic recording medium using multiple lens focusing
JPH1196535A (en) Magnetic recording medium and its production
JPH09180177A (en) Magnetic recording medium and magnetic disk device
KR100378496B1 (en) Laser texturing of magnetic recording medium using multiple lens focusing
JP2000099942A (en) Magnetic disk and substrate for magnetic disk
JPH1064055A (en) Magnetic recording medium
JPH09330515A (en) Magnetic recording medium and manufacture thereof
EP0962916A1 (en) Laser texturing of magnetic recording medium using multiple lens focusing
JPH1166551A (en) Magnetic recording medium and its manufacture
JPH1166555A (en) Manufacture of magnetic recording medium
JPH10320761A (en) Magnetic recording medium and its production
JPH087863B2 (en) Method of manufacturing magnetic recording medium
JPH09231559A (en) Substrate for magnetic recording medium, its manufacture and magnetic recording medium
JPH08279135A (en) Magnetic recording medium
JPH10105954A (en) Magnetic recording medium