JPH0935257A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0935257A
JPH0935257A JP15672295A JP15672295A JPH0935257A JP H0935257 A JPH0935257 A JP H0935257A JP 15672295 A JP15672295 A JP 15672295A JP 15672295 A JP15672295 A JP 15672295A JP H0935257 A JPH0935257 A JP H0935257A
Authority
JP
Japan
Prior art keywords
laser
substrate
magnetic recording
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15672295A
Other languages
Japanese (ja)
Inventor
Shinichi Ogawa
伸一 小川
Hiroshi Osawa
弘 大澤
Hideo Yashima
秀夫 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15672295A priority Critical patent/JPH0935257A/en
Priority to US08/621,450 priority patent/US5582878A/en
Publication of JPH0935257A publication Critical patent/JPH0935257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To provide a method for producing a magnetic recording medium by which the sliding durability of the substrate of the medium and a magnetic head is improved. CONSTITUTION: When a magnetic recording medium is produced using a glass substrate, the substrate is textured by continuous irradiation with pulsating laser beams from UV laser at energy density between 0.01J/cm<2> and working threshold value before a magnetic layer, etc., are formed. The irradiation is repeated 2-1000 times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置等の
磁気記録媒体の製造方法に関し、さらに詳しくは磁気デ
ィスク(以下、HDという)と磁気ヘッドとの摺動耐久
性を向上させた磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium such as a magnetic disk device, and more particularly to a magnetic recording having improved sliding durability between a magnetic disk (hereinafter referred to as HD) and a magnetic head. The present invention relates to a method of manufacturing a medium.

【0002】[0002]

【従来の技術】磁気記録の高密度化の進歩はまさに日進
月歩の勢いであり、かつて10年で10倍といわれたハ
ードディスク・ドライブ(HDD)の記録密度向上速度
が最近では10年で100倍という声も聞かれている。
HDDは俗にウィンチェスター様式と呼ばれる、HD/
磁気ヘッド間の接触摺動−ヘッド浮上−接触摺動を基本
動作とするCSS(接触起動停止)方式が主流である。
この方式はHDDの高記録密度化を一気に加速した画期
的なものであるが、一方で深刻なトライポロジー上の課
題を持ち込む端緒にもなった。近年の記録密度の向上
は、ディスクの回転速度の増加と磁気ヘッドの浮上高さ
の低減を伴い、CSS方式における摺動耐久性/安定性
やHD表面の平滑性への要求はますます強まっている現
状である。磁気ヘッド/HD間の摺動耐久性を向上させ
る鍵は、材料強度向上と潤滑性も含めた摩擦係数低下に
あるが、HDの側でいえば、従来トップコート技術の検
討(ダイヤモンドライクカーボン(DLC)保護膜、各
種塗布潤滑剤等)と並んでHD表面の粗面化によって摩
擦係数を低減させる努力が払われてきた。これはテクス
チャ処理と呼ばれ、接触面積の実効的低減によって摩擦
係数を下げてCSS耐久性/安定性を高めることを目的
としたものである。粗面化は基本的にはHD表面に所定
範囲の高低差を有する凹凸を形成することである。この
テクスチャ処理はHD製造における不可決の要素技術と
なっている。
2. Description of the Related Art The progress of high-density magnetic recording has been steadily increasing, and the speed of improving the recording density of a hard disk drive (HDD), which was once said to be 10 times in 10 years, has recently been 100 times in 10 years. Voices have also been heard.
HDD is commonly referred to as Winchester style, HD /
The CSS (contact start / stop) method, which has a basic operation of contact sliding between magnetic heads, head levitation, and contact sliding, is the mainstream.
This method is an epoch-making method that accelerates the increase in the recording density of HDDs at the same time, but on the other hand, it has also become the beginning of bringing serious tribological problems. The recent increase in recording density is accompanied by an increase in disk rotation speed and a decrease in the flying height of the magnetic head, and the demand for CSS-based sliding durability / stability and HD surface smoothness is increasing. It is the present situation. The key to improving the sliding durability between the magnetic head and the HD is the improvement of the material strength and the reduction of the friction coefficient including the lubricity. However, from the HD side, the conventional top coat technology is considered (diamond-like carbon ( Efforts have been made to reduce the friction coefficient by roughening the HD surface along with DLC) protective film, various coating lubricants, etc.). This is called texturing, and is intended to lower the coefficient of friction and increase CSS durability / stability by effectively reducing the contact area. The roughening is basically forming unevenness having a height difference within a predetermined range on the HD surface. This texture processing is an indispensable elemental technology in HD manufacturing.

【0003】上記テクスチャ技術は、当然のことながら
基板材質と不可分の関係にあり、従来のNi−P被覆A
l基板の場合には、研磨粉等を用いた機械的研磨によっ
て凹凸を形成する手法が主流であった。また、ガラス基
板等ではリソグラフィー、或いはそれと印刷技法を組み
合わせたエッチング技術等が提案され、一部では実用化
されている。
[0003] The above-mentioned texture technique is, of course, inseparable from the material of the substrate.
In the case of 1 substrate, a method of forming irregularities by mechanical polishing using a polishing powder or the like has been mainly used. Further, for glass substrates and the like, lithography, etching techniques combining printing techniques with it, and the like have been proposed, and some have been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】テクスチャ技術全般に
言えることとして、精密な凹凸制御と並んで工程上の効
率性も必要要件であるが、両者はしばしば拮抗する関係
にあり、特に前述のようなHDDの高記録密度化が驚く
べき速さで進行している現今の状勢下では、従来技術は
所定仕様を満足しきれないだけではなく、もはや工夫や
改良の蓄積ではカバーし得ない様々な問題点を露呈しつ
つある。例えば、機械研磨法では既に微細加工制御の限
界付近にあり、凹凸の高低のみならず、ゾーンテクスチ
ャリング等で重要になるテクスチャ領域の精密制御でも
根本的な困難に遭遇している。具体的には一定の割合で
発生する所定範囲外の高低差を示す凹凸(過研磨、バリ
等)の発生や、テクスチャ境界のぼやけ等である。ま
た、リソグラフィ的手法は、精密制御の点では問題ない
ものの、工程の複雑さが避けられず、それが効率面での
アキレス腱になっている。他方、HDDの高記録容量
化、高品質化は必然的にHD製造環境の高いクリーン度
達成を包含するものであり、各種汚染物、塵埃の高いレ
ベルでの除去/排除が各工程に対する至上目標となって
いる現状である。この観点からすれば各工程が乾式であ
ることが望ましく、この乾式テクスチャリングに対して
大きな期待が持たれている。レーザ光を物質加工や測定
に応用する試みはレーザの発明当初から始まったと言え
るが、昨今のレーザ光源の発達/開発は基本特性やハン
ドリング性の目覚ましい向上をもたらし、高エネルギー
加工から超微細加工、精密測定まで利用技術の広い裾野
を形成している。レーザビームによって物質を成膜し、
或いは物質表面を加工するレーザアブレーション(爆
蝕)ないしレーザエッチングは80年代から盛んに検討
されている技術であるが、これによってテクスチャを施
す、所謂レーザテクスチャ技術が最近関心を集めている
(例えばUSP5062021、特開昭62−2097
98号公報)。これはレーザビームの特徴を生かして形
成する個々の表面凹凸の精密制御が可能である上、基本
的に乾式過程であるという利点がある。さらに基板材質
に合わせたレーザ種ないし波長、エネルギー密度を選択
できる自由度/汎用性も具備しているといえる。しかし
ながら、ガラス、珪素等の所謂代替基板の場合、レーザ
種ないし波長、エネルギー密度を限定しない単純なレー
ザビームの照射/アブレーションでは、飛散微粒子の再
付着や過蝕による凹凸形状の不整等が起り、クラック発
生やCSS特性を却って悪化させる等の問題を発生する
確率が高い。
As can be said of the texture technology in general, the efficiency of the process is a necessary requirement along with the precise unevenness control, but the two are often in an antagonistic relationship, and in particular, as described above, Under the current trend of high recording density of HDDs, which is proceeding at an amazing speed, the conventional technology cannot not only satisfy the specified specifications, but also various problems that can no longer be covered by accumulating ideas and improvements. The point is being revealed. For example, the mechanical polishing method is already near the limit of fine processing control, and not only the height of the unevenness but also the precision control of the texture area, which is important in zone texturing and the like, has encountered fundamental difficulties. Specifically, it is the occurrence of irregularities (overpolishing, burrs, etc.) that show height differences outside a predetermined range that occur at a fixed rate, and blurring of texture boundaries. In addition, although the lithographic technique has no problem in terms of precision control, the complexity of the process is inevitable, which is the Achilles tendon in terms of efficiency. On the other hand, higher recording capacity and higher quality of the HDD necessarily implies higher cleanliness of the HD manufacturing environment, and removal / elimination of various contaminants and dust at a high level is the highest goal for each process. It is the present situation. From this point of view, it is desirable that each process is dry, and there are great expectations for this dry texturing. Attempts to apply laser light to material processing and measurement can be said to have begun since the beginning of the invention of the laser, but the recent development / development of laser light sources has brought about remarkable improvements in basic characteristics and handling properties. It forms a wide base of application technology up to precise measurement. The material is deposited by laser beam,
Alternatively, laser ablation (erosion) or laser etching for processing a material surface has been actively studied since the 1980's, and a so-called laser texture technique for performing texturing by using the technique has recently attracted attention (for example, US Pat. No. 5,620,221). JP-A-62-2097
No. 98). This has the advantage that it is possible to precisely control the individual surface irregularities formed utilizing the characteristics of the laser beam and that it is basically a dry process. Further, it can be said that it has a degree of freedom / versatility that a laser type or wavelength and an energy density can be selected according to the substrate material. However, in the case of a so-called alternative substrate such as glass and silicon, irradiation / ablation of a simple laser beam that does not limit the laser type, wavelength, and energy density causes irregularities in irregularities due to reattachment of scattering fine particles or excessive corrosion, and the like. There is a high probability that problems such as cracks and CSS characteristics will be worsened.

【0005】[0005]

【課題を解決するための手段】本発明は、上記に鑑み提
案されたもので、ガラス基板を用いた磁気記録媒体の製
造方法において、磁性層や保護層等の成膜に先だって、
YAGレーザの高調波、エキシマレーザ等に代表される
紫外線レーザを用い、基板に対して0.01J/cm2
以上加工閾値以下のエネルギー密度の当該レーザパルス
ビームを2回以上1000回以下連続照射することによ
り、テクスチャ加工を施すことを特徴とする磁気記録媒
体の製造方法に関するものである。
The present invention has been proposed in view of the above, and in a method of manufacturing a magnetic recording medium using a glass substrate, prior to forming a magnetic layer or a protective layer,
0.01 J / cm 2 with respect to the substrate by using a harmonic of YAG laser and an ultraviolet laser typified by an excimer laser
The present invention relates to a method for manufacturing a magnetic recording medium, characterized in that texture processing is performed by continuously irradiating the laser pulse beam having an energy density equal to or less than a processing threshold value twice or more and 1000 times or less.

【0006】一般に、セラミックスや高分子材料等の物
質にレーザビームを照射する時、レーザビームのエネル
ギー密度が一定の閾値を越えると急激に加工深さが増大
する(図1に示すようなレーザダメージの非線形性)
が、その閾値以下の領域でパルスビーム照射を連続的に
施すと、コーン状構造体と呼ばれる円錐状突起物が形成
されることが知られている(例えばジャーナル・オブ・
アプライド・フィジックス誌、49巻、453頁、19
86年)。本発明者等は前述の問題に関して、レーザ照
射条件、照射雰囲気等について詳細に検討を加えた結
果、課題解決の要諦はレーザビームで形成される基板上
の凹凸の形状制御であり、レーザビームのエネルギー密
度分布を工夫することにより図2(A),(B)で示さ
れる所期形状の構造物を適宜に形成し得ることを見いだ
して本発明に至ったものである。
Generally, when a material such as ceramics or polymer material is irradiated with a laser beam, if the energy density of the laser beam exceeds a certain threshold value, the working depth rapidly increases (laser damage as shown in FIG. 1). Non-linearity)
However, it is known that when the pulse beam irradiation is continuously performed in a region below the threshold value, a conical projection called a conical structure is formed (for example, Journal of
Applied Physics, 49, 453, 19
1986). Regarding the above-mentioned problems, the inventors of the present invention have made a detailed study on laser irradiation conditions, irradiation atmospheres, etc., and as a result, the key to solving the problem is the shape control of the unevenness on the substrate formed by the laser beam, The present invention has been completed by discovering that the structure having the desired shape shown in FIGS. 2A and 2B can be appropriately formed by devising the energy density distribution.

【0007】即ち、本発明では、YAGやエキシマ等に
よる紫外線レーザを0.01J/cm2 以上加工閾値以
下のエネルギー密度で2回以上1000回以下パルス状
に基板に連続照射することにより、図2(A)に示すよ
うな所期の形状を有する突起部を形成でき、磁気ヘッド
/HD間の起動−摺動−浮上−摺動−停止を繰り返す所
謂CSS特性に優れたテクスチャ処理を基板に施すもの
である。尚、レーザパルスビームを1000回以上連続
照射することはスループットの関係上、好ましくない。
図3には、本発明で用いられるレーザパルスビームとレ
ーザシングルビームで加工されたガラス表面の、図2
(A),(B)で示される凹凸形状の出現頻度を示す。
レーザビームのエネルギー密度が一定の値を越えると、
突起部〔図2(A)〕の出現頻度が急減する。レーザシ
ングルビームを照射して基板に加工を施す場合、加工閾
値を越える過度のエネルギーの集中が必要で、本発明で
求める所期の突起部を選択的に形成することが困難であ
る。一方、本発明では、レーザパルスビームを連続的に
基板に照射するため、0.01J/cm2 以上加工閾値
以下のエネルギー密度のレーザ照射でも十分凹凸形状が
形成されるばかりか、突起部の大きさや出現頻度を選択
的に設定できる利点がある。0.01J/cm2 より小
さいエネルギー密度でも加工自体は可能であるが、十分
に大きい突起部が得られないため、実用上(磁気記録媒
体の基板表面のテクスチャとして)適していない。突起
部の加工は、レーザビームの照射間隔が重ならない範囲
で行うことが望ましい。ビームが重なりあうと不定形の
凹凸が形成され易くHDの摺動耐久性が低下する。逆
に、ビームの照射間隔を一定以上に広げた場合、凹凸の
形成されない領域が拡大し磁気ヘッドとHDとの接触面
積増加をもたらし摺動耐久性が悪化する。同様に、突起
部高さを一定以上の高さとした場合、磁気ヘッドとHD
との衝突が生じ易くなり、摺動耐久性が悪化する。磁気
記録媒体としての基板表面に形成される突起部の大きさ
は、外半径1〜50μm、高さ1〜100nmが好まし
く、この突起部の基板表面に対する占有面積の割合が
0.1〜99.9%であることが望ましい。尚、本発明
は本来レーザテクスチャリングを施し難いガラス基板を
対象とするものであるが、このようなテクスチャ処理は
磁性層或いは炭素保護膜に対する粗面化に応用すること
も可能である。また、従来のNi−P被覆Al基板、珪
素基板等にも適用することができる。
That is, according to the present invention, an ultraviolet laser of YAG, excimer or the like is continuously irradiated to the substrate in a pulse form at an energy density of 0.01 J / cm 2 or more and a processing threshold value or less for 2 times or more and 1000 times or less. The substrate is subjected to a texture treatment which is capable of forming a protrusion having an intended shape as shown in (A) and which repeats start-sliding-floating-sliding-stop between the magnetic head and HD, which is so-called excellent CSS characteristics. It is a thing. It is not preferable to continuously irradiate the laser pulse beam 1000 times or more in terms of throughput.
FIG. 3 shows the glass surface processed by the laser pulse beam and the laser single beam used in the present invention.
The appearance frequency of the uneven shape shown by (A) and (B) is shown.
When the energy density of the laser beam exceeds a certain value,
The frequency of appearance of the protrusion [FIG. 2 (A)] decreases sharply. When a substrate is processed by irradiating a laser single beam, it is necessary to concentrate excessive energy exceeding a processing threshold value, and it is difficult to selectively form desired projections required by the present invention. On the other hand, in the present invention, since the substrate is continuously irradiated with the laser pulse beam, not only the unevenness is sufficiently formed even by the laser irradiation with the energy density of 0.01 J / cm 2 or more and the processing threshold or less, but also the size of the protrusion is increased. There is an advantage that the appearance frequency can be set selectively. Although the processing itself is possible even with an energy density of less than 0.01 J / cm 2, it is not suitable for practical use (as the texture of the substrate surface of the magnetic recording medium) because a sufficiently large protrusion cannot be obtained. It is desirable to process the protrusions in a range where the laser beam irradiation intervals do not overlap. If the beams overlap with each other, irregular irregularities are likely to be formed and the sliding durability of the HD is deteriorated. On the contrary, when the irradiation interval of the beam is widened to a certain value or more, the area where no concavities and convexities are formed expands and the contact area between the magnetic head and the HD increases, which deteriorates the sliding durability. Similarly, if the height of the protrusion is a certain height or more, the magnetic head and HD
And the sliding durability is deteriorated. The size of the protrusion formed on the surface of the substrate as the magnetic recording medium is preferably an outer radius of 1 to 50 μm and a height of 1 to 100 nm, and the ratio of the area occupied by the protrusion to the substrate surface is 0.1 to 99. 9% is desirable. Although the present invention is intended for a glass substrate which is originally difficult to be subjected to laser texturing, such a texturing can be applied to roughening a magnetic layer or a carbon protective film. It can also be applied to conventional Ni-P coated Al substrates, silicon substrates, and the like.

【0008】上記のようにガラス基板に紫外線レーザを
用いて0.01J/cm2 以上加工閾値以下のエネルギ
ー密度で照射してテクスチャを施した後、下地層、磁性
層等を順次成膜して形成した磁気記録媒体は、優れた摺
動耐久性を有し、高い耐久性を求められるその使用に際
してもクラック等を生ずることがないので、高い信頼性
を有する磁気ディスク装置等の磁気記録装置の作製に貢
献することができる。尚、ガラス基板上に成膜する各
層、下地膜、磁性膜、保護膜、潤滑膜などは、特にその
材質や組成、成膜方法等を限定するものではなく、公知
の材料、公知の方法を適宜に選定、組み合わせて使用す
ることができる。
As described above, a glass substrate is irradiated with an ultraviolet laser at an energy density of 0.01 J / cm 2 or more and an energy density of a processing threshold or less and textured, and then a base layer, a magnetic layer, and the like are sequentially formed. The formed magnetic recording medium has excellent sliding durability and does not cause cracks or the like even when it is used for which high durability is required. Therefore, magnetic recording devices such as magnetic disk devices having high reliability can be used. Can contribute to fabrication. In addition, each layer, base film, magnetic film, protective film, lubricating film, and the like formed on the glass substrate are not particularly limited in terms of material, composition, film forming method, and the like, and known materials and known methods can be used. It can be appropriately selected and used in combination.

【0009】[0009]

【実施例】以下、本発明の実施例を示す。尚、粗さの測
定は触針式の粗さ計を用い、スタイラス0.5μm、カ
ットオフ0.25mmにて行なった。
EXAMPLES Examples of the present invention will be shown below. The roughness was measured using a stylus type roughness meter with a stylus of 0.5 μm and a cutoff of 0.25 mm.

【0010】〈実施例1〉ソーダライムガラス基板表面
に、YAGレーザの第四高調波(266nm)の直径1
0μmのビームをエネルギー密度0.05J/cm2
パルス幅20nsして100パルス照射した。その結
果、Rp(突起部高さ)25nm、Rv(凹部深さ)≧
−1nm、外半径7μm、Sm(突起部平均間隔)〜2
5μmの表面突起が60%の割合で得られた。引き続
き、基板温度200℃にて下地層としてCr100n
m、磁性層としてCo17Cr4 Ta合金20nm、保護
層としてカーボン20nmを逐次スパッタ成膜し、さら
にPFPE(パーフルオロポリエーテル)系潤滑剤を塗
布成膜して実施例1の磁気記録媒体を作製した。
Example 1 On the surface of a soda lime glass substrate, the diameter 1 of the fourth harmonic (266 nm) of the YAG laser was measured.
0 μm beam with an energy density of 0.05 J / cm 2 ,
Irradiation was performed for 100 pulses with a pulse width of 20 ns. As a result, Rp (protrusion height) 25 nm, Rv (recess depth) ≧
-1 nm, outer radius 7 μm, Sm (average spacing between protrusions) ~ 2
Surface protrusions of 5 μm were obtained at a rate of 60%. Subsequently, at a substrate temperature of 200 ° C., Cr100n was used as an underlayer.
m, a Co 17 Cr 4 Ta alloy 20 nm as a magnetic layer, and a carbon 20 nm as a protective layer are sequentially sputter-deposited, and a PFPE (perfluoropolyether) -based lubricant is further applied to form a film to obtain the magnetic recording medium of Example 1. It was made.

【0011】〈実施例2〉KrF(248nm)エキシ
マレーザとマスクとを用い、ソーダライムガラス表面に
エネルギー密度0.02J/cm2 、パルス幅15ns
のパルスビームを80回連続的に照射した。その結果、
Rp20nm、Rv≧−1nm、外半径6μm、Sm〜
35μmの表面突起が70%の割合で得られた。引き続
き、前記実施例1と同様にして実施例2の磁気記録媒体
を作製した。
Example 2 Using a KrF (248 nm) excimer laser and a mask, an energy density of 0.02 J / cm 2 and a pulse width of 15 ns were applied to the surface of soda lime glass.
The continuous pulse beam was irradiated 80 times. as a result,
Rp20 nm, Rv ≧ -1 nm, outer radius 6 μm, Sm-
A surface protrusion of 35 μm was obtained at a rate of 70%. Subsequently, a magnetic recording medium of Example 2 was manufactured in the same manner as in Example 1.

【0012】〈比較例1〉YAGレーザの第四高調波
(266nm)の直径10μmのビームをソーダライム
ガラス基板表面にエネルギー密度5J/cm2 にて1パ
ルス照射した結果、外半径8μm、Rv−100nmの
凹形〔図2(B)〕が形成された。引き続き、前記実施
例1と同様にして比較例1の磁気記録媒体を作製した。
COMPARATIVE EXAMPLE 1 A YAG laser fourth harmonic (266 nm) beam having a diameter of 10 μm was applied to the surface of a soda-lime glass substrate for one pulse at an energy density of 5 J / cm 2, and as a result, an outer radius was 8 μm and Rv- A 100 nm concave shape [FIG. 2 (B)] was formed. Subsequently, a magnetic recording medium of Comparative Example 1 was manufactured in the same manner as in Example 1.

【0013】〈比較例2〉アルミ基板に従来の機械的テ
クスチャ法を施し、Rp26nm、Rv−30nm以
上、Sm2.2μmとなるようにし、引き続き、前記実
施例1と同様にして比較例2の磁気記録媒体を作製し
た。
<Comparative Example 2> An aluminum substrate was subjected to a conventional mechanical texture method so as to have Rp of 26 nm, Rv-30 nm or more and Sm of 2.2 μm, and subsequently, in the same manner as in Example 1, the magnetic property of Comparative Example 2 was determined. A recording medium was produced.

【0014】表1に前記実施例1,2及び比較例1,2
の各磁気ディスクのCSS特性としてのCSS1000
0回後のスティクション値を示す。尚、CSS測定機は
市販のCSSテスターを用い、磁気ヘッドにはAl2
3−TiCスライダーヘッドを用いた。
Table 1 shows Examples 1 and 2 and Comparative Examples 1 and 2.
1000 as CSS characteristics of each magnetic disk
The stiction value after 0 times is shown. A commercially available CSS tester was used as the CSS measuring device, and Al 2 O was used as the magnetic head.
A 3- TiC slider head was used.

【0015】[0015]

【表1】 [Table 1]

【0016】表1より明らかなように本発明の実施例
1,2の磁気記録媒体は比較例1,2の磁気記録媒体と
比較してスティクション値が格段に低下し、従来技術に
より作製されたディスクより優れたCSS特性を有して
いた。
As can be seen from Table 1, the magnetic recording media of Examples 1 and 2 of the present invention had a significantly lower stiction value than the magnetic recording media of Comparative Examples 1 and 2, and were manufactured by the conventional technique. The disk had better CSS characteristics than the disk.

【0017】以上本発明を実施例に基づいて説明した
が、本発明は上記実施例に限定されるものではなく、特
許請求の範囲に記載の構成を変更しない限りどのように
でも実施することができる。
The present invention has been described above based on the embodiments, but the present invention is not limited to the above embodiments, and can be carried out in any manner without changing the constitution described in the claims. it can.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、ガラス
基板の上に下地層、磁性層、保護層、潤滑層等を逐次成
膜してなる磁気記録媒体(HD)の製造方法に関し、レ
ーザ光を用いて基板に所要の突起形状粗面を形成するレ
ーザテクスチャ技術を提供するものである。レーザアブ
レージョンを用いるテクスチャリング加工法では従来の
機械テクスチャで問題となっていた凹凸形状や深さの非
制御性、バリの発生を完全に防止できる。また、リソグ
ラフィ技術のような多数の工程とレジスト、洗浄液とい
った廃棄物の発生を伴わないため、設備コストの低減に
つながる。しかし、レーザシングルビームを照射して基
板に加工を施す場合、加工閾値を越える過度のエネルギ
ーの集中が必要で、本発明で求める所期の突起部を選択
的に形成することが困難である。また、しばしば過大な
アブレーションによる窪みが発生して薄肉で高い耐久性
が求められる基板にクラックを生じさせ、本発明ではレ
ーザパルスビームを連続的に基板に照射するため、0.
01J/cm2 以上加工閾値以下のエネルギー密度のレ
ーザ照射でも十分凹凸形状が形成されるばかりか、CS
S特性に優れた突起部の大きさや出現頻度を選択的に設
定できる利点がある。本発明により、高記録密度/高耐
久性を要求される次世代HDにおける、高効率で制御性
に優れたテクスチャ処理技術が得られる。
As described above, the present invention relates to a method for manufacturing a magnetic recording medium (HD) in which an underlayer, a magnetic layer, a protective layer, a lubricating layer and the like are successively formed on a glass substrate, It is intended to provide a laser texture technique for forming a required protrusion-shaped rough surface on a substrate by using a laser beam. The texturing method using laser abrasion can completely prevent the uneven shape and the non-controllability of the depth and the occurrence of burrs which have been problems in the conventional mechanical texture. Moreover, since many processes such as lithography technology and generation of waste such as resist and cleaning liquid are not involved, the facility cost can be reduced. However, when the substrate is processed by irradiating it with a laser single beam, it is necessary to excessively concentrate energy exceeding the processing threshold value, and it is difficult to selectively form the desired protrusions required in the present invention. In addition, since a recess is often generated due to excessive ablation and a crack is generated in a substrate that is thin and requires high durability. In the present invention, a laser pulse beam is continuously applied to the substrate.
Irradiation with a laser having an energy density of not less than 01 J / cm 2 and not more than the processing threshold not only forms a sufficient uneven shape,
There is an advantage that the size and appearance frequency of the protrusions having excellent S characteristics can be selectively set. INDUSTRIAL APPLICABILITY By the present invention, a highly efficient and highly controllable texture processing technique can be obtained in the next-generation HD that requires high recording density / high durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板加工におけるレーザエネルギ密度と加工深
さとの関係を示す相関図である。
FIG. 1 is a correlation diagram showing the relationship between laser energy density and processing depth in substrate processing.

【図2】本発明においてガラス基板に形成されるテクス
チャの拡大側面図であり、(A)本発明において形成さ
れる突起部の形状、(B)加工閾値以上のエネルギー密
度で形成される凹部の形状である。
FIG. 2 is an enlarged side view of a texture formed on a glass substrate in the present invention, showing (A) a shape of a protrusion formed in the present invention, and (B) a recess formed with an energy density equal to or higher than a processing threshold. The shape.

【図3】レーザパルスビームとレーザシングルビームと
でソーダライムガラス表面に形成されるテクスチャの相
違を示すもので、図2で示す凹凸形状の割合と基板に照
射されるレーザエネルギー密度との関係を示す相関図で
ある。
FIG. 3 shows the difference in texture formed on the surface of soda lime glass between the laser pulse beam and the laser single beam, and shows the relationship between the ratio of the uneven shape shown in FIG. 2 and the laser energy density applied to the substrate. It is a correlation diagram shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板を用いた磁気記録媒体の製造
方法において、磁性層等の成膜に先だって、紫外線レー
ザを用い、基板に対して0.01J/cm2 以上加工閾
値以下のエネルギー密度の当該レーザパルスビームを2
回以上1000回以下連続照射することにより、テクス
チャ加工を施すことを特徴とする磁気記録媒体の製造方
法。
1. A method of manufacturing a magnetic recording medium using a glass substrate, wherein an ultraviolet laser is used prior to the formation of a magnetic layer or the like, and an energy density of 0.01 J / cm 2 or more and a processing threshold or less is applied to the substrate. The laser pulse beam is 2
A method for producing a magnetic recording medium, characterized in that texturing is performed by continuously irradiating the magnetic recording medium once or more and 1,000 times or less.
JP15672295A 1995-03-24 1995-06-01 Production of magnetic recording medium Pending JPH0935257A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15672295A JPH0935257A (en) 1995-03-24 1995-06-01 Production of magnetic recording medium
US08/621,450 US5582878A (en) 1995-03-24 1996-03-25 Process for producing magnetic recording medium

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8999195 1995-03-24
JP7-142410 1995-05-18
JP7-89991 1995-05-18
JP14241095 1995-05-18
JP15672295A JPH0935257A (en) 1995-03-24 1995-06-01 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0935257A true JPH0935257A (en) 1997-02-07

Family

ID=27306288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15672295A Pending JPH0935257A (en) 1995-03-24 1995-06-01 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0935257A (en)

Similar Documents

Publication Publication Date Title
EP0442660B1 (en) Air bearing surface of head core slider, and method of manufacturing it
US5162073A (en) Textured air bearing surface
US5582878A (en) Process for producing magnetic recording medium
JP2804717B2 (en) Texture processing method for magnetic disk
JP3965277B2 (en) Magnetic recording medium and magnetic storage device
JPH0935257A (en) Production of magnetic recording medium
JPH0935261A (en) Production of magnetic recording medium
JPH097167A (en) Production of magnetic recording medium
JPH09237419A (en) Production of magnetic recording medium
JP5759171B2 (en) Manufacturing method of glass substrate for hard disk
JPH10112022A (en) Production of magnetic recording medium
JPH03252922A (en) Magnetic disk device, magnetic recording medium and production of magnetic recording medium
JP5177328B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP3629275B2 (en) Method for forming texture in magnetic recording medium by laser irradiation using multiple lens focusing
JPH0877554A (en) Magnetic recording medium and substrate
JPH1196535A (en) Magnetic recording medium and its production
JPH09180177A (en) Magnetic recording medium and magnetic disk device
JPH1064055A (en) Magnetic recording medium
JP2000099942A (en) Magnetic disk and substrate for magnetic disk
JPH1166551A (en) Magnetic recording medium and its manufacture
JP2580762B2 (en) Manufacturing method of magnetic recording medium
JPH04212716A (en) Production of thin film type magnetic recording medium
JPH1166555A (en) Manufacture of magnetic recording medium
JPH06295433A (en) Production of magnetic recording medium
JPH1166554A (en) Manufacture of magnetic recording medium