JPH06295433A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPH06295433A JPH06295433A JP8212293A JP8212293A JPH06295433A JP H06295433 A JPH06295433 A JP H06295433A JP 8212293 A JP8212293 A JP 8212293A JP 8212293 A JP8212293 A JP 8212293A JP H06295433 A JPH06295433 A JP H06295433A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- recording medium
- magnetic recording
- layer
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気記録媒体の表面に磁
気ヘッドとの摩擦抵抗の軽減や低浮上化のための凹凸を
形成する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming irregularities on the surface of a magnetic recording medium for reducing frictional resistance with a magnetic head and for reducing the flying height.
【0002】[0002]
【従来の技術】近年、磁気記録媒体の高密度記録化に伴
って、CoNiCr、CoCrTa等の一軸結晶磁気異
方性を有するCo合金により形成された磁性層を非磁性
基板上にCr下地層を介して成膜した金属薄膜型磁気記
録媒体が用いられるようになってきた。2. Description of the Related Art In recent years, a magnetic layer formed of a Co alloy having uniaxial crystal magnetic anisotropy such as CoNiCr or CoCrTa has been used as a Cr underlayer on a non-magnetic substrate in accordance with high density recording of a magnetic recording medium. A metal thin film type magnetic recording medium formed through the above has come to be used.
【0003】前記非磁性基板としては、Al合金板上に
硬度確保のために非晶質Ni −Pメッキ層が形成された
もの(以下、単にアルミ基板という。) やガラス基板が
使用されており、基板表面には、通常、円周方向に沿っ
てテキスチャーと呼ばれる微小な凹凸が形成される。基
板にかかる凹凸を形成すると、基板上に積層される磁性
層等の層厚は薄いため、各層の表面ひいては媒体表面に
も凹凸が形成される。これにより、媒体表面と磁気ヘッ
ドとの接触摩擦抵抗が軽減され、また磁気ヘッドと媒体
との吸着が防止されるため耐久性が向上する。更に、磁
性層の円周方向の形状磁気異方性が向上するため、保磁
力が向上し、高記録密度化が図られる。従来、かかる凹
凸はラッピングテープ又は遊離砥粒により機械的に形成
されていた。As the non-magnetic substrate, an Al alloy plate on which an amorphous Ni-P plating layer is formed to secure hardness (hereinafter, simply referred to as an aluminum substrate) or a glass substrate is used. On the surface of the substrate, usually, minute irregularities called texture are formed along the circumferential direction. When the unevenness is formed on the substrate, the thickness of the magnetic layer or the like laminated on the substrate is thin, so that the unevenness is formed on the surface of each layer and also on the medium surface. As a result, contact frictional resistance between the surface of the medium and the magnetic head is reduced, and adsorption between the magnetic head and the medium is prevented, so that durability is improved. Further, since the shape magnetic anisotropy in the circumferential direction of the magnetic layer is improved, the coercive force is improved and the recording density is increased. Conventionally, such irregularities have been mechanically formed by lapping tape or loose abrasive grains.
【0004】一方、より高記録密度化を図るには、磁気
ヘッドを媒体表面にできるだけ接近させて浮上させる必
要がある。しかし、摩擦力や吸着力を低減するには、凹
凸の粗さは大きいほどよく、一方ヘッドの低浮上化のた
めには、凹凸はできるだけ小さい方がよいため、両者を
兼備させることには無理がある。また、従来の方法で
は、凹凸の平均粗さを小さく押さえても、媒体表面に平
均粗さに対して大きな高さの突起がある確率で形成され
る。この突起に磁気ヘッドが接触すると、クラッシュ事
故が生じるため、ヘッドの低浮上化に限界があった。On the other hand, in order to increase the recording density, it is necessary to fly the magnetic head as close as possible to the surface of the medium. However, in order to reduce the frictional force and the attraction force, the roughness of the unevenness should be as large as possible. On the other hand, the unevenness should be as small as possible in order to reduce the flying height of the head. There is. Further, according to the conventional method, even if the average roughness of the unevenness is suppressed to a small value, protrusions having a height higher than the average roughness are formed on the medium surface. If the magnetic head comes into contact with this protrusion, a crash accident occurs, and thus there is a limit to reducing the flying height of the head.
【0005】そこで、近年、特開平4−85725号公
報に開示されているように、特定構造の微小凹凸を媒体
表面に規則的に形成することにより、摩擦抵抗の低減と
低浮上化を達成した磁気記録媒体が提供されるようにな
った。特定の微小な凹凸を規則的に形成する手段として
は、同公報に開示されているように、リソグラフィー技
術やYAG,CO2 レーザーによる加工技術が適用され
ている。Therefore, in recent years, as disclosed in Japanese Unexamined Patent Publication No. Hei 4-85725, fine irregularities having a specific structure are regularly formed on the surface of a medium to achieve reduction of frictional resistance and low flying height. Magnetic recording media have been provided. As a means for regularly forming specific minute irregularities, a lithography technique or a processing technique using a YAG or CO 2 laser is applied as disclosed in the publication.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、リソグ
ラフィー技術により、所望の寸法、形状の凸部を形成す
るには、レジスト塗布、露光、焼き付け、エッチングな
どの複雑な工程を経る必要があり、工程数が多いため品
質管理が困難で、多大な設備投資を要し、生産性が低い
という問題がある。一方、YAG,CO2 レーザーによ
る熱加工では、加工部周辺に熱による変質が生じ、また
加工された凹部の開口縁部にばりや返り等の加工欠陥が
発生するため、ヘッドのクラッシュ事故が生じるおそれ
があった。However, in order to form a convex portion having a desired size and shape by the lithography technique, complicated steps such as resist coating, exposure, baking and etching must be performed. However, there is a problem that quality control is difficult because of the large number of products, large capital investment is required, and productivity is low. On the other hand, in the thermal processing using the YAG or CO 2 laser, the quality of the periphery of the processed portion changes due to heat, and processing defects such as burrs and burrs occur at the opening edge of the processed recess, which causes a head crash accident. There was a fear.
【0007】本発明はかかる問題に鑑みなされたもの
で、磁気記録媒体の表面に凹凸を形成するに際し、生産
性が良好で、加工部の品質も良好な磁気記録媒体の製造
方法を提供することを目的とする。The present invention has been made in view of the above problems, and provides a method of manufacturing a magnetic recording medium which has good productivity and good quality of a processed portion when forming irregularities on the surface of the magnetic recording medium. With the goal.
【0008】[0008]
【課題を解決するための手段】本発明の磁気記録媒体の
製造方法は、非磁性の基板の表面側に磁性層及び保護層
を同順序で積層形成する磁気記録媒体の製造方法におい
て、基板又は基板に積層されたいずれかの層の表面に、
紫外レーザービームを照射してアブレーションを起こさ
せ、アブレーションにより生じた原子、分子の堆積物か
らなる凸部を開口縁部に備えた凹部を被照射物の表面に
所定間隔で形成する。この際、非金属材質で形成された
基板又は層の表面に紫外レーザービームを照射するとよ
い。A method of manufacturing a magnetic recording medium according to the present invention is a method of manufacturing a magnetic recording medium in which a magnetic layer and a protective layer are laminated in the same order on the surface side of a non-magnetic substrate. On the surface of any layer laminated on the substrate,
Irradiation with an ultraviolet laser beam causes ablation, and recesses having protrusions made of deposits of atoms and molecules generated by the ablation on the opening edge are formed at predetermined intervals on the surface of the object to be irradiated. At this time, the surface of the substrate or layer formed of a non-metallic material may be irradiated with an ultraviolet laser beam.
【0009】[0009]
【作用】基板又は基板に積層されたいずれかの層(被照
射物)の表面に、図1(a)に示すように、紫外レーザ
ービームLを照射すると、被照射物Aの照射部分に光化
学反応が生じ、照射部分の原子、分子間の結合が断ち切
られ、同図(b)のように原子、分子が同レベルで瞬間
的に分散し、飛散するアブレーションと呼ばれる現象が
起こる。このアブレーションによりレーザービームの照
射部に凹部Bが形成される(このような加工を「アブレ
ーション加工」と呼ぶ。)。この際、レーザービームの
照射部の雰囲気を、アブレーションにより飛散した原
子、分子がガス化し難いものにすることにより、同図
(c)のように凹部Bの開口縁部にはアブレーションに
より飛散した原子、分子の堆積物からなる凸部(「デブ
リー」と呼ばれる。)Cが形成される。アブレーション
は光学的な現象であって、YAG,CO2 レーザーのよ
うな赤外レーザーによる熱加工プロセスとは異なり、前
記凸部Cはばりや返り等の不定形加工欠陥とは異なり、
一定の大きさに納まる。As shown in FIG. 1A, when the surface of the substrate or one of the layers (irradiation object) laminated on the substrate is irradiated with the ultraviolet laser beam L, the irradiated portion of the irradiation object A is photochemically irradiated. A reaction occurs, the bonds between the atoms and molecules in the irradiated area are cut off, and as shown in FIG. 2B, atoms and molecules momentarily disperse at the same level, causing a phenomenon called ablation. By this ablation, a recess B is formed in the laser beam irradiation portion (such processing is referred to as "ablation processing"). At this time, atoms and molecules scattered by ablation are made difficult to gasify in the atmosphere of the irradiation portion of the laser beam, so that atoms scattered by ablation at the opening edge of the recess B as shown in FIG. , A convex portion (referred to as “debris”) C made of a deposit of molecules is formed. Ablation is an optical phenomenon, and unlike a thermal processing process using an infrared laser such as a YAG or CO 2 laser, the convex portion C is different from an irregular processing defect such as a flash or a return,
It fits in a certain size.
【0010】被照射物Aの表面に紫外レーザービームを
所定の間隔で照射することにより、前記凸部を備えた凹
部が所定の間隔で形成された凹凸が形成される。その上
に成膜される種々の層の表面にも前記凹凸に起因した凹
凸が形成され、ひいては媒体の表面に所定の凹凸が形成
される。勿論、アブレーションやデブリーの形成は紫外
レーザービームLを被照射物Aに直接照射すれば生じる
ので、リソグラフィー技術のように複雑な工程やレジス
ト、洗浄液のような消耗品も不要であるため、設備コス
トが少なくて済み、生産性に優れる。By irradiating the surface of the object A to be irradiated with an ultraviolet laser beam at a predetermined interval, concaves and convexes having the convex portions are formed at predetermined intervals. Concavities and convexities due to the irregularities are also formed on the surfaces of various layers formed thereon, and thus predetermined irregularities are formed on the surface of the medium. Of course, since ablation and debris are formed by directly irradiating the irradiation object A with the ultraviolet laser beam L, there is no need for complicated steps such as lithography technology and consumables such as resists and cleaning liquids. Low and excellent in productivity.
【0011】被照射物Aとしては、金属材質よりも非金
属材質の方が、ビーム到達面における紫外レーザービー
ムのエネルギー密度が低くてもアブレーションを起こし
やすく、加工が容易である。As the object A to be irradiated, a non-metallic material is more likely to ablate than a metallic material even if the energy density of the ultraviolet laser beam on the beam reaching surface is low, and the processing is easy.
【0012】[0012]
【実施例】図2は実施例に係る金属薄膜型磁気記録媒体
の径方向の要部断面の概念図を示しており、非磁性基板
1の上にCr 下地層2、磁気記録層3、非磁性の保護層
4及び潤滑層5がこの順序で積層形成されており、前記
基板1および各層2、3、4、5の表面には、微小な凹
凸が所定の間隔で規則的に形成されている。EXAMPLE FIG. 2 is a conceptual view of a radial cross section of a metal thin film magnetic recording medium according to an example, in which a Cr underlayer 2, a magnetic recording layer 3 and a nonmagnetic substrate 1 are formed on a nonmagnetic substrate 1. A magnetic protective layer 4 and a lubricating layer 5 are laminated in this order, and minute irregularities are regularly formed at predetermined intervals on the surface of the substrate 1 and each layer 2, 3, 4, 5. There is.
【0013】前記非磁性基板1の材質としては、Al合
金板上に非晶質Ni −Pメッキ層が形成されたものやチ
タン等の金属材質や、ガラス、セラミックス、カーボ
ン、ポリマー等の非金属材質が使用される。本実施例で
は、該基板1の上に紫外レーザービームを照射してアブ
レーション加工を行い、所定の間隔でデブリーと呼ばれ
る凸部が開口縁部に堆積した凹部を形成することにより
基板1の表面に凹凸を形成したものであり、基板1の上
に成膜された各層2、3、4、5には、基板1に形成さ
れた凹凸に起因する凹凸が順次形成されている。As the material of the non-magnetic substrate 1, a material having an amorphous Ni-P plating layer formed on an Al alloy plate, a metal material such as titanium, or a non-metal material such as glass, ceramics, carbon or polymer. Material is used. In this embodiment, an ultraviolet laser beam is radiated onto the substrate 1 to perform ablation processing, and convex portions called debris are formed at predetermined intervals on the surface of the substrate 1 by forming concave portions on the edge of the opening. Concavities and convexities are formed, and the respective layers 2, 3, 4, 5 formed on the substrate 1 are sequentially formed with concavities and convexities due to the concavities and convexities formed on the substrate 1.
【0014】前記紫外レーザービームとしては、波長が
500nm以下で、ビームが被照射物に到達したときの
エネルギー密度が1×10-9J/cm2以上のものがよ
い。500nmを越えると赤外領域に近接し、熱加工の
影響がでるおそれがある。また、到達時のエネルギー密
度が1×10-9J/cm2未満ではアブレーションが生じ
にくく、加工が困難になる。かかる紫外レーザーとして
は、エキシマレーザーが好適であり、例えば励起種とし
てArF(波長193nm)、KrF(波長248n
m)、XeCl(波長308nm)、XeF(波長35
0nm)を備えたハロゲン化希ガスレーザーを挙げるこ
とができる。The ultraviolet laser beam preferably has a wavelength of 500 nm or less and an energy density of 1 × 10 −9 J / cm 2 or more when the beam reaches an object to be irradiated. If it exceeds 500 nm, it is close to the infrared region, and there is a possibility that the effect of thermal processing may occur. If the energy density upon arrival is less than 1 × 10 −9 J / cm 2 , ablation is unlikely to occur and processing becomes difficult. An excimer laser is suitable as the ultraviolet laser, and for example, ArF (wavelength 193 nm) and KrF (wavelength 248 n) are used as excitation species.
m), XeCl (wavelength 308 nm), XeF (wavelength 35)
0nm) halogenated rare gas laser can be mentioned.
【0015】レーザービーム照射部の雰囲気は、アブレ
ーションにより飛散した原子、分子がガス化し難い雰囲
気にすることが必要である。このためには、照射部の雰
囲気を不活性ガス雰囲気とし、ガス圧力は高くするのが
よい。また、不活性ガスとしてはアルゴンガス等の原子
量の大きいものを用いるのがよい。かかる雰囲気の基で
アブレーション加工を行うと、凹部の開口縁部にアブレ
ーションにより飛散した原子、分子が堆積して凸部が形
成される。この凸部の高さは、レーザービームの照射時
間、照射部におけるエネルギー密度、雰囲気ガスの種
類、圧力により容易かつ正確にコントロールすることが
できる。It is necessary that the atmosphere of the laser beam irradiation section is such that atoms and molecules scattered by ablation are difficult to gasify. For this purpose, it is preferable that the atmosphere of the irradiation section is an inert gas atmosphere and the gas pressure is high. Further, as the inert gas, it is preferable to use a gas having a large atomic weight such as argon gas. When the ablation process is performed under such an atmosphere, the atoms and molecules scattered by the ablation are deposited on the opening edge of the recess to form the protrusion. The height of this convex portion can be easily and accurately controlled by the irradiation time of the laser beam, the energy density in the irradiation portion, the type of atmospheric gas, and the pressure.
【0016】図3は、カーボン基板の表面にアルゴンガ
スを吹き付けて、波長248nmのKrFエキシマレー
ザーを照射してアブレーション加工を行い、加工後の基
板表面粗さを触針式粗さ計により測定した一例である。
この際、基板表面におけるエネルギー密度は0.08J
/cm2とした。同図より、基板表面に凹部深さ約230
Å、凸部高さ約150Å、凸部幅約100μm、凹部平
均間隔400μmの凹凸が形成されており、凹部開口縁
部には、ばり、返り等の不定形の加工欠陥は認められな
い。FIG. 3 shows that the surface of the carbon substrate was blown with argon gas and irradiated with a KrF excimer laser having a wavelength of 248 nm to perform ablation processing, and the surface roughness of the processed substrate was measured by a stylus roughness meter. This is an example.
At this time, the energy density on the substrate surface is 0.08J.
/ Cm 2 . From the figure, the depth of the recess is about 230
Å, convex height is about 150Å, convex width is about 100 μm, and concave / convex average spacing is 400 μm. Irregular processing defects such as burrs and burrs are not recognized on the opening edge of the concave.
【0017】紫外レーザービームの照射により生じる凹
部の深さは、レーザービーム照射時間、エネルギー密度
により容易に制御することができる。通常のレーザー装
置は1秒当たり100〜300パルスの頻度でビームの
照射が可能である。被照射物がガラス、セラミックス、
カーボン等の無機質非金属材の場合にはエネルギー密度
10J/cm2の照射で1パルス当たりサブミクロンの加
工が可能であり、通常、加工速度を10μm /sec以
上と高くすることができ、生産性が高い。また、ポリマ
ーの場合には1J/cm2の照射で1パルス当たりサブミ
クロンの加工が可能である。尚、基板としてアルミ基
板、チタン基板のように金属材質のものを使用する場合
は、非金属材質のものよりもレーザー出力(被照射物表
面におけるエネルギー密度)を上げる必要がある。The depth of the concave portion generated by the irradiation of the ultraviolet laser beam can be easily controlled by the irradiation time of the laser beam and the energy density. An ordinary laser device can emit a beam at a frequency of 100 to 300 pulses per second. The object to be irradiated is glass, ceramics,
In the case of inorganic non-metallic materials such as carbon, it is possible to process submicrons per pulse by irradiation with energy density of 10 J / cm 2 , and usually the processing speed can be increased to 10 μm / sec or more. Is high. In the case of polymer, submicron processing per pulse is possible by irradiation with 1 J / cm 2 . When a metal material such as an aluminum substrate or a titanium substrate is used as the substrate, it is necessary to increase the laser output (energy density on the surface of the object to be irradiated) as compared with a non-metal material.
【0018】例えば、ガラス基板を使用する場合、基板
表面に形成する凹部の深さは通常0.1μm以下である
ので、所定の凹部パタンが形成されたマスクを介してレ
ーザービームを基板1の表面に照射すれば、1秒以下で
所定の凹凸を基板の全表面に形成することができ、生産
効率が極めて良好である。尚、レーザー光源とマスクと
の間及びマスクと被照射物との間に適宜のレンズ系を設
けることにより、レーザー光源から照射したレーザービ
ームを拡大してマスクの全面に照射し、マスクを通過し
たレーザービームを所定の大きさの基板表面に容易に集
光することができる。また、前記マスクを使用すること
なく、レーザー光源から照射されたレーザービームをレ
ンズ系で絞り、集光したレーザービームを被照射物に照
射すると共に被照射物を2次元方向に移動させて、所期
の凹凸パタンを形成してもよい。For example, when a glass substrate is used, the depth of the recess formed on the surface of the substrate is usually 0.1 μm or less. Therefore, the laser beam is applied to the surface of the substrate 1 through the mask having a predetermined recess pattern. By irradiating the surface of the substrate, predetermined irregularities can be formed on the entire surface of the substrate in 1 second or less, and the production efficiency is extremely good. Incidentally, by providing an appropriate lens system between the laser light source and the mask and between the mask and the object to be irradiated, the laser beam emitted from the laser light source was expanded and applied to the entire surface of the mask, and passed through the mask. The laser beam can be easily focused on the substrate surface having a predetermined size. Further, without using the mask, the laser beam emitted from the laser light source is narrowed down by a lens system, the focused laser beam is applied to the irradiation target, and the irradiation target is moved in a two-dimensional direction. An uneven pattern may be formed.
【0019】前記Cr下地層2は、その上に形成される
磁性層3のCo合金の面内配向性を向上させるために形
成されるものである。前記磁性層3は、既述の通り、C
oNiCr、CoCrTa、CoCrPt等の一軸結晶
磁気異方性を示すCo合金で形成される。該磁性層3の
上にはカーボン、SiC等からなる非磁性の保護層4が
形成されており、更にその上にフッ素化ポリエーテル、
パーフルオロポリエーテル等の潤滑剤からなる潤滑層5
が塗布形成されている。前記Cr下地層2、磁性層3、
保護層4は、スパッタ、イオンビームスパッタ、、真空
蒸着などの物理蒸着法によって成膜される。The Cr underlayer 2 is formed to improve the in-plane orientation of the Co alloy of the magnetic layer 3 formed thereon. As described above, the magnetic layer 3 is made of C
It is formed of a Co alloy exhibiting uniaxial crystal magnetic anisotropy such as oNiCr, CoCrTa, and CoCrPt. A nonmagnetic protective layer 4 made of carbon, SiC or the like is formed on the magnetic layer 3, and a fluorinated polyether,
Lubricating layer 5 made of lubricant such as perfluoropolyether
Is formed by coating. The Cr underlayer 2, the magnetic layer 3,
The protective layer 4 is formed by a physical vapor deposition method such as sputtering, ion beam sputtering, or vacuum vapor deposition.
【0020】尚、前記Cr下地層2、潤滑層5は必要に
応じて形成すればよく、省略される場合もある。また、
磁性層3はCo合金を単層に形成したものに限らず、C
o合金層とCr層とを交互に複層形成したもの(最上層
はCo合金層)でもよい。層厚は、Cr下地層2が50
0〜2000Å、磁性層3(Co合金層の総計)が40
0〜800Å、保護層4が200〜400Å、潤滑層5
が20〜40Å(単分子厚)程度である。The Cr underlayer 2 and the lubricating layer 5 may be formed as needed and may be omitted. Also,
The magnetic layer 3 is not limited to a single layer of Co alloy, but may be C
It may be formed by alternately forming a plurality of o alloy layers and Cr layers (the top layer is a Co alloy layer). The thickness of the Cr underlayer 2 is 50
0 to 2000Å, the magnetic layer 3 (total of Co alloy layers) is 40
0-800Å, protective layer 4 is 200-400Å, lubrication layer 5
Is about 20 to 40Å (monomolecular thickness).
【0021】叙上の実施例では、基板1にアブレーショ
ン加工を施したが、被照射物としては、基板1に限ら
ず、図4に示すように、保護層4の表面でもよい。この
場合、保護層4より下方の層3、2および基板1の表面
は平坦面のままである。また、基板1が金属材質の場
合、これに直接アブレーション加工を施すこともできる
が、図5のように、基板1の上にカーボン等の無機質非
金属材により中間層6を成膜し、その上にアブレーショ
ン加工を施してもよい。かかる中間層を形成することに
より低出力のレーザーで所定の凹凸加工を行うことがで
きる。In the above embodiment, the substrate 1 was ablated, but the object to be irradiated is not limited to the substrate 1 and may be the surface of the protective layer 4 as shown in FIG. In this case, the surfaces of the layers 3 and 2 below the protective layer 4 and the substrate 1 remain flat. When the substrate 1 is made of a metallic material, it can be directly ablated, but as shown in FIG. 5, the intermediate layer 6 is formed on the substrate 1 with an inorganic non-metallic material such as carbon Ablation processing may be applied on the top. By forming such an intermediate layer, it is possible to perform a predetermined uneven processing with a low-power laser.
【0022】次に具体的実施例を掲げる。 (1) 表面を平滑に研磨したカーボン基板(外径2.5
インチ(6.35cm)、厚さ0.635mm)を用い
て、その表面に凹部パタンを形成したマスクを介して紫
外レーザービームを照射し、アブレーション加工を施し
た。使用した紫外レーザーは、波長248nmのKrF
エキシマレーザーであり、基板表面におけるエネルギー
密度を0.08J/cm2とした。また、レーザービーム
照射部にはアルゴンガスを吹きつけた。その結果、凹部
深さが300Å、凸部高さが200Å、凹部平均間隔が
50μmの凹凸が形成された。 (2) その後、スパッタリングによりCr下地層を60
0Å、磁性層(CoCrTa合金単層)を700Å、保
護層(カーボン)を200Åを成膜し、更にその上にパ
ーフルオロポリエーテルを20Å塗布形成し、図2の構
成の磁気記録媒体を得た。 (3) 比較のため、基板表面に研磨テープを用いてテキ
スチャーを形成した点を除き、実施例と同様の方法、条
件で同構成の磁気記録媒体を製造した。研磨テープの砥
粒は7000番を用い、Ra=50Åの凹凸を形成し
た。粗さの測定条件は、スタイラス径0.5μm、スキ
ャン長2.5mm、カットオフ0.25mmであった。 (4) 実施例、従来例の磁気記録媒体及び薄膜ヘッドを
用いて、CSS(コンスタントスタートストップ)回数
に対する摩擦係数及びグライドハイトを測定した。 (5) 測定結果を図6及び図7に示す。図6より、実施
例の磁気記録媒体では、CSS回数に係わらず、摩擦係
数は0.4程度であったが、従来例では当初の2倍程度
まで上昇した。また、図7より、実施例の磁気記録媒体
は従来例に対し、グライドハイトを0.02μm程度低
くすることができた。Next, specific examples will be given. (1) A carbon substrate with a smooth polished surface (outer diameter 2.5
Using an inch (6.35 cm) and a thickness of 0.635 mm, an ultraviolet laser beam was irradiated through a mask having a concave pattern formed on its surface to perform ablation processing. The UV laser used was KrF with a wavelength of 248 nm.
It is an excimer laser, and the energy density on the substrate surface was 0.08 J / cm 2 . Argon gas was blown on the laser beam irradiation part. As a result, irregularities having a concave depth of 300Å, a convex height of 200Å, and an average concave interval of 50 μm were formed. (2) After that, a Cr underlayer of 60 is formed by sputtering.
0 Å, a magnetic layer (CoCrTa alloy single layer) of 700 Å and a protective layer (carbon) of 200 Å were deposited, and perfluoropolyether was further coated thereon in an amount of 20 Å to obtain a magnetic recording medium having the structure shown in FIG. .. (3) For comparison, a magnetic recording medium having the same structure was manufactured under the same method and conditions as in Example, except that the texture was formed on the surface of the substrate by using a polishing tape. Abrasive grains of the polishing tape were No. 7000, and irregularities of Ra = 50Å were formed. The roughness measurement conditions were a stylus diameter of 0.5 μm, a scan length of 2.5 mm, and a cutoff of 0.25 mm. (4) The friction coefficient and the glide height with respect to the number of CSS (constant start / stop) were measured using the magnetic recording medium and the thin film head of the examples and conventional examples. (5) The measurement results are shown in FIGS. 6 and 7. From FIG. 6, in the magnetic recording medium of the example, the friction coefficient was about 0.4 regardless of the number of CSSs, but in the conventional example, it increased to about twice the initial value. Further, as shown in FIG. 7, the glide height of the magnetic recording medium of the example could be lowered by about 0.02 μm as compared with the conventional example.
【0023】[0023]
【発明の効果】以上説明した通り、本発明の磁気記録媒
体の製造方法によれば、基板又は基板に積層されたいず
れかの層の表面に、紫外レーザービームを照射してアブ
レーションを起こさせ、アブレーションにより生じた原
子、分子の堆積物からなる凸部を開口縁部に備えた凹部
を照射物の表面に所定間隔で形成するので、凹凸の加工
に際して、リソグラフィー技術のように複雑な工程やレ
ジスト、洗浄液のような消耗品も不要であるため、設備
コストが少なくて済み、生産性に優れる。また、YA
G、CO2 レーザーのような赤外レーザーによる熱加工
プロセスとは異なり、被照射物の表面にばりや返り等の
加工欠陥や変質が生じることがなく、高品質である。As described above, according to the method of manufacturing a magnetic recording medium of the present invention, the surface of the substrate or any layer laminated on the substrate is irradiated with an ultraviolet laser beam to cause ablation, Since convexes made of deposits of atoms and molecules generated by ablation are provided on the surface of the irradiated object at predetermined intervals, convexes made of deposits of atoms and molecules are formed at a predetermined interval. Since no consumables such as cleaning liquid are required, the equipment cost is low and the productivity is excellent. Also, YA
Unlike a thermal processing process using an infrared laser such as a G or CO 2 laser, it does not cause processing defects such as burrs and burrs on the surface of the object to be irradiated, and does not cause alteration, resulting in high quality.
【図1】アブレーション加工の概念説明図である。FIG. 1 is a conceptual explanatory view of ablation processing.
【図2】実施例に係る磁気記録媒体の要部断面概念図で
ある。FIG. 2 is a conceptual sectional view of a main part of a magnetic recording medium according to an example.
【図3】アブレーション加工後の基板表面の粗さ測定図
である。FIG. 3 is a roughness measurement diagram of a substrate surface after ablation processing.
【図4】保護層にアブレーション加工を施した他の実施
例に係る磁気記録媒体の要部断面概念図である。FIG. 4 is a conceptual cross-sectional view of a main part of a magnetic recording medium according to another example in which a protective layer is ablated.
【図5】基板に形成した中間層にアブレーション加工を
施した他の実施例に係る磁気記録媒体の要部断面概念図
である。FIG. 5 is a conceptual cross-sectional view of a main part of a magnetic recording medium according to another embodiment in which an intermediate layer formed on a substrate is ablated.
【図6】実施例に係るCSS試験結果を示すグラフ図で
ある。FIG. 6 is a graph showing a CSS test result according to an example.
【図7】実施例に係るグライド高さの測定結果を示すグ
ラフ図である。FIG. 7 is a graph showing a measurement result of glide height according to an example.
1 非磁性基板 2 Cr下地層 3 磁性層 4 保護層 5 潤滑層 6 中間層 1 Non-magnetic Substrate 2 Cr Underlayer 3 Magnetic Layer 4 Protective Layer 5 Lubricating Layer 6 Intermediate Layer
Claims (2)
層を同順序で積層形成する磁気記録媒体の製造方法にお
いて、 基板又は基板に積層されたいずれかの層の表面に、紫外
レーザービームを照射してアブレーションを起こさせ、
アブレーションにより生じた原子、分子の堆積物からな
る凸部を開口縁部に備えた凹部を被照射物の表面に所定
間隔で形成することを特徴とする磁気記録媒体の製造方
法。1. A method of manufacturing a magnetic recording medium comprising a magnetic layer and a protective layer laminated in the same order on the surface side of a non-magnetic substrate, wherein an ultraviolet laser is formed on the surface of the substrate or any layer laminated on the substrate. Irradiate the beam to cause ablation,
A method of manufacturing a magnetic recording medium, characterized in that recesses having protrusions made of a deposit of atoms and molecules generated by ablation are provided at an opening edge portion on a surface of an object to be irradiated at predetermined intervals.
面に紫外レーザービームを照射する請求項1に記載した
磁気記録媒体の製造方法。2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the surface of the substrate or layer formed of a non-metallic material is irradiated with an ultraviolet laser beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8212293A JPH06295433A (en) | 1993-04-08 | 1993-04-08 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8212293A JPH06295433A (en) | 1993-04-08 | 1993-04-08 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06295433A true JPH06295433A (en) | 1994-10-21 |
Family
ID=13765615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8212293A Pending JPH06295433A (en) | 1993-04-08 | 1993-04-08 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06295433A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011060892A (en) * | 2009-09-08 | 2011-03-24 | Renesas Electronics Corp | Electronic device and method for manufacturing the same |
-
1993
- 1993-04-08 JP JP8212293A patent/JPH06295433A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011060892A (en) * | 2009-09-08 | 2011-03-24 | Renesas Electronics Corp | Electronic device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08102163A (en) | Magnetic recording medium and magnetic disk device | |
US20020118477A1 (en) | Method for forming a magnetic pattern in a magnetic recording medium, magnetic recording medium magnetic recording device and photomask | |
JP2804717B2 (en) | Texture processing method for magnetic disk | |
US5582878A (en) | Process for producing magnetic recording medium | |
US5861196A (en) | Laser texturing a glass or glass-ceramic substrate | |
US8551349B2 (en) | Method for producing magnetic recording medium, and magnetic recording/reproducing apparatus | |
KR19990087361A (en) | Magnetic recording medium with sputter deposited texture structure | |
JP5186345B2 (en) | Method for manufacturing magnetic recording medium | |
JPH06295433A (en) | Production of magnetic recording medium | |
US6204474B1 (en) | Apparatus and method for laser texturing a landing zone and a data zone of a magnetic recording medium | |
JPH06274870A (en) | Production of magnetic recording medium | |
US20100007985A1 (en) | Method for producing magnetic medium, magnetic record reproduction device, and magnetic recording medium | |
US6207926B1 (en) | Fiber optic laser texturing with optical probe feedback control | |
US6021032A (en) | Magnetic recording medium with laser textured data zone | |
EP0897576B1 (en) | Laser texturing of magnetic recording medium using multiple lens focusing | |
JPH03252922A (en) | Magnetic disk device, magnetic recording medium and production of magnetic recording medium | |
US6466407B1 (en) | Method and apparatus for applying an information pattern to a disc head slider | |
US6068728A (en) | Laser texturing with reverse lens focusing system | |
US5945197A (en) | Laser texturing of magnetic recording medium using multiple lens focusing | |
JPH097167A (en) | Production of magnetic recording medium | |
JP2970466B2 (en) | Manufacturing method of magnetic recording medium | |
JP4004883B2 (en) | Magnetization pattern forming method | |
JP3712987B2 (en) | Magnetization pattern forming method of magnetic recording medium and mask | |
JPH07225943A (en) | Magnetic recording medium | |
EP0962916A1 (en) | Laser texturing of magnetic recording medium using multiple lens focusing |