JPH09330714A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH09330714A
JPH09330714A JP8148879A JP14887996A JPH09330714A JP H09330714 A JPH09330714 A JP H09330714A JP 8148879 A JP8148879 A JP 8148879A JP 14887996 A JP14887996 A JP 14887996A JP H09330714 A JPH09330714 A JP H09330714A
Authority
JP
Japan
Prior art keywords
negative electrode
coke
secondary battery
carbon
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8148879A
Other languages
Japanese (ja)
Other versions
JP3612862B2 (en
Inventor
Jinichi Miyasaka
仁一 宮坂
Masaji Ishihara
正司 石原
Toru Fuse
亨 布施
Haruko Machino
晴子 町野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14887996A priority Critical patent/JP3612862B2/en
Publication of JPH09330714A publication Critical patent/JPH09330714A/en
Application granted granted Critical
Publication of JP3612862B2 publication Critical patent/JP3612862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery employing a low-cost coke as a negative electrode material and having a great charge and discharge capacity and a high actuation voltage. SOLUTION: Coke in which the content of carbon is 55wt.% or more according to element analysis specified by JIS M8813, ash component specified by JIS M8812 is 5wt.% or less, and the atomic ratio O/C of oxygen to carbon is 0.03 to 0.4, is heated at a temperature in the range of 800 to 1500 deg.C in inert atmosphere, and the obtained coke is employed as a negative electrode material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関するものである。より詳しくは、特に小型、軽量の電
気機器用や電気自動車用の電源として好適な、リチウム
二次電池をはじめとする非水系二次電池に関するもので
ある。
TECHNICAL FIELD The present invention relates to a non-aqueous secondary battery. More specifically, the present invention relates to a non-aqueous secondary battery such as a lithium secondary battery, which is suitable as a power source for small and lightweight electric devices and electric vehicles.

【0002】[0002]

【従来の技術】近年、電子機器の軽量化、省電力化およ
び環境保全の立場から、鉛蓄電池やニッカト電池に替わ
るクリーナな非水系電池、特にリチウム二次電池が注目
され、実用化の段階に到達した。しかし、負極にリチウ
ム金属を用いると、リチウム金属が充電時にデンドライ
ト状に成長し、内部短絡を引き起こすという問題があっ
た。その対策として、リチウム原子を吸収・放出するこ
とができる炭素材料の開発が盛んに行われ、その中でも
コークスを用いた物は低コスト・高容量という点で有望
視されている。(特公平5−3110号公報、特公平5
−17669号公報、特公平5−44143号公報、特
公平5−50818号公報、特公平5−78910号公
報、特公平5−80110号公報、特公平5−8011
1号公報、特開昭62−90863号公報、特開平1−
221859号公報、特開昭63−121257号公
報)。
2. Description of the Related Art In recent years, cleaner non-aqueous batteries, especially lithium secondary batteries, which replace lead-acid batteries and NiCat batteries have been attracting attention from the standpoints of weight saving, power saving and environmental protection of electronic devices, and they are in the stage of practical application. Arrived However, when lithium metal is used for the negative electrode, there is a problem that the lithium metal grows in a dendrite shape during charging and causes an internal short circuit. As a countermeasure, carbon materials capable of absorbing and releasing lithium atoms are being actively developed, and among them, those using coke are considered promising in terms of low cost and high capacity. (Japanese Patent Publication No. 5-3110, Japanese Patent Publication No. 5110)
-17669, Japanese Patent Publication No. 5-44143, Japanese Patent Publication No. 5-50818, Japanese Patent Publication No. 5-78910, Japanese Patent Publication No. 5-80110, and Japanese Patent Publication No. 5-8011.
No. 1, JP-A-62-90863, JP-A-1-
221859 and JP-A-63-1212257).

【0003】[0003]

【発明が解決しようとする課題】しかし、コークス系の
炭素材料を、例えばLi二次電池の負極材として用いた
場合、放電過程でLiの酸化還元電位から測った平均電
位が、黒鉛系炭素材料を用いた場合より高く、従って電
池電圧が低くなると言う課題がある。また、電池の高容
量化の要求により更なる容量の増加が求められている。
However, when a coke-based carbon material is used as, for example, a negative electrode material of a Li secondary battery, the average potential measured from the oxidation-reduction potential of Li during the discharging process is a graphite-based carbon material. However, there is a problem that the battery voltage becomes lower than that in the case of using. Further, due to the demand for higher capacity of batteries, further increase in capacity is required.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討した結果、特定量の酸素を有する
石炭を加熱処理することで、上記問題が解決できること
を見い出し本発明に到達した。即ち、本発明の要旨は、
正極、負極および非水溶媒中に電解質を溶解させた電解
液を備えてなる非水系二次電池において、正極、負極お
よび非水溶媒中に電解質を溶解させた電解液を備えてな
る非水系二次電池において、JIS M8813規定の
元素分析において炭素の含有率が55wt%以上であ
り、かつJIS M8812規定の灰分が5wt%以下
で、かつ炭素に対する酸素の原子比O/Cが0.03〜
0.4である石炭を、不活性雰囲気中で800〜150
0℃の温度で加熱処理して得られたコークスを負極材と
して用いることを特徴とする非水系二次電池にある。
Means for Solving the Problems The present inventors have conducted extensive studies to solve the above problems, and as a result, have found that the above problems can be solved by heat treating coal having a specific amount of oxygen. Arrived That is, the gist of the present invention is:
A non-aqueous secondary battery comprising a positive electrode, a negative electrode and an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein a non-aqueous secondary battery comprising a positive electrode, a negative electrode and an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent. In the secondary battery, the carbon content in the elemental analysis according to JIS M8813 is 55 wt% or more, the ash content according to JIS M8812 is 5 wt% or less, and the atomic ratio O / C of oxygen to carbon is 0.03 to.
Coal 0.4 to 800-150 in an inert atmosphere
A non-aqueous secondary battery is characterized in that coke obtained by heat treatment at a temperature of 0 ° C. is used as a negative electrode material.

【0005】[0005]

【発明の実施の形態】以下に本発明を詳細に説明する。
炭素含有率とは、JIS M8813規定の方法により
求められた炭素含有量であるが、微量成分である硫黄、
燐、炭酸塩の定量は行わなくても良く、炭素、窒素、水
素、酸素に対する炭素の含有量を表わすものでも良い。
該炭素含有率が低い石炭を用いると、加熱処理され得ら
れたコークスに多数の微細気孔が残り、その比表面積を
増大せしめ、特に電極間の電圧が高い非水系のリチウム
二次電池において、電解液の分解等による不可逆容量が
増大し好ましくない。炭素含有率は55wt%以上、更
に好ましくは60wt%以上が良い。灰分とは、JIS
M8812規定の方法で求められ、不純物の量を規定
するものである。すなわち、灰分が多いと、加熱処理さ
れ負極材として供されるコークス中の不純物も多くな
り、可逆的な容量の低下につながる。石炭中の灰分は5
%以下、好ましくは3%以下が良い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The carbon content is the carbon content determined by the method specified in JIS M8813, and is a trace component of sulfur,
Phosphorus and carbonate do not have to be quantified, and may represent the content of carbon with respect to carbon, nitrogen, hydrogen and oxygen.
When coal having a low carbon content is used, a large number of fine pores remain in the coke obtained by heat treatment to increase the specific surface area thereof, and particularly in a non-aqueous lithium secondary battery having a high voltage between electrodes, electrolysis is performed. It is not preferable because the irreversible capacity increases due to decomposition of the liquid. The carbon content is 55 wt% or more, more preferably 60 wt% or more. What is ash?
It is determined by the method specified by M8812 and defines the amount of impurities. That is, when the ash content is high, the amount of impurities in the coke, which is heat-treated and used as a negative electrode material, is also increased, which leads to a reversible decrease in capacity. Ash in coal is 5
% Or less, preferably 3% or less.

【0006】炭素に対する酸素の原子比O/Cとは、通
常の方法で求まる炭素、水素および窒素の含有率からそ
の他の元素の含有率を求め、これから上記灰分を差引い
て求める。酸素含有率が低い石炭は、例えば、該石炭を
空気中で200〜400℃で酸化処理する等の方法で、
酸素濃度を増やして使用すれば良い。該酸化処理には、
硝酸や硫酸あるいはこれらの混酸等を用いた湿式での処
理も用いることができる。本特許は酸化処理の方法によ
って特に限定されるものではなく、本特許の要点は適当
量の酸素を有するあるいは適当量になるまで酸を付加さ
せた石炭を用いることにある。炭素に対する酸素の原子
比O/Cは0.03以上、0.4以下がよく、好ましく
は0.07以上、0.3以下が良い。酸素含有量が少な
いと、平均電位が高くなり既存のコークス系炭素材料と
変わらなくなる。また、酸素含有量が多すぎると、再び
平均電位が高くなり、かつ放電容量が低下し好ましくな
い。
The atomic ratio of oxygen to carbon, O / C, is obtained by calculating the contents of other elements from the contents of carbon, hydrogen and nitrogen obtained by the usual method, and then subtracting the above ash content. Coal having a low oxygen content is, for example, a method of oxidizing the coal in air at 200 to 400 ° C.,
It may be used by increasing the oxygen concentration. The oxidation treatment includes
Wet treatment using nitric acid, sulfuric acid or a mixed acid thereof can also be used. This patent is not particularly limited by the method of the oxidation treatment, and the main point of this patent is to use coal having an appropriate amount of oxygen or acid-added to an appropriate amount. The atomic ratio O / C of oxygen to carbon is preferably 0.03 or more and 0.4 or less, and more preferably 0.07 or more and 0.3 or less. When the oxygen content is low, the average electric potential becomes high and is the same as the existing coke-based carbon material. On the other hand, if the oxygen content is too high, the average potential again increases and the discharge capacity decreases, which is not preferable.

【0007】不活性雰囲気中での加熱処理とは、一般に
コークスや炭素材料の加熱処理に用いられる方法であれ
ば特に限定されるものではない。不活性ガスとして、窒
素、アルゴン、ヘリウム、あるいはこれらの混合ガスが
挙げられるが、実用的には窒素が好ましい。また、二酸
化炭素や一酸化炭素を主成分とする、天然ガス等の燃焼
ガス等も用いることができる。更に、真空中での加熱処
理も用いることができる。熱処理設備としては、一般的
な電気炉やキルン等を用いて、バッチ式でも連続式でも
かまわない。
The heat treatment in an inert atmosphere is not particularly limited as long as it is a method generally used for heat treatment of coke and carbon materials. Examples of the inert gas include nitrogen, argon, helium, and a mixed gas thereof, but nitrogen is preferable for practical purposes. Further, a combustion gas such as natural gas containing carbon dioxide or carbon monoxide as a main component may be used. Further, heat treatment in vacuum can also be used. The heat treatment equipment may be a batch type or a continuous type, using a general electric furnace, a kiln, or the like.

【0008】加熱処理の温度が低すぎると有機質化合物
が残り、初充電容量に対する初放電容量の比が低下し、
かつ平均電位が高くなり一般のコークス系炭素材料に対
して利点が無くなる。また、該加熱処理温度が高すぎて
も平均電位が高くなり一般のコークス系炭素材料に対し
て利点が無くなる。従って、該加熱処理の温度は800
〜1500℃が良く、好ましくは900〜1300℃が
更に良い。該温度での保持時間は、10分程度以上であ
れば特に限定されるものではない。保持時間が極端に短
いと炭化反応が充分に行われず、見掛け上熱処理温が低
いコークスとなり好ましくない。また、800〜150
0℃の範囲であれば、加熱温度が高ければ保持時間は相
対的に短くてよく、逆に加熱温度が低ければ保持時間を
長くすれば良い。本発明において800〜1500℃の
加熱処理に供される石炭の粒径は、特に限定されるもの
ではないが、通常1mm以下から選ばれる。
If the temperature of the heat treatment is too low, organic compounds remain and the ratio of the initial discharge capacity to the initial charge capacity decreases,
In addition, the average potential becomes high, and there is no advantage over common coke-based carbon materials. Further, if the heat treatment temperature is too high, the average potential becomes high, and there is no advantage over common coke-based carbon materials. Therefore, the temperature of the heat treatment is 800
-1500 ° C is preferable, and 900-1300 ° C is more preferable. The holding time at the temperature is not particularly limited as long as it is about 10 minutes or more. If the holding time is extremely short, the carbonization reaction is not sufficiently carried out, and coke having an apparently low heat treatment temperature is not preferable. Also, 800 to 150
Within the range of 0 ° C., the holding time may be relatively short if the heating temperature is high, and conversely, if the heating temperature is low, the holding time may be lengthened. In the present invention, the particle size of the coal subjected to the heat treatment at 800 to 1500 ° C. is not particularly limited, but is usually selected from 1 mm or less.

【0009】本発明では以上のようにして得られるコー
クスを非水系二次電池の負極材として用いられる。正極
および非水溶媒中に電解質を溶解させてなる電解液につ
いては、従来の非水系二次電池で用いられる物でよく、
特に限定される物ではない。具体的には、正極として、
LiCoO2 、MnO2 、TiS2 、FeS2 、Nb 3
4 、Mo3 4 、CoS2 、V2 5 、P2 5 、C
rO3 、V3 3 、TeO2 、GeO2 等が用いられ
る。中でも容量および電池電圧の観点からLiCoO2
が最も好ましい。電解液としては、プロピレンカーボネ
イト、エチレンカーボネイト、テトラヒドロフラン、
1,2−ジメトキシエタン、ジメチルスルホキシド、ジ
オキソラン、ジメチルホルムアミド、ジメチルアセトア
ミドおよびこれらの2種以上の混合溶媒等が用いられ
る。中でもプロピレンカーボネイトおよびこれと他の溶
媒との混合物が最も好ましい。電解質としては、LiC
lO4 、LiBF4 、LiPE6 等を用いることができ
る。
In the present invention, the coating obtained as described above is used.
Cus is used as a negative electrode material for non-aqueous secondary batteries. Positive electrode
And an electrolyte solution prepared by dissolving an electrolyte in a non-aqueous solvent.
As long as it is the one used in the conventional non-aqueous secondary battery,
It is not particularly limited. Specifically, as the positive electrode,
LiCoO2, MnO2, TiS2, FeS2, Nb Three
SFour, MoThreeSFour, CoS2, V2OFive, P2OFive, C
rOThree, VThreeOThree, TeO2, GeO2Etc. are used
You. Above all, LiCoO 2 from the viewpoint of capacity and battery voltage.2
Is most preferred. As the electrolyte, propylene carbonate
Ite, ethylene carbonate, tetrahydrofuran,
1,2-dimethoxyethane, dimethyl sulfoxide, di
Oxolane, dimethylformamide, dimethylacetoa
Mido and mixed solvents of two or more of these are used
You. Among them, propylene carbonate and other
Most preferred is a mixture with a medium. As the electrolyte, LiC
10Four, LiBFFour, LiPE6Can be used
You.

【0010】電池構成としては、帯状の正極、負極をセ
パレータを介して渦巻き状にしたスパイラル構造、また
はボタン型ケーズにペレット状の正極、円盤状の負極を
セパレータを介して挿入する方法等が採用される。以下
に、本発明を実施例により更に詳細に説明するが、本発
明はその要旨を越えない限り以下の実施例によって限定
されるものではない。
As the battery constitution, a spiral structure in which a strip-shaped positive electrode and a negative electrode are spirally formed with a separator interposed therebetween, or a method in which a pellet-shaped positive electrode and a disk-shaped negative electrode are inserted into a button-shaped case through a separator is adopted. To be done. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples without departing from the gist thereof.

【0011】[0011]

【実施例】【Example】

〔実施例1〕瀝青炭を45μm以下に粉砕後これを大気
中、310℃で加熱して酸化処理を行った。得られた石
炭の元素分析および灰分の測定はパーキンエルマ社製
「CHN計240C」により行い、炭素含有量は71w
t%、灰分は2.0wt%、O/Cは0.25であっ
た。これを窒素気流中で1100℃で3時間加熱処理し
て得られたコークスを負極材として用いた。このコーク
スをCuKα線を用いて反射法で測定したX線回折パタ
ーンを図1に示す。
[Example 1] Bituminous coal was pulverized to 45 µm or less and then heated at 310 ° C in the atmosphere for oxidation treatment. The elemental analysis and ash content of the obtained coal are measured by "CHN meter 240C" manufactured by Perkin Elma Co., and the carbon content is 71w.
t%, ash content was 2.0 wt%, and O / C was 0.25. Coke obtained by subjecting this to heat treatment at 1100 ° C. for 3 hours in a nitrogen stream was used as a negative electrode material. The X-ray diffraction pattern of this coke measured by the reflection method using CuKα rays is shown in FIG.

【0012】得られた負極材にバインダーとして約10
wt%のPVDF(ポリフッ化ビニリデン)を加えて、
SUS316製メッシュに圧着後、加熱真空乾燥して試
験用の電極とした。二次電池性能は、対極を金属Liと
して、非水系電解液に1mol/LのLiFP6 を含む
PC(ポリカーボネイト)を用いてAr雰囲気中、室温
で行った。対極からLiを負極材へドープする過程であ
る初充電では、まず試験電極での電流密度を0.5mA
/cm2 で保持し、電極間電位が0.01Vとなった所
で電極間電位を0.01Vに保持し、流れる電流が0.
04mA/cm 2 以下に減衰するまで待った。該初充電
に続く初放電では試験電極での電流密度を0.5mA/
cm2 と一定とし、電極間電圧が1.5Vに到達するま
で待ち、電極間に流れた総容量から初放電量を求めた。
バインダーを除く負極材1g当りの容量は、初放電量3
63mAh/gであった。この時電極間電圧が0〜0.
4Vまでの放電容量は234mAh/gであり、電極間
電圧が0〜1.5VまでのLiの酸化還元電位から測っ
た平均放電電位は0.37Vであった。放電曲線を図3
に示す。
Approximately 10 parts as a binder were added to the obtained negative electrode material.
Add wt% PVDF (polyvinylidene fluoride),
After pressure bonding to the SUS316 mesh, heat vacuum dry and test.
It was used as a test electrode. The secondary battery performance is that the counter electrode is made of metallic Li.
Then, 1 mol / L of LiFP was added to the non-aqueous electrolyte solution.6including
PC (polycarbonate) at room temperature in Ar atmosphere
I went there. In the process of doping the negative electrode material with Li from the counter electrode
For the first charge, first set the current density at the test electrode to 0.5 mA.
/ Cm2Where the inter-electrode potential is 0.01 V
The inter-electrode potential is maintained at 0.01 V and the flowing current is 0.
04mA / cm 2I waited until it decayed below. The first charge
In the first discharge following, the current density at the test electrode was 0.5 mA /
cm2Constant until the inter-electrode voltage reaches 1.5V.
Then, the initial discharge amount was obtained from the total capacity flowing between the electrodes.
The capacity per 1g of negative electrode material excluding binder is the initial discharge amount 3
It was 63 mAh / g. At this time, the voltage between the electrodes is 0 to 0.
The discharge capacity up to 4 V is 234 mAh / g,
Measured from the redox potential of Li with a voltage of 0 to 1.5V
The average discharge potential was 0.37V. Figure 3 shows the discharge curve
Shown in

【0013】〔実施例2〕瀝青炭を45μm以下に粉砕
後これを大気中、380℃で加熱して酸化処理を行い、
実施例1と同じ方法で測定した炭素含有量が64wt
%、灰分が3.7wt%、O/Cが0.32である石炭
を得た。これを窒素気流中で1100℃で3時間加熱処
理して得られたコークスを負極材として用いた。該コー
クスのCuKα線を用いて反射法で測定したX線回折パ
ターンを図2に示す。
Example 2 Bituminous coal was pulverized to a size of 45 μm or less, which was then heated at 380 ° C. in the atmosphere for oxidation treatment.
The carbon content measured by the same method as in Example 1 is 64 wt.
%, Ash content was 3.7 wt%, and O / C was 0.32. Coke obtained by subjecting this to heat treatment at 1100 ° C. for 3 hours in a nitrogen stream was used as a negative electrode material. The X-ray diffraction pattern measured by the reflection method using CuKα ray of the coke is shown in FIG.

【0014】電池特性は実施例1と同じ方法で測定し
た。バインダーを除く負極材1g当りの容量は、初放電
量329mAh/gであった。この時電極間電圧が0〜
0.4Vまでの放電容量は204mAh/gであり、電
極間電圧が0〜1.5VまでのLiの酸化還元電位から
測った平均放電電位は0.38Vであった。
The battery characteristics were measured by the same method as in Example 1. The capacity per 1 g of the negative electrode material excluding the binder was an initial discharge amount of 329 mAh / g. At this time, the voltage between electrodes is 0 to
The discharge capacity up to 0.4 V was 204 mAh / g, and the average discharge potential measured from the oxidation-reduction potential of Li at an interelectrode voltage of 0 to 1.5 V was 0.38 V.

【0015】〔実施例3〕瀝青炭を45μm以下に粉砕
後これを大気中で加熱して酸化処理を行い、実施例1と
同じ方法で測定した炭素含有量が82wt%、灰分が
1.2wt%、O/Cが0.095である石炭を得た。
これを窒素気流中で1100℃で3時間加熱処理して得
られたコークスを負極材として用いた。電池特性は実施
例1と同じ方法で測定した。バインダーを除く負極材1
g当りの容量は、初放電量314mAh/gであった。
この時電極間電圧が0〜0.4Vまでの放電容量は18
5mAh/gであり、電極間電圧が0〜1.5Vまでの
Liの酸化還元電位から測った平均放電電位は0.43
Vであった。
[Example 3] Bituminous coal was pulverized to 45 µm or less and then heated in the atmosphere for oxidation treatment. The carbon content measured by the same method as in Example 1 was 82 wt% and the ash content was 1.2 wt%. , Coal having an O / C of 0.095 was obtained.
Coke obtained by subjecting this to heat treatment at 1100 ° C. for 3 hours in a nitrogen stream was used as a negative electrode material. The battery characteristics were measured by the same method as in Example 1. Anode material 1 excluding binder
The capacity per gram was 314 mAh / g of initial discharge.
At this time, the discharge capacity when the voltage between electrodes is 0 to 0.4 V is 18
It is 5 mAh / g, and the average discharge potential measured from the oxidation-reduction potential of Li at an interelectrode voltage of 0 to 1.5 V is 0.43.
It was V.

【0016】〔実施例4〕900℃で3時間加熱処理し
た以外は実施例3と同じ方法で負極材を得た。電池特性
は実施例1と同じ方法で測定した。バインダーを除く負
極材1g当りの容量は、初放電量397mAh/gであ
った。この時電極間電圧が0〜0.4Vまでの放電容量
は180mAh/gであり、電極間電圧が0〜1.5V
までのLiの酸化還元電位から測った平均放電電位は
0.57Vであった。
Example 4 A negative electrode material was obtained in the same manner as in Example 3 except that the heat treatment was performed at 900 ° C. for 3 hours. The battery characteristics were measured by the same method as in Example 1. The capacity per 1 g of the negative electrode material excluding the binder was an initial discharge amount of 397 mAh / g. At this time, the discharge capacity when the inter-electrode voltage is 0 to 0.4 V is 180 mAh / g, and the inter-electrode voltage is 0 to 1.5 V.
The average discharge potential measured from the redox potentials of Li was 0.57V.

【0017】〔比較例1〕ピッチを約500℃で予備熱
処理後、窒素気流中にて1100℃で加熱処理して得た
コークスを負極材として用いた。電池特性は実施例1と
同じ方法で測定した。バインダーを除く負極材1g当り
の容量は、初放電量265mAh/gであった。この時
電極間電圧が0〜0.4Vまでの放電容量は137mA
h/gであり、電極間電圧が0〜1.5VまでのLiの
酸化還元電位から測った平均放電電位は0.48Vであ
った。放電曲線を図3に示す。 〔比較例2〕加熱温度を900℃とする以外は比較例1
と同じ。電池特性は実施例1と同じ方法で測定した。バ
インダーを除く負極材1g当りの容量は、初放電量34
4mAh/gであった。この時電極間電圧が0〜0.4
Vまでの放電容量は135mAh/gであり、電極間電
圧が0〜1.5VまでのLiの酸化還元電位から測った
平均放電電位は0.62Vであった。
Comparative Example 1 Coke obtained by preheating the pitch at about 500 ° C. and then heat-treating it at 1100 ° C. in a nitrogen stream was used as a negative electrode material. The battery characteristics were measured by the same method as in Example 1. The capacity per 1 g of the negative electrode material excluding the binder was an initial discharge amount of 265 mAh / g. At this time, the discharge capacity when the voltage between electrodes is 0 to 0.4 V is 137 mA.
It was h / g, and the average discharge potential measured from the oxidation-reduction potential of Li at an inter-electrode voltage of 0 to 1.5 V was 0.48 V. The discharge curve is shown in FIG. [Comparative Example 2] Comparative Example 1 except that the heating temperature was set to 900 ° C.
Same as. The battery characteristics were measured by the same method as in Example 1. The capacity per 1 g of negative electrode material excluding binder is 34
It was 4 mAh / g. At this time, the voltage between the electrodes is 0 to 0.4.
The discharge capacity up to V was 135 mAh / g, and the average discharge potential measured from the oxidation-reduction potential of Li at an interelectrode voltage of 0 to 1.5 V was 0.62 V.

【0018】[0018]

【発明の効果】本発明によれば、低コストのコークスを
負極材として、充・放電容量が大きく、かつ作動電圧が
高い非水系二次電池を提供しうる。
According to the present invention, it is possible to provide a non-aqueous secondary battery having a large charge / discharge capacity and a high operating voltage, using low cost coke as a negative electrode material.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に記載のコークスの構造を示すための
X線回折パターンである。CuKα線を用いて反射法に
て測定した。○印はピーク位置同定のため故意に混ぜた
Siからの回折線。
1 is an X-ray diffraction pattern for showing the structure of coke described in Example 1. FIG. It measured by the reflection method using CuKα ray. The circles are the diffraction lines from Si intentionally mixed to identify the peak position.

【図2】実施例2に記載のコークスの構造を示すための
X線回折パターンである。CuKα線を用いて反射法に
て測定した。○印はピーク位置同定のため故意に混ぜた
Siからの回折線。
FIG. 2 is an X-ray diffraction pattern for showing the structure of coke described in Example 2. It measured by the reflection method using CuKα ray. The circles are the diffraction lines from Si intentionally mixed to identify the peak position.

【図3】実施例1および比較例1に記載のコークスの放
電容量と、Liの酸化還元電位から測った負極電位の関
係を示す。対極は金属Liとし、非水系電解液として1
mol/LのLiFP6 を含むPC(ポリカーボネイ
ト)を用い、Ar雰囲気中、室温で行った。電流密度は
0.5mA/cm2 とした。
FIG. 3 shows the relationship between the discharge capacity of the coke described in Example 1 and Comparative Example 1 and the negative electrode potential measured from the Li redox potential. The counter electrode was metallic Li, and the non-aqueous electrolyte solution was 1
PC (polycarbonate) containing mol / L of LiFP 6 was used and it was performed at room temperature in Ar atmosphere. The current density was 0.5 mA / cm 2 .

【図4】本発明非水二次電池の一例であるボタン型非水
電解液二次電池の断面説明図である。
FIG. 4 is a cross-sectional explanatory diagram of a button type non-aqueous electrolyte secondary battery which is an example of the non-aqueous secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 負極集電体 3 負極缶 4 絶縁パッキング 5 正極缶 6 正極集電体 7 正極 Reference Signs List 1 negative electrode 2 negative electrode current collector 3 negative electrode can 4 insulating packing 5 positive electrode can 6 positive electrode current collector 7 positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町野 晴子 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Haruko Machino Inventor Haruko Machino 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation Yokohama Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および非水溶媒中に電解質を
溶解させた電解液を備えてなる非水系二次電池におい
て、JIS M8813規定の元素分析において炭素の
含有率が55wt%以上であり、かつJIS M881
2規定の灰分が5wt%以下で、かつ炭素に対する酸素
の原子比O/Cが0.03〜0.4である石炭を、不活
性雰囲気中で800〜1500℃の温度で加熱処理して
得られたコークスを負極材として用いることを特徴とす
る非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein the carbon content is 55 wt% or more in elemental analysis according to JIS M8813. And JIS M881
Obtained by heat-treating coal having a 2N ash content of 5 wt% or less and an atomic ratio O / C of oxygen to carbon of 0.03 to 0.4 at a temperature of 800 to 1500 ° C in an inert atmosphere. A non-aqueous secondary battery, characterized in that the obtained coke is used as a negative electrode material.
JP14887996A 1996-06-11 1996-06-11 Non-aqueous secondary battery Expired - Fee Related JP3612862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14887996A JP3612862B2 (en) 1996-06-11 1996-06-11 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14887996A JP3612862B2 (en) 1996-06-11 1996-06-11 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH09330714A true JPH09330714A (en) 1997-12-22
JP3612862B2 JP3612862B2 (en) 2005-01-19

Family

ID=15462768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14887996A Expired - Fee Related JP3612862B2 (en) 1996-06-11 1996-06-11 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3612862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651472B2 (en) 2015-10-27 2020-05-12 Institute Of Physics, The Chinese Academy Of Sciences Sodium ion secondary battery anode material and preparing method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651472B2 (en) 2015-10-27 2020-05-12 Institute Of Physics, The Chinese Academy Of Sciences Sodium ion secondary battery anode material and preparing method and application thereof

Also Published As

Publication number Publication date
JP3612862B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
CA2038631C (en) Lithiated nickel dioxide and secondary cells prepared therefrom
CN100416894C (en) Negative electrode active material and its making method. negative electrode and nonaqueous electrolyte battery
US20050042514A1 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
JPH02288068A (en) Nonaqueous electrolyte secondary battery
KR20050086935A (en) Cathode composition for rechargeable lithium battery
JP2004152743A (en) Positive electrode for lithium sulfur battery, and lithium sulfur battery containing this
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3489771B2 (en) Lithium battery and method of manufacturing lithium battery
JP2001023616A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
KR100515598B1 (en) Anode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries comprising the same
JPH10294099A (en) Non-aqueous electrolyte secondary cell
US6482546B1 (en) Rechargeable lithium battery
US6245460B1 (en) Negative electrode active material for lithium-based secondary battery and method of preparing same
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH0945312A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using this
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
CN115020797A (en) Sulfide electrolyte, preparation method and application thereof
JPH09330714A (en) Non-aqueous secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP2001257003A (en) Lithium secondary battery
JP3531274B2 (en) Non-aqueous secondary battery
JPH07312216A (en) Lithium secondary battery
JPH11139830A (en) Production of nickel oxide material and cell using the same nickel oxide material produced therewith
JPH11139831A (en) Production of cobalt oxide material and cell using the same cobalt oxide material produced therewith
JP3144832B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees