JP2001023616A - Negative electrode material for lithium ion secondary battery and manufacture thereof - Google Patents

Negative electrode material for lithium ion secondary battery and manufacture thereof

Info

Publication number
JP2001023616A
JP2001023616A JP11194018A JP19401899A JP2001023616A JP 2001023616 A JP2001023616 A JP 2001023616A JP 11194018 A JP11194018 A JP 11194018A JP 19401899 A JP19401899 A JP 19401899A JP 2001023616 A JP2001023616 A JP 2001023616A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
lithium ion
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11194018A
Other languages
Japanese (ja)
Inventor
Akito Miyamoto
明人 宮本
Kazuhiro Watanabe
和廣 渡辺
Satoshige Nanai
識成 七井
Katsuhiro Nichogi
克洋 二梃木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11194018A priority Critical patent/JP2001023616A/en
Publication of JP2001023616A publication Critical patent/JP2001023616A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material having excellent cycle characteristics and a high capacity by heattreating an organometallic complex having a polyphilline skeleton or a mixture containing the organometallic complex. SOLUTION: An organometallic complex is preferably a metallic phthalocyanine derivative expressed in a formula I or metallic polyphilline derivative expressed in a formula II. In the formula, R1, R2, R3 and R4 are an alkyl group or alkoxy group; X1 and X2 are a monovalent organic residue of an alkyl group and a phenyl group; R5 is a phenyl group; and M1 and M2 are Si, Sn, Al, Zn, Fe, Co, Ni, Ti, V, Ag and Pd. A heat-treatment is performed in the vacuum of 10 Pa or under or inert atmosphere, preferably a heating temperature is 800-1300 deg.C and a heating period is one hour or more. A carbon composite material having a metal fine particle and an amorphous carbon and having a metallic element dispersed in a molecular level by the heat- treatment. The average surface interval of the surface (002) of the amorphous carbon is preferably 0.35-0.45 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器、電気自
動車等の分野に使用される大型、小型、薄型で、軽量化
されたリチウムイオン二次電池の負極材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-sized, small-sized, thin and lightweight negative electrode material for a lithium ion secondary battery used in the fields of electronic equipment, electric vehicles and the like.

【0002】[0002]

【従来の技術】近年、リチウムを用いたリチウムイオン
二次電池は、高エネルギー密度を有し、機器の小型化や
軽量化に大きな役割を演じている。しかしながら機器の
いっそうの小型化、軽量化の要求、また一方では電気自
動車用電源のような大型で軽量化された高容量の二次電
池の要望が強くなっている。
2. Description of the Related Art In recent years, lithium ion secondary batteries using lithium have a high energy density and play a large role in reducing the size and weight of equipment. However, there is an increasing demand for further downsizing and weight reduction of devices, and on the other hand, a demand for large, lightweight, high capacity secondary batteries such as power supplies for electric vehicles.

【0003】従来のリチウムイオン二次電池は、特開昭
62−90863号公報、特開昭63−121260号
公報、特開平3−49155号公報に開示されているよ
うに正極活物質にリチウム、コバルトを主成分とする遷
移金属複合酸化物を用い、負極活物質には黒鉛等の炭素
質材料を使用して、充電時にリチウムイオンを炭素質材
料に吸蔵させ、放電時にこれらのリチウムイオンを負極
から放出させるものである。しかしながら、黒鉛系の炭
素材料はC6Li化合物が生成するとした場合の理論値
である372mAh/gの放電容量が上限であり、これ
に変わる高容量な負極材料が要望されている。
[0003] Conventional lithium ion secondary batteries are disclosed in JP-A-62-90863, JP-A-63-121260, and JP-A-3-49155. A transition metal composite oxide containing cobalt as a main component is used, and a carbonaceous material such as graphite is used as a negative electrode active material. Lithium ions are occluded in the carbonaceous material during charging, and these lithium ions are used as a negative electrode in discharging. Is to be released from However, the graphite-based carbon material has a discharge capacity of 372 mAh / g, which is a theoretical value when a C 6 Li compound is generated, as an upper limit, and a high-capacity negative electrode material instead of this is demanded.

【0004】また、最近では、さらなる高容量化のため
に特開平7−122274号公報、特開平6−3383
25号公報に開示されているようにSnO2 、SnO等
の錫の酸化物が、負極のリチウムイオン吸蔵材として提
案されている。
In recent years, Japanese Patent Application Laid-Open Nos. Hei 7-122274 and Hei 6-3383 have disclosed a technique for further increasing the capacity.
As disclosed in Japanese Patent Publication No. 25, tin oxide such as SnO 2 or SnO has been proposed as a lithium ion storage material for a negative electrode.

【0005】しかしながら、錫の酸化物を負極のリチウ
ムイオン吸蔵材として使用したリチウム二次電池には、
錫の酸化物の結晶構造が極めて不安定なため、充放電サ
イクル特性が極めて良くないという問題があった。
However, lithium secondary batteries using tin oxide as a lithium ion storage material for a negative electrode include:
Since the crystal structure of the tin oxide is extremely unstable, there is a problem that the charge / discharge cycle characteristics are extremely poor.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するもので、負極材料が無機元素と炭素質から構
成される無機炭素複合材料に改良することによりサイク
ル特性に優れた高容量なリチウムイオン二次電池用負極
材料およびその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and improves the negative electrode material to an inorganic carbon composite material composed of an inorganic element and carbonaceous material, thereby achieving a high capacity with excellent cycle characteristics. It is an object of the present invention to provide a negative electrode material for a lithium ion secondary battery and a method for producing the same.

【0007】[0007]

【課題を解決する手段】この目的を達成するために、本
発明のリチウムイオン二次電池用負極材料においては、
種々の無機元素を分子に含有しているポルフィリン骨格
を有する有機金属錯体、あるいはその有機金属錯体を含
んだ混合物を加熱処理して製造されることを特徴とする
リチウムイオン二次電池用負極材料およびその製造方法
としたものである。この本発明により、無機元素が含有
された炭素複合材料が製造でき、これをリチウムイオン
二次電池用負極材料に使用することによりこれまでの黒
鉛系材料の放電容量を大きく上回るとともに、サイクル
特性に優れた負極材料を提供することができる。
In order to achieve this object, a negative electrode material for a lithium ion secondary battery according to the present invention comprises:
An anode material for a lithium ion secondary battery, which is produced by heat-treating an organometallic complex having a porphyrin skeleton containing various inorganic elements in molecules, or a mixture containing the organometallic complex, and This is the manufacturing method. According to the present invention, a carbon composite material containing an inorganic element can be produced, and by using this as a negative electrode material for a lithium ion secondary battery, it greatly exceeds the discharge capacity of conventional graphite-based materials, and the cycle characteristics are improved. An excellent negative electrode material can be provided.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、ポルフィリン骨格を有する有機金属錯体又は前記有
機金属錯体を少なくとも1種類以上含む混合物を原料と
し、前記原料を加熱処理して製造されることを特徴とす
るリチウムイオン二次電池用負極材料であり、これによ
り無機元素が含有された炭素複合材料が製造でき、これ
をリチウムイオン二次電池用負極材料として用いること
により、従来の黒鉛系に比べ放電容量が大きくなり、ま
た、錫等の酸化物系に比べてサイクル特性が向上する作
用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that a raw material is an organometallic complex having a porphyrin skeleton or a mixture containing at least one kind of the organometallic complex, and the raw material is heat-treated. It is a negative electrode material for lithium ion secondary batteries, characterized by being able to produce a carbon composite material containing an inorganic element, by using this as a negative electrode material for lithium ion secondary batteries, It has the effect of increasing the discharge capacity as compared with graphite-based ones and improving cycle characteristics as compared with oxide-based ones such as tin.

【0009】請求項2に記載の本発明は、加熱処理によ
って構成され、有機金属錯体に含まれる金属を主成分と
する金属微粒子と、前記加熱処理によって形成された非
晶質炭素を有し、前記金属微粒子が前記非晶質炭素中に
分散して存在することを特徴とする請求項1記載のリチ
ウムイオン二次電池用負極材料であり、これにより金属
微粒子が分散した炭素質材料が製造できこれを負極材料
として用いることにより放電容量が大きくなる作用を有
する。
According to a second aspect of the present invention, there is provided a semiconductor device comprising: a metal fine particle mainly composed of a metal contained in an organometallic complex; and amorphous carbon formed by the heat treatment. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the metal fine particles are dispersed in the amorphous carbon, whereby a carbonaceous material in which the metal fine particles are dispersed can be manufactured. Using this as a negative electrode material has the effect of increasing the discharge capacity.

【0010】請求項3に記載の本発明は、非晶質炭素の
(002)面の平均面間隔が0.35nm〜0.45n
mであることを特徴とする請求項2記載のリチウムイオ
ン二次電池用負極材料であり、これにより金属微粒子が
分散した炭素質材料が製造できこれを負極材料として用
いることにより放電容量が大きくなる作用を有する。
According to the present invention, the average spacing of the (002) plane of the amorphous carbon is 0.35 nm to 0.45 n.
3. The negative electrode material for a lithium ion secondary battery according to claim 2, wherein a carbonaceous material in which metal fine particles are dispersed can be produced, and by using this as a negative electrode material, the discharge capacity increases. Has an action.

【0011】請求項4に記載の本発明は、有機金属錯体
が、(化3)で表される金属フタロシアニン誘導体又は
(化4)で表される金属ポルフィリン誘導体であること
を特徴とする請求項1ないし3のいずれか記載のリチウ
ムイオン二次電池用負極材料であり、これにより製造さ
れた負極材料は放電容量が大きくサイクル特性に優れた
作用を有する。
According to a fourth aspect of the present invention, the organometallic complex is a metal phthalocyanine derivative represented by the formula (3) or a metal porphyrin derivative represented by the formula (4). 4. The negative electrode material for a lithium ion secondary battery according to any one of 1 to 3, wherein the negative electrode material produced thereby has a large discharge capacity and an excellent cycle characteristic.

【0012】ただし、(化3)において、R1、R2、
R3及びR4は、直鎖又は分岐のアルキル基又はアルコ
キシ基より選ばれ、nは0以上4以下の整数である。X
1及びX2は、直鎖又は分岐のアルキル基、フェニル基
又は置換フェニル基の一価の有機残基を示す。M1は金
属を示す。また、(化4)において、R5はフェニル基
を示し、M2は金属を示す。
However, in the chemical formula 3, R1, R2,
R3 and R4 are selected from linear or branched alkyl groups or alkoxy groups, and n is an integer of 0 or more and 4 or less. X
1 and X2 represent a monovalent organic residue of a linear or branched alkyl group, phenyl group or substituted phenyl group. M 1 represents a metal. Further, in (Formula 4), R5 represents a phenyl group, M 2 represents a metal.

【0013】[0013]

【化3】 Embedded image

【0014】[0014]

【化4】 Embedded image

【0015】請求項5に記載の本発明は、(化3)にお
けるM1及び(化4)におけるM2が、Si、Sn、A
l、Zn、Fe、Co、Ni、Ti、V、Ag又はPd
の元素群から選ばれることを特徴とする請求項4記載の
リチウムイオン二次電池用負極材料であり、これにより
無機元素が含有された炭素複合材料が製造でき、これを
リチウムイオン二次電池用負極材料として用いることに
より、従来の黒鉛系に比べ放電容量が大きくなり、ま
た、錫等の酸化物系に比べてサイクル特性が向上する作
用を有する。
According to a fifth aspect of the present invention, M 1 in the formula (3) and M 2 in the formula (4) are Si, Sn, A
1, Zn, Fe, Co, Ni, Ti, V, Ag or Pd
The negative electrode material for a lithium ion secondary battery according to claim 4, wherein a carbon composite material containing an inorganic element can be produced. The use as a negative electrode material has the effect of increasing the discharge capacity as compared with conventional graphite-based materials and improving cycle characteristics as compared with oxides such as tin.

【0016】請求項6に記載の本発明は、加熱処理が1
0Pa以下の真空中または不活性雰囲気中で行われ、加
熱温度が800℃以上1300℃以下であり、加熱時間
が1時間以上であることを特徴とする請求項1ないし5
のいずれか記載のリチウムイオン二次電池用負極材料で
あり、これにより放電容量が増大したリチウムイオン二
次電池用負極材料が製造できる作用を有する。
[0016] According to the present invention as set forth in claim 6, the heat treatment is performed in one step.
The heating is performed in a vacuum of 0 Pa or less or in an inert atmosphere, the heating temperature is 800 ° C. or more and 1300 ° C. or less, and the heating time is 1 hour or more.
The negative electrode material for a lithium ion secondary battery according to any one of the above, which has an effect of producing a negative electrode material for a lithium ion secondary battery having an increased discharge capacity.

【0017】請求項7に記載の本発明は、BET法によ
る比表面積が150m2/g以下であることを特徴とす
る請求項1ないし6のいずれか記載のリチウムイオン二
次電池用負極材料であり、これにより放電容量が増大す
る作用を有する。
According to a seventh aspect of the present invention, there is provided the negative electrode material for a lithium ion secondary battery according to any one of the first to sixth aspects, wherein the specific surface area by the BET method is 150 m 2 / g or less. Yes, this has the effect of increasing the discharge capacity.

【0018】請求項8に記載の本発明は、ポルフィリン
骨格を有する有機金属錯体又は前記有機金属錯体を少な
くとも1種類以上含む混合物を原料とし、前記原料を加
熱処理する工程を含むリチウムイオン二次電池用負極材
料の製造方法であり、これにより放電容量が増大した炭
素複合材料が容易に製造できる作用を有する。
The present invention according to claim 8 is a lithium ion secondary battery comprising a step of heating a raw material using an organometallic complex having a porphyrin skeleton or a mixture containing at least one kind of the organometallic complex. This is a method for producing a negative electrode material for use with a carbon composite material having an increased discharge capacity.

【0019】請求項9に記載の本発明は、有機金属錯体
が、(化3)で表される金属フタロシアニン誘導体又は
(化4)で表される金属ポルフィリン誘導体であること
を特徴とする請求項8記載のリチウムイオン二次電池用
負極材料の製造方法であり、この方法により高容量な炭
素複合材料が容易に製造できる作用を有する。
According to a ninth aspect of the present invention, the organometallic complex is a metal phthalocyanine derivative represented by the following formula (3) or a metal porphyrin derivative represented by the following (formula 4). 8. A method for producing a negative electrode material for a lithium ion secondary battery according to item 8, which has an effect of easily producing a high capacity carbon composite material.

【0020】ただし、(化3)において、R1、R2、
R3及びR4は、直鎖又は分岐のアルキル基又はアルコ
キシ基より選ばれ、nは0以上4以下の整数である。X
1及びX2は、直鎖又は分岐のアルキル基、フェニル基
又は置換フェニル基の一価の有機残基を示す。M1は金
属を示す。また、(化4)において、R5はフェニル基
を示し、M2は金属を示す。
However, in the chemical formula 3, R1, R2,
R3 and R4 are selected from linear or branched alkyl groups or alkoxy groups, and n is an integer of 0 or more and 4 or less. X
1 and X2 represent a monovalent organic residue of a linear or branched alkyl group, phenyl group or substituted phenyl group. M 1 represents a metal. Further, in (Formula 4), R5 represents a phenyl group, M 2 represents a metal.

【0021】請求項10に記載の本発明は、(化3)に
おけるM1及び(化4)におけるM2が、Si、Sn、A
l、Zn、Fe、Co、Ni、Ti、V、Ag又はPd
の元素群から選ばれることを特徴とする請求項9に記載
のリチウムイオン二次電池用負極材料の製造方法であ
り、これにより無機元素が含有された炭素複合材料が容
易に製造できる作用を有する。
The present invention as set forth in claim 10, is characterized in that M 1 in (Chem. 3) and M 2 in (Chem. 4) are Si, Sn, A
1, Zn, Fe, Co, Ni, Ti, V, Ag or Pd
The method for producing a negative electrode material for a lithium ion secondary battery according to claim 9, wherein the carbon composite material containing an inorganic element is easily produced. .

【0022】請求項11に記載の本発明は、加熱処理が
10Pa以下の真空中または不活性雰囲気中で行われ、
加熱温度が800℃以上1300℃以下であり、加熱時
間が1時間以上であることを特徴とする請求項8ないし
10のいずれか記載のリチウムイオン二次電池用負極材
料の製造方法であり、これにより無機元素が含有された
炭素複合材料が容易に製造できる作用を有する。
According to the present invention, the heat treatment is performed in a vacuum of 10 Pa or less or in an inert atmosphere,
The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 8 to 10, wherein the heating temperature is 800 ° C or higher and 1300 ° C or lower, and the heating time is 1 hour or longer. Has the effect that a carbon composite material containing an inorganic element can be easily produced.

【0023】本発明のリチウムイオン二次電池用負極材
料は、その原料がポルフィリン骨格を有する有機金属錯
体、あるいはその有機金属錯体を少なくとも1種以上含
んだ混合物を加熱処理して製造されることを特徴とする
ものであり、具体的には金属原子を分子内に含有してい
る金属フタロシアニン誘導体又は金属ポルフィリン誘導
体の有機金属錯体が挙げられ、これらを用いることによ
り、分子レベルで金属原子が分散された炭素複合材料が
容易に得ることができる。(化3)が金属フタロシアニ
ン誘導体の化学式であり、(化4)が金属ポルフィリン
誘導体の化学式である。
The negative electrode material for a lithium ion secondary battery of the present invention is produced by heat-treating a raw material of an organometallic complex having a porphyrin skeleton or a mixture containing at least one or more of such organometallic complexes. It is a feature, specifically, an organometallic complex of a metal phthalocyanine derivative or a metalloporphyrin derivative containing a metal atom in the molecule, and by using these, the metal atom is dispersed at the molecular level. Carbon composite material can be easily obtained. (Formula 3) is the chemical formula of the metal phthalocyanine derivative, and (Formula 4) is the chemical formula of the metal porphyrin derivative.

【0024】(化3)において、R1、R2、R3,R
4は、同一、または、異なり、直鎖、または分岐アルキ
ル基、アルコキシ基より選ばれ、例えば、メチル基、プ
ロピル基、イソプロピル基、n-ブチル基、t−ブチル
基、メトキシ基、エトキシ基、ブトキシ基などが挙げら
れ、式中のnは同一、または、異なり、0〜4の整数か
ら選ばれる。また、X1、X2は同一、または異なり、
直鎖、または、分岐のアルキル基、 フェニル基、置換
フェニル基などの一価の有機残基を示す。例えば、メチ
ル基、エチル基、エトキシ基、メトキシ基、フェノキシ
基、ヒドロキシ基などが挙げられる。
In the formula (3), R1, R2, R3, R
4 are the same or different and are selected from linear or branched alkyl groups and alkoxy groups, for example, methyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, methoxy group, ethoxy group, Butoxy groups and the like, and n in the formula is the same or different and is selected from an integer of 0 to 4. X1 and X2 are the same or different,
It represents a monovalent organic residue such as a linear or branched alkyl group, phenyl group, and substituted phenyl group. For example, a methyl group, an ethyl group, an ethoxy group, a methoxy group, a phenoxy group, a hydroxy group and the like can be mentioned.

【0025】(化4)において、R5は、置換基を有し
ていてもよいフェニル基を示す。
In the chemical formula 4, R5 represents a phenyl group which may have a substituent.

【0026】また、有機金属錯体の金属原子は、遷移金
属およびIIIB族、IVB族等の半金属よりなる群から選
ばれ、有機金属錯体単体あるいは、少なくとも異なった
2種類以上の金属を有する有機金属錯体を組み合わせて
もよい。より好ましくは、Si、Sn、Al、Zn、F
e、Co、Ni、Ti、V、Ag、Pdである。
The metal atom of the organometallic complex is selected from the group consisting of transition metals and semimetals such as Group IIIB and Group IVB, and may be an organometallic complex alone or an organometallic complex having at least two different metals. Complexes may be combined. More preferably, Si, Sn, Al, Zn, F
e, Co, Ni, Ti, V, Ag, and Pd.

【0027】有機金属錯体と混合する混合物は、従来の
炭素質材料の原料として用いられてきた石油ピッチ、石
炭ピッチ、樹脂系ピッチ、フェノール樹脂、フラン樹
脂、エポキシ樹脂、ポリアクリロニトリル、コークス、
セルロース、レーヨンなどが挙げられ、有機金属錯体と
の混合は、これら炭素質材料の原料が、プレポリマー等
の液状あるいは樹脂硬化物等固体状態のいずれでもよい
が、有機金属錯体の分散状態の点から溶液状態時に有機
金属錯体を混合することが好ましい。また、有機金属錯
体単体を焼成し作製された炭素質材料と黒鉛あるいは非
晶質炭素等の炭素質材料を混合して負極材料として使用
してもよい。
The mixture to be mixed with the organometallic complex is made of petroleum pitch, coal pitch, resin pitch, phenol resin, furan resin, epoxy resin, polyacrylonitrile, coke,
Cellulose, rayon and the like can be mentioned, and the mixing with the organometallic complex may be carried out in such a manner that the raw material of the carbonaceous material may be in a liquid state such as a prepolymer or a solid state such as a cured resin, It is preferable to mix the organometallic complex in a solution state from the above. Alternatively, a carbonaceous material produced by firing an organometallic complex alone and a carbonaceous material such as graphite or amorphous carbon may be mixed and used as a negative electrode material.

【0028】前記有機金属錯体単体あるいはその混合物
を加熱することによる焼成に際して、焼成雰囲気や焼成
温度は重要である。焼成雰囲気は真空中あるいは窒素、
アルゴン等の不活性ガス中とするが、真空中10Pa以
下の減圧下であることがより好ましい。また、焼成温度
は、800℃以上とし、好ましくは950℃〜1200
℃である。
In firing by heating the organometallic complex alone or a mixture thereof, the firing atmosphere and firing temperature are important. The firing atmosphere is vacuum or nitrogen,
Although it is in an inert gas such as argon, it is more preferable to be under a reduced pressure of 10 Pa or less in a vacuum. The firing temperature is 800 ° C. or higher, preferably 950 ° C. to 1200 ° C.
° C.

【0029】以上により得られる負極材料は、X線回折
より求めた非晶質炭素部の(002)面の平均面間隔が
0.35nm〜0.45nm、BET法による比表面積
が100m2/g以下であることが望ましい。
The negative electrode material obtained as described above has an average spacing of the (002) plane of the amorphous carbon portion determined by X-ray diffraction of 0.35 nm to 0.45 nm and a specific surface area of 100 m 2 / g by the BET method. It is desirable that:

【0030】以下に、本発明のリチウムイオン二次電池
用負極材料が適用される電池について図を用いて説明す
るが、本発明はこれらに限定されるものではい。
Hereinafter, a battery to which the negative electrode material for a lithium ion secondary battery of the present invention is applied will be described with reference to the drawings, but the present invention is not limited thereto.

【0031】本発明が適用される一例の電池の断面図を
図1に示す。正極活物質2が正極集電体1に保持され、
また、本発明の負極活物質4は負極集電体3に保持さ
れ、これら両電極を、リチウム塩を溶解してなる非水溶
媒電解液を含浸させた多孔質セパレーター5により隔離
し、絶縁ガスケット6を介して収納ケース7をかしめて
作製されるコイン型電池を示す。
FIG. 1 is a sectional view of an example of a battery to which the present invention is applied. The positive electrode active material 2 is held by the positive electrode current collector 1,
Further, the negative electrode active material 4 of the present invention is held by the negative electrode current collector 3, and these two electrodes are separated by a porous separator 5 impregnated with a non-aqueous solvent electrolyte obtained by dissolving a lithium salt. 6 shows a coin-type battery produced by caulking a storage case 7 through 6.

【0032】なお、本発明の負極材料が適用される電池
では、従来のリチウムイオン二次電池に使用されている
種々の材料を組み合わせて用いることが可能であり、特
に制限されない。
In the battery to which the negative electrode material of the present invention is applied, various materials used in conventional lithium ion secondary batteries can be used in combination, and there is no particular limitation.

【0033】例えば、正極活物質としては、充放電が可
能なリチウム含有化合物が挙げられ、一般式LixMOy
(MはCo、Ni、Mn、Fe等の遷移金属元素を示
し、xは0≦x≦2、yは1≦y≦5)で表され、具体
例は、LiCoO2、LiNiO2、LiMnO2、Li
Mn24等が挙げられる。
For example, as the positive electrode active material, a chargeable / dischargeable lithium-containing compound may be mentioned, and a general formula Li x MO y
(M represents a transition metal element such as Co, Ni, Mn, and Fe, x is represented by 0 ≦ x ≦ 2, y is 1 ≦ y ≦ 5), and specific examples are LiCoO 2 , LiNiO 2 , and LiMnO 2. , Li
Mn 2 O 4 and the like.

【0034】また、非水系電解液の有機溶媒としては、
プロピレンカーボネート、エチレンカーボネート、1,
2−ブチレンカーボネート、1,2−ジメトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、ジオキサン、ジメチルカーボ
ネート、ジエチルカーボネート、メチルエチルカーボネ
ート、ジプロピルカーボネートなどの1種あるいは2種
以上の混合物にして使用してもよい。
As the organic solvent of the non-aqueous electrolytic solution,
Propylene carbonate, ethylene carbonate, 1,
One or a mixture of two or more of 2-butylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate, etc. May be used.

【0035】また、非水系電解液の支持電解質は、Li
PF6、LiClO4、LiAsF6、LiSbF6、Li
BF4、LiI、LiBr、LiCl、LiSO3CH3
LiSO3CF3などが挙げられる。
The supporting electrolyte of the non-aqueous electrolyte is Li
PF 6, LiClO 4, LiAsF 6 , LiSbF 6, Li
BF 4 , LiI, LiBr, LiCl, LiSO 3 CH 3 ,
LiSO 3 CF 3 and the like.

【0036】なお、本発明の負極材料が適用される電池
に用いる非水電解液は液体状に限らず、ゲル状、固体状
であってもよい。
The non-aqueous electrolyte used for the battery to which the negative electrode material of the present invention is applied is not limited to a liquid, but may be a gel or a solid.

【0037】また、集電体はアルミニウム、銅などの金
属に限定されず炭素質材料から構成されていてもよく、
その形状等は電池の種類や、電解液、電解質等の種類、
また、電池の使用目的に応じて最適化することができ
る。
The current collector is not limited to metals such as aluminum and copper and may be made of a carbonaceous material.
The shape, etc. of the battery, the type of electrolyte, electrolyte, etc.,
Further, it can be optimized according to the purpose of use of the battery.

【0038】(実施の形態1)本発明の金属錯体の一種
として錫フタロシアニン(SnPc)を用い、また、S
nPcとの混合物としてノボラック形フェノール樹脂を
不活性ガス雰囲気下、180℃で加熱処理して得られた
樹脂硬化物を使用した。SnPcは、フェノール樹脂硬
化物に対して10重量%混合し、これを原料とした。
(Embodiment 1) Tin phthalocyanine (SnPc) is used as one of the metal complexes of the present invention.
As a mixture with nPc, a cured resin obtained by heat-treating a novolak-type phenol resin at 180 ° C. in an inert gas atmosphere was used. SnPc was mixed at 10% by weight with respect to the cured phenol resin, and used as a raw material.

【0039】次に、この原料を不活性ガス雰囲気中、5
℃/分の昇温速度で600℃、1時間の加熱処理を行
い、その後、得られた熱処理物を、遊星ボールミルを用
いて平均粒径15μmになるように粉砕した。次に、こ
の熱処理物の粉末を真空下で、5℃/分の昇温速度で1
000℃まで昇温し、この温度で1時間保持した後、室
温まで冷却して本発明の負極材料を得た。
Next, this raw material is placed in an inert gas atmosphere,
A heat treatment was performed at 600 ° C. for 1 hour at a rate of temperature rise of 1 ° C./min. Thereafter, the obtained heat-treated product was ground using a planetary ball mill so as to have an average particle diameter of 15 μm. Next, the powder of this heat-treated product was heated at a rate of 5 ° C./min.
The temperature was raised to 000 ° C., maintained at this temperature for 1 hour, and then cooled to room temperature to obtain a negative electrode material of the present invention.

【0040】この負極材料3gを、ポリフッ化ビニリデ
ンをN−メチルピロリドンに10重量%溶解したバイン
ダー3gに混合し、この混合物を厚さ15μmの銅箔の
集電体上に塗布、乾燥して負極体を得た。この負極材料
の粉末のX線回折測定を行った結果、図2に示すように
非晶質炭素の層状構造の平均面間隔d(002)面は
0.419nm(ブラッグ角2θ=21.18°)であ
り、さらに、錫の微粒子に相当する回折ピークが観測さ
れ(2θ=30.56°、31.94°、43.84
°、44.86°、55.30°)、本発明の負極材料
は非晶質炭素と無機元素が複合された負極材料であるこ
とがわかる。また、BET法による比表面積は67m2
/gであった。
3 g of this negative electrode material was mixed with 3 g of a binder obtained by dissolving 10% by weight of polyvinylidene fluoride in N-methylpyrrolidone, and this mixture was applied to a 15 μm-thick copper foil current collector, dried, and dried. I got a body. As a result of X-ray diffraction measurement of the powder of the negative electrode material, as shown in FIG. 2, the average interplanar spacing d (002) plane of the amorphous carbon layer structure was 0.419 nm (Bragg angle 2θ = 21.18 °). ) And diffraction peaks corresponding to tin fine particles were observed (2θ = 30.56 °, 31.94 °, 43.84).
°, 44.86 °, 55.30 °), which indicates that the negative electrode material of the present invention is a negative electrode material in which amorphous carbon and an inorganic element are combined. The specific surface area by the BET method is 67 m 2.
/ G.

【0041】次に、エチレンカーボネートと炭酸ジエチ
ルを1:1の比で混合した有機溶媒にLiPF6を1m
ol/l溶解して電解液を作製した。前記の負極体の対
極として金属リチウムを用い、両者の間に電解液を含浸
させた多孔質ポリプロピレンを挟み込み、これらを20
16型コインケース内に入れ、プレス封口を行って評価
用のコイン電池を作製した。
Next, 1 m of LiPF 6 was added to an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1.
ol / l was dissolved to prepare an electrolytic solution. Metal lithium was used as a counter electrode of the above-mentioned negative electrode body, and a porous polypropylene impregnated with an electrolytic solution was sandwiched between the two.
It was placed in a 16-type coin case and press-sealed to produce a coin battery for evaluation.

【0042】以上のように作製された電池について、
0.2mAの定電流で電位が0Vになるまで充電を行
い、さらに0Vの電位を電流が1μAになるまで保って
充電を終了した。次に、0.2mAの定電流で電位が
1.5Vになるまで放電を行った。図3に放電特性を示
す。(a)は本発明の負極材料を使用した放電特性であ
り、(b)は、黒鉛材料を負極活物質として用いた電池
特性を示す。結果は本発明の負極材料を使用することに
より、600mAh/gの放電容量を達成し、高容量な
二次電池用負極材料であることがわかる。また、サイク
ル特性は、図4に示すように2回目以降では放電容量の
減少が非常に少なく、サイクル特性についても二次電池
の負極材料として実用上十分な特性を示した。
With respect to the battery manufactured as described above,
The charging was performed at a constant current of 0.2 mA until the potential became 0 V, and the charging was terminated while maintaining the potential of 0 V until the current became 1 μA. Next, discharging was performed at a constant current of 0.2 mA until the potential became 1.5 V. FIG. 3 shows the discharge characteristics. (A) shows discharge characteristics using the negative electrode material of the present invention, and (b) shows battery characteristics using a graphite material as a negative electrode active material. The results show that the use of the negative electrode material of the present invention achieves a discharge capacity of 600 mAh / g and is a high capacity negative electrode material for secondary batteries. As for the cycle characteristics, as shown in FIG. 4, the decrease in the discharge capacity was very small after the second time, and the cycle characteristics showed practically sufficient characteristics as a negative electrode material of a secondary battery.

【0043】なお、上記で示した構成では、負極特性を
より明白にするために、本来、負極として用いる負極活
物質を正極として用い、負極として金属リチウムを用い
た。この理由は、リチウムイオンの供給源として金属リ
チウムを用いることにより負極活物質へのリチウムの吸
蔵、脱離を単純化し、本発明のリチウムイオン二次電池
用負極材料の充放電特性を証明することを意図したもの
である。
In the configuration described above, in order to make the characteristics of the negative electrode clearer, the negative electrode active material originally used as the negative electrode was used as the positive electrode, and metallic lithium was used as the negative electrode. The reason is that the use of metallic lithium as a lithium ion supply source simplifies the insertion and extraction of lithium into and from the negative electrode active material, and proves the charge / discharge characteristics of the negative electrode material for a lithium ion secondary battery of the present invention. It is intended.

【0044】負極を本実施の形態の負極材料を用い、正
極としてLiCoO2を用いて、その他の構成を上記と
同じにして、電池としての特性を測定したところ、良好
な結果が得られた。
The characteristics of the battery were measured using the negative electrode material of the present embodiment as the negative electrode, LiCoO 2 as the positive electrode, and the other configuration as described above. Good results were obtained.

【0045】(実施の形態2)実施の形態1において、
有機金属錯体をシリコンフタロシアニン(SiPc)に
したこと以外は実施の形態1と同様にし、電池特性を評
価した。その結果、放電容量は606mAh/gの高容
量な特性を示し、サイクル特性も二次電池の負極材料と
して実用上十分な特性であった。
(Embodiment 2) In Embodiment 1,
Battery characteristics were evaluated in the same manner as in Embodiment 1 except that the organometallic complex was changed to silicon phthalocyanine (SiPc). As a result, the discharge capacity exhibited a high-capacity characteristic of 606 mAh / g, and the cycle characteristics were also practically sufficient as a negative electrode material for a secondary battery.

【0046】(実施の形態3)実施の形態1において、
有機金属錯体をクロロアルミフタロシアニン(AlCl
Pc)にしたこと以外は実施の形態1と同様にし、電池
特性を評価した。その結果、放電容量は540mAh/
gの高容量な特性を示し、サイクル特性も二次電池の負
極材料として実用上十分な特性であった。
(Embodiment 3) In Embodiment 1,
Organometallic complex is converted to chloroaluminum phthalocyanine (AlCl
The battery characteristics were evaluated in the same manner as in Embodiment 1 except that Pc) was used. As a result, the discharge capacity was 540 mAh /
g and high capacity, and the cycle characteristics were practically sufficient as a negative electrode material for a secondary battery.

【0047】(実施の形態4)実施の形態1において、
有機金属錯体をクロロ鉄フタロシアニン(FeClP
c)にしたこと以外は実施の形態1と同様にし、電池特
性を評価した。その結果、放電容量は475mAh/g
の高容量な特性を示し、サイクル特性も二次電池の負極
材料として実用上十分な特性であった。
(Embodiment 4) In Embodiment 1,
Organometallic complex is converted to chloroiron phthalocyanine (FeClP)
The battery characteristics were evaluated in the same manner as in Embodiment 1 except for the step c). As a result, the discharge capacity was 475 mAh / g.
, And the cycle characteristics were practically sufficient as a negative electrode material of a secondary battery.

【0048】(実施の形態5)実施の形態1において、
有機金属錯体をニッケルフタロシアニン(NiPc)に
したこと以外は実施の形態1と同様にし、電池特性を評
価した。その結果、放電容量は595mAh/gの高容
量な特性を示し、サイクル特性も二次電池の負極材料と
して実用上十分な特性であった。
(Embodiment 5) In Embodiment 1,
Battery characteristics were evaluated in the same manner as in Embodiment 1 except that the organometallic complex was changed to nickel phthalocyanine (NiPc). As a result, the discharge capacity showed a high-capacity characteristic of 595 mAh / g, and the cycle characteristic was a practically sufficient characteristic as a negative electrode material of a secondary battery.

【0049】(実施の形態6)実施の形態1において、
有機金属錯体をコバルトフタロシアニン(CoPc)に
したこと以外は実施の形態1と同様にし、電池特性を評
価した。その結果、放電容量は540mAh/gの高容
量な特性を示し、サイクル特性も二次電池の負極材料と
して実用上十分な特性であった。
(Embodiment 6) In the first embodiment,
Battery characteristics were evaluated in the same manner as in Embodiment 1 except that the organometallic complex was changed to cobalt phthalocyanine (CoPc). As a result, the discharge capacity showed a high capacity characteristic of 540 mAh / g, and the cycle characteristics were practically sufficient as a negative electrode material of a secondary battery.

【0050】(実施の形態7)実施の形態1において、
有機金属錯体をチタニルフタロシアニン(TiOPc)
にしたこと以外は実施の形態1と同様にし、電池特性を
評価した。その結果、放電容量は560mAh/gの高
容量な特性を示し、サイクル特性も二次電池の負極材料
として実用上十分な特性であった。
(Embodiment 7) In Embodiment 1,
Organometallic complex is titanyl phthalocyanine (TiOPc)
The battery characteristics were evaluated in the same manner as in Embodiment 1 except for the following. As a result, the discharge capacity exhibited a high-capacity characteristic of 560 mAh / g, and the cycle characteristics were also practically sufficient as a negative electrode material of a secondary battery.

【0051】(実施の形態8)実施の形態1において、
有機金属錯体をジヒドロキシシリコンフタロシアニン
(Si(OH)2Pc)単体のみを実施の形態1と同様
の条件で焼成し、電池特性を評価した。その結果、放電
容量は480mAh/gの高容量な特性を示し、サイク
ル特性も二次電池の負極材料として実用上十分な特性で
あった。
(Eighth Embodiment) In the first embodiment,
The organometallic complex was fired using only dihydroxysilicon phthalocyanine (Si (OH) 2 Pc) alone under the same conditions as in Embodiment 1, and the battery characteristics were evaluated. As a result, the discharge capacity showed a high capacity property of 480 mAh / g, and the cycle property was a property sufficient for practical use as a negative electrode material of a secondary battery.

【0052】(実施の形態9)実施の形態1において、
有機金属錯体をテトラフェニルポルフィリンコバルト
(TPP−Co)にしたこと以外は実施の形態1と同様
にし、電池特性を評価した。その結果、放電容量は54
0mAh/gの高容量な特性を示し、サイクル特性も二
次電池の負極材料として実用上十分な特性であった。
(Ninth Embodiment) In the first embodiment,
Battery characteristics were evaluated in the same manner as in Embodiment 1 except that the organometallic complex was changed to tetraphenylporphyrin cobalt (TPP-Co). As a result, the discharge capacity is 54
It exhibited high capacity of 0 mAh / g, and cycle characteristics were practically sufficient as a negative electrode material of a secondary battery.

【0053】(実施の形態10)実施の形態1におい
て、有機金属錯体をテトラフェニルポルフィリンニッケ
ル(TPP−Ni)にしたこと以外は実施の形態1と同
様にし、電池特性を評価した。その結果、放電容量は5
50mAh/gの高容量な特性を示し、サイクル特性も
二次電池の負極材料として実用上十分な特性であった。
(Embodiment 10) Battery characteristics were evaluated in the same manner as in Embodiment 1 except that the organometallic complex was changed to nickel tetraphenylporphyrin (TPP-Ni). As a result, the discharge capacity is 5
The battery exhibited a high capacity of 50 mAh / g, and the cycle characteristics were practically sufficient as a negative electrode material for a secondary battery.

【0054】(実施の形態11)実施の形態1におい
て、有機金属錯体をテトラフェニルポルフィリン亜鉛
(TPP−Zn)にしたこと以外は実施の形態1と同様
にし、電池特性を評価した。その結果、放電容量は42
0mAh/gの高容量な特性を示し、サイクル特性も二
次電池の負極材料として実用上十分な特性であった。
(Embodiment 11) Battery characteristics were evaluated in the same manner as in Embodiment 1 except that the organometallic complex was changed to zinc tetraphenylporphyrin (TPP-Zn). As a result, the discharge capacity is 42
It exhibited high capacity of 0 mAh / g, and cycle characteristics were practically sufficient as a negative electrode material of a secondary battery.

【0055】なお、上記の実施の形態では、本発明の負
極材料をコイン型リチウムイオン二次電池に適用した場
合について説明したが、本発明の集電体は、角形、円筒
型電池、その他の非水電解質二次電池にも適用できるこ
とは明らかである。
In the above embodiment, the case where the negative electrode material of the present invention is applied to a coin-type lithium ion secondary battery has been described. It is clear that the present invention can be applied to a nonaqueous electrolyte secondary battery.

【0056】[0056]

【発明の効果】以上のように本発明は、ポルフィリン骨
格を有する有機金属錯体、あるいはその有機金属錯体を
少なくとも1種以上含んだ混合物を加熱処理することに
より、無機元素が含有された炭素複合材料が容易に製造
でき、これをリチウムイオン二次電池用負極材料に使用
することによりサイクル特性に優れた高容量なリチウム
イオン二次電池が提供できる。
As described above, the present invention provides a carbon composite material containing an inorganic element by heat-treating an organometallic complex having a porphyrin skeleton or a mixture containing at least one of the organometallic complexes. Can be easily manufactured, and by using this as a negative electrode material for a lithium ion secondary battery, a high capacity lithium ion secondary battery having excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第1の実施の形態における電池の断面図FIG. 1 is a sectional view of a battery according to a first embodiment of the present invention.

【図2】同第1の実施の形態における負極材料のX線回
折パターンを示す図
FIG. 2 is a diagram showing an X-ray diffraction pattern of a negative electrode material according to the first embodiment.

【図3】同第1の実施の形態における負極材料の放電特
性を示す図
FIG. 3 is a diagram showing discharge characteristics of a negative electrode material according to the first embodiment.

【図4】同第1の実施の形態における負極材料のサイク
ル特性を示す図
FIG. 4 is a diagram showing cycle characteristics of a negative electrode material according to the first embodiment.

【符号の説明】[Explanation of symbols]

1 正極集電体 2 正極活物質 3 負極集電体 4 負極活物質 5 セパレータ 6 絶縁ガスケット 7 収納ケース Reference Signs List 1 positive electrode current collector 2 positive electrode active material 3 negative electrode current collector 4 negative electrode active material 5 separator 6 insulating gasket 7 storage case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 二梃木 克洋 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 Fターム(参考) 5H003 AA02 AA04 BA01 BA03 BB01 BC01 BC06 BD00 BD01 BD05 5H014 AA01 BB01 BB06 EE01 EE08 HH00 HH06 HH08 5H029 AJ03 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 BJ03 BJ16 CJ02 CJ08 CJ28 DJ16 DJ18 HJ00 HJ02 HJ07 HJ13 HJ14 HJ15  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomonari Nanai 3-1-1, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa Prefecture Inside Matsushita Giken Co., Ltd. 3-10-1, Mita Matsushita Giken Co., Ltd. F-term (reference) 5H003 AA02 AA04 BA01 BA03 BB01 BC01 BC06 BD00 BD01 BD05 5H014 AA01 BB01 BB06 EE01 EE08 HH00 HH06 HH08 5H029 AJ03 AJ05 AK03 AL08 CJ28 DJ16 DJ18 HJ00 HJ02 HJ07 HJ13 HJ14 HJ15

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ポルフィリン骨格を有する有機金属錯体
又は前記有機金属錯体を少なくとも1種類以上含む混合
物を原料とし、前記原料を加熱処理して製造されること
を特徴とするリチウムイオン二次電池用負極材料。
1. A negative electrode for a lithium ion secondary battery, which is produced by using an organometallic complex having a porphyrin skeleton or a mixture containing at least one kind of said organometallic complex as a raw material and subjecting said raw material to heat treatment. material.
【請求項2】 加熱処理によって構成され、有機金属錯
体に含まれる金属を主成分とする金属微粒子と、前記加
熱処理によって形成された非晶質炭素を有し、前記金属
微粒子が前記非晶質炭素中に分散して存在することを特
徴とする請求項1記載のリチウムイオン二次電池用負極
材料。
2. The method according to claim 1, wherein the heat treatment includes metal fine particles mainly composed of a metal contained in an organometallic complex, and amorphous carbon formed by the heat treatment. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the negative electrode material is dispersed in carbon.
【請求項3】 非晶質炭素の(002)面の平均面間隔
が0.35nm〜0.45nmであることを特徴とする
請求項2記載のリチウムイオン二次電池用負極材料。
3. The negative electrode material for a lithium ion secondary battery according to claim 2, wherein the average spacing between the (002) planes of the amorphous carbon is 0.35 nm to 0.45 nm.
【請求項4】 有機金属錯体が、(化1)で表される金
属フタロシアニン誘導体又は(化2)で表される金属ポ
ルフィリン誘導体であることを特徴とする請求項1ない
し3のいずれか記載のリチウムイオン二次電池用負極材
料。ただし、(化1)において、R1、R2、R3及び
R4は、直鎖又は分岐のアルキル基又はアルコキシ基よ
り選ばれ、nは0以上4以下の整数である。X1及びX
2は、直鎖又は分岐のアルキル基、フェニル基又は置換
フェニル基の一価の有機残基を示す。M1は金属を示
す。また、(化2)において、R5はフェニル基を示
し、M2は金属を示す。 【化1】 【化2】
4. The method according to claim 1, wherein the organometallic complex is a metal phthalocyanine derivative represented by (Chemical Formula 1) or a metal porphyrin derivative represented by (Chemical Formula 2). Negative electrode material for lithium ion secondary batteries. However, in Chemical Formula 1, R1, R2, R3 and R4 are selected from linear or branched alkyl groups or alkoxy groups, and n is an integer of 0 or more and 4 or less. X1 and X
2 represents a monovalent organic residue of a linear or branched alkyl group, phenyl group or substituted phenyl group. M 1 represents a metal. Further, in the (Formula 2), R5 represents a phenyl group, M 2 represents a metal. Embedded image Embedded image
【請求項5】 (化1)におけるM1及び(化2)にお
けるM2が、Si、Sn、Al、Zn、Fe、Co、N
i、Ti、V、Ag又はPdの元素群から選ばれること
を特徴とする請求項4記載のリチウムイオン二次電池用
負極材料。
5. M1 in the chemical formula 1 and M2 in the chemical formula 2 are Si, Sn, Al, Zn, Fe, Co, N
The negative electrode material for a lithium ion secondary battery according to claim 4, wherein the negative electrode material is selected from the group consisting of i, Ti, V, Ag, and Pd.
【請求項6】 加熱処理が10Pa以下の真空中または
不活性雰囲気中で行われ、加熱温度が800℃以上13
00℃以下であり、加熱時間が1時間以上であることを
特徴とする請求項1ないし5のいずれか記載のリチウム
イオン二次電池用負極材料。
6. The heat treatment is performed in a vacuum of 10 Pa or less or in an inert atmosphere, and the heating temperature is 800 ° C. or more.
The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the temperature is not higher than 00 ° C and the heating time is not shorter than 1 hour.
【請求項7】 BET法による比表面積が150m2
g以下であることを特徴とする請求項1ないし6のいず
れか記載のリチウムイオン二次電池用負極材料。
7. The specific surface area by the BET method is 150 m 2 /
The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 6, wherein the weight is not more than g.
【請求項8】 ポルフィリン骨格を有する有機金属錯体
又は前記有機金属錯体を少なくとも1種類以上含む混合
物を原料とし、前記原料を加熱処理する工程を含むリチ
ウムイオン二次電池用負極材料の製造方法。
8. A method for producing a negative electrode material for a lithium ion secondary battery, comprising a step of subjecting an organometallic complex having a porphyrin skeleton or a mixture containing at least one kind of the organometallic complex to a raw material and heat-treating the raw material.
【請求項9】 有機金属錯体が、(化1)で表される金
属フタロシアニン誘導体又は(化2)で表される金属ポ
ルフィリン誘導体であることを特徴とする請求項8記載
のリチウムイオン二次電池用負極材料の製造方法。ただ
し、(化1)において、R1、R2、R3及びR4は、
直鎖又は分岐のアルキル基又はアルコキシ基より選ば
れ、nは0以上4以下の整数である。X1及びX2は、
直鎖又は分岐のアルキル基、フェニル基又は置換フェニ
ル基の一価の有機残基を示す。M1は金属を示す。ま
た、(化2)において、R5はフェニル基を示し、M2
は金属を示す。
9. The lithium ion secondary battery according to claim 8, wherein the organometallic complex is a metal phthalocyanine derivative represented by Chemical Formula 1 or a metal porphyrin derivative represented by Chemical Formula 2. Of producing negative electrode material for use. However, in the chemical formula 1, R1, R2, R3 and R4 are
It is selected from a linear or branched alkyl group or an alkoxy group, and n is an integer of 0 or more and 4 or less. X1 and X2 are
It represents a monovalent organic residue of a linear or branched alkyl group, phenyl group or substituted phenyl group. M 1 represents a metal. In the chemical formula 2, R5 represents a phenyl group, and M 2
Indicates a metal.
【請求項10】 (化1)におけるM1及び(化2)に
おけるM2が、Si、Sn、Al、Zn、Fe、Co、
Ni、Ti、V、Ag又はPdの元素群から選ばれるこ
とを特徴とする請求項9に記載のリチウムイオン二次電
池用負極材料の製造方法。
10. M1 in the chemical formula 1 and M2 in the chemical formula 2 are Si, Sn, Al, Zn, Fe, Co,
The method for producing a negative electrode material for a lithium ion secondary battery according to claim 9, wherein the method is selected from the group consisting of Ni, Ti, V, Ag, and Pd.
【請求項11】 加熱処理が10Pa以下の真空中また
は不活性雰囲気中で行われ、加熱温度が800℃以上1
300℃以下であり、加熱時間が1時間以上であること
を特徴とする請求項8ないし10のいずれか記載のリチ
ウムイオン二次電池用負極材料の製造方法。
11. The heat treatment is performed in a vacuum of 10 Pa or less or in an inert atmosphere, and the heating temperature is 800 ° C. or more.
The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 8 to 10, wherein the temperature is 300 ° C or less and the heating time is 1 hour or more.
JP11194018A 1999-07-08 1999-07-08 Negative electrode material for lithium ion secondary battery and manufacture thereof Pending JP2001023616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11194018A JP2001023616A (en) 1999-07-08 1999-07-08 Negative electrode material for lithium ion secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11194018A JP2001023616A (en) 1999-07-08 1999-07-08 Negative electrode material for lithium ion secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2001023616A true JP2001023616A (en) 2001-01-26

Family

ID=16317584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11194018A Pending JP2001023616A (en) 1999-07-08 1999-07-08 Negative electrode material for lithium ion secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2001023616A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217662A (en) * 2001-11-15 2003-07-31 Nec Corp Method of manufacturing electrolyte for secondary battery, method of manufacturing secondary battery, and secondary battery
JP2007204327A (en) * 2006-02-03 2007-08-16 Unitika Ltd Glassy carbon material and production process therefor
WO2007100133A1 (en) * 2006-03-02 2007-09-07 Cataler Corporation Carbon material for lithium battery, and lithium battery
JP2007238601A (en) * 2006-02-08 2007-09-20 Sumitomo Chemical Co Ltd Polynuclear metal complex modified product and application thereof
JP2009231113A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2010118320A (en) * 2008-11-14 2010-05-27 Denso Corp Secondary battery
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2010282901A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
JP2011065812A (en) * 2009-09-16 2011-03-31 Toyota Industries Corp Anode for lithium ion secondary battery and its manufacturing method
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
JP2014120287A (en) * 2012-12-14 2014-06-30 Showa Denko Kk Negative electrode material for lithium battery, method for producing the same, electrode and battery
JP2014194852A (en) * 2013-03-28 2014-10-09 Mt Carbon Co Ltd Amorphous carbon material for lithium ion secondary battery negative electrode, graphitic carbon material, lithium ion secondary battery arranged by use thereof, and method for manufacturing carbon material for lithium ion secondary battery negative electrode
US9039939B2 (en) 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217662A (en) * 2001-11-15 2003-07-31 Nec Corp Method of manufacturing electrolyte for secondary battery, method of manufacturing secondary battery, and secondary battery
JP2007204327A (en) * 2006-02-03 2007-08-16 Unitika Ltd Glassy carbon material and production process therefor
JP2007238601A (en) * 2006-02-08 2007-09-20 Sumitomo Chemical Co Ltd Polynuclear metal complex modified product and application thereof
WO2007100133A1 (en) * 2006-03-02 2007-09-07 Cataler Corporation Carbon material for lithium battery, and lithium battery
JP4833276B2 (en) * 2006-03-02 2011-12-07 株式会社キャタラー Carbon material for lithium battery and lithium battery
US9039939B2 (en) 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
US9419308B2 (en) 2007-03-29 2016-08-16 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
JP2009231113A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2010118320A (en) * 2008-11-14 2010-05-27 Denso Corp Secondary battery
JP2010282901A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2011065812A (en) * 2009-09-16 2011-03-31 Toyota Industries Corp Anode for lithium ion secondary battery and its manufacturing method
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
JP2014120287A (en) * 2012-12-14 2014-06-30 Showa Denko Kk Negative electrode material for lithium battery, method for producing the same, electrode and battery
JP2014194852A (en) * 2013-03-28 2014-10-09 Mt Carbon Co Ltd Amorphous carbon material for lithium ion secondary battery negative electrode, graphitic carbon material, lithium ion secondary battery arranged by use thereof, and method for manufacturing carbon material for lithium ion secondary battery negative electrode

Similar Documents

Publication Publication Date Title
KR102473531B1 (en) Composite electrode active material, Electrode and Lithium battery containing electrode active material, and Preparation method of electrode active material
JP4060602B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP4742413B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
CN101510607B (en) Anode active material, method of preparing the same, anode and lithium battery containing the material
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4491946B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4734701B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP5808073B2 (en) Positive electrode active material and positive electrode and lithium battery employing the same
JP6116144B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ELECTRODE CONTAINING THE SAME, LITHIUM BATTERY USING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP5791432B2 (en) Positive electrode active material, production method thereof, positive electrode employing the same, and lithium battery
KR101698763B1 (en) Anode electrode material, preparation method thereof, electrode comprising the material, and lithium secondary battery comprising the electrode
KR101994260B1 (en) Positive active material, method for preparation thereof and lithium battery comprising the same
KR20150000564A (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
EP2515365A1 (en) Anode active material, anode and lithium battery including the material, and method of preparing the material
KR20110105556A (en) Cathode active material, and cathode and lithium battery containing the material
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
US20060078799A1 (en) Nonaqueous secondary battery, constituent elements of battery, and materials thereof
KR20140053451A (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
CN108718535A (en) The manufacturing method of negative electrode active material, mixing negative electrode active material material, anode for nonaqueous electrolyte secondary battery, lithium rechargeable battery, the manufacturing method of negative electrode active material and lithium rechargeable battery
JP6192273B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5298659B2 (en) Active material for lithium secondary battery and lithium secondary battery
JP2001023616A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same