JP5298659B2 - Active material for lithium secondary battery and lithium secondary battery - Google Patents

Active material for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP5298659B2
JP5298659B2 JP2008162607A JP2008162607A JP5298659B2 JP 5298659 B2 JP5298659 B2 JP 5298659B2 JP 2008162607 A JP2008162607 A JP 2008162607A JP 2008162607 A JP2008162607 A JP 2008162607A JP 5298659 B2 JP5298659 B2 JP 5298659B2
Authority
JP
Japan
Prior art keywords
active material
lithium
lithium secondary
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008162607A
Other languages
Japanese (ja)
Other versions
JP2010003593A (en
Inventor
有希子 藤野
明博 藤井
裕江 中川
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2008162607A priority Critical patent/JP5298659B2/en
Publication of JP2010003593A publication Critical patent/JP2010003593A/en
Application granted granted Critical
Publication of JP5298659B2 publication Critical patent/JP5298659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyanionic active material that excels in high rate discharge performance, and to provide a lithium secondary battery using the same. <P>SOLUTION: The active material for a lithium secondary battery is represented by general formula: Li<SB>a</SB>M<SB>b</SB>(PO<SB>4</SB>)<SB>1-x</SB>(BO<SB>3</SB>)<SB>x</SB>, where M is one or more transition metal elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Ni; 0&lt;a, 0&lt;b, 0.5&lt;a+b&le;2; 0&lt;x&lt;1; a and b being specified such that the general formula remains electroneutral. In particular, the active material for a lithium secondary battery is represented by the general formula: Li<SB>3</SB>V<SB>2</SB>(PO<SB>4</SB>)<SB>3-x</SB>(BO<SB>3</SB>)<SB>x</SB>, where 0&lt;x&le;1/4. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ポリアニオン系リチウム二次電池用活物質及びこれを用いたリチウム二次電池に関する。   The present invention relates to an active material for a polyanionic lithium secondary battery and a lithium secondary battery using the same.

近年、携帯電話、ノートパソコン等の携帯機器用、電気自動車用などの電源としてエネルギー密度が高く、かつ自己放電が少なくてサイクル性能の良いリチウム二次電池に代表される非水電解質二次電池が注目されている。   In recent years, non-aqueous electrolyte secondary batteries represented by lithium secondary batteries with high energy density and low self-discharge and good cycle performance have been used as power sources for mobile devices such as mobile phones and laptop computers, and electric vehicles. Attention has been paid.

現在のリチウム二次電池の主流は、2Ah以下の携帯電話用を中心とした小型民生用である。リチウム二次電池用の正極活物質としては数多くのものが提案されているが、最も一般的に知られているのは、作動電圧が4V付近のリチウムコバルト酸化物(LiCoO)やリチウムニッケル酸化物(LiNiOあるいはスピネル構造を持つリチウムマンガン酸化物(LiMn)等を基本構成とするリチウム含有遷移金属酸化物である。なかでも、リチウムコバルト酸化物は、充放電特性とエネルギー密度に優れることから、電池容量2Ahまでの小容量リチウム二次電池の正極活物質として広く採用されている。 The current mainstream of lithium secondary batteries is for consumer use, mainly for mobile phones of 2 Ah or less. Many positive electrode active materials for lithium secondary batteries have been proposed. The most commonly known positive electrode active materials are lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide whose operating voltage is around 4V. object is a (LiNiO 2), or lithium manganese oxide having a spinel structure lithium-containing transition metal oxide to basic configuration (LiMn 2 O 4) or the like. Among these, lithium cobalt oxide is widely adopted as a positive electrode active material for small-capacity lithium secondary batteries up to a battery capacity of 2 Ah because of its excellent charge / discharge characteristics and energy density.

今後の中型・大型、特に大きな需要が見込まれるHEV、EVなどの自動車用途やその他の産業用途への非水電解質電池の展開を考えた場合、小型民生用では使用されないような高温環境において電池が使用されることを想定する必要がある。このような高温環境では、従来の非水電解質二次電池はもとより、ニッケル−カドミウム電池や鉛電池も非常に短寿命であり、ユーザーの要求を満足する従来電池は存在しないのが現状である。また、キャパシターは、唯一この温度領域で使用できるものの、エネルギー密度が小さく、この点においてユーザーの要求を満足するものではなく、高温長寿命でエネルギー密度の高い電池が求められている。また、同時に安全性が非常に重要視されることから、リチウムコバルト酸化物ではなく、充電状態での熱安定性安全性が高く安全とされるリチウムマンガン酸化物が使用される場合も有る。しかしながら、リチウムマンガン酸化物であっても300℃以上の高温においては、分解と伴に電池内に酸素を放出する為に、内部短絡などの異常時に電池が発熱した時には十分な安全性を確保できない。   When considering the development of non-aqueous electrolyte batteries for automotive applications such as HEV and EV, which are expected to have a large demand in the future, and other industrial applications, the batteries will be used in high-temperature environments that will not be used in small consumer applications. It must be assumed that it will be used. In such a high temperature environment, not only conventional non-aqueous electrolyte secondary batteries, but also nickel-cadmium batteries and lead batteries have a very short life, and there is no conventional battery that satisfies user requirements. Further, although the capacitor can only be used in this temperature range, it has a low energy density and does not satisfy the user's requirements in this respect, and a battery having a high temperature and a long life and a high energy density is required. At the same time, since safety is very important, lithium manganese oxide is sometimes used instead of lithium cobalt oxide, which is highly safe and stable in terms of thermal stability in the charged state. However, even with lithium manganese oxide, at a high temperature of 300 ° C. or higher, oxygen is released into the battery as it decomposes, so that sufficient safety cannot be ensured when the battery generates heat in the event of an internal short circuit or the like. .

最近、熱的安定性が優れるポリアニオン系の活物質が注目を集めている。このポリアニオン系の活物質は酸素が遷移金属以外の元素と共有結合することで固定化されているため、高温においても酸素を放出することが無く、電極活物質として使用することで電池の安全性を飛躍的に高めることができると考えられる。   Recently, polyanionic active materials having excellent thermal stability have attracted attention. This polyanion-based active material is immobilized by covalently bonding oxygen to elements other than transition metals, so it does not release oxygen even at high temperatures and can be used as an electrode active material for battery safety. It is thought that can be dramatically improved.

このようなポリアニオン正極活物質としてリン酸鉄リチウム(LiFePO)が現在広く研究されている。リン酸鉄リチウムは理論容量が170mAh・g−1とマンガン酸リチウムよりも大きな理論容量を有するものの、Liの挿入・脱離が3.4Vvs.Li/Liという低い電位で行われる為に、その重量当たりのエネルギー密度は、マンガン酸リチウムと同じ程度でしかない。 As such a polyanion positive electrode active material, lithium iron phosphate (LiFePO 4 ) is currently widely studied. Lithium iron phosphate has a theoretical capacity of 170 mAh · g −1, which is larger than that of lithium manganate, but Li insertion / desorption is 3.4 Vvs. Since it is carried out at a low potential of Li / Li + , its energy density per weight is only the same as that of lithium manganate.

そこで、リン酸鉄リチウムよりも高い電位でLiの挿入・脱離を行うことが可能なリン酸系ポリアニオン正極活物質の探査が行われ、中心金属を鉄に代わって、マンガンやバナジウムとしたリン酸マンガンリチウム(LiMnPO)、リン酸バナジウムリチウム(Li(PO)が見つかっている。 Therefore, a phosphoric acid-based polyanion positive electrode active material capable of inserting and removing Li at a higher potential than lithium iron phosphate was investigated, and phosphorous with manganese or vanadium as the central metal instead of iron. Lithium manganese oxide (LiMnPO 4 ) and lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) have been found.

リン酸バナジウムリチウムは、リチウムの挿入・脱離電位がLiCoOに近く、1個のVに対して最大1.5個のLiが稼働するために、197mAh/gという高い理論容量を有することから、重量当たりのエネルギー密度はマンガン酸リチウムを遙かに凌駕しており、高安全性と高エネルギー密度を兼ね備えた正極活物質と言うことが出来る。 Lithium vanadium phosphate has a high theoretical capacity of 197 mAh / g because the insertion / extraction potential of lithium is close to that of LiCoO 2 and a maximum of 1.5 Li is operated for one V. The energy density per weight far exceeds that of lithium manganate, and can be said to be a positive electrode active material having both high safety and high energy density.

なお、前記中・大型の産業用途の電池においては、民生機器用途ほどには高エネルギー密度特性は重要ではない代わりに、出力特性、即ち、高率放電を行ったときに取り出せる電池容量の、低率放電を行ったときに取り出せる容量に対する比率が大きいことが求められる。このように、安全性に優れたポリアニオン系正極材料は、良好な高率放電特性を兼ね備えていることが求められている。   In the medium and large industrial batteries, the high energy density characteristics are not as important as those for consumer equipment, but the output characteristics, that is, the battery capacity that can be taken out when performing high rate discharge is low. The ratio with respect to the capacity | capacitance which can be taken out when rate discharge is performed is calculated | required. Thus, the polyanion positive electrode material excellent in safety is required to have good high-rate discharge characteristics.

特許文献1の実施例には、リン酸バナジウムリチウムLi(POについて電気化学的評価を行ったことが記載されている。 The Examples of Patent Document 1, it was Electrochemical evaluation of vanadium phosphate lithium Li 3 V 2 (PO 4) 3 is described.

特許文献2の実施例には、Li(POで表されるMの部分が等量の2種の遷移金属からなる材料(例えばLiAlV(PO、LiBV(PO、LiMgV(PO等)が記載されている。特許文献2には、これらの材料の性能がどのようなものとなるかについての記載も示唆も皆無であるが、Al、B、Mgはいずれも材料の電気化学的酸化還元に伴って価数変動しない元素であるため、放電容量をはじめとした電池特性は半減することが予測される。 In an example of Patent Document 2, a material in which a portion of M represented by Li 3 M 2 (PO 4 ) 3 is composed of an equal amount of two kinds of transition metals (for example, Li 3 AlV (PO 4 ) 3 , Li 3 BV (PO 4 ) 3 , Li 3 MgV (PO 4 ) 3 etc.) are described. In Patent Document 2, there is no description or suggestion of what the performance of these materials will be, but all of Al, B, and Mg have a valence associated with the electrochemical redox of the materials. Since it is an element that does not fluctuate, the battery characteristics including the discharge capacity are expected to be halved.

特許文献3には、ポリアニオン部位である(PO)の一部を(SiO)で置換することが示唆されているが、実施例としての具体的な記載は皆無であり、どのような性能や効果が期待できるのかについての記載も示唆も無い。 Patent Document 3 suggests that (PO 4 ), which is a polyanion site, is partially substituted with (SiO 4 ), but there is no specific description as an example, and what performance There is no description or suggestion about whether or not the effect can be expected.

特許文献4の表1には、LiFeP0.950.053.95(実施例2)が記載され、LiFePO(比較例1)の導電率が1×10−12S/cm以下であったのに対し、8×10−4S/cmであったことが示されている。また、放電容量についても増大したことが示されている。特許文献4には、4配位のP5+のイオン半径は0.017nmであり、4配位のB3+のイオン半径は0.012nmで、Pの位置にBの置換が可能であることが記載されている。しかし、3配位のBOの置換についての記載はない。また、導電率についての記載があるが、実施例に於いてポリエチレングリコールを加えて、Ar雰囲気中で焼結させているため、焼結時に残存するカーボンの導電率もあわせて測定しているので、置換による効果か、または残存するカーボンの効果かが明確ではない。
特表2001−500665号公報 特表2002−530835号公報 特表2002−519836号公報 特開2004−178835号公報 Q.CHen et al., Electrochimica Acta, 2007, vol.52, page 5251-5257.
Table 1 of Patent Document 4 describes LiFeP 0.95 B 0.05 O 3.95 (Example 2), and the conductivity of LiFePO 4 (Comparative Example 1) is 1 × 10 −12 S / cm or less. It was shown that it was 8 × 10 −4 S / cm. It is also shown that the discharge capacity has increased. In Patent Document 4, the ionic radius of tetracoordinate P 5+ is 0.017 nm, the ionic radius of tetracoordinate B 3+ is 0.012 nm, and B can be substituted at the P position. It is described. However, there is no description about substitution of tricoordinate BO 3 . In addition, although there is a description about conductivity, since polyethylene glycol is added in the examples and sintered in an Ar atmosphere, the conductivity of carbon remaining at the time of sintering is also measured. The effect of substitution or the effect of remaining carbon is not clear.
Special Table 2001-2001655 gazette Japanese translation of PCT publication No. 2002-530835 Special table 2002-519836 gazette JP 2004-178835 A Q.CHen et al., Electrochimica Acta, 2007, vol.52, page 5251-5257.

本発明は、高率放電性能の優れたポリアニオン系活物質及びそれを用いたリチウム二次電池を提供することを目的とする。   An object of the present invention is to provide a polyanionic active material excellent in high rate discharge performance and a lithium secondary battery using the same.

なお、前記特許文献4では、LiFePOの電子伝導度が1×10−12S/cm以下と極めて低いことが問題点として掲げられているが、本発明者らが実施した範囲においては、後述する実施例の中でデータを示すように、xの値にかかわらず1×10−3S/cm以上の電子伝導度を備えており、本発明の前提には、電子伝導度の点での課題は無い。 In Patent Document 4, the problem is that the electronic conductivity of LiFePO 4 is as low as 1 × 10 −12 S / cm or less, but within the scope of the present inventors, it will be described later. As shown in the examples, the present invention has an electron conductivity of 1 × 10 −3 S / cm or more regardless of the value of x, and the premise of the present invention is that in terms of electron conductivity There are no issues.

本発明の構成及び作用効果は以下の通りである。但し、本明細書中に記載する作用機構には推定が含まれており、その正否は本発明を何ら制限するものではない。   The configuration and effects of the present invention are as follows. However, the action mechanism described in this specification includes estimation, and its correctness does not limit the present invention.

本発明は、一般式Li(PO1-x(BO3(但し、MはTi、V、Cr、Mn,Fe、Co、Niからなる群から選択される1種または2種以上の遷移金属元素、0<a、0<b、0.5<a+b≦2、0<x<1であり、a及びbは一般式が電気的中性を保つように選択される)で表されるリチウム二次電池用活物質である。 In the present invention, the general formula Li a Mb (PO 4 ) 1-x (BO 3 ) x (where M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, or Two or more transition metal elements, 0 <a, 0 <b, 0.5 <a + b ≦ 2, 0 <x <1, and a and b are selected so that the general formula is electrically neutral. ) Is an active material for a lithium secondary battery.

また、本発明は、一般式Li(PO3-x(BO3(0<x≦1/4)で表されるリチウム二次電池用活物質である。 Further, the present invention is a general formula Li 3 V 2 (PO 4) 3-x (BO 3) x active material for a lithium secondary battery represented by (0 <x ≦ 1/4 ).

ここで、Vの一部に他の元素が固溶していることを妨げるものではない。   Here, it does not prevent other elements from dissolving in part of V.

また、本発明は、前記活物質は、表面に電子伝導性炭素質材料が堆積していることを特徴としている。   Moreover, the present invention is characterized in that the active material has an electron-conducting carbonaceous material deposited on a surface thereof.

また、本発明は、前記活物質を含む正極と、リチウムイオンを吸蔵放出する負極活物質を含む負極と、非水電解質とを備えるリチウムイオン二次電池である。   Moreover, this invention is a lithium ion secondary battery provided with the positive electrode containing the said active material, the negative electrode containing the negative electrode active material which occludes / releases lithium ion, and a nonaqueous electrolyte.

本発明に係る活物質は、一般式Li(PO1-x(BO3(但し、MはTi、V、Cr、Mn,Fe、Co、Niからなる群から選択される1種または2種以上の遷移金属元素、0≦a<3、0<b≦1、0.5<a+b≦2、0<x<1であり、a及びbは一般式が電気的中性を保つように選択される)で表されるが、遷移金属Mやaおよびbの値としては、LiFe+2(PO1-x(BO3、LiMn+2(PO1-x(BO3、LiCo+2(PO1-x(BO3、LiNi+2(PO1-x(BO3、LiV+2(PO1-x(BO3、LiV+3 2/3(PO1-x(BO3、LiFe+3 2/3(PO1-x(BO3、LiTi+3 2/3(PO1-x(BO3、LiCr+3 2/3(PO1-x(BO3、Fe+2(PO1-x(BO3、Mn+2(PO1-x(BO3、Co+2(PO1-x(BO3、Ni+2(PO1-x(BO3、などが挙げられる。 The active material according to the present invention is selected from the group consisting of the general formula Li a Mb (PO 4 ) 1-x (BO 3 ) x (where M is Ti, V, Cr, Mn, Fe, Co, Ni). One or more transition metal elements, 0 ≦ a <3, 0 <b ≦ 1, 0.5 <a + b ≦ 2, 0 <x <1, and a and b are of the general formula The values of transition metals M and a and b are LiFe +2 (PO 4 ) 1-x (BO 3 ) x , LiMn +2 (PO 4 ) 1 − x (BO 3 ) x , LiCo +2 (PO 4 ) 1-x (BO 3 ) x , LiNi +2 (PO 4 ) 1-x (BO 3 ) x , LiV +2 (PO 4 ) 1-x (BO 3 ) x , LiV +3 2/3 (PO 4 ) 1-x (BO 3 ) x , LiFe +3 2/3 (PO 4 ) 1-x (BO 3) ) X , LiTi +3 2/3 (PO 4 ) 1-x (BO 3 ) x , LiCr +3 2/3 (PO 4 ) 1-x (BO 3 ) x , Fe +2 (PO 4 ) 1-x (BO) 3 ) x , Mn +2 (PO 4 ) 1-x (BO 3 ) x , Co +2 (PO 4 ) 1-x (BO 3 ) x , Ni +2 (PO 4 ) 1-x (BO 3 ) x , etc. Is mentioned.

本発明に係る活物質の作製方法は、限定されるものではないが、基本的に、活物質を構成する金属元素を含む原料、リン酸源となる原料およびホウ酸源となる原料を目的とする活物質の組成通りに含有する原料を調整し、これを焼成することによって得ることができる。このとき、実際に得られる化合物の組成は、原料の仕込み組成比から計算される組成に比べて若干変動することがある。本発明は、その技術思想又は主要な特徴から逸脱することなく実施することができるものであって、作製の結果得られたものの組成が上記組成式と厳密に一致しないことのみをもって本発明の範囲に属さないものと解釈してはならないことはいうまでもない。特にリチウム源については焼成中に一部が揮発しやすいことが知られている。このため、焼成前の原料としてリチウム源を目的とする組成よりも多めに仕込んでおくことが通常行われる。   The method for producing an active material according to the present invention is not limited, but basically, a raw material containing a metal element constituting the active material, a raw material that becomes a phosphoric acid source, and a raw material that becomes a boric acid source. The raw material contained according to the composition of the active material to be prepared can be prepared and fired. At this time, the composition of the compound actually obtained may slightly vary compared to the composition calculated from the raw material composition ratio. The present invention can be carried out without departing from the technical idea or main features thereof, and the scope of the present invention is only that the composition of the product obtained as a result of the production does not exactly match the above composition formula. Needless to say, it should not be construed as not belonging to. In particular, it is known that a part of the lithium source easily volatilizes during firing. For this reason, it is a common practice to charge a lithium source as a raw material before firing more than the intended composition.

一般式がLi(PO1-x(BO3を合成するための原料としては、何ら限定されるものではないが、例えば、Li源として、LiOH、LiOH・HO、LiNO、LiCO、CHCOOLi・2HO、LiSO・HO、Li、M源として、Ti、TiO、TiO、Ti、Ti(OCH、V、V、V、V、NHVO、VOSO、・2HO、VOCl、V(C、V(C、(OCVO、Cr、CrO、Cr、Cr(CHCOO)・xHO、Cr(NO・9HO、Cr(OH)、Mn、MnO、MnO、Mn、Mn、MnC、Mn(CHCOO)・4HO、Mn(NO・6HO、MnSO・5HO、Fe、FeO、Fe、Fe、Fe(NO・9HO、FeSO・7HO、FeSO、FeC・2HO、Fe(C・3HO、Co、CoO、CoO(OH)、Co、CoC、Co(CHCOO)・4HO、Co(NO・6HO、CoSO・7HO、Ni、NiO、Ni(NO・6HO、NiSO・6HO、NiC・2HO、PO源として、NHPO、(NHHPO、HPO、P、BO源として、HBO、B、(NHO・5B、(NH・4HO、Li及びPO源としてLiPO、LiHPO、M及びP源としてFe(PO・8HO、FePO・4HO、Co(PO・8HO、Li及びBO源としてLi、Li・3HO、LiBO・2HOなどを用いることができる。 As a raw material for synthesizing Li a M b (PO 4 ) 1-x (BO 3 ) x , the general formula is not limited at all. For example, as a Li source, LiOH, LiOH.H 2 O , LiNO 3 , Li 2 CO 3 , CH 3 COOLi · 2H 2 O, Li 2 SO 4 · H 2 O, Li 2 C 2 O 4 , M sources include Ti, TiO, TiO 2 , Ti 2 O 3 , Ti (OCH 3 ) 4 , V, V 2 O 5 , V 2 O 3 , V 2 O 4 , NH 4 VO 3 , VOSO 4 , 2H 2 O, VOCl 3 , V (C 5 H 7 O 2 ) 3 , V (C 5 H 7 O 2 ) 3, (OC 2 H 5) 2 VO, Cr, CrO 3, Cr 2 O 3, Cr (CH 3 COO) 3 · xH 2 O, Cr (NO 3) 3 · 9H 2 O, Cr (OH) 3 , Mn, MnO, MnO 2, n 2 O 3, Mn 3 O 4, MnC 2 O 4, Mn (CH 3 COO) 2 · 4H 2 O, Mn (NO 3) 2 · 6H 2 O, MnSO 4 · 5H 2 O, Fe, FeO, Fe 2 O 3 , Fe 3 O 4 , Fe (NO 3 ) 3 .9H 2 O, FeSO 4 .7H 2 O, FeSO 4 , FeC 2 O 4 .2H 2 O, Fe (C 3 H 5 O 3 ) 2. 3H 2 O, Co, CoO, CoO (OH), Co 3 O 4 , CoC 2 O 4 , Co (CH 3 COO) 2 .4H 2 O, Co (NO 3 ) 2 .6H 2 O, CoSO 4 .7H As a source of 2 O, Ni, NiO, Ni (NO 3 ) 2 .6H 2 O, NiSO 4 .6H 2 O, NiC 2 O 4 .2H 2 O, PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, H 3 PO 4 , P 2 O 5, BO 3 As, H 3 BO 3, B 2 O 3, (NH 4) 2 O · 5B 2 O 3, (NH 4) 2 B 4 O 7 · 4H 2 O, Li 3 PO 4 as Li and PO 4 source, LiH 2 PO 4, M and P sources as Fe 3 (PO 4) 2 · 8H 2 O, FePO 4 · 4H 2 O, Co 3 (PO 4) 2 · 8H 2 O, Li 2 B 4 as Li and BO 3 sources O 7 , Li 2 B 4 O 7 .3H 2 O, LiBO 2 .2H 2 O, or the like can be used.

本発明に係るポリアニオン系活物質の合成方法については、特に限定されるものではない。具体的には、固相法、液相法、ゾル−ゲル法、水熱法等が挙げられる。ここで、ポリアニオン系活物質は、最終的に焼成によって得ることができる。焼成温度は低すぎても高すぎても目的とするポリアニオン系活物質は得られず、好ましくは500℃〜1000℃、さらに好ましくは650℃〜850℃である。   The method for synthesizing the polyanionic active material according to the present invention is not particularly limited. Specific examples include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method. Here, the polyanionic active material can be finally obtained by firing. If the firing temperature is too low or too high, the desired polyanionic active material cannot be obtained, and is preferably 500 ° C to 1000 ° C, more preferably 650 ° C to 850 ° C.

電子伝導性を補う目的で活物質の粒子表面にカーボンを機械的に或いは有機物の熱分解等により付着及び被覆させることが好ましい。   For the purpose of supplementing the electron conductivity, it is preferable that carbon is adhered and coated on the surface of the active material particles mechanically or by thermal decomposition of organic matter.

本発明において、ポリアニオン系活物質は、二次粒子の平均粒子サイズ100μm以下の粉体としてリチウム二次電池用正極に用いることが好ましい。特に、粒径が小さい方が好ましく、二次粒子の平均粒子径は0.5〜20μmがより好ましく、前記二次粒子を構成する一次粒子の粒径は1〜500nmであることが好ましい。また、粉体粒子の比表面積は正極の高率放電特性を向上させるために大きい方が良く、1〜100m/gが好ましい。より好ましくは5〜100m/gである。粉体を所定の形状で得るため、粉砕機や分級機を用いることができる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等を用いることができる。粉砕時には水、あるいはアルコール、ヘキサン等の有機溶剤を共存させた湿式粉砕を用いてもよい。分級方法としては、特に限定はなく、必要に応じて篩や風力分級機などを乾式あるいは湿式にて用いることができる。 In the present invention, the polyanionic active material is preferably used for a positive electrode for a lithium secondary battery as a powder having an average particle size of 100 μm or less of secondary particles. In particular, it is preferable that the particle size is small, the average particle size of the secondary particles is more preferably 0.5 to 20 μm, and the particle size of the primary particles constituting the secondary particles is preferably 1 to 500 nm. The specific surface area of the powder particles is preferably large in order to improve the high rate discharge characteristics of the positive electrode, and is preferably 1 to 100 m 2 / g. More preferably, it is 5-100 m < 2 > / g. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier can be used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like can be used. At the time of pulverization, wet pulverization in which an organic solvent such as water or alcohol or hexane coexists may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used dry or wet as necessary.

導電剤、結着剤については周知のものを周知の処方で用いることができる。   As the conductive agent and the binder, well-known ones can be used in a well-known prescription.

本発明の活物質を含有する正極中に含まれる水分量は少ない方が好ましく、具体的には500ppm未満であることが好ましい。   The amount of water contained in the positive electrode containing the active material of the present invention is preferably as small as possible, specifically less than 500 ppm.

また、電極合材層の厚みは電池のエネルギー密度との兼ね合いから本発明を適用する電極合材層の厚みは20〜500μmが好ましい。   Moreover, the thickness of the electrode mixture layer to which the present invention is applied is preferably 20 to 500 μm in view of the balance with the energy density of the battery.

本発明電池の負極は、何ら限定されるものではなく、リチウム金属、リチウム合金(リチウム―アルミニウム、リチウム―鉛、リチウム―錫、リチウム―アルミニウム―錫、リチウム―ガリウム、およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリアニオン系化合物等が挙げられる。本発明に係るリチウム二次電池用活物質を用いてもよい。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるため負極材料として好ましい。例えば、人造黒鉛、天然黒鉛が好ましい。特に,負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。 The negative electrode of the battery of the present invention is not limited in any way, but lithium metal, lithium alloy (lithium metal such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy) Alloys), alloys capable of inserting and extracting lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12) Etc.), polyanionic compounds and the like. You may use the active material for lithium secondary batteries which concerns on this invention. Among these, graphite is preferable as a negative electrode material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage. For example, artificial graphite and natural graphite are preferable. In particular, graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.

一般的に、非水電解質電池の形態としては、正極、負極、電解質塩が非水溶媒に含有された非水電解質から構成され、一般的には、正極と負極との間に、セパレータとこれらを包装する外装体が設けられる。   In general, the form of a non-aqueous electrolyte battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent. Is provided.

非水溶媒としては、プロピレンカーボネート、エチレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネ−ト等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエ−テル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   Non-aqueous solvents include cyclic carbonates such as propylene carbonate and ethylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl jig Examples include ethers such as lime; nitriles such as acetonitrile and benzonitrile; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof. Is limited to There is no.

電解質塩としては、例えば、LiBF、LiPF等のイオン性化合物が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。非水電解質における電解質塩の濃度としては、高い電池特性を有するリチウムイオン二次電池を確実に得るために、0.5mol/l〜5mol/lが好ましく、さらに好ましくは、1mol/l〜2.5mol/lである。 Examples of the electrolyte salt include ionic compounds such as LiBF 4 and LiPF 6 , and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt in the nonaqueous electrolyte is preferably 0.5 mol / l to 5 mol / l, and more preferably 1 mol / l to 2.mol in order to reliably obtain a lithium ion secondary battery having high battery characteristics. 5 mol / l.

本願明細書は、リチウム二次電池のなかでも特に非水電解質電池を取り上げて詳細に説明をするが、本発明に係る活物質は、水溶液系のリチウム二次電池の正極に用いても、本発明の効果は有効に発揮される。   In the present specification, a non-aqueous electrolyte battery will be described in detail, particularly among lithium secondary batteries. However, the active material according to the present invention may be used for a positive electrode of an aqueous lithium secondary battery. The effects of the invention are effectively exhibited.

以下に、実施例を例示して本発明をさらに詳細に説明するが、本発明は、以下の実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following embodiments.

本発明者らは、クエン酸を用いたゾルゲル法を用いている。クエン酸を錯形成剤として用いることによって、均一に混合することが可能でとなり、一次粒子を小さくすることができる。またクエン酸は、焼成することによりカーボン源として一次粒子表面に配置される。   The present inventors use a sol-gel method using citric acid. By using citric acid as a complex-forming agent, it becomes possible to mix uniformly and primary particles can be made smaller. Moreover, citric acid is arrange | positioned on the primary particle surface as a carbon source by baking.

(実施例1)
(一般式Li(PO3−x(BOにおけるx=1/4に相当するLi(PO11/2(BO1/4の合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:11/4:1/4になるように秤量した。これらを記載した順番に精製水に加えて撹拌し、それぞれの原料を加える度に溶解していることを確認した。次に80℃のホットプレート上にて溶媒を除去し、前駆体を得た。これを自動乳鉢でよく粉砕した。この前駆体をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF−75)を用いて、窒素ガスの流通下(流速1.0l/min)で焼成を行った。仮焼成の焼成温度は350℃とし、焼成時間(前記焼成温度を維持する時間)は3時間、本焼成の焼成温度は850℃とし、焼成時間6時間とした。なお、昇温速度は5℃/分、降温は自然放冷とした。次に、自動乳鉢で1時間粉砕し、二次粒子径を50μm以下とした。この状態において、Li(POの一次粒子の表面にはクエン酸に由来する炭素質材料が配されている。この点については、以下の実施例、比較例でも同様である。これを本発明活物質a1とする。
Example 1
(Synthesis of Li 3 V 2 (PO 4 ) 11/2 (BO 3 ) 1/4 corresponding to x = 1/4 in the general formula Li 3 V 2 (PO 4 ) 3-x (BO 3 ) x )
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 .5: 11/4: Weighed to 1/4. These were added to purified water in the order described and stirred, and it was confirmed that each time each raw material was added, it was dissolved. Next, the solvent was removed on a hot plate at 80 ° C. to obtain a precursor. This was pulverized well in an automatic mortar. This precursor was put in an alumina sagger (outside dimension 90 × 90 × 50 mm), and the atmosphere was replaced with a nitrogen gas (flow velocity) using an atmosphere substitution type firing furnace (a table vacuum gas substitution furnace KDF-75 manufactured by Denken). Firing was performed at 1.0 l / min). The calcining temperature for pre-firing was 350 ° C., the calcining time (the time for maintaining the calcining temperature) was 3 hours, the main calcining temperature was 850 ° C., and the calcining time was 6 hours. The rate of temperature increase was 5 ° C./minute, and the temperature was naturally cooled. Next, it grind | pulverized for 1 hour with the automatic mortar, and the secondary particle diameter was 50 micrometers or less. In this state, a carbonaceous material derived from citric acid is disposed on the surface of the primary particles of Li 3 V 2 (PO 4 ) 3 . This also applies to the following examples and comparative examples. This is designated as active material a1 of the present invention.

(実施例2)
(一般式Li(PO3−x(BOにおけるx=1/8に相当するLi(PO23/8(BO1/8の合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:23/8:1/8になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを本発明活物質a2とする。
(Example 2)
(Synthesis of Li 3 V 2 (PO 4 ) 23/8 (BO 3 ) 1/8 corresponding to x = 1/8 in the general formula Li 3 V 2 (PO 4 ) 3-x (BO 3 ) x
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 .5: 23/8: An active material for a lithium secondary battery was prepared in the same manner as in Example 1 except that the weight was adjusted to be 1/8. This is designated as active material a2 of the present invention.

(実施例3)
(一般式Li2(PO3-x(BO3におけるx=1/16に相当するLi(PO47/16(BO1/16の合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:47/16:1/16になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを本発明活物質a3とする。
(Example 3)
(Synthesis of Li 3 V 2 (PO 4 ) 47/16 (BO 3 ) 1/16 corresponding to x = 1/16 in the general formula Li 3 V 2 (PO 4 ) 3 -x (BO 3 ) x
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 5: 47/16: An active material for a lithium secondary battery was prepared in the same manner as in Example 1 except that the weight was adjusted to be 1/16. This is designated as active material a3 of the present invention.

(実施例4)
(一般式Li2(PO3-x(BO3におけるx=1/32に相当するLi(PO95/32(BO1/32の合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:95/32:1/32になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを本発明活物質a4とする。
Example 4
(Synthesis of Li 3 V 2 (PO 4 ) 95/32 (BO 3 ) 1/32 corresponding to x = 1/32 in the general formula Li 3 V 2 (PO 4 ) 3−x (BO 3 ) x
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 .5: 95/32: An active material for a lithium secondary battery was prepared in the same manner as in Example 1 except that the weight was adjusted to be 95/32: 1/32. This is designated as an active material a4 of the present invention.

(実施例5)
(一般式Li2(PO3-x(BO3におけるx=1/64に相当するLi(PO191/64(BO1/64の合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:191/64:1/64になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを本発明活物質a5とする。
(Example 5)
(Synthesis of Li 3 V 2 (PO 4 ) 191/64 (BO 3 ) 1/64 corresponding to x = 1/64 in the general formula Li 3 V 2 (PO 4 ) 3−x (BO 3 ) x
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 .5: 191/64: An active material for a lithium secondary battery was prepared in the same manner as in Example 1 except that the weight was adjusted to be 1/64. This is designated as active material a5 of the present invention.

(比較例1)
(一般式Li2(PO3-x(BO3におけるx=1/2に相当するLi(PO5/2(BO1/2の合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:5/2:1/2になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを比較活物質b1とする。
(Comparative Example 1)
(Synthesis of Li 3 V 2 (PO 4 ) 5/2 (BO 3 ) 1/2 corresponding to x = 1/2 in the general formula Li 3 V 2 (PO 4 ) 3−x (BO 3 ) x )
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 A lithium secondary battery active material was prepared in the same manner as in Example 1 except that the weight was adjusted to 5: 5/2: 1/2. This is referred to as a comparative active material b1.

(比較例2)
(一般式Li2(PO3-x(BO3におけるx=1に相当するLi(PO(BOの合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:2:1になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを比較活物質b2とする。
(Comparative Example 2)
(Synthesis of Li 3 V 2 (PO 4 ) 2 (BO 3 ) 1 corresponding to x = 1 in the general formula Li 3 V 2 (PO 4 ) 3 -x (BO 3 ) x )
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 A lithium secondary battery active material was prepared in the same manner as in Example 1 except that the weight was adjusted to 5: 2: 1. This is referred to as a comparative active material b2.

(比較例3)
(一般式Li2(PO3-x(BO3におけるx=0に相当するLi(POの合成)
水酸化リチウム一水和物(LiOH・HO)と、バナジン酸アンモニウム(NHVO)と、クエン酸一水和物と、リン酸二水素アンモニウム(NHPO)と、ホウ酸(HBO)とをモル比でLiOH・HO:NHVO:クエン酸一水和物:NHPO:HBO=3.03:2:1.5:3:0になるように秤量したことを除いては実施例1と同様にしてリチウム二次電池用活物質を作製した。これを比較活物質b3とする。
(Comparative Example 3)
(Synthesis of Li 3 V 2 (PO 4 ) 3 corresponding to x = 0 in the general formula Li 3 V 2 (PO 4 ) 3 -x (BO 3 ) x )
Lithium hydroxide monohydrate (LiOH.H 2 O), ammonium vanadate (NH 4 VO 3 ), citric acid monohydrate, ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), Boric acid (H 3 BO 3 ) in molar ratio with LiOH.H 2 O: NH 4 VO 3 : citric acid monohydrate: NH 4 H 2 PO 4 : H 3 BO 3 = 3.03: 2: 1 A lithium secondary battery active material was prepared in the same manner as in Example 1 except that the weight was adjusted to 5: 3: 0. This is referred to as a comparative active material b3.

全ての実施例、比較例において作製したリチウム二次電池用活物質に対して、CuKα線を使用した粉末エックス線回折測定(XRD)を行った。そのXRDパターンを図1に示す。図1よりxの値が大きくなるほど結晶性が低くなり、特にx=1/2(比較活物質b1)および1(比較活物質b2)においては、Li(POに帰属されないピークが2θ=16.8、22.2、53.8に確認された。 Powder X-ray diffraction measurement (XRD) using CuKα rays was performed on the active materials for lithium secondary batteries prepared in all Examples and Comparative Examples. The XRD pattern is shown in FIG. From FIG. 1, the larger the value of x, the lower the crystallinity. In particular, in x = 1/2 (comparative active material b1) and 1 (comparative active material b2), it is not attributed to Li 3 V 2 (PO 4 ) 3. Peaks were confirmed at 2θ = 16.8, 22.2, and 53.8.

次に、全ての実施例、比較例において作製したリチウム二次電池用活物質に対して、粉体抵抗を測定した。原料の仕込み組成比と共に、電子伝導度の結果を表1に示す。   Next, the powder resistance was measured with respect to the active material for lithium secondary batteries produced in all Examples and Comparative Examples. Table 1 shows the results of electron conductivity together with the raw material composition ratios.

この表に示した活物質は、いずれも、BOの置換量を示すxの値にかかわらず1×10−3S/cm以上の電子伝導度を備えている。 All of the active materials shown in this table have an electron conductivity of 1 × 10 −3 S / cm or more regardless of the value of x indicating the substitution amount of BO 3 .

(正極の作製)
前記活物質、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を82:10:8の重量比で含有し、N−メチル−2−ピロリドン(NMP)を溶媒とする正極ペーストを調整した。該正極ペーストをアルミ端子を取り付けたアルミニウムメッシュ集電体上の両面に塗布し、80℃でNMPを除去した後、塗布部分を半分に折り曲げた後、厚みが400μmになるようにプレス加工を行い、正極とした。活物質の塗布面積は2,25cm、塗布重量は0.071gである。正極は150℃で5時間以上の真空乾燥を行い、極板中の水分を除去して使用した。
(Preparation of positive electrode)
A positive electrode containing the active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 82: 10: 8 and using N-methyl-2-pyrrolidone (NMP) as a solvent. The paste was adjusted. The positive electrode paste is applied on both sides of an aluminum mesh current collector with an aluminum terminal attached, NMP is removed at 80 ° C., the applied part is folded in half, and then pressed to a thickness of 400 μm. A positive electrode was obtained. The application area of the active material is 2,25 cm 2 and the application weight is 0.071 g. The positive electrode was vacuum-dried at 150 ° C. for 5 hours or longer to remove moisture from the electrode plate.

(負極の作製)
厚さ300μmのリチウム金属箔をステンレス鋼製端子を取り付けたステンレス鋼製メッシュ集電体の両面に貼り付けてプレス加工したものを負極とした。
(Preparation of negative electrode)
A negative electrode was prepared by attaching a lithium metal foil having a thickness of 300 μm to both surfaces of a stainless steel mesh current collector to which a stainless steel terminal was attached and pressing it.

(参照極の作製)
厚さ300μmのリチウム金属箔をステンレス鋼製集電棒に貼り付けたものを参照極とした。
(Production of reference electrode)
A reference electrode was prepared by attaching a lithium metal foil having a thickness of 300 μm to a current collector rod made of stainless steel.

(電解液の調製)
エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを体積比1:1:1の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPFを1.0mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
(Preparation of electrolyte)
In a mixed solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 1: 1: 1, a fluorine-containing electrolyte salt, LiPF 6 , is dissolved at a concentration of 1.0 mol / l, and a non-aqueous electrolyte is obtained. Was made. The amount of water in the non-aqueous electrolyte was less than 50 ppm.

(電池の組み立て)
露点−40℃以下のArボックス中においてガラス製のリチウムイオン二次電池を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに正極と負極と参照極とを各1枚ずつ挟んだ後、正・負極が対向するように固定した。参照極は負極から見て正極の裏側となる位置に固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに正極、負極及び参照極が浸かるように蓋をすることで電池を組み立てた。
(Battery assembly)
A glass lithium ion secondary battery was assembled in an Ar box having a dew point of −40 ° C. or lower. Each of the positive electrode, the negative electrode, and the reference electrode was sandwiched between gold-plated clips whose conductors were previously fixed to the lid portion of the container, and then fixed so that the positive and negative electrodes were opposed to each other. The reference electrode was fixed at a position on the back side of the positive electrode when viewed from the negative electrode. Next, a polypropylene cup containing a certain amount of electrolyte was placed in a glass container, and a battery was assembled by covering the positive electrode, the negative electrode, and the reference electrode so as to be immersed therein.

実施例1〜5、比較例1〜3の活物質を用い、上記の手順にてリチウム二次電池を組み立てた。   Using the active materials of Examples 1 to 5 and Comparative Examples 1 to 3, lithium secondary batteries were assembled according to the above procedure.

(充放電試験)
リチウム二次電池を温度25℃において、2サイクルの充放電を行う充放電工程に供した。充電条件は、電流0.9mA、電圧4.5V、15時間の定電流定電圧充電とし、放電条件は、電流0.9mA、終止電圧2.7Vの定電流放電とした。1サイクル目に得られた放電容量と初期放電容量とし、その結果を表2に示す。
(Charge / discharge test)
The lithium secondary battery was subjected to a charge / discharge process in which charge / discharge of two cycles was performed at a temperature of 25 ° C. The charging conditions were a constant current / constant voltage charging with a current of 0.9 mA and a voltage of 4.5 V for 15 hours, and the discharging conditions were a constant current discharge with a current of 0.9 mA and a final voltage of 2.7 V. The discharge capacity and initial discharge capacity obtained in the first cycle are shown in Table 2.

(高率放電試験)
温度25℃において、上記初期充放電工程と同一の条件で充電を行った後、放電電流45mA、放電終止電圧2.7Vの定電流放電を行った。このときの放電容量を高率放電容量とし、この容量の前記充放電工程の1サイクル目の放電容量に対する百分率を求め、「高率放電特性値(%)」とした。結果を表2に併せて示す。
(High rate discharge test)
After charging at a temperature of 25 ° C. under the same conditions as in the initial charge / discharge step, constant current discharge with a discharge current of 45 mA and a discharge end voltage of 2.7 V was performed. The discharge capacity at this time was defined as a high rate discharge capacity, and the percentage of the capacity with respect to the discharge capacity at the first cycle of the charge / discharge process was determined to obtain a “high rate discharge characteristic value (%)”. The results are also shown in Table 2.

表2の各欄の結果の一部は、グラフにプロットして図2〜4として示した。図2〜4では、横軸はポリアニオン部分のホウ酸置換率(%)とした。この横軸の値は、Li(PO3-x(BO3におけるxの値から一義的に導かれるものであり、表2にも併記した。 Some of the results in each column of Table 2 were plotted on a graph and shown as FIGS. 2 to 4, the horizontal axis represents the boric acid substitution rate (%) of the polyanion portion. The value on the horizontal axis is uniquely derived from the value of x in Li 3 V 2 (PO 4 ) 3−x (BO 3 ) x and is also shown in Table 2.

表2より、POの一部をBOを置換したLi(PO3-x(BO3は、いずれも、初期放電容量については悪化した。 From Table 2, some BO 3 was replaced was Li 3 V 2 (PO 4) 3-x (BO 3) x of PO 4 are both deteriorated in the initial discharge capacity.

しかしながら、高率放電特性値については、x=1/64〜1/4の範囲において、驚くべきことにBOに置換されていないLi(PO(x=0)よりも向上していることがわかる。なかでも、x=1/64〜1/8の範囲において、高率放電容量自体も向上することがわかる。また、BOを大量に置換したx=1/2および1においては、高率放電特性値が減少している。 However, for high rate discharge characteristic values, in the range of x = 1/64 to 1/4, surprisingly, Li 3 V 2 (PO 4 ) 3 (x = 0) not substituted with BO 3 It can be seen that it has improved. In particular, it can be seen that the high rate discharge capacity itself is improved in the range of x = 1/64 to 1/8. In addition, at x = 1/2 and 1 where a large amount of BO 3 is substituted, the high rate discharge characteristic value decreases.

これは、XRDの結果とも一致しており、x=1/2以上において、Li(POに帰属できない不純物が増加することにより、高率放電のみではなく、低率放電性能の低下を招いていることが予測される。 This coincides with the result of XRD. When x = 1/2 or more, impurities that cannot be attributed to Li 3 V 2 (PO 4 ) 3 increase, so that not only high rate discharge but also low rate discharge performance is achieved. It is predicted that the decline of

表1より電子伝導性は同等の値を示していることから、BOで少量置換することによって高率放電性能が向上するという効果は、特許文献4に記載されているようなPをBに置換することによる電子伝導性の向上のみを原因とするものではないということがわかる。 Since the electronic conductivity shows an equivalent value from Table 1, the effect of improving the high rate discharge performance by substituting a small amount with BO 3 is that P as described in Patent Document 4 is changed to B. It can be seen that the substitution is not solely due to the improvement in electron conductivity.

なお、ポリアニオン部分の(PO)の一部が(BO)で置換されていることは、ラマン分光分析や赤外線吸光スペクトル測定により確認することができる。 Incidentally, a part of the polyanion portion (PO 4) is replaced by (BO 3) can be confirmed by Raman spectroscopic analysis, infrared absorption spectrum measurement.

実施例及び比較例に係るリチウム二次電池用活物質の粉末エックス線回折図である。It is a powder X-ray diffraction diagram of the active material for lithium secondary batteries which concerns on an Example and a comparative example. 実施例及び比較例に係るリチウム二次電池の初期放電容量を比較した図である。It is the figure which compared the initial stage discharge capacity of the lithium secondary battery which concerns on an Example and a comparative example. 実施例及び比較例に係るリチウム二次電池の高率放電特性値を比較した図である。It is the figure which compared the high rate discharge characteristic value of the lithium secondary battery which concerns on an Example and a comparative example. 実施例及び比較例に係るリチウム二次電池の高率放電容量を比較した図である。It is the figure which compared the high rate discharge capacity of the lithium secondary battery which concerns on an Example and a comparative example.

Claims (3)

一般式Li(PO3−x(BO(0<x≦1/4)で表されるリチウム二次電池用正極活物質。 Formula Li 3 V 2 (PO 4) 3-x (BO 3) x cathode active material for a lithium secondary battery represented by (0 <x ≦ 1/4 ). 前記活物質は、表面に電子伝導性炭素質材料が堆積している請求項1に記載のリチウム二次電池用正極活物質。 The active material, the positive electrode active material for lithium secondary battery according to claim 1, electron conductive carbonaceous material is deposited on the surface. 請求項1又は2に記載の活物質を含む正極と、リチウムイオンを吸蔵放出する負極活物質を含む負極と、非水電解質とを備えるリチウム二次電池。 A lithium secondary battery comprising: a positive electrode including the active material according to claim 1; a negative electrode including a negative electrode active material that absorbs and releases lithium ions; and a nonaqueous electrolyte.
JP2008162607A 2008-06-20 2008-06-20 Active material for lithium secondary battery and lithium secondary battery Expired - Fee Related JP5298659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162607A JP5298659B2 (en) 2008-06-20 2008-06-20 Active material for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162607A JP5298659B2 (en) 2008-06-20 2008-06-20 Active material for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010003593A JP2010003593A (en) 2010-01-07
JP5298659B2 true JP5298659B2 (en) 2013-09-25

Family

ID=41585145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162607A Expired - Fee Related JP5298659B2 (en) 2008-06-20 2008-06-20 Active material for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5298659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096598A (en) * 2009-11-02 2011-05-12 Gs Yuasa Corp Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068080A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of Making Active Materials For Use in Secondary Electrochemical Cells
US9318742B2 (en) 2010-02-17 2016-04-19 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
EP2544281A1 (en) * 2011-07-05 2013-01-09 Belenos Clean Power Holding AG Electrode active material for the anode or the cathode of an electrochemical cell
JP2014221690A (en) * 2011-09-05 2014-11-27 国立大学法人 東京大学 Method for producing lithium-containing acid salt compound
JP5888046B2 (en) * 2012-03-27 2016-03-16 Tdk株式会社 Positive electrode active material, positive electrode and lithium ion secondary battery
US11532811B2 (en) 2019-03-12 2022-12-20 Ricoh Company, Ltd. Composite material, electrode, electrode device, power storage device and method of manufacturing composite material
JP6791328B2 (en) * 2019-09-12 2020-11-25 株式会社リコー Positive electrode active material, positive electrode, electrode element, power storage device
CN117623260A (en) * 2022-08-10 2024-03-01 比亚迪股份有限公司 Battery material and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4153288B2 (en) * 2002-11-25 2008-09-24 日本電信電話株式会社 Nonaqueous electrolyte secondary battery
JP5115920B2 (en) * 2006-02-24 2013-01-09 日本碍子株式会社 All solid battery
JP2008053220A (en) * 2006-07-25 2008-03-06 Gs Yuasa Corporation:Kk Non-aqueous electrolyte battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096598A (en) * 2009-11-02 2011-05-12 Gs Yuasa Corp Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP2010003593A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5381024B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP5298659B2 (en) Active material for lithium secondary battery and lithium secondary battery
US8663847B2 (en) Positive active material for lithium secondary battery, and lithium secondary battery
JP5761617B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5272756B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof
JP5489063B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5495300B2 (en) Lithium ion secondary battery
WO2009142283A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5434720B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP5434727B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP5262318B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery.
JP5145745B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2008053220A (en) Non-aqueous electrolyte battery and its manufacturing method
JP5604962B2 (en) Positive electrode active material for secondary battery and secondary battery
JP5483413B2 (en) Lithium ion secondary battery
JP5055780B2 (en) Method for producing positive electrode active material and battery using the same
JP5445912B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5862172B2 (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
JP4951879B2 (en) Lithium secondary battery and positive electrode active material for lithium secondary battery
JP5446036B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4991225B2 (en) Positive electrode active material for secondary battery, positive electrode for secondary battery and secondary battery using the same
JP5277929B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees