JP5272756B2 - Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof - Google Patents

Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof Download PDF

Info

Publication number
JP5272756B2
JP5272756B2 JP2009020832A JP2009020832A JP5272756B2 JP 5272756 B2 JP5272756 B2 JP 5272756B2 JP 2009020832 A JP2009020832 A JP 2009020832A JP 2009020832 A JP2009020832 A JP 2009020832A JP 5272756 B2 JP5272756 B2 JP 5272756B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
secondary battery
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009020832A
Other languages
Japanese (ja)
Other versions
JP2009218205A (en
Inventor
明博 藤井
有希子 藤野
裕江 中川
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2009020832A priority Critical patent/JP5272756B2/en
Publication of JP2009218205A publication Critical patent/JP2009218205A/en
Application granted granted Critical
Publication of JP5272756B2 publication Critical patent/JP5272756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リン酸マンガン系のリチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びに、その製造方法に関するものである。   The present invention relates to a manganese phosphate-based positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, a lithium secondary battery, and a method for producing the same.

近年、携帯電話、ノートパソコン等の携帯機器類用、電気自動車用などの電源としてエネルギー密度が高く、かつ自己放電が少なくてサイクル特性の良いリチウム二次電池に代表される非水電解質二次電池が注目されている。現在のリチウム二次電池の主流は、2Ah以下の携帯電話用を中心とした小型民生用である。リチウム二次電池用の正極活物質としては数多くのものが提案されているが、最も一般的に知られているのは、作動電圧が4V付近のリチウムコバルト酸化物(LiCoO)やリチウムニッケル酸化物(LiNiOあるいはスピネル構造を持つリチウムマンガン酸化物(LiMn)等を基本構成とするリチウム含有遷移金属酸化物である。なかでも、リチウムコバルト酸化物は、充放電特性とエネルギー密度に優れることから、電池容量2Ahまでの小容量リチウム二次電池の正極活物質として広く採用されている。 In recent years, non-aqueous electrolyte secondary batteries represented by lithium secondary batteries with high energy density, low self-discharge and good cycle characteristics as power sources for portable devices such as mobile phones and notebook computers and electric vehicles Is attracting attention. The current mainstream of lithium secondary batteries is for consumer use, mainly for mobile phones of 2 Ah or less. Many positive electrode active materials for lithium secondary batteries have been proposed. The most commonly known positive electrode active materials are lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide whose operating voltage is around 4V. object is a (LiNiO 2), or lithium manganese oxide having a spinel structure lithium-containing transition metal oxide to basic configuration (LiMn 2 O 4) or the like. Among these, lithium cobalt oxide is widely adopted as a positive electrode active material for small-capacity lithium secondary batteries up to a battery capacity of 2 Ah because of its excellent charge / discharge characteristics and energy density.

しかしながら、今後の中型・大型、特に大きな需要が見込まれる産業用途への非水電解質電池の展開を考えた場合、安全性が非常に重要視されるため、現在の小型電池向けの仕様では必ずしも充分であるとはいえない。この要因の一つに、正極活物質の熱的不安定性が挙げられ、様々な対策がなされてきたが、未だ十分とはいえない。また、産業用途では小型民生用では使用されないような高温環境において電池が使用されることを想定する必要がある。このような高温環境では、従来の非水電解質二次電池はもとより、ニッケル−カドミウム電池や鉛電池も非常に短寿命であり、ユーザーの要求を満足する従来電池は存在しないのが現状である。また、キャパシターは、唯一この温度領域で使用できるものの、エネルギー密度が小さく、この点においてユーザーの要求を満足するものではなく、高温長寿命でエネルギー密度の高い電池が求められている。   However, when considering the development of non-aqueous electrolyte batteries for future medium-sized and large-sized, especially industrial applications where large demand is expected, safety is very important, so the specifications for current small batteries are not always sufficient. It cannot be said. One of the factors is the thermal instability of the positive electrode active material, and various countermeasures have been taken, but it is still not sufficient. In industrial applications, it is necessary to assume that the battery is used in a high-temperature environment that is not used in small consumer products. In such a high temperature environment, not only conventional non-aqueous electrolyte secondary batteries, but also nickel-cadmium batteries and lead batteries have a very short life, and there is no conventional battery that satisfies user requirements. Further, although the capacitor can only be used in this temperature range, it has a low energy density and does not satisfy the user's requirements in this respect, and a battery having a high temperature and a long life and a high energy density is required.

そこで最近、熱安定性が優れるオリビン構造を有するリン酸鉄リチウム(LiFePO)が注目を集めている。このオリビン構造を有するLiFePOはリンと酸素が共有結合しているため、高温においても酸素を放出することが無く、電池用活物質として使用することで電池の安全性を飛躍的に高めることができると推察される。さらに、Liイオンの吸蔵・放出が3.4V付近で行われることから、電池の正極に用いた場合に生じる副反応量を抑えることができるため電池の長寿命化が期待できる。 Therefore, recently, lithium iron phosphate (LiFePO 4 ) having an olivine structure with excellent thermal stability has attracted attention. Since LiFePO 4 having this olivine structure is covalently bonded to phosphorus and oxygen, it does not release oxygen even at high temperatures, and can be used as a battery active material to dramatically improve battery safety. It is assumed that it can be done. Furthermore, since the insertion / extraction of Li ions is performed at around 3.4 V, the amount of side reaction that occurs when used for the positive electrode of the battery can be suppressed, so that the life of the battery can be expected to be extended.

しかし、このリン酸鉄リチウム(LiFePO)は、Liイオンの吸蔵・放出が3.4V付近で行われることから、4V系正極活物質に比べるとエネルギー密度が低いものとなってしまう。 However, this lithium iron phosphate (LiFePO 4 ) has an energy density lower than that of the 4V positive electrode active material because the insertion and release of Li ions are performed near 3.4V.

一方、リン酸マンガン(LiMnPO)はLiイオンの吸蔵・放出が4.0V付近で行われ、LiFePOに比べて理論容量も大きいものである。しかし、実際に従来のLiMnPOを正極活物質として用いても、十分な放電容量を持った電池とすることができなかった。 On the other hand, manganese phosphate (LiMnPO 4 ) absorbs and releases Li ions at around 4.0 V, and has a larger theoretical capacity than LiFePO 4 . However, even if the conventional LiMnPO 4 is actually used as the positive electrode active material, a battery having a sufficient discharge capacity could not be obtained.

特許文献1には、「実施例1:スプレードライ法によるLiMnPO4の合成」、「リ
チウム源、マンガン源およびリン酸源を等モルずつそれぞれ別の容器に量り取り、蒸留水に溶解させた。これら3種類の溶液を混合後、スプレードライ装置に導入し噴霧乾燥させ、原料粉体を調製した。こうして得られた原料粉体を、不活性雰囲気下350℃で1時間熱分解させ、次いで不活性雰囲気下550℃で8時間焼成した。」(段落0027)との記載がある。また、「実施例3:LiMnPO4/C複合体の合成]、「リチウム源、マンガン源、リン酸源およびリンゴ酸(炭素源)を等モルずつそれぞれ別の容器に量り取り、蒸留水に溶解させた。リンゴ酸溶液にはアンモニア水を加え、pHを5〜6に調整した。これら4種類の溶液を混合後、スプレードライ装置に導入し噴霧乾燥させ、原料粉体を調製した。こうして得られた原料粉体を、不活性雰囲気下350℃で2時間熱分解させ、次いで不活性雰囲気下500℃で6時間焼成した。」(段落0033)との記載がある。
In Patent Document 1, “Example 1: Synthesis of LiMnPO 4 by spray drying method”, “Lithium source, manganese source and phosphoric acid source were weighed in separate containers, respectively, and dissolved in distilled water. After mixing these three types of solutions, they were introduced into a spray drying apparatus and spray-dried to prepare raw material powders, which were pyrolyzed at 350 ° C. for 1 hour in an inert atmosphere and then inactivated. It was baked for 8 hours at 550 ° C. in an active atmosphere ”(paragraph 0027). In addition, “Example 3: Synthesis of LiMnPO 4 / C complex”, “Lithium source, manganese source, phosphoric acid source and malic acid (carbon source) were weighed in separate containers respectively and dissolved in distilled water. Aqueous ammonia was added to the malic acid solution to adjust the pH to 5 to 6. After mixing these four kinds of solutions, they were introduced into a spray dryer and spray-dried to prepare a raw material powder. The obtained raw material powder was thermally decomposed at 350 ° C. for 2 hours under an inert atmosphere and then fired at 500 ° C. for 6 hours under an inert atmosphere. ”(Paragraph 0033).

特許文献2には、「Mn源が溶解したMn源溶液に、沈殿剤を添加することにより、水酸化マンガン(Mn(OH)x )の沈殿物を得る沈殿工程と、前記沈殿物を還元性溶媒
に分散させ、還元分散溶液を得る還元工程と、前記還元分散溶液にLi源溶液およびP源溶液を添加し、添加分散溶液を得る添加工程と、前記添加分散溶液のpHを3〜6の範囲内に調製し、pH調製分散溶液を得るpH調製工程と、前記pH調製分散液を加熱加圧条件で反応させる合成工程と、を有することを特徴とするLiMnPOの製造方法」(請求項1)が記載され、実施例には、原料を含有する水溶液のpHを5.3(実施例1)、5.2(実施例5)、5.0(実施例6)又は5.3(実施例7)に調整してから、反応を行い、得られた沈殿物を乾燥することでLiMnPOを得たことが記載されている。
Patent Document 2 states that “a precipitation step of obtaining a precipitate of manganese hydroxide (Mn (OH) x) by adding a precipitant to a Mn source solution in which a Mn source is dissolved; A reduction step of dispersing in a solvent to obtain a reduced dispersion solution; an addition step of adding an Li source solution and a P source solution to the reduced dispersion solution to obtain an added dispersion solution; and a pH of the added dispersion solution of 3 to 6. A method for producing LiMnPO 4 characterized by comprising a pH adjusting step for obtaining a pH adjusted dispersion solution prepared within a range, and a synthesis step for reacting the pH adjusted dispersion solution under heating and pressurizing conditions ”(claim) 1) is described, and in the examples, the pH of the aqueous solution containing the raw material is 5.3 (Example 1), 5.2 (Example 5), 5.0 (Example 6) or 5.3 ( After adjusting to Example 7), the reaction is performed and the resulting precipitate is dried. It is described that give the LiMnPO 4 with Rukoto.

しかし、特許文献1、2のいずれにも、沈殿物をアルカリ性の溶液から得ることについては記載も示唆もない。   However, neither Patent Documents 1 and 2 describe nor suggest that a precipitate is obtained from an alkaline solution.

非特許文献1には、「オリビン型LiFePOの水熱合成条件の最適化および電気化学特性評価」と題し、Fe源、Li源及びリン源を含む混合溶液から試料を合成するにあたり、前記混合溶液のpHを変化させて実験を行ったことが記載され、pHが小さいほど(200)面に基づく回折線の相対強度が大きく、pH=5.15の溶液から合成した試料の初期放電容量は163mAh・g−1であったのに対し、pH=8.99の溶液から合成した試料の初期放電容量は120mAh・g−1程度しか得られなかったことが記載されている。また、pH=3.47の溶液から合成した試料は(200)面に基づく回折線の相対強度は最も大きいものの、初期放電容量は逆に120mAh・g−1程度しか得られなかったことが記載されている。非特許文献1には、それぞれの条件で得られたLiFePOのエックス線回折図が示されているので、これを引用して図3として示す。 Non-Patent Document 1, entitled “Optimization of hydrothermal synthesis conditions and evaluation of electrochemical properties of olivine-type LiFePO 4 ”, in the case of synthesizing a sample from a mixed solution containing an Fe source, a Li source and a phosphorus source, It was described that the experiment was performed by changing the pH of the solution. The smaller the pH, the greater the relative intensity of the diffraction line based on the (200) plane, and the initial discharge capacity of the sample synthesized from the solution with pH = 5.15 is It is described that the initial discharge capacity of the sample synthesized from the solution with pH = 8.99 was only about 120 mAh · g −1 , whereas it was 163 mAh · g −1 . Moreover, although the sample synthesized from the solution with pH = 3.47 has the highest relative intensity of the diffraction line based on the (200) plane, the initial discharge capacity, on the contrary, was obtained only about 120 mAh · g −1. Has been. Non-Patent Document 1 shows an X-ray diffraction diagram of LiFePO 4 obtained under each condition, and this is cited as FIG.

本発明は、後述するように、マンガンイオン、リン酸イオン及びリチウムイオンを少なくとも含む水溶液から得た沈殿物を前駆体とし、リン酸マンガンリチウム系活物質を製造する場合には、水溶液をアルカリ性とすることにより(200)面の回折線の相対強度が大きくなり、放電容量の大きなものが得られる、という点に特徴があるが、非特許文献1には、リン酸マンガンリチウム系活物質の合成に関しては記載も示唆もないばかりか、LiFePOを合成する場合において、混合溶液がアルカリ性である場合には(200)面の回折線の相対強度が小さくなり、放電容量も小さくなることや、(200)面の回折線の相対強度が大きすぎる場合には放電容量が小さくなることが記載されており、これは、本発明の上記特徴とは正反対の事項であるから、LiFePOに関する非特許文献1には、リン酸マンガンリチウム系活物質に関する本発明に導く上での明らかな阻害要因があるというべきである。 As described later, the present invention uses a precipitate obtained from an aqueous solution containing at least manganese ions, phosphate ions and lithium ions as a precursor, and when producing a lithium manganese phosphate-based active material, the aqueous solution is made alkaline. However, non-patent document 1 describes the synthesis of a lithium manganese phosphate-based active material. In the case of synthesizing LiFePO 4 in the case of synthesizing LiFePO 4 , when the mixed solution is alkaline, the relative intensity of the (200) plane diffraction line is reduced, and the discharge capacity is also reduced. It is described that the discharge capacity is reduced when the relative intensity of the diffraction line on the (200) plane is too high, which is the opposite of the above feature of the present invention. Therefore, it should be said that Non-Patent Document 1 relating to LiFePO 4 has an obvious inhibiting factor in leading to the present invention relating to a lithium manganese phosphate-based active material.

さらに、本発明は、CuKα線を使用した粉末エックス線回折線図における2θ=29.2±0.5°の回折線強度(a)に対する2θ=16.9±0.5°の回折線強度(b)の比(b/a)がb/a≧1.0である点に特徴があるところ、2θ=29.2±0.5°の回折線は(020)面に相当し、2θ=16.9±0.5°の回折線は(200)面に相当する。この点に着目して非特許文献1記載のエックス線回折図(図3参照)を参酌すると、pH=5.15の溶液から合成し大きな放電容量が得られた試料(b)では、(020)面のピーク強度に対して(200)面のピーク強度が明らかに小さく、pH=3.47の溶液から合成し小さな放電容量しか得られなかった試料(a)では、(020)面のピーク強度に対して(200)面のピーク強度が明らかに大きいことがわかり、これは、上記した本発明の特徴とは正反対の事項であるから、この点においても、非特許文献1には、リン酸マンガンリチウム系活物質に関する本発明に導く上での明らかな阻害要因があるというべきである。なお、pH=8.99の溶液から合成し小さな放電容量しか得られなかった試料(c)でも、(020)面のピーク強度に対して(200)面のピーク強度が小さく、本発明の上記特徴は現れていない。   Furthermore, the present invention relates to a diffraction line intensity (2θ = 16.9 ± 0.5 ° with respect to a diffraction line intensity (a) of 2θ = 29.2 ± 0.5 ° in a powder X-ray diffraction diagram using CuKα rays ( The characteristic feature is that the ratio (b / a) of b) is b / a ≧ 1.0. The diffraction line of 2θ = 29.2 ± 0.5 ° corresponds to the (020) plane, and 2θ = The diffraction line of 16.9 ± 0.5 ° corresponds to the (200) plane. In consideration of this point and taking into account the X-ray diffraction diagram described in Non-Patent Document 1 (see FIG. 3), in the sample (b) synthesized from a solution of pH = 5.15 and having a large discharge capacity, (020) In the sample (a) in which the peak intensity of the (200) plane was clearly smaller than the peak intensity of the plane and was synthesized from a solution of pH = 3.47 and only a small discharge capacity was obtained, the peak intensity of the (020) plane On the other hand, since the peak intensity of the (200) plane is clearly large, which is the opposite of the above-described feature of the present invention, non-patent document 1 also discloses phosphoric acid. It should be apparent that there are obvious obstacles to the present invention regarding manganese lithium-based active materials. It should be noted that the sample (c) synthesized from a solution having a pH of 8.99 and having only a small discharge capacity has a smaller peak intensity on the (200) plane than the peak intensity on the (020) plane. Features are not appearing.

非特許文献2のFig.10には、LiFe0.75Mn0.25PO、LiFe0.5Mn0.5PO、LiFe0.25Mn0.75PO及びLiMnPOを正極活物質として用いた電池の充放電カーブか記載され、Feの比率が高くなるにつれて放電容量が大きくなる様子が示されている。 FIG. 10 includes charging and discharging of a battery using LiFe 0.75 Mn 0.25 PO 4 , LiFe 0.5 Mn 0.5 PO 4 , LiFe 0.25 Mn 0.75 PO 4 and LiMnPO 4 as a positive electrode active material. A curve is described, and the discharge capacity increases as the Fe ratio increases.

特開2007−48612号公報JP 2007-48612 A 特開2007−119304号公報JP 2007-119304 A

第48回電池討論会(平成19年11月開催)要旨集2A09(p.6648th Battery Symposium (November 2007) Abstract 2A09 (p.66) A.K.Padhi, K.S.Nanjundaswamy and J.B.Goodenough, J.Electrochem.Soc., 1997, Vol.144, No.4, page.1188-1194.A.K.Padhi, K.S.Nanjundaswamy and J.B.Goodenough, J.Electrochem.Soc., 1997, Vol.144, No.4, page.1188-1194.

本発明は、上記問題点に鑑みてなされたものであり、放電容量の大きなリン酸マンガン系のリチウム二次電池用正極活物質とそれを用いたリチウム二次電池を提供することを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to provide a manganese phosphate-based positive electrode active material for lithium secondary batteries having a large discharge capacity and a lithium secondary battery using the same. .

本発明の構成及び作用効果は以下の通りである。但し、本明細書中に記載する作用機構には推定が含まれており、その正否は本発明を何ら制限するものではない。   The configuration and effects of the present invention are as follows. However, the action mechanism described in this specification includes estimation, and its correctness does not limit the present invention.

本発明は、一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表され、CuKα線を使用した粉末エックス線回折線図において、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きいことを特徴とするリチウム二次電池用正極活物質である。 The present invention has the general formula LiMn (1-x-y) Fe x M y PO 4 (0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti, Y, Mo Or in a powder X-ray diffraction diagram represented by Nb) and using CuKα rays, the diffraction line intensity of 2θ = 16.9 ± 0.5 ° is higher than that of 2θ = 29.2 ± 0.5 °. This is a positive electrode active material for a lithium secondary battery, characterized in that it is larger.

また、本発明は、一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表される正極活物質を含み、CuKα線を使用した粉末エックス線回折線図において、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きいことを特徴とするリチウム二次電池用正極である。 Further, the present invention has the general formula LiMn (1-x-y) Fe x M y PO 4 (0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti, Y In a powder X-ray diffraction diagram using a positive electrode active material represented by Mo, Nb) and using CuKα rays, 2θ = 16.9 ± 0 than the diffraction line intensity of 2θ = 29.2 ± 0.5 °. A positive electrode for a lithium secondary battery characterized by having a diffraction line intensity of .5 ° is larger.

また、本発明は、前記正極活物質を含む正極又は前記正極と、負極と、非水電解質を備えたリチウム二次電池である。   Moreover, this invention is a lithium secondary battery provided with the positive electrode containing the said positive electrode active material or the said positive electrode, the negative electrode, and the nonaqueous electrolyte.

このような構成により、リン酸マンガン系正極活物質の放電容量を大きなものとすることができる作用機構については、必ずしも明らかではないが、斜方晶(空間群Pnma)のリン酸マンガンリチウム(LiMnPO)は、CuKα線を使用した粉末エックス線回折線において、2θ=16.9±0.5°のピークは(200)面を、2θ=29.2±0.5°は(020)面をそれぞれ表している。ここで、(200)面に対応する2θ=16.9±0.5°の回折強度の方が(020)面に対応する2θ=29.2±0.5°の回折強度よりも大きいということは、LiMnPOの結晶子が(020)面よりも(200)面方向に配向性を持つということ、即ち、(020)面方向に比べて(200)面方向に結晶がより成長していることを示していると考えられることから、本発明の特徴が、リン酸マンガンリチウム系活物質におけるリチウムイオン拡散パスの方向やリチウムイオン拡散距離との関係において作用を及ぼしたのではないかと本発明者らは推察している。 With such a configuration, the mechanism of action that can increase the discharge capacity of the manganese phosphate-based positive electrode active material is not necessarily clear, but is orthorhombic (space group Pnma) lithium manganese phosphate (LiMnPO). 4 ) is a powder X-ray diffraction line using CuKα rays. The peak at 2θ = 16.9 ± 0.5 ° is the (200) plane, and 2θ = 29.2 ± 0.5 ° is the (020) plane. Represents each. Here, the diffraction intensity of 2θ = 16.9 ± 0.5 ° corresponding to the (200) plane is larger than the diffraction intensity of 2θ = 29.2 ± 0.5 ° corresponding to the (020) plane. This means that the crystallites of LiMnPO 4 have orientation in the (200) plane direction rather than the (020) plane, that is, the crystal grows more in the (200) plane direction than in the (020) plane direction. It is considered that the characteristics of the present invention have an effect on the relationship between the lithium ion diffusion path direction and the lithium ion diffusion distance in the lithium manganese phosphate-based active material. The inventors speculate.

また、本発明は、マンガンイオン、リン酸イオン及びリチウムイオンを少なくとも含むアルカリ性水溶液から得た沈殿物を前駆体とし、該前駆体を焼成して一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表される正極活物質を得るリチウム二次電池用正極活物質の製造方法である。 Moreover, the present invention uses a precipitate obtained from an alkaline aqueous solution containing at least manganese ions, phosphate ions and lithium ions as a precursor, and calcinates the precursor to form a general formula LiMn (1-xy) Fe x M. For a lithium secondary battery that obtains a positive electrode active material represented by yPO 4 (0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti, Y, Mo, or Nb) It is a manufacturing method of a positive electrode active material.

本発明に係るリン酸マンガンリチウムはアルカリ水溶液中で前駆体を調製することにより得られる。アルカリ源としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の水酸化物やアンモニア水が挙げられるが、このうち、アンモニア水が好ましい。アンモニア水を用いると、焼成時の加熱分解後にリチウム以外のアルカリ金属成分が残らない。前駆体調製時のアルカリ水溶液のpHは、7〜14が好ましい。なかでも、pHが8.5〜12の範囲であれば、本発明の効果が最も効果的に現れるため特に好ましい。   The lithium manganese phosphate according to the present invention can be obtained by preparing a precursor in an alkaline aqueous solution. Examples of the alkali source include hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, and ammonia water. Among these, ammonia water is preferable. When ammonia water is used, alkali metal components other than lithium do not remain after thermal decomposition during firing. The pH of the alkaline aqueous solution at the time of preparing the precursor is preferably 7 to 14. Especially, if pH is the range of 8.5-12, since the effect of this invention appears most effectively, it is especially preferable.

本発明によれば、放電容量の大きなリチウム二次電池用正極活物質とそれを用いたリチウム二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium secondary batteries with a large discharge capacity and a lithium secondary battery using the same can be provided.

本発明に用いるリン酸マンガンリチウムの合成過程は、焼成工程に供する前駆体を水溶液中で反応させて得る前駆体調製工程と、該前駆体を焼成する焼成工程とを含む。前駆体調製工程の水溶液に用いる原料については、限定されるものではないが、金属源として水溶性金属有機酸塩(2価及び3価)、リン酸源としてはリン酸又は水溶性リン酸塩、リチウム源としては、水溶性リチウム塩が、置換元素を含む場合には、その元素の水溶性有機酸塩を用いることが好ましい。前駆体調製工程では、各原料の混合水溶液又はそれらの反応沈殿物を含む水溶液にアルカリ源を加えて溶液のpHをアルカリ性に保持し、水分を加熱乾燥、真空乾燥等の手法で乾燥することで前駆体粉末を得ることができる。また、原料混合過程に於いて、リン酸源以外の原料を混合した溶液にアルカリ源を加えてpHをアルカリに調整したところに、リン酸源とアルカリ源を同時に滴下してpHを保持したまま沈澱を生成させてもよい。アルカリ源としては前述したような試薬を用いることが可能であるが、アンモニア水を使用すると合成後のリン酸マンガンリチウムの粒径が小さくなる傾向があるため特に好ましい。焼成工程は金属酸化物の生成を防ぐために不活性雰囲気中で行うことが好ましく、焼成温度は400〜900℃が好ましい。   The synthesis process of lithium manganese phosphate used in the present invention includes a precursor preparation step obtained by reacting a precursor for use in the firing step in an aqueous solution, and a firing step for firing the precursor. The raw materials used for the aqueous solution in the precursor preparation step are not limited, but include water-soluble metal organic acid salts (divalent and trivalent) as a metal source and phosphoric acid or water-soluble phosphate as a phosphoric acid source. As the lithium source, when the water-soluble lithium salt contains a substitution element, it is preferable to use a water-soluble organic acid salt of the element. In the precursor preparation step, an alkali source is added to the mixed aqueous solution of each raw material or an aqueous solution containing the reaction precipitate to maintain the pH of the solution alkaline, and moisture is dried by a technique such as heat drying or vacuum drying. A precursor powder can be obtained. Further, in the raw material mixing process, the pH is adjusted to alkali by adding an alkali source to a solution in which raw materials other than the phosphoric acid source are mixed, and the phosphoric acid source and the alkali source are dropped simultaneously to maintain the pH. A precipitate may be formed. As the alkali source, it is possible to use the reagent as described above, but it is particularly preferable to use aqueous ammonia because the particle size of the synthesized lithium manganese phosphate tends to be small. The firing step is preferably performed in an inert atmosphere in order to prevent the formation of metal oxide, and the firing temperature is preferably 400 to 900 ° C.

以上、いわゆる焼成法と呼ばれる合成方法について述べたが、リン酸マンガンリチウムの合成方法としては、これとは別に、いわゆる水熱法と呼ばれる合成方法がある。水熱法は、密閉容器中に原料水溶液を入れて加熱し、高温高圧下で合成反応が進行する手法である。本発明の製造方法を水熱合成法に適用してもよいが、水熱合成法では比較的小さな活物質粒子が合成され易いという別の要因の影響により、本発明の効果の顕著性が見かけ上緩和されて観察される場合がある。   The synthesis method called the so-called baking method has been described above. As a synthesis method of lithium manganese phosphate, there is a synthesis method called a so-called hydrothermal method. The hydrothermal method is a method in which a raw material aqueous solution is placed in a sealed container and heated, and the synthesis reaction proceeds under high temperature and pressure. Although the production method of the present invention may be applied to a hydrothermal synthesis method, the effect of the present invention is apparent due to the influence of another factor that relatively small active material particles are easily synthesized in the hydrothermal synthesis method. May be observed relaxed.

リン酸マンガンリチウムは、平均粒子サイズ100μm以下の粉体としてリチウム二次電池用正極に用いることが好ましい。特に、粒径が小さい方が好ましく、二次粒子の平均粒子径は0.5〜20μmであり、一次粒子の粒径は1〜500nmであることがより好ましい。また、粉体粒子の比表面積は正極のハイレート性能を向上させるために大きい方が良く、1〜100m・g−1が好ましい。より好ましくは5〜100m・g−1である。粉体を所定の形状で得るため、粉砕機や分級機を用いることができる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等を用いることができる。粉砕時には水、あるいはアルコール、ヘキサン等の有機溶剤を共存させた湿式粉砕を用いてもよい。分級方法としては、特に限定はなく、必要に応じて篩や風力分級機などを乾式あるいは湿式にて用いることができる。 It is preferable that lithium manganese phosphate is used as a positive electrode for a lithium secondary battery as a powder having an average particle size of 100 μm or less. In particular, a smaller particle size is preferable, the average particle size of the secondary particles is 0.5 to 20 μm, and the particle size of the primary particles is more preferably 1 to 500 nm. The specific surface area of the powder particles is preferably large in order to improve the high rate performance of the positive electrode, and is preferably 1 to 100 m 2 · g −1 . More preferably, it is 5-100 m < 2 > * g- 1 . In order to obtain the powder in a predetermined shape, a pulverizer or a classifier can be used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like can be used. At the time of pulverization, wet pulverization in which an organic solvent such as water or alcohol or hexane coexists may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used dry or wet as necessary.

また、電子伝導性を補う目的でリン酸マンガンリチウム粒子表面にカーボンを機械的に或いは有機物の熱分解等により付着させたものであっても本発明の効果は有効に発揮されうる。   The effect of the present invention can be effectively exhibited even when carbon is adhered to the surface of lithium manganese phosphate particles mechanically or by thermal decomposition of an organic substance for the purpose of supplementing the electron conductivity.

更に、合成後のリン酸マンガンリチウムにその性能の向上を目的として意図的に不純物を共存させてもよく、そのような場合にも本発明の効果が失われることはない。   Further, impurities may be intentionally coexisted in the synthesized lithium manganese phosphate for the purpose of improving the performance, and in such a case, the effect of the present invention is not lost.

導電剤、結着剤については周知のものを周知の処方で用いることができる。   As the conductive agent and the binder, well-known ones can be used in a well-known prescription.

本発明の正極活物質を含有する正極中に含まれる水分量は少ない方が好ましく、具体的には500ppm未満であることが好ましい。   The amount of water contained in the positive electrode containing the positive electrode active material of the present invention is preferably as small as possible, specifically less than 500 ppm.

また、電極合材層の厚みは電池のエネルギー密度との兼ね合いから本発明を適用する電極合材層の厚みは20〜500μmが好ましい。   Moreover, the thickness of the electrode mixture layer to which the present invention is applied is preferably 20 to 500 μm in view of the balance with the energy density of the battery.

本発明電池の負極は、何ら限定されるものではなく、リチウム金属、リチウム合金(リチウム―アルミニウム、リチウム―鉛、リチウム―錫、リチウム―アルミニウム―錫、リチウム―ガリウム、およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるため負極材料として好ましい。例えば、人造黒鉛、天然黒鉛が好ましい。特に,負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。 The negative electrode of the battery of the present invention is not limited in any way, but lithium metal, lithium alloy (lithium metal such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy) Alloys), alloys capable of inserting and extracting lithium, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12) Etc.), polyphosphoric acid compounds and the like. Among these, graphite is preferable as a negative electrode material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage. For example, artificial graphite and natural graphite are preferable. In particular, graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.

一般的に、非水電解質電池の形態としては、正極、負極、電解質塩が非水溶媒に含有された非水電解質から構成され、一般的には、正極と負極との間に、セパレータとこれらを包装する外装体が設けられる。   In general, the form of a non-aqueous electrolyte battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte containing an electrolyte salt in a non-aqueous solvent. Is provided.

非水溶媒としては、プロピレンカーボネート、エチレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネ−ト等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエ−テル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   Non-aqueous solvents include cyclic carbonates such as propylene carbonate and ethylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate Chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl jig Examples include ethers such as lime; nitriles such as acetonitrile and benzonitrile; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof. Is limited to There is no.

電解質塩としては、例えば、LiBF、LiPF等のイオン性化合物が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.5mol・dm−3〜5mol・dm−3が好ましく、さらに好ましくは、1mol・dm−3〜2.5mol・dm−3である。 Examples of the electrolyte salt include ionic compounds such as LiBF 4 and LiPF 6 , and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt in the nonaqueous electrolyte, in order to ensure the non-aqueous electrolyte battery having high battery characteristics, preferably 0.5mol · dm -3 ~5mol · dm -3 , more preferably, 1 mol · dm −3 to 2.5 mol · dm −3 .

本発明はリチウム二次電池のなかでも特に非水電解質電池に絞った内容になっているが、水溶液系においても本発明効果は有効に発揮される。   The present invention is particularly limited to a non-aqueous electrolyte battery among lithium secondary batteries, but the effect of the present invention is effectively exhibited even in an aqueous solution system.

以下に、本発明のリチウム二次電池の製造方法について例示するが、本発明は、以下の実施の形態に限定されるものではない。   Hereinafter, the method for producing a lithium secondary battery of the present invention will be exemplified, but the present invention is not limited to the following embodiment.

(実施例1)
(LiMn0.875Fe0.125POの作製)
酢酸マンガン四水和物(Mn(CHCOO)・4HO)と、酢酸鉄(Fe(CHCOO))とリン酸(HPO)と水酸化リチウム一水和物(LiOH・HO)とをモル比が0.875:0.125:1:1.02になるように計り取った。まず、酢酸マンガン四水和物と酢酸鉄を0.5mol・dm−3となるように精製水に溶解させた。次に、この混合溶液を攪拌しながら2.0mol・dm−3に希釈したリン酸水溶液を滴下した。リン酸滴下後に、水酸化リチウム一水和物の粉末を加えた。これらの混合溶液を60℃のウォーターバス中で撹拌しながら、アルカリ源としてアンモニア水を溶液のpHが9.5になるまで加え続けた。この後、ウォーターバスの温度を80℃に変更して2時間撹拌を続けた。得られた沈殿溶液を真空乾燥した後に乳鉢で解砕することで前駆体粉末を調製した。得られた前駆体粉末をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF−75)を用いて、窒素ガスの流通下(流速1.0L・min−1)で仮焼成した。仮焼成温度は300℃とし、仮焼成時間(前記焼成温度を維持する時間)は2時間とした。なお、昇温速度は5℃・min−1、降温は自然放冷とした。このようにしてLiMn0.875Fe0.125POを合成した。得られた仮焼成粉にポリビニルアルコール(重合度約1500)を質量比が1:1になるように秤量した後、ボールミルで乾式混合し、この混合物をアルミナ製の匣鉢に入れ、雰囲気置換式焼成炉にて窒素流通下(1.0L・min−1)で700℃、1時間焼成することでカーボンコートされたLiMn0.875Fe0.125POを合成した。これを正極活物質として用いた。合成したLiMn0.875Fe0.125PO粉末のCuKα線を使用した粉末エックス線回折線図を図1に示す。図1からわかるように、2θ=29.2±0.5°の回折線強度(a)と2θ=16.9±0.5°の回折線強度(b)との関係は、a<bであり、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きかった。
Example 1
(Preparation of LiMn 0.875 Fe 0.125 PO 4 )
Manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O), iron acetate (Fe (CH 3 COO) 2 ), phosphoric acid (H 3 PO 4 ) and lithium hydroxide monohydrate ( LiOH.H 2 O) was measured so that the molar ratio was 0.875: 0.125: 1: 1.02. First, manganese acetate tetrahydrate and iron acetate were dissolved in purified water to 0.5 mol · dm −3 . Next, an aqueous phosphoric acid solution diluted to 2.0 mol · dm −3 was added dropwise while stirring the mixed solution. After the dropwise addition of phosphoric acid, lithium hydroxide monohydrate powder was added. While stirring these mixed solutions in a 60 ° C. water bath, ammonia water was continuously added as an alkali source until the pH of the solution reached 9.5. Thereafter, the temperature of the water bath was changed to 80 ° C., and stirring was continued for 2 hours. The obtained precipitation solution was vacuum-dried and then crushed in a mortar to prepare a precursor powder. The obtained precursor powder was put in an alumina sagger (outside dimension 90 × 90 × 50 mm), and nitrogen gas was circulated using an atmosphere substitution type firing furnace (a table vacuum gas substitution furnace KDF-75 manufactured by Denken). Temporary calcination was performed at a lower flow rate (1.0 L · min −1 ). The pre-baking temperature was 300 ° C., and the pre-baking time (time for maintaining the baking temperature) was 2 hours. In addition, the temperature increase rate was 5 degreeC * min < -1 > and the temperature-fall was natural cooling. In this way, LiMn 0.875 Fe 0.125 PO 4 was synthesized. The obtained calcined powder was weighed with polyvinyl alcohol (degree of polymerization of about 1500) so that the mass ratio was 1: 1, and then dry-mixed with a ball mill. LiMn 0.875 Fe 0.125 PO 4 coated with carbon was synthesized by firing at 700 ° C. for 1 hour under a nitrogen flow (1.0 L · min −1 ) in a firing furnace. This was used as a positive electrode active material. A powder X-ray diffraction diagram using CuKα rays of the synthesized LiMn 0.875 Fe 0.125 PO 4 powder is shown in FIG. As can be seen from FIG. 1, the relationship between the diffraction line intensity (a) of 2θ = 29.2 ± 0.5 ° and the diffraction line intensity (b) of 2θ = 16.9 ± 0.5 ° is expressed as a <b The diffraction line intensity at 2θ = 16.9 ± 0.5 ° was larger than the diffraction line intensity at 2θ = 29.2 ± 0.5 °.

(正極の作製)
前記正極活物質、導電剤であるアセチレンブラック、及び、結着剤であるポリフッ化ビニリデン(PVdF)を80:8:12の重量比で含有し、N−メチル−2−ピロリドン(NMP)を溶媒とする正極ペーストを調整した。該正極ペーストを厚さ20μmのアルミニウム箔集電体上の片面に塗布、乾燥した後、プレス加工を行い、正極とした。該正極にはアルミニウム製の正極端子を超音波溶接により接続した。なお、実施例1の正極を表面形状を保ったままCuKα線を使用したエックス線回折測定(XRD)を行った結果を図4に示す。図4からわかるように、正極板の状態でエックス線回折測定を行った場合でも、2θ=29.2±0.5°の回折線強度(a)と2θ=16.9±0.5°の回折線強度(b)との関係は、a<bであり、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きかった。
(Preparation of positive electrode)
It contains the positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 80: 8: 12, and N-methyl-2-pyrrolidone (NMP) as a solvent. A positive electrode paste was prepared. The positive electrode paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm, dried, and then pressed to obtain a positive electrode. An aluminum positive electrode terminal was connected to the positive electrode by ultrasonic welding. In addition, the result of having performed the X-ray-diffraction measurement (XRD) using a CuK alpha ray, maintaining the surface shape of the positive electrode of Example 1 is shown in FIG. As can be seen from FIG. 4, even when X-ray diffraction measurement was performed in the state of the positive electrode plate, the diffraction line intensity (a) of 2θ = 29.2 ± 0.5 ° and 2θ = 16.9 ± 0.5 ° The relationship with the diffraction line intensity (b) is a <b, and the diffraction line intensity of 2θ = 16.9 ± 0.5 ° is more than the diffraction line intensity of 2θ = 29.2 ± 0.5 °. It was big.

(負極の作製)
厚さ100μmのリチウム金属箔を厚さ10μmのニッケル箔集電体上に貼り付けたものを負極とした。負極にはニッケル製の負極端子を抵抗溶接により接続した。
(Preparation of negative electrode)
A negative electrode was prepared by pasting a lithium metal foil having a thickness of 100 μm onto a nickel foil current collector having a thickness of 10 μm. A negative electrode terminal made of nickel was connected to the negative electrode by resistance welding.

(電解液の調製)
エチレンカーボネート、ジメチルカーボネート及びメチルエチルカーボネートを体積比6:7:7の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPFを1mol・dm−3の濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は50ppm未満とした。
(Preparation of electrolyte)
In a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate are mixed at a volume ratio of 6: 7: 7, LiPF 6 which is a fluorine-containing electrolyte salt is dissolved at a concentration of 1 mol · dm −3 to obtain a non-aqueous electrolyte. Was made. The amount of water in the non-aqueous electrolyte was less than 50 ppm.

(電池の組み立て)
露点−40℃以下の乾燥雰囲気下において非水電解質電池を組み立てた。正極と負極とを各1枚、厚さ20μmのポリプロピレン製セパレ−タを介して対向させる。外装体として、ポリエチレンテレフタレ−ト(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、この極群を前記正極端子及び負極端子の開放端部が外部露出するように注液孔となる部分を除いて気密封止した。前記注液孔から一定量の非水電解質を注液後、減圧状態で前記注液孔部分を熱封口し、実施例1に係る電池を組み立てた。
(Battery assembly)
A nonaqueous electrolyte battery was assembled in a dry atmosphere with a dew point of −40 ° C. or lower. One positive electrode and one negative electrode are opposed to each other via a polypropylene separator having a thickness of 20 μm. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal adhesive polypropylene film (50 μm) was used as the outer package, and this electrode group was used as the open end of the positive electrode terminal and the negative electrode terminal. Was hermetically sealed except for the portion that would be the liquid injection hole so as to be exposed to the outside. After injecting a certain amount of nonaqueous electrolyte from the injection hole, the injection hole part was heat sealed in a reduced pressure state, and the battery according to Example 1 was assembled.

(比較例1)
(LiMn0.875Fe0.125POの作製)
酢酸マンガン四水和物(Mn(CHCOO)・4HO)と、酢酸鉄(Fe(CHCOO))とリン酸(HPO)と水酸化リチウム一水和物(LiOH・HO)とをモル比が0.875:0.125:1:1.02になるように計り取った。まず、酢酸マンガン四水和物と酢酸鉄を0.5mol・dm−3となるように精製水に溶解させた。次に、この混合溶液を攪拌しながら2.0mol・dm−3に希釈したリン酸水溶液を滴下した。リン酸滴下後に、水酸化リチウム一水和物の粉末を加えた。なお、このときのpHは4.4であった。これらの混合溶液を80℃のウォーターバス中で2時間撹拌を続けた。得られた沈殿溶液を真空乾燥した後に乳鉢で解砕することで前駆体粉末を調製した。得られた前駆体粉末をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF−75)を用いて、窒素ガスの流通下(流速1.0L・min−1)で仮焼成した。仮焼成温度は300℃とし、仮焼成時間(前記焼成温度を維持する時間)は2時間とした。なお、昇温速度は5℃・min−1、降温は自然放冷とした。このようにしてリン酸鉄リチウム化合物LiMn0.875Fe0.125POを合成した。得られた仮焼成粉にポリビニルアルコール(重合度約1500)を質量比が1:1になるように秤量した後、ボールミルで乾式混合し、この混合物をアルミナ製の匣鉢に入れ、雰囲気置換式焼成炉にて窒素流通下(1.0L・min−1)で700℃、1時間焼成することでカーボンコートされたLiMn0.875Fe0.125POを合成した。合成したLiMn0.875Fe0.125PO粉末のCuKα線を使用した粉末エックス線回折図を図2に示す。図2からわかるように、図1とは逆に、2θ=29.2±0.5°の回折線強度(a)と2θ=16.9±0.5°の回折線強度(b)との関係は、a>bであり、2θ=29.2±0.5°の回折線強度の方が2θ=16.9±0.5°の回折線強度よりも大きかった。
(Comparative Example 1)
(Preparation of LiMn 0.875 Fe 0.125 PO 4 )
Manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O), iron acetate (Fe (CH 3 COO) 2 ), phosphoric acid (H 3 PO 4 ) and lithium hydroxide monohydrate ( LiOH.H 2 O) was measured so that the molar ratio was 0.875: 0.125: 1: 1.02. First, manganese acetate tetrahydrate and iron acetate were dissolved in purified water to 0.5 mol · dm −3 . Next, an aqueous phosphoric acid solution diluted to 2.0 mol · dm −3 was added dropwise while stirring the mixed solution. After the dropwise addition of phosphoric acid, lithium hydroxide monohydrate powder was added. The pH at this time was 4.4. These mixed solutions were continuously stirred in an 80 ° C. water bath for 2 hours. The obtained precipitation solution was vacuum-dried and then crushed in a mortar to prepare a precursor powder. The obtained precursor powder was put in an alumina sagger (outside dimension 90 × 90 × 50 mm), and nitrogen gas was circulated using an atmosphere substitution type firing furnace (a table vacuum gas substitution furnace KDF-75 manufactured by Denken). Temporary calcination was performed at a lower flow rate (1.0 L · min −1 ). The pre-baking temperature was 300 ° C., and the pre-baking time (time for maintaining the baking temperature) was 2 hours. In addition, the temperature increase rate was 5 degreeC * min < -1 > and the temperature-fall was natural cooling. In this manner, a lithium iron phosphate compound LiMn 0.875 Fe 0.125 PO 4 was synthesized. The obtained calcined powder was weighed with polyvinyl alcohol (degree of polymerization of about 1500) so that the mass ratio was 1: 1, and then dry-mixed with a ball mill. LiMn 0.875 Fe 0.125 PO 4 coated with carbon was synthesized by firing at 700 ° C. for 1 hour under a nitrogen flow (1.0 L · min −1 ) in a firing furnace. FIG. 2 shows a powder X-ray diffraction diagram using CuKα rays of the synthesized LiMn 0.875 Fe 0.125 PO 4 powder. As can be seen from FIG. 2, in contrast to FIG. 1, the diffraction line intensity (a) of 2θ = 29.2 ± 0.5 ° and the diffraction line intensity (b) of 2θ = 16.9 ± 0.5 ° The relationship of a> b was satisfied, and the diffraction line intensity at 2θ = 29.2 ± 0.5 ° was larger than the diffraction line intensity at 2θ = 16.9 ± 0.5 °.

上記の正極活物質を用いたこと以外は実施例1と同様にして比較例1に係るリチウム二次電池を組み立てた。なお、比較例1の正極を表面形状を保ったままCuKα線を使用したエックス線回折測定(XRD)を行った結果を図5に示す。図5からわかるように、正極板の状態でエックス線回折測定を行った場合でも、2θ=29.2±0.5°の回折線強度(a)と2θ=16.9±0.5°の回折線強度(b)との関係は、a>bであり、2θ=29.2±0.5°の回折線強度の方が2θ=16.9±0.5°の回折線強度よりも大きかった。   A lithium secondary battery according to Comparative Example 1 was assembled in the same manner as in Example 1 except that the above positive electrode active material was used. In addition, the result of having performed the X-ray-diffraction measurement (XRD) using a CuK alpha ray, maintaining the surface shape of the positive electrode of the comparative example 1 is shown in FIG. As can be seen from FIG. 5, even when X-ray diffraction measurement was performed in the state of the positive electrode plate, the diffraction line intensity (a) of 2θ = 29.2 ± 0.5 ° and 2θ = 16.9 ± 0.5 ° The relationship with the diffraction line intensity (b) is a> b, and the diffraction line intensity of 2θ = 29.2 ± 0.5 ° is greater than the diffraction line intensity of 2θ = 16.9 ± 0.5 °. It was big.

(充放電試験)
実施例1及び比較例1に係る電池を温度20℃にて、5サイクルの充放電を行う充放電試験に供した。ここで、充電条件は、電流0.1ItmA(約10時間率)、電圧4.55V、15時間の定電流定電圧充電とし、放電条件は、電流0.1ItmA(約10時間率)、終止電圧2.50Vの定電流放電とした。このようにして非水電解質電池を作製した。5サイクル目に得られた放電容量を表1に示す。
(Charge / discharge test)
The batteries according to Example 1 and Comparative Example 1 were subjected to a charge / discharge test in which charge / discharge of 5 cycles was performed at a temperature of 20 ° C. Here, the charging conditions are a current of 0.1 ItmA (about 10 hours rate), a voltage of 4.55 V, and a constant current and constant voltage charging of 15 hours, and the discharging conditions are a current of 0.1 ItmA (about 10 hours rate) and an end voltage. 2. A constant current discharge of 50 V was used. In this way, a nonaqueous electrolyte battery was produced. The discharge capacity obtained at the fifth cycle is shown in Table 1.

(実施例2)
(LiMn0.875Fe0.125POの作製)
酢酸マンガン四水和物(Mn(CHCOO)・4HO)と、乳酸鉄三水和物(Fe(CH・3HO)とリン酸(HPO)と水酸化リチウム一水和物(LiOH・HO)とアスコルビン酸(C)をモル比が0.875:0.125:1:1.02:0.074になるように計り取った。まず、酢酸マンガン四水和物と乳酸鉄三水和物を0.5mol・dm−3となるように精製水に溶解させた。そこにアスコルビン酸を加えて溶解させた後、この混合溶液を攪拌しながら2.0mol・dm−3に希釈したリン酸水溶液を滴下した。リン酸滴下後に、水酸化リチウム一水和物の粉末を加えることで前駆体溶液を作製した。この溶液を60℃のウォーターバス中で撹拌しながら、アルカリ源としてアンモニア水を前駆体溶液のpHが11.6になるまで加え続けた。この後、ウォーターバスの温度を80℃に変更して2時間撹拌を続けた。得られた沈殿溶液を真空乾燥した後に乳鉢で解砕することで前駆体粉末を調製した。得られた前駆体粉末をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF−75)を用いて、窒素ガスの流通下(流速1.0L・min−1)で仮焼成した。仮焼成温度は300℃とし、仮焼成時間(前記焼成温度を維持する時間)は2時間とした。なお、昇温速度は5℃・min−1、降温は自然放冷とした。このようにしてリン酸マンガン鉄リチウム化合物LiMn0.875Fe0.125POを合成した。得られた仮焼成粉にポリビニルアルコール(重合度約1500)を質量比が1:1になるように秤量した後、ボールミルで乾式混合し、この混合物をアルミナ製の匣鉢に入れ、雰囲気置換式焼成炉にて窒素流通下(1.0L・min−1)で700℃、1時間焼成することでカーボンコートされたLiMn0.875Fe0.125POを合成した。これを正極活物質として用いた。
(Example 2)
(Preparation of LiMn 0.875 Fe 0.125 PO 4 )
Manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O), iron lactate trihydrate (Fe (CH 3 H 5 O 3 ) 2 .3H 2 O) and phosphoric acid (H 3 PO 4 ), Lithium hydroxide monohydrate (LiOH.H 2 O) and ascorbic acid (C 6 H 8 O 7 ) in a molar ratio of 0.875: 0.125: 1: 1.02: 0.074 We measured as follows. First, manganese acetate tetrahydrate and iron lactate trihydrate were dissolved in purified water so as to be 0.5 mol · dm −3 . After ascorbic acid was added and dissolved therein, an aqueous phosphoric acid solution diluted to 2.0 mol · dm −3 was added dropwise while stirring the mixed solution. After dropwise addition of phosphoric acid, a precursor solution was prepared by adding lithium hydroxide monohydrate powder. While stirring this solution in a 60 ° C. water bath, ammonia water was continuously added as an alkali source until the pH of the precursor solution reached 11.6. Thereafter, the temperature of the water bath was changed to 80 ° C., and stirring was continued for 2 hours. The obtained precipitation solution was vacuum-dried and then crushed in a mortar to prepare a precursor powder. The obtained precursor powder was put in an alumina sagger (outside dimension 90 × 90 × 50 mm), and nitrogen gas was circulated using an atmosphere substitution type firing furnace (a table vacuum gas substitution furnace KDF-75 manufactured by Denken). Temporary calcination was performed at a lower flow rate (1.0 L · min −1 ). The pre-baking temperature was 300 ° C., and the pre-baking time (time for maintaining the baking temperature) was 2 hours. In addition, the temperature increase rate was 5 degreeC * min < -1 > and the temperature-fall was natural cooling. In this manner, lithium manganese iron phosphate compound LiMn 0.875 Fe 0.125 PO 4 was synthesized. The obtained calcined powder was weighed with polyvinyl alcohol (degree of polymerization of about 1500) so that the mass ratio was 1: 1, and then dry-mixed with a ball mill. LiMn 0.875 Fe 0.125 PO 4 coated with carbon was synthesized by firing at 700 ° C. for 1 hour under a nitrogen flow (1.0 L · min −1 ) in a firing furnace. This was used as a positive electrode active material.

(実施例3)
前駆体溶液に、アルカリ源であるアンモニア水を前駆体溶液のpHが9.5になるまで加え続けたことを除いては、実施例2と同様にしてカーボンコートされたLiMn0.875Fe0.125POを得た。
(Example 3)
LiMn 0.875 Fe 0 carbon-coated in the same manner as in Example 2 except that ammonia water as an alkali source was continuously added to the precursor solution until the pH of the precursor solution reached 9.5. 125 PO 4 was obtained.

(実施例4)
前駆体溶液に、アルカリ源であるアンモニア水を前駆体溶液のpHが7.0になるまで加え続けたことを除いては、実施例2と同様にしてカーボンコートされたLiMn0.875Fe0.125POを得た。
Example 4
LiMn 0.875 Fe 0 coated with carbon in the same manner as in Example 2 except that ammonia water as an alkali source was continuously added to the precursor solution until the pH of the precursor solution reached 7.0. 125 PO 4 was obtained.

(比較例2)
前駆体溶液に、アルカリ源を加えなかったことを除いては、実施例2と同様にしてカーボンコートされたLiMn0.875Fe0.125POを得た。
(Comparative Example 2)
LiMn 0.875 Fe 0.125 PO 4 coated with carbon was obtained in the same manner as in Example 2 except that no alkali source was added to the precursor solution.

(実施例5)
(LiMn0.825Fe0.125Mg0.05POの作製)
酢酸マンガン四水和物(Mn(CHCOO)・4HO)と、乳酸鉄三水和物(Fe(CH・3HO)と酢酸マグネシウム四水和物(Mg(CHCOO)・4HO)とリン酸(HPO)と酢酸リチウム(LiCHCOO)とアスコルビン酸(C)をモル比が0.825:0.125:0.05:1:1.02:0.074になるように計り取った。まず、酢酸マンガン四水和物と乳酸鉄三水和物を0.5mol・dm−3となるように精製水に溶解させた。そこにアスコルビン酸を加えて溶解させた後、この混合溶液を攪拌しながら2.0mol・dm−3に希釈したリン酸水溶液を滴下した。リン酸滴下後に、酢酸リチウムの粉末を加えることで前駆体溶液を作製した。この溶液を60℃のウォーターバス中で撹拌しながら、アルカリ源としてアンモニア水を前駆体溶液のpHが9.5になるまで加え続けた。この後、ウォーターバスの温度を80℃に変更して2時間撹拌を続けた。得られた沈殿溶液を真空乾燥した後に乳鉢で解砕することで前駆体粉末を調製した。得られた前駆体粉末をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF−75)を用いて、窒素ガスの流通下(流速1.0L・min−1)で仮焼成した。仮焼成温度は300℃とし、仮焼成時間(前記焼成温度を維持する時間)は2時間とした。なお、昇温速度は5℃・min−1、降温は自然放冷とした。このようにしてリン酸マンガン鉄リチウム化合物LiMn0.875Fe0.125POを合成した。得られた仮焼成粉にポリビニルアルコール(重合度約1500)を質量比が1:1になるように秤量した後、ボールミルで乾式混合し、この混合物をアルミナ製の匣鉢に入れ、雰囲気置換式焼成炉にて窒素流通下(1.0L・min−1)で700℃、1時間焼成することでカーボンコートされたLiMn0.825Fe0.125Mg0.05POを得た。
(Example 5)
( Preparation of LiMn 0.825 Fe 0.125 Mg 0.05 PO 4 )
Manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O), iron lactate trihydrate (Fe (CH 3 H 5 O 3 ) 2 · 3H 2 O) and magnesium acetate tetrahydrate ( Mg (CH 3 COO) 2 .4H 2 O), phosphoric acid (H 3 PO 4 ), lithium acetate (LiCH 3 COO) and ascorbic acid (C 6 H 8 O 7 ) in a molar ratio of 0.825: 0. It measured so that it might be set to 125: 0.05: 1: 1.02: 0.074. First, manganese acetate tetrahydrate and iron lactate trihydrate were dissolved in purified water so as to be 0.5 mol · dm −3 . After ascorbic acid was added and dissolved therein, an aqueous phosphoric acid solution diluted to 2.0 mol · dm −3 was added dropwise while stirring the mixed solution. After dropwise addition of phosphoric acid, a precursor solution was prepared by adding lithium acetate powder. While stirring this solution in a 60 ° C. water bath, ammonia water was continuously added as an alkali source until the pH of the precursor solution reached 9.5. Thereafter, the temperature of the water bath was changed to 80 ° C., and stirring was continued for 2 hours. The obtained precipitation solution was vacuum-dried and then crushed in a mortar to prepare a precursor powder. The obtained precursor powder was put in an alumina sagger (outside dimension 90 × 90 × 50 mm), and nitrogen gas was circulated using an atmosphere substitution type firing furnace (a table vacuum gas substitution furnace KDF-75 manufactured by Denken). Temporary calcination was performed at a lower flow rate (1.0 L · min −1 ). The pre-baking temperature was 300 ° C., and the pre-baking time (time for maintaining the baking temperature) was 2 hours. In addition, the temperature increase rate was 5 degreeC * min < -1 > and the temperature-fall was natural cooling. In this manner, lithium manganese iron phosphate compound LiMn 0.875 Fe 0.125 PO 4 was synthesized. The obtained calcined powder was weighed with polyvinyl alcohol (degree of polymerization of about 1500) so that the mass ratio was 1: 1, and then dry-mixed with a ball mill. LiMn 0.825 Fe 0.125 Mg 0.05 PO 4 coated with carbon was obtained by firing at 700 ° C. for 1 hour under a nitrogen flow (1.0 L · min −1 ) in a firing furnace.

(比較例3)
前駆体溶液に、アルカリ源を加えなかったことを除いては、実施例5と同様にしてカーボンコートされたLiMn0.825Fe0.125Mg0.05POを得た。
(Comparative Example 3)
LiMn 0.825 Fe 0.125 Mg 0.05 PO 4 coated with carbon was obtained in the same manner as in Example 5 except that no alkali source was added to the precursor solution.

(実施例6)
(LiMn0.825Fe0.175POの作製)
酢酸マンガン四水和物(Mn(CHCOO)・4HO)と、乳酸鉄三水和物(Fe(CH・3HO)とリン酸(HPO)と水酸化リチウム一水和物(LiOH・HO)とアスコルビン酸(C)をモル比が0.825:0.175:1:1.02:0.074になるように計り取った。まず、酢酸マンガン四水和物と乳酸鉄三水和物を0.5mol・dm−3となるように精製水に溶解させた。そこにアスコルビン酸を加えて溶解させた後、この混合溶液を攪拌しながら2.0mol・dm−3に希釈したリン酸水溶液を滴下した。リン酸滴下後に、水酸化リチウム一水和物の粉末を加えることで前駆体溶液を作製した。この溶液を60℃のウォーターバス中で撹拌しながら、アルカリ源としてアンモニア水を前駆体溶液のpHが9.7になるまで加え続けた。この後、ウォーターバスの温度を80℃に変更して2時間撹拌を続けた。得られた沈殿溶液を真空乾燥した後に乳鉢で解砕することで前駆体粉末を調製した。得られた前駆体粉末をアルミナ製の匣鉢(外形寸法90×90×50mm)に入れ、雰囲気置換式焼成炉(デンケン社製卓上真空ガス置換炉KDF−75)を用いて、窒素ガスの流通下(流速1.0L・min−1)で仮焼成した。仮焼成温度は300℃とし、仮焼成時間(前記焼成温度を維持する時間)は2時間とした。なお、昇温速度は5℃・min−1、降温は自然放冷とした。このようにしてリン酸マンガン鉄リチウム化合物LiMn0.825Fe0.175POを合成した。得られた仮焼成粉にポリビニルアルコール(重合度約1500)を質量比が1:1になるように秤量した後、ボールミルで乾式混合し、この混合物をアルミナ製の匣鉢に入れ、雰囲気置換式焼成炉にて窒素流通下(1.0L・min−1)で700℃、1時間焼成することでカーボンコートされたLiMn0.825Fe0.175POを得た。
(Example 6)
( Preparation of LiMn 0.825 Fe 0.175 PO 4 )
Manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O), iron lactate trihydrate (Fe (CH 3 H 5 O 3 ) 2 .3H 2 O) and phosphoric acid (H 3 PO 4 ), Lithium hydroxide monohydrate (LiOH.H 2 O) and ascorbic acid (C 6 H 8 O 7 ) in a molar ratio of 0.825: 0.175: 1: 1.02: 0.074 We measured as follows. First, manganese acetate tetrahydrate and iron lactate trihydrate were dissolved in purified water so as to be 0.5 mol · dm −3 . After ascorbic acid was added and dissolved therein, an aqueous phosphoric acid solution diluted to 2.0 mol · dm −3 was added dropwise while stirring the mixed solution. After dropwise addition of phosphoric acid, a precursor solution was prepared by adding lithium hydroxide monohydrate powder. While stirring this solution in a 60 ° C. water bath, ammonia water was continuously added as an alkali source until the pH of the precursor solution reached 9.7. Thereafter, the temperature of the water bath was changed to 80 ° C., and stirring was continued for 2 hours. The obtained precipitation solution was vacuum-dried and then crushed in a mortar to prepare a precursor powder. The obtained precursor powder was put in an alumina sagger (outside dimension 90 × 90 × 50 mm), and nitrogen gas was circulated using an atmosphere substitution type firing furnace (a table vacuum gas substitution furnace KDF-75 manufactured by Denken). Temporary calcination was performed at a lower flow rate (1.0 L · min −1 ). The pre-baking temperature was 300 ° C., and the pre-baking time (time for maintaining the baking temperature) was 2 hours. In addition, the temperature increase rate was 5 degreeC * min < -1 > and the temperature-fall was natural cooling. In this manner, lithium manganese iron phosphate compound LiMn 0.825 Fe 0.175 PO 4 was synthesized. The obtained calcined powder was weighed with polyvinyl alcohol (degree of polymerization of about 1500) so that the mass ratio was 1: 1, and then dry-mixed with a ball mill. LiMn 0.825 Fe 0.175 PO 4 coated with carbon was obtained by firing for 1 hour at 700 ° C. under nitrogen flow (1.0 L · min −1 ) in a firing furnace.

(比較例4)
前駆体溶液に、アルカリ源を加えなかったことを除いては、実施例6と同様にしてカーボンコートされたLiMn0.825Fe0.175POを得た。
(Comparative Example 4)
LiMn 0.825 Fe 0.175 PO 4 coated with carbon was obtained in the same manner as in Example 6 except that no alkali source was added to the precursor solution.

(充放電試験)
実施例3〜6及び比較例2〜4に係る電池を温度20℃にて、5サイクルの充放電を行う充放電試験に供した。ここで、充電条件は、電流0.1ItmA(約10時間率)、電圧4.55V、15時間の定電流定電圧充電とし、放電条件は、電流0.1ItmA(約10時間率)、終止電圧2.0Vの定電流放電とした。このようにして非水電解質電池を作製した。5サイクル目に得られた放電容量を表2〜表4に示す。
(Charge / discharge test)
The batteries according to Examples 3 to 6 and Comparative Examples 2 to 4 were subjected to a charge / discharge test in which charge / discharge of 5 cycles was performed at a temperature of 20 ° C. Here, the charging conditions are a current of 0.1 ItmA (about 10 hours rate), a voltage of 4.55 V, and a constant current and constant voltage charging of 15 hours, and the discharging conditions are a current of 0.1 ItmA (about 10 hours rate) and an end voltage. The constant current discharge was 2.0V. In this way, a nonaqueous electrolyte battery was produced. Tables 2 to 4 show the discharge capacities obtained in the fifth cycle.

また、実施例3〜6及び比較例2〜4に係る正極活物質について、CuKα線を使用した粉末エックス線回折測定を行い、得られたエックス線回折図から、2θ=29.2±0.5°の回折線強度(a)に対する2θ=16.9±0.5°の回折線強度(b)の比(b/a)を求めたので、これについても表2〜表4に併せて示す。代表して実施例3に対応するエックス線回折図を図6に、比較例2に対応するエックス線回折図を図7にそれぞれ示す。   Moreover, about the positive electrode active material which concerns on Examples 3-6 and Comparative Examples 2-4, the powder X-ray-diffraction measurement using a CuK (alpha) ray was performed, and 2 (theta) = 29.2 +/- 0.5 (degree) from the obtained X-ray diffraction diagram. The ratio (b / a) of the diffraction line intensity (b) of 2θ = 16.9 ± 0.5 ° with respect to the diffraction line intensity (a) of FIG. As an example, an X-ray diffraction diagram corresponding to Example 3 is shown in FIG. 6, and an X-ray diffraction diagram corresponding to Comparative Example 2 is shown in FIG.

実施例に係る図6と比較例に係る図7とを対比してわかるように、両者は各ピークのピーク強度が異なっている。特に2θ=16.9±0.5°のピークの差異は顕著であり、実施例に係る図6ではこのピークが最強となり、比較例に係る図7と比べると2θ=29.2±0.5°とのピーク強度比が逆転している。このことはリン酸マンガンリチウムのリチウムイオン拡散パスの方向と直交する方向の(200)面が選択的に成長し、リチウムイオン拡散パス方向の(020)面の成長が抑制されたことに由来しているものと考えられる。   As can be seen by comparing FIG. 6 according to the example and FIG. 7 according to the comparative example, the peak intensity of each peak is different. In particular, the difference of the peak at 2θ = 16.9 ± 0.5 ° is remarkable, and this peak is strongest in FIG. 6 according to the example, and 2θ = 29.2 ± 0. The peak intensity ratio with 5 ° is reversed. This is because the (200) plane in the direction orthogonal to the direction of the lithium ion diffusion path of lithium manganese phosphate was selectively grown, and the growth of the (020) plane in the lithium ion diffusion path direction was suppressed. It is thought that.

表2からわかるように、マンガンイオン、リン酸イオン及びリチウムイオンを少なくとも含む水溶液から得た沈殿物を前駆体とし、該前駆体を焼成してLiMn0.875Fe0.125POで表される正極活物質を得る場合に、水溶液にアンモニア水を加えてpHを7以上に調整することにより、前記調整を行わず酸性水溶液のままとした場合と比べて、高い放電容量の得られるリチウム二次電池用正極活物質が得られることがわかった。また、pHは、7.0以上が好ましく、7.0を超えることがより好ましいことがわかる。また、pHは、11.6以下とすることが好ましいこともわかる。 As can be seen from Table 2, a precipitate obtained from an aqueous solution containing at least manganese ions, phosphate ions and lithium ions is used as a precursor, and the precursor is calcined and expressed as LiMn 0.875 Fe 0.125 PO 4. When a positive electrode active material is obtained, by adding ammonia water to the aqueous solution and adjusting the pH to 7 or higher, lithium secondary battery can be obtained with a higher discharge capacity than when the acidic aqueous solution is kept without performing the adjustment. It turned out that the positive electrode active material for secondary batteries is obtained. Moreover, it is found that the pH is preferably 7.0 or more, and more preferably 7.0. It can also be seen that the pH is preferably 11.6 or less.

そして、実施例2〜4に係る正極活物質は、いずれも、CuKα線を使用した粉末エックス線回折線図において、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きいという特徴を備えていることがわかる。   And as for the positive electrode active material which concerns on Examples 2-4, all are 2theta = 16.9 rather than the diffraction line intensity | strength of 2 (theta) = 29.2 +/- 0.5 degree in the powder X-ray diffraction diagram which uses CuK (alpha) ray. It can be seen that it has a feature that the diffraction line intensity of ± 0.5 ° is larger.

表3から、LiMn0.825Fe0.125Mg0.05POで表される正極活物質を得る場合においても、同様であることがわかる。 From Table 3, it can be seen that the same applies to the case of obtaining a positive electrode active material represented by LiMn 0.825 Fe 0.125 Mg 0.05 PO 4 .

表4から、LiMn0.825Fe0.175POについては、LiMn0.875Fe0.125POと比べてFeの比率が高いことから、比較例4の放電容量は比較例2や比較例3ほどには低くはないが、このような組成の場合でも、水溶液にアンモニア水を加えてアルカリ性とすることにより、CuKα線を使用した粉末エックス線回折線図において、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きいという特徴を備えた正極活物質が得られ、前記調整を行わず酸性水溶液のままとした場合と比べて、高い放電容量の得られるリチウム二次電池用正極活物質が得られることがわかる。 From Table 4, LiMn 0.825 Fe 0.175 PO 4 has a higher ratio of Fe than LiMn 0.875 Fe 0.125 PO 4 , so that the discharge capacity of Comparative Example 4 is comparative example 2 or comparative. Although not as low as Example 3, even in such a composition, 2θ = 29.2 ± 0 in the powder X-ray diffraction diagram using CuKα rays by adding aqueous ammonia to the aqueous solution to make it alkaline. A positive electrode active material having a feature that the diffraction line intensity of 2θ = 16.9 ± 0.5 ° is larger than the diffraction line intensity of .5 ° is obtained, and the acid aqueous solution is left as it is without making the above adjustment. It can be seen that a positive electrode active material for a lithium secondary battery with a high discharge capacity can be obtained compared to the case.

これらの知見からわかるように、一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表される材料は、Feの組成比に対してMnの組成比が高いほど、理論的には4V付近の放電容量がより多く得られるリチウム二次電池用正極活物質となる反面、実質的な容量が十分に得られないという課題が存在するが、本発明は、Mnの組成比が比較的高い場合におけるこのような問題点について、より顕著に改善させることができる。 As can be seen from these findings, the general formula LiMn (1-x-y) Fe x M y PO 4 (0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti , Y, Mo, or Nb), the higher the Mn composition ratio with respect to the Fe composition ratio, the more theoretically the discharge capacity near 4 V can be obtained. Although it becomes a substance, there is a problem that a substantial capacity cannot be obtained sufficiently. However, the present invention can remarkably improve such a problem when the composition ratio of Mn is relatively high. it can.

本発明によれば、放電容量の大きなリン酸マンガン系のリチウム二次電池用正極活物質とそれを用いたリチウム二次電池を提供できるので、今後の展開が期待される中型・大型電池、特に産業用電池への応用に適しており、産業上の利用可能性は極めて大である。   According to the present invention, since it is possible to provide a positive electrode active material for a lithium secondary battery of a manganese phosphate system having a large discharge capacity and a lithium secondary battery using the positive active material, medium- and large-sized batteries expected to be developed in the future, particularly It is suitable for application to industrial batteries, and its industrial applicability is extremely large.

実施例に係るリチウム二次電池得用正極活物質のエックス線回折図である。It is an X-ray diffraction pattern of the positive electrode active material for lithium secondary battery which concerns on an Example. 比較例に係るリチウム二次電池得用正極活物質のエックス線回折図である。It is an X-ray-diffraction figure of the positive electrode active material for lithium secondary battery which concerns on a comparative example. 非特許文献1に記載されたLiFePOのエックス線回折図である。 2 is an X-ray diffraction diagram of LiFePO 4 described in Non-Patent Document 1. FIG. 実施例に係るリチウム二次電池得用正極のエックス線回折図である。It is an X-ray diffraction pattern of the positive electrode for lithium secondary battery which concerns on an Example. 比較例に係るリチウム二次電池得用正極のエックス線回折図である。It is an X-ray diffraction pattern of the positive electrode for lithium secondary battery obtaining which concerns on a comparative example. 実施例に係るリチウム二次電池得用正極活物質のエックス線回折図である。It is an X-ray diffraction pattern of the positive electrode active material for lithium secondary battery which concerns on an Example. 比較例に係るリチウム二次電池得用正極活物質のエックス線回折図である。It is an X-ray-diffraction figure of the positive electrode active material for lithium secondary battery which concerns on a comparative example.

Claims (4)

一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表され、CuKα線を使用した粉末エックス線回折線図において、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きいことを特徴とするリチウム二次電池用正極活物質。 Formula LiMn (1-x-y) Fe x M y PO 4 at (0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti, Y, Mo or Nb) In the powder X-ray diffraction diagram expressed using CuKα rays, the diffraction line intensity at 2θ = 16.9 ± 0.5 ° is larger than the diffraction line intensity at 2θ = 29.2 ± 0.5 °. A positive electrode active material for a lithium secondary battery. 一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表される正極活物質を含み、CuKα線を使用した粉末エックス線回折線図において、2θ=29.2±0.5°の回折線強度よりも2θ=16.9±0.5°の回折線強度の方が大きいことを特徴とするリチウム二次電池用正極。 Formula LiMn (1-x-y) Fe x M y PO 4 at (0 ≦ x ≦ 0.5,0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti, Y, Mo or Nb) In the powder X-ray diffraction diagram including the positive electrode active material represented and using CuKα rays, the diffraction line of 2θ = 16.9 ± 0.5 ° is higher than the diffraction line intensity of 2θ = 29.2 ± 0.5 °. A positive electrode for a lithium secondary battery, characterized by having a higher strength. 請求項1記載の正極活物質を含む正極又は請求項2記載の正極と、負極と、非水電解質を備えたリチウム二次電池。 A lithium secondary battery comprising a positive electrode comprising the positive electrode active material according to claim 1 or a positive electrode according to claim 2, a negative electrode, and a nonaqueous electrolyte. マンガンイオン、リン酸イオン及びリチウムイオンを少なくとも含むアルカリ性水溶液から得た沈殿物を前駆体とし、該前駆体を焼成して一般式LiMn(1−x−y)FePO(0≦x≦0.5、0≦y≦0.1、M=Mg、Co、Cr、Ti、Y、Mo又はNb)で表される正極活物質を得るリチウム二次電池用正極活物質の製造方法。 Manganese ions, a precipitate of phosphate ions and lithium ions were obtained from the alkaline aqueous solution containing at least a precursor, generally by firing a precursor formula LiMn (1-x-y) Fe x M y PO 4 (0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.1, M = Mg, Co, Cr, Ti, Y, Mo or Nb) A method for producing a positive electrode active material for a lithium secondary battery to obtain a positive electrode active material .
JP2009020832A 2008-02-12 2009-01-30 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof Active JP5272756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020832A JP5272756B2 (en) 2008-02-12 2009-01-30 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008030899 2008-02-12
JP2008030899 2008-02-12
JP2009020832A JP5272756B2 (en) 2008-02-12 2009-01-30 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof

Publications (2)

Publication Number Publication Date
JP2009218205A JP2009218205A (en) 2009-09-24
JP5272756B2 true JP5272756B2 (en) 2013-08-28

Family

ID=41189831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020832A Active JP5272756B2 (en) 2008-02-12 2009-01-30 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof

Country Status (1)

Country Link
JP (1) JP5272756B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082402A1 (en) * 2009-01-15 2010-07-22 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, and lithium secondary battery
DE102010006083B4 (en) * 2010-01-28 2014-12-11 Süd-Chemie Ip Gmbh & Co. Kg Substituted lithium manganese metal phosphate
US8945498B2 (en) * 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP6249388B2 (en) * 2011-07-28 2017-12-20 株式会社村田製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
JP2014197451A (en) * 2011-07-29 2014-10-16 Agcセイミケミカル株式会社 Method of producing lithium cobalt-containing composite oxide for lithium ion secondary battery
WO2013038517A1 (en) * 2011-09-14 2013-03-21 住友金属鉱山株式会社 Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material
JP5835334B2 (en) * 2011-09-14 2015-12-24 住友金属鉱山株式会社 Ammonium manganese iron phosphate, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate
JP5712959B2 (en) * 2012-03-30 2015-05-07 住友金属鉱山株式会社 Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the precursor
TWI617074B (en) 2013-05-08 2018-03-01 台灣立凱電能科技股份有限公司 Preparation method of battery composite material and precursor thereof
JP5700345B2 (en) * 2013-07-19 2015-04-15 太平洋セメント株式会社 Method for producing lithium manganese phosphate positive electrode active material precursor
JP5688128B2 (en) * 2013-08-29 2015-03-25 太平洋セメント株式会社 Lithium manganese phosphate positive electrode active material and method for producing the same
JP6378422B2 (en) * 2014-08-13 2018-08-22 ユミコア Olivine composition having improved battery performance
JP6126318B2 (en) * 2014-10-24 2017-05-10 太平洋セメント株式会社 Method for producing positive electrode active material for olivine type lithium ion secondary battery
KR102010952B1 (en) * 2017-08-02 2019-08-14 주식회사 에너지머터리얼즈 Method of manufacturing a cathode active material powder for secondary battery
US10615412B2 (en) * 2018-01-30 2020-04-07 Octopus Technologies Inc. Manganese oxide composition and method for preparing manganese oxide composition
JPWO2022097400A1 (en) * 2020-11-06 2022-05-12
KR102660852B1 (en) * 2022-11-08 2024-04-24 에스케이이노베이션 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084131B2 (en) * 2005-10-28 2012-11-28 トヨタ自動車株式会社 Method for producing LiMnPO4
KR101334050B1 (en) * 2006-02-14 2013-12-05 토요타 찌도샤 카부시끼카이샤 Lithium Manganese Phosphate Positive Material for Lithium Secondary Battery

Also Published As

Publication number Publication date
JP2009218205A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5272756B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and production method thereof
JP5381024B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP5205424B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
JP5479096B2 (en) Method for producing lithium metal phosphate
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5489063B2 (en) Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
US9225022B2 (en) Positive active material for lithium secondary battery and lithium secondary battery
JP5298659B2 (en) Active material for lithium secondary battery and lithium secondary battery
JP5434720B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP6749692B2 (en) Lithium secondary battery, battery module, battery pack, and device including battery pack
WO2009142283A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5262318B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery.
JP2006286208A (en) Lithium-ion secondary battery and cathode active material
JP2008053220A (en) Non-aqueous electrolyte battery and its manufacturing method
JP5483413B2 (en) Lithium ion secondary battery
JP5277707B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2015525449A (en) High voltage positive electrode active material and method for producing the same
JP2007214031A (en) Method of manufacturing positive electrode active material, and battery using it
JP5862172B2 (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
JP5445912B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2014071968A (en) Precursor for lithium secondary battery and production method therefor, positive electrode active material for lithium secondary battery using precursor and production method therefor, and lithium secondary battery using positive electrode active material
JP5195854B2 (en) Lithium ion secondary battery
JP2013089393A (en) Active material for secondary battery, and method for producing active material for secondary battery
JP5446036B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5277929B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150