WO2013038517A1 - Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material - Google Patents

Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material Download PDF

Info

Publication number
WO2013038517A1
WO2013038517A1 PCT/JP2011/070947 JP2011070947W WO2013038517A1 WO 2013038517 A1 WO2013038517 A1 WO 2013038517A1 JP 2011070947 W JP2011070947 W JP 2011070947W WO 2013038517 A1 WO2013038517 A1 WO 2013038517A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
manganese iron
lithium secondary
Prior art date
Application number
PCT/JP2011/070947
Other languages
French (fr)
Japanese (ja)
Inventor
遼介 岡本
崇 尾崎
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2012528181A priority Critical patent/JP5120523B1/en
Priority to PCT/JP2011/070947 priority patent/WO2013038517A1/en
Publication of WO2013038517A1 publication Critical patent/WO2013038517A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an ammonium manganese iron phosphate magnesium as a precursor of a positive electrode active material for a lithium secondary battery, a method for producing the same, and a positive electrode active material for a lithium secondary battery using the ammonium manganese iron magnesium phosphate as a precursor And a manufacturing method thereof, and a lithium secondary battery using the positive electrode active material using the positive electrode active material.
  • Lithium secondary batteries are lightweight and have high energy density, so they are widely used in small batteries such as mobile phones, notebook computers, and other IT devices. For these applications, LiCoO 2 and LiCo 1/3 are mainly used. Layered rock salt compound positive electrode active materials such as Ni 1/3 Mn 1/3 O 2 and LiNiO 2 are used. With the development and popularization of IT equipment, the demand is still growing on a global scale. In addition to these small batteries, industrial large batteries can also be used for hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV), electric vehicles (EV), power leveling, power storage, and more. The demand is expected to expand in the direction, and research and development are also actively conducted.
  • HEV hybrid vehicles
  • PHEV plug-in hybrid vehicles
  • EV electric vehicles
  • power leveling power storage, and more. The demand is expected to expand in the direction, and research and development are also actively conducted.
  • an olivine-type positive electrode active material has attracted attention as an alternative positive electrode active material such as LiCoO 2 or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . .
  • the olivine-type positive electrode active material has a theoretical capacity of about 170 mAh / g and all O is covalently bonded to P. Therefore, even if the battery generates heat, there is a risk of ignition without releasing oxygen.
  • the structure is stable due to the skeleton of phosphoric acid, and therefore, the electrode is not easily deteriorated even after repeated charge and discharge, and the cycle life is long.
  • lithium manganese phosphate (LiMnPO 4 ) has a potential of 4.1 V with respect to Li metal, which is the same potential as the layered rock salt compound positive electrode active material, and is expected to have a high energy density. Has attracted the attention of developers around the world.
  • LiMnPO 4 has a problem that it is difficult to obtain a practical charge / discharge capacity because the electron conductivity and the Li ion conductivity are lower than those of a conventional layered rock salt compound positive electrode active material.
  • LiMnPO 4 in order to a material suitable for LiMnPO 4 as a lithium secondary battery positive electrode active material, the LiMnPO 4, by adding different kinds of elements, is an attempt to optimize the crystal structure and electron structure ing.
  • LiMn 0.6 Fe 0.4 PO 4 that is, lithium manganese iron composite phosphate obtained by substituting 60 mol% of Mn of LiMnPO 4 with Fe is used as the positive electrode active material, so that the initial discharge capacity is about 160 mAh / g.
  • refer nonpatent literature 1. LiMn 0.6 Fe 0.4 PO 4 , that is, lithium manganese iron composite phosphate obtained by substituting 60 mol% of Mn of LiMnPO 4 with Fe is used as the positive electrode active material, so that the initial discharge capacity is about 160 mAh / g.
  • LiMn 0.96 Mg 0.04 PO 4 that is, lithium manganese magnesium composite phosphate in which 4 mol% of Mn of LiMnPO 4 is substituted with Mg is used as a positive electrode active material, thereby obtaining an initial discharge capacity of 126 mAh / g. It has also been reported that it has been made (for example, see Non-Patent Document 2). Further, an initial discharge capacity of 132 mAh is obtained using lithium manganese iron magnesium composite phosphate (LiMn 1-ab Fe a Mg b PO 4 ) expressed as LiMn 0.68 Fe 0.29 Mg 0.03 PO 4. It has also been reported that / g was obtained (see, for example, Patent Document 1).
  • the olivine-type positive electrode active material is greatly affected by the characteristics of the positive electrode active material depending on the manufacturing method. That is, in order to synthesize an olivine-type positive electrode active material obtained by adding a metal element to LiMnPO 4 so that each element in the crystal becomes uniform, it is necessary to devise from the synthesis method.
  • the solid-phase reaction method is generally used.
  • a method for producing LiMnPO 4 a production method having a mixing step of mixing a plurality of substances serving as synthesis raw materials into a precursor and a heating step of reacting the precursor by heating is proposed (for example, non- (See Patent Document 1). At this time, manganese carbonate is used as a manganese source.
  • iron oxalate is toxic, unfavorable to the human body and the environment, and expensive, and therefore is unsuitable as a raw material for battery positive electrode active materials that require mass production.
  • iron oxalate is toxic, unfavorable to the human body and the environment, and expensive, and therefore is unsuitable as a raw material for battery positive electrode active materials that require mass production.
  • iron oxalate is toxic, unfavorable to the human body and the environment, and expensive, and therefore is unsuitable as a raw material for battery positive electrode active materials that require mass production.
  • long-time pulverization and mixing before firing Firing is required. Long pulverization and mixing require a large amount of energy and are also undesirable because of contamination from the pulverizing medium.
  • ferrous ammonium phosphate is produced from ferrous sulfate (FeSO 4 ), a phosphoric acid source such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and ammonia (NH 4 OH).
  • a stable iron iron phosphate (NH 4 FePO 4 ) and phosphoric acid raw material and a lithium raw material such as lithium hydroxide (LiOH) or lithium carbonate (Li 2 CO 3 ) are reacted to form lithium iron phosphate as a positive electrode material
  • a method for producing (LiFePO 4 ) has been proposed (see, for example, Patent Document 2).
  • NH 4 FePO 4 ⁇ H 2 O is stable in air, non-toxic, since it synthesize an inexpensive iron sulfate as a raw material, useful for synthesis of LiFePO 4. Further, since Fe and P are mixed at the atomic level, it is considered suitable for synthesizing uniform LiFePO 4 .
  • Non-Patent Document 1 an iron material, replaced with NH 4 FePO 4 ⁇ H 2 O , any attempt the synthesis of LiMn 1-a-b Fe a Mg b PO 4, a still uniform In order to synthesize LiMn 1-ab Fe a Mg b PO 4 , long pulverization and mixing before firing and a high firing temperature are required.
  • lithium manganese phosphate LiMnPO 4
  • high capacity has been studied, but high energy density and high efficiency have been sufficiently studied.
  • an olivine-type positive electrode active material having good characteristics has not been developed yet.
  • the conventional production methods have the problems as described above, and the present situation is that a method for producing an olivine-type positive electrode active material having a uniform composition and fineness industrially at low cost has not been developed.
  • the object of the present invention is a lithium manganese iron-magnesium composite phosphorus having a fine particle size and a high capacity and high energy density when used as a positive electrode active material.
  • a positive electrode active material for lithium secondary battery comprising an acid salt, and a method for producing a positive electrode active material for lithium secondary battery using ammonium manganese iron phosphate magnesium having a uniform composition as a precursor, and the positive electrode active material It is to provide a lithium secondary battery having good characteristics using
  • the present inventors have conducted intensive studies on a lithium manganese iron composite phosphate having a uniform composition and a fine particle size, and as a result, manganese, iron, magnesium, and phosphorus are present in the liquid phase. It has been found that by performing crystallization from a uniformly mixed state, a coprecipitate in which these elements are uniformly mixed at the atomic level can be obtained.
  • the coprecipitate is used as a precursor, mixed with a lithium source, and fired at a low temperature to obtain the above lithium manganese iron magnesium composite phosphate, which not only has a high capacity but also has a high energy density and a high charge / discharge. We have learned that efficiency is achieved.
  • the present invention has been completed based on these findings.
  • a method for producing a precursor of a positive electrode active material for a lithium secondary battery A mixed solution preparation step of preparing a mixed solution of divalent Mn ions, Fe ions and Mg ions and phosphoric acid ions; and adding ammonia to adjust the pH of the mixed solution to a range of 7-9; Phosphoric acid co-precipitated and represented by the general formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (0.2 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.1) And a crystallization step of obtaining ammonium manganese iron magnesium.
  • a method for producing ammonium manganese iron magnesium phosphate is provided.
  • the mixed solution preparation step is selected from sulfate or chloride salt as a feedstock for Mn ions, Fe ions and Mg ions.
  • a method for producing ammonium manganese iron phosphate magnesium wherein at least one kind of water-soluble metal salt is used.
  • at least one selected from phosphoric acid or ammonium dihydrogen phosphate as a feedstock of phosphoric acid ions.
  • the crystallization step is performed in a non-oxidizing atmosphere. Is provided. Further, according to a fifth invention of the present invention, in any one of the first to fourth inventions, the crystallization step is characterized in that the liquid temperature of the pH adjusted mixed solution is maintained at 25 to 60 ° C. A method for producing ammonium manganese iron phosphate magnesium is provided.
  • a precursor of a positive electrode active material for a lithium secondary battery obtained by the production method according to any one of the first to fifth aspects, Phosphorus characterized by being represented by the general formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (0.2 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.1) Ammonium ammonium manganese iron is provided.
  • a process for producing a positive electrode active material for a lithium secondary battery is
  • the positive electrode active for a lithium secondary battery wherein the pulverization is simultaneously performed when the ammonium manganese iron phosphate magnesium and the lithium salt are mixed.
  • a method of manufacturing a material is provided.
  • a positive electrode active material for a lithium secondary battery comprising a olivine-type lithium manganese iron-magnesium composite phosphate, wherein the crystallite diameter determined from the (131) plane in X-ray diffraction is 55 nm or less, and the BET specific surface area is 15 m
  • a positive electrode active material for a lithium secondary battery characterized by having a carbon content of 1 to 5% by mass and at least 2 / g.
  • the initial discharge capacity is 145 mAh / g or more
  • the average discharge voltage is 3.8 V or more
  • a positive electrode active material for a lithium secondary battery that exhibits battery characteristics with a discharge efficiency of 85% or more.
  • a lithium secondary battery comprising a positive electrode composed of a positive electrode active material for a lithium secondary battery according to the ninth or tenth invention.
  • a precursor of a positive electrode active material for an olivine-type lithium secondary battery in which Mn, Fe, and Mg are uniformly mixed at an atomic level can be obtained, and a positive electrode active material obtained using the precursor is
  • the lithium secondary battery using the positive electrode active material exhibits excellent battery characteristics such as high capacity, high energy density, and high charge / discharge efficiency. Furthermore, the production method is easy and suitable for industrial scale production without using toxic compounds, and its industrial value is extremely high.
  • a method for producing ammonium manganese iron magnesium phosphate as a precursor of the positive electrode active material for secondary battery of the present invention comprises divalent Mn ion, Fe ion and Mg ion.
  • a mixed solution of divalent Mn ions, Fe ions, Mg ions and phosphate ions is prepared. Since the composition of manganese iron phosphate obtained in the crystallization process of the next step matches the composition ratio of the mixed solution, the ratio of Mn ions and Fe ions contained in the mixed solution to the phosphate ions is represented by the following general formula ( The divalent Mn salt, Fe salt and phosphorous oxide are dissolved in water so as to achieve the composition ratio of 1).
  • the total amount of Mn, Fe and Mg and the molar ratio of phosphorous oxide is 1: 1 in terms of stoichiometry, but considering the yield during crystallization, the ratio of Mn and Fe to phosphorous oxide
  • the total molar ratio can range from 0.9 to 1.1.
  • the molar ratio is 0.90 or less, the yield of phosphate ions deteriorates.
  • impurities such as Fe 3 O 4 and MnO 2 are likely to be generated. It is preferably dissolved so as to be 0.95 to 1.05.
  • a mixed solution of divalent Mn ions, Fe ions and Mg ions and phosphoric oxide ions is prepared, and Mn, Fe and phosphorous oxide are co-precipitated simultaneously.
  • a mixed solution of ions and phosphate ions, and a mixed solution of divalent Fe ions and phosphate ions are separately prepared, and the divalent Mg ions are added to the mixed solution containing Mn ions or Fe ions.
  • the pH of each mixed solution is individually adjusted and coprecipitated, and mixed to obtain a molar ratio of lithium manganese iron composite phosphate to obtain Mn, Fe and Mg. It is good.
  • water-soluble salts can be widely used, but divalent inorganic salts are preferred. Specifically, it is preferable to use one or more water-soluble metal salts selected from sulfates and chloride salts as a feedstock for Mn ions and Fe ions.
  • a water-soluble one can be used.
  • phosphoric acid or ammonium dihydrogen phosphate Is preferably used.
  • the pH is less than 7, ammonia, metal ions, and phosphate ions do not react completely and remain in the mixed solution, resulting in a decrease in yield and compositional deviation.
  • the pH is more than 9, oxidation of Mn and Fe hardly occurs, impurities such as Fe 3 O 4 and MnO 2 are generated and remain as a different phase even after heat treatment by mixing with lithium salt, thereby deteriorating the characteristics.
  • an alkali metal hydroxide or the like can be used. However, if an alkali metal hydroxide is used, the alkali metal remains in the coprecipitate. It becomes an impurity.
  • the crystallization step it is preferable to coprecipitate in an inert atmosphere.
  • an inert atmosphere it is possible to suppress the formation of impurities such as Fe 3 O 4 and MnO 2 by oxidation.
  • the inert atmosphere is preferably an inert gas atmosphere such as nitrogen gas.
  • the liquid temperature of the mixed solution is preferably maintained at 25 to 60 ° C. When the liquid temperature is less than 25 ° C., the solubility of metal ions in the mixed solution is low, and the precipitation rate of Mn, Fe, and Mg is different, which may cause a composition shift.
  • the solubility of metal ions in the mixed solution becomes high, and the crystallinity of ammonium manganese iron magnesium phosphate obtained by decreasing the precipitation rate becomes too high.
  • the obtained positive electrode active material may be coarsened.
  • a reaction vessel with a stirrer is preferable in order to cause the reaction to occur uniformly, and in order to control the atmosphere during crystallization, it is preferable to have a sealed structure. preferable.
  • the ammonium manganese iron phosphate magnesium obtained in the crystallization step is sufficiently washed and then dried.
  • impurities such as sodium can be easily removed by washing with water.
  • the ammonium manganese iron phosphate magnesium obtained in the crystallization step is easily oxidized during drying, and Mn, Fe or Mg may be oxidized to leave a foreign phase as an impurity. For this reason, drying after washing is performed in a non-oxidizing atmosphere. Although it will not specifically limit if it is in a non-oxidizing atmosphere, It is preferable to carry out in an inert atmosphere or a vacuum atmosphere. Moreover, the drying temperature should just be the range which can suppress oxidation, it is preferable to set it as 250 degrees C or less, and it is more preferable to set it as 150 degrees C or less. On the other hand, if it is less than 60 ° C., it takes time to dry, which is not preferable.
  • ammonium Manganese Iron Magnesium Phosphate The ammonium manganese iron magnesium phosphate of the present invention is a precursor of a positive electrode active material for a lithium secondary battery, and is a coprecipitate obtained by the above production method. It is represented by Formula (1). Moreover, since the ammonium manganese iron magnesium phosphate of the present invention is obtained by the above production method, Mn, Fe and Mg are uniformly mixed at the atomic level. For this reason, after mixing with the lithium salt, the composition can be made uniform by low-temperature heat treatment, and a lithium manganese iron-magnesium composite phosphate with a fine particle size can be obtained.
  • ammonium manganese iron magnesium phosphate of the present invention has a sodium content of 0.01% by mass or less, and sufficient characteristics can be obtained with the obtained positive electrode active material.
  • the sodium content exceeds 0.01% by mass, the movement of Li ions in the olivine structure is inhibited by Na, so that the positive electrode performance such as capacity and output using the obtained positive electrode active material is deteriorated.
  • the method for producing a positive electrode active material for lithium secondary battery according to the present invention is a positive electrode active material for lithium secondary battery (hereinafter sometimes simply referred to as a positive electrode active material).
  • a heat treatment step of heat-treating at 200 to 500 ° C. in an inert or reducing atmosphere after mixing the ammonium manganese iron magnesium magnesium phosphate and the lithium precursor, and a carbon content after firing the compound serving as the carbon source A carbon source mixing step of mixing to obtain 1 to 5% by mass to obtain a carbon source mixture, and a baking step of baking the carbon source mixture at 500 to 800 ° C. in an inert or reducing atmosphere. It is characterized by.
  • the lithium salt is not particularly limited, and general lithium salts such as lithium hydroxide, lithium carbonate, and lithium acetate can be used.
  • a mixing method a mixer capable of sufficiently mixing ammonium manganese iron magnesium phosphate and lithium salt may be used. Specifically, a shaker mixer or a dry or wet mill using alumina or zirconia spheres may be used. it can.
  • a shaker mixer or a dry or wet mill using alumina or zirconia spheres may be used. it can.
  • a mill such as a ball mill, a planetary mill, a vibration mill, a bead mill or the like is preferable because pulverization can be performed simultaneously with mixing.
  • the mixture After mixing with the lithium salt, the mixture is heat-treated at 200 to 500 ° C., preferably 300 to 400 ° C. in an inert or reducing atmosphere. Since the ammonium manganese iron phosphate magnesium of the present invention is in a state in which Mn, Fe and magnesium are uniformly mixed at the atomic level, the above constituent elements are uniformly mixed even in heat treatment in the above temperature range, which is good Lithium manganese iron composite phosphate (LiMn 1-ab Fe a Mg b PO 4 ) having excellent crystallinity can be obtained. When the heat treatment temperature is less than 200 ° C., lithium carbonate as a reaction raw material may remain.
  • the conductivity of the active material is reduced.
  • the reducing atmosphere is preferably a mixed gas of an inert gas and hydrogen gas in order to suppress contamination of impurities, and the hydrogen gas content in the mixed gas is preferably 1 to 20% by volume.
  • the carbon source mixing step is a compound (hereinafter referred to as a carbon source) for imparting conductivity to LiMn 1-ab Fe a Mg b PO 4 obtained by the heat treatment step. This is a step of mixing so that the carbon content is 1 to 5% by mass after firing.
  • the carbon source is not particularly limited as long as it is graphitized by firing to become a conductive carbonaceous material.
  • Graphite such as natural graphite and artificial graphite, carbon black such as acetylene black and ketjen black , Carbon fibers, common hydrocarbons such as sucrose, ascorbic acid, and other organic compounds that generate carbonaceous matter by decomposition can be widely used.
  • the amount of carbon atoms contained in the carbon source tends to be smaller than that of the carbon source by firing.
  • the blending amount of the carbon source is preferably increased by 40 to 120%, more preferably by 50 to 120% by mass ratio with respect to the amount of carbon contained after firing.
  • the above mixing is sufficiently performed using a shaker mixer or a dry or wet mill using alumina or zirconia spheres so that the LiMn 1-ab Fe a Mg b PO 4 and the carbon source are uniformly mixed. Preferably it is done.
  • LiMn 1-ab Fe a Mg b PO 4 obtained in the heat treatment step is pulverized to atomize the positive electrode active material finally obtained and uniformly conduct the particles. Since it can be coated with a carbonaceous material, it is preferable to grind at the same time as mixing. Therefore, it is preferable to use a mill such as a ball mill, a planetary mill, a vibration mill, or a bead mill.
  • LiMn 1-ab Fe a Mg b PO 4 mixed with a carbon source in the carbon source mixing step is 600 to 800 ° C., preferably 600 to 700 ° C. in an inert or reducing atmosphere.
  • By firing at it is possible to obtain LiMn 1-ab Fe a Mg b PO 4 that is complex with the carbonaceous material and has good conductivity, that is, a positive electrode active material for a lithium secondary battery.
  • the firing temperature is less than 600 ° C., graphitization of carbon does not proceed, and sufficient conductivity cannot be obtained for the positive electrode active material.
  • a furnace in the heat treatment step and the firing step for example, a general heat treatment furnace / firing furnace such as a batch furnace, a roller hearth kiln, a pusher furnace, a rotary kiln, or a fluidized bed furnace can be used.
  • a reducing atmosphere of an inert gas such as nitrogen or argon or a mixed gas of nitrogen and hydrogen is used.
  • the positive electrode active material is composed of uniform fine primary particles, which can be used after being pulverized and classified according to the necessity of the battery electrode manufacturing process.
  • the positive electrode active material of the present invention is composed of primary particles having a uniform composition and uniform fine particles that are combined with a carbonaceous material.
  • the olivine type lithium manganese iron magnesium composite phosphate represented.
  • a is 0.2 ⁇ a ⁇ 0.4, but when a is less than 0.2, the amount of manganese in the composite phosphate increases, and the positive electrode material has high resistance. It becomes.
  • the ratio of Fe 2+ / Fe 3+ oxidation-reduction with a Li potential of about 3.45 occupies the battery reaction, and the average potential when a lithium secondary battery is formed decreases. Thus, the charge / discharge efficiency decreases.
  • magnesium is compositionally uniform in the positive electrode active material, increasing the discharge voltage and realizing high energy and high charge / discharge efficiency.
  • b is 0 ⁇ b ⁇ 0.1, but when b is 0.1 or more, magnesium that does not contribute to redox in the battery reaction is included excessively. Since the crystallite grows and becomes too large at the time of firing, the capacity when lithium secondary is used is reduced. Magnesium can achieve the above effect with a small amount of addition, but in order to obtain a sufficient effect, b is preferably 0.005 or more. Therefore, the range of b is preferably 0.005 to 0.08, and more preferably 0.01 to 0.07.
  • the measurement of the primary particle size is limited to means such as measurement from the appearance by scanning electron microscope observation, and it is difficult to obtain an accurate value. Therefore, in the present invention, the primary particle diameter was evaluated using the crystallite diameter determined by the Scherrer formula from the half-width of the crystal plane peak of the X-ray diffraction profile that can be quantitatively evaluated.
  • the crystallite size is a structural unit of particles composed of a single crystal, and the primary particles may be aggregates thereof, and thus are not necessarily equal, but if the primary particles are sufficiently fine, The child diameter and the primary particle diameter are considered to have a proportional relationship, and the primary particle diameter can be evaluated.
  • the crystallite diameter determined from the (131) plane in the X-ray diffraction of the positive electrode active material of the present invention is 55 nm or less.
  • the crystallite diameter is 55 nm or less.
  • the distance that lithium ions and electrons move inside the lithium manganese iron-magnesium composite phosphate particles having a low resistance and a high resistance of lithium ions and electrons during the battery reaction increases.
  • the reaction rate of the battery becomes extremely slow, the battery resistance increases, and sufficient conductivity cannot be obtained.
  • the crystallite diameter is preferably 10 nm or more. When the crystallite diameter is less than 10 nm, the bulk density of the positive electrode active material decreases, and the battery capacity per unit volume when configured as a battery may not be sufficiently obtained.
  • the positive electrode active material of the present invention has a BET specific surface area of 15 m 2 / g or more and a carbon content of 1 to 5% by mass, and has good battery characteristics when used as a positive electrode active material for a battery. can get.
  • the BET specific surface area is less than 15 m 2 / g, when the positive electrode of the battery is constructed, sufficient contact with the electrolytic solution cannot be obtained, resulting in an increase in battery resistance and a decrease in conductivity.
  • the upper limit of the BET specific surface area is not particularly limited, but is preferably 40 m 2 / g or less. If it exceeds 40 m 2 / g, the bulk density will be low, and the battery capacity per unit volume may be too low.
  • the positive electrode active material of the present invention when used, for example, as a positive electrode active material of a C2023 type coin battery, good battery characteristics with an initial discharge capacity of 145 mAh / g or more, an average discharge potential of 3.8 V or more, and a charge / discharge efficiency of 85% or more. It is suitable for a lithium secondary battery.
  • the lithium secondary battery according to the present invention is composed of the same constituent elements as a general lithium secondary battery, such as a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • a general lithium secondary battery such as a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the embodiment of the lithium secondary battery of the present invention will be described in detail by dividing into its components, uses, etc., but the following embodiments are merely examples, and the lithium secondary battery of the present invention is In addition to the embodiments described in the present specification, various modifications and improvements can be made based on the knowledge of those skilled in the art.
  • a positive electrode is formed from the positive electrode compound material containing the positive electrode active material of this invention, the electrically conductive material, and the binder. Specifically, a powdered positive electrode active material and a conductive material are mixed, a binder is added thereto, and if necessary, a solvent for viscosity adjustment is further added to adjust the positive electrode mixture paste, For example, the positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, dried, and pressurized as necessary to produce a sheet-like positive electrode.
  • the conductive material is for ensuring the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or more carbon material powders such as carbon black, acetylene black, and graphite can be used. .
  • the binder plays a role of anchoring the active material particles.
  • a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, a thermoplastic resin such as polypropylene and polyethylene, and other suitable materials.
  • An organic solvent such as N-methyl-2-pyrrolidone is used as a solvent added to the positive electrode mixture as needed, that is, as a solvent for dispersing the active material, conductive material, and activated carbon and dissolving the binder. it can.
  • Activated carbon can also be added to increase the electric double layer capacity.
  • Such a positive electrode active material, a conductive material, and a binder are mixed, and if necessary, activated carbon and a solvent are added and kneaded to prepare a positive electrode mixture paste.
  • Each mixing ratio in the positive electrode mixture can also be an important factor that determines the performance of the lithium ion secondary battery.
  • the total solid content (meaning excluding solvent) of the positive electrode mixture is 100% by mass
  • the positive electrode active material is 60 to 95% by mass
  • the conductive material is 1 to It is desirable that the content is 20% by mass and the binder is 1 to 20% by mass.
  • the above-mentioned positive electrode mixture paste sufficiently kneaded is applied to the surface of a metal foil current collector such as aluminum, dried to disperse the solvent, and then, if necessary, a roll to increase the electrode density
  • a metal foil current collector such as aluminum
  • the positive electrode can be formed into a sheet.
  • the sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.
  • Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of inserting and extracting lithium ions and adding a suitable solvent to form a paste. , And applied to the surface of a current collector of a metal foil such as copper, dried, and compressed to increase the electrode density as necessary.
  • a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery carbon material such as coke can be used.
  • the negative electrode binder is a fluorine-containing resin such as polyvinylidene fluoride as in the case of the positive electrode, and the negative electrode active material and the binder are dispersed in an organic material such as N-methyl-2-pyrrolidone.
  • a solvent can be used.
  • (C) Separator A separator is sandwiched and loaded between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.
  • Nonaqueous electrolyte The nonaqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorous compounds such as triethyl phosphate, triethyl phosphate and trioctyl phosphate alone, or two or more kinds It can be used by mixing.
  • the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the lithium secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type and a stacked type. Even if any shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal, A current collecting lead or the like is used for connection, the electrode body is impregnated with the nonaqueous electrolyte, and the battery case is sealed to complete the battery.
  • the lithium secondary battery of the present invention includes a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode material, and is charged and discharged at a potential of 3.0 to 4.5 V, It is possible to industrially realize a lithium secondary battery that is extremely safer than conventional lithium metal composite oxides and also has a high capacity.
  • the chemical analysis method of the metal used in the Example is as follows.
  • An ICP emission analysis method (Varian, 725ES) was used for ICP emission analysis.
  • X-ray diffraction Using a powder X-ray diffractometer (manufactured by PANalytical, X′Prt PRO), the obtained positive electrode active material was measured by powder X-ray diffraction using Cu—K ⁇ rays.
  • Measurement of specific surface area Using a BET method measuring machine (manufactured by Yuasa Ionix Co., Ltd., Kantasorb QS-10), the BET method was performed by nitrogen gas adsorption.
  • a positive electrode active material is mixed with 33% by weight of acetylene black as a conductive material, 17% by weight of polyvinylidene fluoride (PVDF) as a binder, and an N-methylpyrrolidone (NMP) solution.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Example 1 Iron sulfate heptahydrate (special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.368 mol (102.2 g) and manganese sulfate n-hydrate (Chuo Electric Works: 99.9% by mass) 1.103 mol (188.1 g) and magnesium sulfate heptahydrate (special grade by Wako Co., Ltd .: purity 99.5% by mass) 0.030 mol (7.4 g) and phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more) 1.5 mol (172.9 g) was made up to 3 L with distilled water and stirred with a stirrer for 1 hour to obtain a raw material solution.
  • ammonia aqueous solution was used as pH adjustment solution.
  • 1 L of pure water was put into a 5 L separable flask equipped with a stirrer and stirred for 30 minutes while the inside was replaced with nitrogen.
  • the raw material solution was added at a rate of 10 mL per minute while the pH adjustment solution was connected to a pH controller and the pH was controlled at 8.0 to 8.2.
  • stirring was continued for 30 minutes while replacing the separable flask with nitrogen to complete the coprecipitation reaction.
  • the slurry after the reaction was subjected to solid-liquid separation by suction filtration, and then washed with pure water twice with pure water. After washing with water and drying under vacuum at 120 ° C. for 24 hours, ammonium manganese iron phosphate magnesium was obtained.
  • the mixture obtained by using an electric furnace was heated at 10 ° C./min while purging a mixed gas of 98 vol% nitrogen and 2 vol% hydrogen into the furnace at a flow rate of 1 L / min, and then 350 ° C. for 5 hours. Baked.
  • the fired product was analyzed by X-ray diffraction, it was identified as an olivine-type lithium manganese iron composite phosphate single phase, and lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate was obtained. It was confirmed.
  • the composition of Li: Mn: Fe: Mg: P of this positive electrode active material is 1.00: 0.74: 0.24: 0.02: 1.00 in molar ratio, and the carbon content is 2.2 mass. %Met. From the X-ray diffraction analysis, it was confirmed that it was an olivine type lithium manganese iron composite phosphate single phase, and the crystallite size of the (131) plane was found from the X-ray diffraction analysis profile using the Scherrer equation, and it was 50 nm. . When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm. The specific surface area of the positive electrode active material determined by the BET method was 26.5 m 2 / g. When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 157 mAh / g, the initial discharge capacity was 151 mAh / g, the average discharge voltage was 3.81 V, and the initial efficiency was 96%.
  • SEM scanning electron microscope
  • Example 2 Iron sulfate heptahydrate (special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.356 mol (99.0 g) and manganese sulfate n-hydrate (Chuo Denko: 99.9% by mass) 1.069 mol (182.3 g) and magnesium sulfate heptahydrate (special grade by Wako Co., Ltd .: purity 99.5% by mass) 0.075 mol (18.5 g) and phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more)
  • a positive electrode active material was obtained in the same manner as in Example 1, except that 1.5 mol (172.9 g) was made up to 3 L with distilled water and stirred for 1 hour with a stirrer to obtain a raw material solution.
  • the composition of Li: Mn: Fe: Mg: P of this positive electrode active material is 1.00: 0.71: 0.24: 0.05: 1.00 in terms of molar ratio, and the carbon content is 2.1 mass. %Met. From X-ray diffraction analysis, it was identified as a single phase of olivine type lithium manganese iron composite phosphate, and it was confirmed that it was lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate. The crystallite diameter of the (131) plane was determined from the line diffraction analysis profile using the Scherrer equation and found to be 54 nm. When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm.
  • SEM scanning electron microscope
  • the specific surface area of the positive electrode active material determined by the BET method was 26.3 m 2 / g.
  • the initial charge capacity was 156 mAh / g
  • the initial discharge capacity was 149 mAh / g
  • the average discharge voltage was 3.84 V
  • the initial efficiency was 96%.
  • the composition of Li: Mn: Fe: Mg: P of this positive electrode active material is 1.00: 0.67: 0.23: 0.10: 1.00 in terms of molar ratio, and the carbon content is 2.0 mass. %Met. From X-ray diffraction analysis, it was identified as a single phase of olivine type lithium manganese iron composite phosphate, and it was confirmed that it was lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate. The crystallite diameter of the (131) plane was determined from the line diffraction analysis profile using the Scherrer equation and found to be 58 nm. When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm.
  • SEM scanning electron microscope
  • the specific surface area of the positive electrode active material determined by the BET method was 27.0 m 2 / g.
  • the initial charge capacity was 153 mAh / g
  • the initial discharge capacity was 143 mAh / g
  • the average discharge voltage was 3.84 V
  • the initial efficiency was 94%.
  • Example 3 The crystallization step was performed in the same manner as in Example 1 except that the pH was controlled to 9.1 to 9.3 in the crystallization step.
  • the magnesium manganese iron phosphate ammonium obtained in the crystallization process is analyzed by X-ray diffraction, many different phases in which the valence of metals such as Fe 3 O 4 , Fe 2 O 3 , and MnO 2 are more than 2 are detected. Therefore, the heat treatment process and subsequent steps were interrupted.
  • the primary particle diameter was 100 to 200 nm, and the BET specific surface area was 25.1 m 2 / g. According to battery evaluation, the initial charge capacity was 141 mAh / g, the initial discharge capacity was 133 mAh / g, the average discharge voltage was 3.79 V, and the initial efficiency was 88%.
  • the composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.2 mass%. From X-ray diffraction analysis, it was identified as a single phase of olivine type lithium manganese iron composite phosphate, and it was confirmed that it was lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate. The crystallite size of the (131) plane was found from the line diffraction analysis profile using the Scherrer equation to be 49 nm. When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm.
  • SEM scanning electron microscope
  • the specific surface area of the positive electrode active material determined by the BET method was 24.3 m 2 / g.
  • the initial charge capacity was 155 mAh / g
  • the initial discharge capacity was 148 mAh / g
  • the average discharge voltage was 3.71 V
  • the initial efficiency was 96%.
  • the method for producing ammonium manganese iron-magnesium phosphate of the present invention is a method for producing a precursor of a positive electrode active material for a lithium secondary battery, and Mn, Fe, and Mg are uniformly distributed at an atomic level.
  • a mixed positive electrode active material precursor for an olivine type lithium secondary battery can be obtained, and the positive electrode active material obtained using the precursor has a fine particle size and is uniform in composition,
  • a lithium secondary battery using a substance exhibits excellent battery characteristics such as high capacity, high energy density, and high charge / discharge efficiency, and its industrial applicability is extremely large.

Abstract

Provided are: a positive electrode active material for lithium secondary batteries, which is formed of a composite lithium manganese iron magnesium phosphate, which has fine particle diameters, and which exhibits excellent battery characteristics such as high capacity and high energy density in cases when used as a positive electrode active material; and a method for producing a positive electrode active material for lithium secondary batteries, which uses, as a precursor, a manganese iron magnesium ammonium phosphate that has a uniform composition. A method for producing a precursor of a positive electrode active material for lithium secondary batteries, which is a method for producing a manganese iron magnesium ammonium phosphate, said method being characterized by comprising: a mixed solution preparation step wherein a mixed solution of divalent Mn ions, Fe ions, Mg ions and phosphate ions is prepared; and a crystallization step wherein a manganese iron magnesium ammonium phosphate represented by the general formula NH4Mn1-a-bFeaMgbPO4∙H2O (wherein 0.2 ≤ a ≤ 0.4 and 0 < b < 0.1) is obtained by coprecipitation by adding ammonia to the mixed solution so as to adjust the pH thereof to within the range of 7-9.

Description

リン酸アンモニウムマンガン鉄マグネシウムとその製造方法、および該リン酸アンモニウムマンガン鉄マグネシウムを用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
 本発明は、リチウム二次電池用正極活物質の前駆体となるリン酸アンモニウムマンガン鉄マグネシウムとその製造方法、および該リン酸アンモニウムマンガン鉄マグネシウムを前駆体として用いたリチウム二次電池用正極活物質とその製造方法、ならびにその正極活物質を用いた該正極活物質を用いたリチウム二次電池に関する。 The present invention relates to an ammonium manganese iron phosphate magnesium as a precursor of a positive electrode active material for a lithium secondary battery, a method for producing the same, and a positive electrode active material for a lithium secondary battery using the ammonium manganese iron magnesium phosphate as a precursor And a manufacturing method thereof, and a lithium secondary battery using the positive electrode active material using the positive electrode active material.
 リチウム二次電池は、軽量でエネルギー密度が高いことから、携帯電話、ノート型パソコン、その他IT機器などの小型電池に幅広く使用されており、これらの用途には、主としてLiCoO、LiCo1/3Ni1/3Mn1/3、LiNiOなどの層状岩塩化合物正極活物質が用いられている。
 IT機器の発展、普及に伴い、現在もその需要が世界的な規模で伸びている。これらの小型電池に加えて、産業用の大型電池においても、ハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)、電気自動車(EV)用、電力平準化用、電力貯蔵用など、さらに多方面にその需要の拡大が期待され、研究開発も盛んに行われている。
Lithium secondary batteries are lightweight and have high energy density, so they are widely used in small batteries such as mobile phones, notebook computers, and other IT devices. For these applications, LiCoO 2 and LiCo 1/3 are mainly used. Layered rock salt compound positive electrode active materials such as Ni 1/3 Mn 1/3 O 2 and LiNiO 2 are used.
With the development and popularization of IT equipment, the demand is still growing on a global scale. In addition to these small batteries, industrial large batteries can also be used for hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV), electric vehicles (EV), power leveling, power storage, and more. The demand is expected to expand in the direction, and research and development are also actively conducted.
 このような状況下で産業用の大型電池が本格的に実用化されるための課題として、正極活物質には、高い安全性、高寿命、高出力、低価格が要求されている。その中で高い安全性と優れたサイクル性能を示す材料として、オリビン型正極活物質がLiCoOやLiCo1/3Ni1/3Mn1/3等の代替正極活物質として注目されている。
 オリビン型正極活物質は、理論容量約170mAh/gという高容量を持ちながら、全てのOがPと共有結合しているため、電池が発熱しても、酸素放出せずに発火の危険性が低く、また、リン酸の骨格により構造が安定なため、繰り返し充放電を行っても、電極が劣化しにくくサイクル寿命が長いといった特徴を持つ。
Under such circumstances, high safety, long life, high output, and low cost are required for the positive electrode active material as a problem for full-scale commercialization of large industrial batteries. Among them, as a material exhibiting high safety and excellent cycle performance, an olivine-type positive electrode active material has attracted attention as an alternative positive electrode active material such as LiCoO 2 or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . .
The olivine-type positive electrode active material has a theoretical capacity of about 170 mAh / g and all O is covalently bonded to P. Therefore, even if the battery generates heat, there is a risk of ignition without releasing oxygen. In addition, the structure is stable due to the skeleton of phosphoric acid, and therefore, the electrode is not easily deteriorated even after repeated charge and discharge, and the cycle life is long.
 オリビン型正極活物質のなかでもリチウムマンガンリン酸塩(LiMnPO)は、Li金属に対し4.1Vと、層状岩塩化合物正極活物質と同等の電位を示すため、高エネルギー密度が期待されるため、世界中の開発者の注目を集めている。
 しかし、LiMnPOは、電子伝導性とLiイオン伝導性が従来の層状岩塩化合物正極活物質と比較して低いため、実用的な充放電容量を得ることが困難という課題があった。
 この課題に対して、LiMnPO粒子の微細化による電子、リチウムイオンの粒子内移動距離の短縮や、黒鉛などの被覆等の処理による導電性の付与といった低抵抗化の対策が検討されているものの、ほとんど二次電池としての充放電容量を示さない。そのため、LiMnPOは、開発に多大な労力が割かれているにもかかわらず、実用化に至っていない。
Among the olivine-type positive electrode active materials, lithium manganese phosphate (LiMnPO 4 ) has a potential of 4.1 V with respect to Li metal, which is the same potential as the layered rock salt compound positive electrode active material, and is expected to have a high energy density. Has attracted the attention of developers around the world.
However, LiMnPO 4 has a problem that it is difficult to obtain a practical charge / discharge capacity because the electron conductivity and the Li ion conductivity are lower than those of a conventional layered rock salt compound positive electrode active material.
In response to this problem, measures for reducing resistance such as shortening the distance of movement of electrons and lithium ions in the particles by miniaturization of LiMnPO 4 particles and imparting conductivity by treatment such as coating of graphite have been studied. However, it shows almost no charge / discharge capacity as a secondary battery. Therefore, LiMnPO 4 has not yet been put into practical use even though much effort is devoted to development.
 以上のような状況から、LiMnPOをリチウム二次電池正極活物質として適した材料とするために、LiMnPOに、異種元素を添加して、その結晶構造や電子構造を最適化する試みがなされている。
 例えば、LiMn0.6Fe0.4PO、すなわちLiMnPOのMnの60mol%をFeに置換したリチウムマンガン鉄複合リン酸塩を正極活物質として用いることにより、初期放電容量約160mAh/gを得ている(例えば、非特許文献1参照。)。
 また、LiMn0.96Mg0.04PO、すなわちLiMnPOのMnの4mol%をMgに置換したリチウムマンガンマグネシウム複合リン酸塩を正極活物質として用いることにより、初期放電容量126mAh/gが得られたとの報告も行われている(例えば、非特許文献2参照。)。
 さらに、LiMn0.68Fe0.29Mg0.03POと表されるリチウムマンガン鉄マグネシウム複合リン酸塩(LiMn1-a-bFeMgPO)を用いて、初期放電容量132mAh/gが得られたとの報告もされている(例えば、特許文献1参照。)。
From the above circumstances, in order to a material suitable for LiMnPO 4 as a lithium secondary battery positive electrode active material, the LiMnPO 4, by adding different kinds of elements, is an attempt to optimize the crystal structure and electron structure ing.
For example, LiMn 0.6 Fe 0.4 PO 4 , that is, lithium manganese iron composite phosphate obtained by substituting 60 mol% of Mn of LiMnPO 4 with Fe is used as the positive electrode active material, so that the initial discharge capacity is about 160 mAh / g. (For example, refer nonpatent literature 1.).
In addition, LiMn 0.96 Mg 0.04 PO 4 , that is, lithium manganese magnesium composite phosphate in which 4 mol% of Mn of LiMnPO 4 is substituted with Mg is used as a positive electrode active material, thereby obtaining an initial discharge capacity of 126 mAh / g. It has also been reported that it has been made (for example, see Non-Patent Document 2).
Further, an initial discharge capacity of 132 mAh is obtained using lithium manganese iron magnesium composite phosphate (LiMn 1-ab Fe a Mg b PO 4 ) expressed as LiMn 0.68 Fe 0.29 Mg 0.03 PO 4. It has also been reported that / g was obtained (see, for example, Patent Document 1).
 以上のように、LiMnPOを高容量化するために、マンガンの一部を鉄やマグネシウムといった異種元素で置換することが提案されている。しかしながら、リチウム二次電池の実用化には、高エネルギー密度化や充放電効率の改善が必要であり、そのために必要な放電電圧の高電圧化や充放電における過電圧の低減に関する検討は、十分に行われていない。
 その一方、オリビン型正極活物質は、その製造方法により正極活物質の特性に大きな影響を受ける。すなわち、LiMnPOに金属元素を添加して複合化したオリビン型正極活物質を、結晶中の各元素が均一になるように合成するには、その合成方法から工夫をしなくては最終的に得られた正極活物質で一部の元素が偏析してしまい、目標とする複合リン酸塩とはならず、十分な特性が得られない。
 オリビン型正極活物質の合成には、水熱合成法、噴霧熱分解法、ゾルゲル法などがあるが、一般的に用いられているのは固相反応法である。LiMnPOの製造方法として、合成原料となる複数の物質を混合して前駆体とする混合工程と、前駆体を加熱して反応させる加熱工程とを有する製造方法が提案されている(例えば、非特許文献1参照。)。このときのマンガン源には、炭酸マンガンが用いられている。
As described above, in order to increase the capacity of LiMnPO 4 , it has been proposed to replace a part of manganese with a different element such as iron or magnesium. However, in order to put lithium secondary batteries into practical use, it is necessary to increase the energy density and improve the charge / discharge efficiency. Not done.
On the other hand, the olivine-type positive electrode active material is greatly affected by the characteristics of the positive electrode active material depending on the manufacturing method. That is, in order to synthesize an olivine-type positive electrode active material obtained by adding a metal element to LiMnPO 4 so that each element in the crystal becomes uniform, it is necessary to devise from the synthesis method. Some elements segregate in the obtained positive electrode active material, and the target composite phosphate is not obtained, and sufficient characteristics cannot be obtained.
There are a hydrothermal synthesis method, a spray pyrolysis method, a sol-gel method, and the like for the synthesis of the olivine-type positive electrode active material. The solid-phase reaction method is generally used. As a method for producing LiMnPO 4, a production method having a mixing step of mixing a plurality of substances serving as synthesis raw materials into a precursor and a heating step of reacting the precursor by heating is proposed (for example, non- (See Patent Document 1). At this time, manganese carbonate is used as a manganese source.
 ところで、LiMn1-a-bFeMgPOを得るために、混合工程において、鉄源として蓚酸鉄、マグネシウム源として水酸化マグネシウムなどを添加することが考えられる。しかし、蓚酸鉄は、毒性があり、人体や環境面に好ましくなく、また、高価なため、大量生産が必要な電池正極活物質の原料として不適当である。さらに、別々の鉄源、マンガン源、マグネシウム源から固相反応で、組成が均一なリチウムマンガン鉄マグネシウム複合リン酸塩を合成するには、焼成前の長時間の粉砕混合や高温、長時間の焼成が必要になる。長時間の粉砕混合には、大きなエネルギーが必要になるうえに、粉砕媒体からのコンタミネーションなどの原因となり好ましくない。さらに、高温、長時間の焼成では、粒子間の焼結が進行し、LiMn1-a-bFeMgPO粒子が粗大化するので、正極活物質としての高抵抗化の原因となる。これを微粉化するためには、これを再び強粉砕しなければならず非常にコストが高い製造プロセスとなる。
 また、蓚酸鉄の毒性については、無害な原料の使用よる改善も検討されている。例えば、燐酸アンモニウム鉄を硫酸第一鉄(FeSO)と、燐酸二水素アンモニウム(NHPO)などの燐酸源と、アンモニア(NHOH)とから製造し、無毒性で2価の安定な燐酸アンモニウム鉄(NHFePO)の鉄原料兼燐酸原料と、水酸化リチウム(LiOH)又は炭酸リチウム(LiCO)などのリチウム原料とを反応させて正極材料のリチウム燐酸鉄(LiFePO)を製造する方法が提案されている(例えば、特許文献2参照)。
 NHFePO・HOは、空気中で安定、無毒であり、安価な硫酸鉄を原料に合成できるため、LiFePOの合成に有用である。また、FeとPが原子レベルで混合しているため、均一なLiFePOを合成するのに適していると考えられる。
 しかし、上記非特許文献1の合成法で、鉄原料を、NHFePO・HOに置き換えて、LiMn1-a-bFeMgPOの合成を試みても、依然として均一なLiMn1-a-bFeMgPOを合成するには、焼成前の長時間の粉砕混合や高温の焼成温度が必要となる。
By the way, in order to obtain LiMn 1-ab Fe a Mg b PO 4 , it is conceivable to add iron oxalate as an iron source and magnesium hydroxide as a magnesium source in the mixing step. However, iron oxalate is toxic, unfavorable to the human body and the environment, and expensive, and therefore is unsuitable as a raw material for battery positive electrode active materials that require mass production. Furthermore, in order to synthesize lithium manganese iron magnesium composite phosphate with a uniform composition by solid phase reaction from separate iron source, manganese source and magnesium source, long-time pulverization and mixing before firing, Firing is required. Long pulverization and mixing require a large amount of energy and are also undesirable because of contamination from the pulverizing medium. Further, when firing at a high temperature for a long time, sintering between the particles proceeds, and the LiMn 1-ab Fe a Mg b PO 4 particles become coarse, which causes high resistance as a positive electrode active material. . In order to pulverize this, it must be pulverized again, resulting in a very costly manufacturing process.
In addition, regarding the toxicity of iron oxalate, improvement by using harmless raw materials is also being studied. For example, ferrous ammonium phosphate is produced from ferrous sulfate (FeSO 4 ), a phosphoric acid source such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and ammonia (NH 4 OH). A stable iron iron phosphate (NH 4 FePO 4 ) and phosphoric acid raw material and a lithium raw material such as lithium hydroxide (LiOH) or lithium carbonate (Li 2 CO 3 ) are reacted to form lithium iron phosphate as a positive electrode material A method for producing (LiFePO 4 ) has been proposed (see, for example, Patent Document 2).
NH 4 FePO 4 · H 2 O is stable in air, non-toxic, since it synthesize an inexpensive iron sulfate as a raw material, useful for synthesis of LiFePO 4. Further, since Fe and P are mixed at the atomic level, it is considered suitable for synthesizing uniform LiFePO 4 .
However, the synthesis method of Non-Patent Document 1, an iron material, replaced with NH 4 FePO 4 · H 2 O , any attempt the synthesis of LiMn 1-a-b Fe a Mg b PO 4, a still uniform In order to synthesize LiMn 1-ab Fe a Mg b PO 4 , long pulverization and mixing before firing and a high firing temperature are required.
 以上のように、正極活物質として期待されるリチウムマンガンリン酸塩(LiMnPO)において、高容量化の検討は行われているものの、高エネルギー密度化ならびに高効率化の検討が十分に行われているとは言えず、良好な特性を有するオリビン型正極活物質は、未だ開発されていない。また、これまでの製造方法においても、上述のような問題があり、組成が均一で微細なオリビン型正極活物質を工業的に安価に製造する方法は、開発されていないのが現状である。 As described above, in lithium manganese phosphate (LiMnPO 4 ), which is expected as a positive electrode active material, high capacity has been studied, but high energy density and high efficiency have been sufficiently studied. However, an olivine-type positive electrode active material having good characteristics has not been developed yet. In addition, the conventional production methods have the problems as described above, and the present situation is that a method for producing an olivine-type positive electrode active material having a uniform composition and fineness industrially at low cost has not been developed.
特開2004-063422号公報JP 2004-063422 A 特開2006-056754号公報JP 2006-056754 A 特開2003-292309号公報JP 2003-292309 A
 本発明の目的は、上記の従来技術の問題点に鑑み、粒子径が微細で、正極活物質として用いた場合、高容量、かつ高エネルギー密度の優れた電池特性を示すリチウムマンガン鉄マグネシウム複合リン酸塩からなるリチウム二次電池用正極活物質と、組成が均一なリン酸アンモニウムマンガン鉄マグネシウムを前駆体として用いたリチウム二次電池用正極活物質の製造方法とを、さらに、その正極活物質を用いて良好な特性を有するリチウム二次電池を、提供することにある。 In view of the above-mentioned problems of the prior art, the object of the present invention is a lithium manganese iron-magnesium composite phosphorus having a fine particle size and a high capacity and high energy density when used as a positive electrode active material. A positive electrode active material for lithium secondary battery comprising an acid salt, and a method for producing a positive electrode active material for lithium secondary battery using ammonium manganese iron phosphate magnesium having a uniform composition as a precursor, and the positive electrode active material It is to provide a lithium secondary battery having good characteristics using
 本発明者らは、上記目的を達成するために、組成が均一に混合され粒子径が微細なリチウムマンガン鉄複合リン酸塩について鋭意検討した結果、液相中でマンガン、鉄、マグネシウム、リンが均一に混合された状態から晶析を行うことで、これらの元素が原子レベルで均一に混合された共沈物が得られるという知見を得た。また、この共沈物を前駆体として用いてリチウム源と混合し、低温で焼成することにより、上記リチウムマンガン鉄マグネシウム複合リン酸塩が得られ、高容量のみならず高エネルギー密度かつ高充放電効率が達成されるとの知見を得た。本発明は、これらの知見により完成されたものである。 In order to achieve the above object, the present inventors have conducted intensive studies on a lithium manganese iron composite phosphate having a uniform composition and a fine particle size, and as a result, manganese, iron, magnesium, and phosphorus are present in the liquid phase. It has been found that by performing crystallization from a uniformly mixed state, a coprecipitate in which these elements are uniformly mixed at the atomic level can be obtained. The coprecipitate is used as a precursor, mixed with a lithium source, and fired at a low temperature to obtain the above lithium manganese iron magnesium composite phosphate, which not only has a high capacity but also has a high energy density and a high charge / discharge. We have learned that efficiency is achieved. The present invention has been completed based on these findings.
 すなわち、本発明の第1の発明によれば、リチウム二次電池用正極活物質の前駆体の製造方法であって、
 2価のMnイオン、FeイオンおよびMgイオンと、リン酸化物イオンとの混合溶液を調製する混合溶液調製工程と、アンモニアを添加して該混合溶液のpHを7~9の範囲に調整して共沈殿させ、一般式:NHMn1-а-bFeMgPO・HO(0.2≦a≦0.4、0<b<0.1)で表されるリン酸アンモニウムマンガン鉄マグネシウムを得る晶析工程とを、備えることを特徴とするリン酸アンモニウムマンガン鉄マグネシウムの製造方法が提供される。
That is, according to the first invention of the present invention, a method for producing a precursor of a positive electrode active material for a lithium secondary battery,
A mixed solution preparation step of preparing a mixed solution of divalent Mn ions, Fe ions and Mg ions and phosphoric acid ions; and adding ammonia to adjust the pH of the mixed solution to a range of 7-9; Phosphoric acid co-precipitated and represented by the general formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (0.2 ≦ a ≦ 0.4, 0 <b <0.1) And a crystallization step of obtaining ammonium manganese iron magnesium. A method for producing ammonium manganese iron magnesium phosphate is provided.
 また、本発明の第2の発明によれば、第1の発明において、前記混合溶液調製工程では、Mnイオン、Feイオン及びMgイオンの供給原料として、硫酸塩または塩化物塩から選択される1種以上の水溶性金属塩が用いられることを特徴とするリン酸アンモニウムマンガン鉄マグネシウムの製造方法が提供される。
 さらに、本発明の第3の発明によれば、第1の発明において、前記混合溶液調製工程では、リン酸化物イオンの供給原料として、リン酸またはリン酸二水素アンモニウムから選択される1種以上の水溶性塩が用いられることを特徴とするリン酸アンモニウムマンガン鉄マグネシウムの製造方法が提供される。
According to the second invention of the present invention, in the first invention, the mixed solution preparation step is selected from sulfate or chloride salt as a feedstock for Mn ions, Fe ions and Mg ions. Provided is a method for producing ammonium manganese iron phosphate magnesium, wherein at least one kind of water-soluble metal salt is used.
Furthermore, according to the third invention of the present invention, in the first invention, in the mixed solution preparation step, at least one selected from phosphoric acid or ammonium dihydrogen phosphate as a feedstock of phosphoric acid ions. There is provided a process for producing ammonium manganese iron phosphate magnesium, characterized in that a water-soluble salt is used.
 また、本発明の第4の発明によれば、第1~3のいずれかの発明において、前記晶析工程が非酸化性雰囲気下で行われること特徴とするリン酸アンモニウムマンガン鉄マグネシウムの製造方法が提供される。
 さらに、本発明の第5の発明によれば、第1~4のいずれかの発明において、前記晶析工程は、pH調整した混合溶液の液温が25~60℃に保持されることを特徴とするリン酸アンモニウムマンガン鉄マグネシウムの製造方法が提供される。
According to a fourth invention of the present invention, in any one of the first to third inventions, the crystallization step is performed in a non-oxidizing atmosphere. Is provided.
Further, according to a fifth invention of the present invention, in any one of the first to fourth inventions, the crystallization step is characterized in that the liquid temperature of the pH adjusted mixed solution is maintained at 25 to 60 ° C. A method for producing ammonium manganese iron phosphate magnesium is provided.
 また、本発明の第6の発明によれば、第1~5のいずれかの発明に係る製造方法により得られるリチウム二次電池用正極活物質の前駆体であって、
 一般式:NHMn1-а-bFeMgPO・HO(0.2≦a≦0.4、0<b<0.1)で表されることを特徴とするリン酸アンモニウムマンガン鉄マグネシウムが提供される。
According to a sixth aspect of the present invention, there is provided a precursor of a positive electrode active material for a lithium secondary battery obtained by the production method according to any one of the first to fifth aspects,
Phosphorus characterized by being represented by the general formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (0.2 ≦ a ≦ 0.4, 0 <b <0.1) Ammonium ammonium manganese iron is provided.
 また、本発明の第7の発明によれば、第6の発明に係るリン酸アンモニウムマンガン鉄マグネシウムとリチウム塩とを混合後、不活性または還元雰囲気下において、200~500℃で熱処理する熱処理工程と、熱処理工程によって得られたLiMn1-а-bFeMgPO(0.2≦a≦0.4、0<b<0.1)に、炭素源となる化合物を、焼成後に炭素含有率が1~5質量%になるように、混合して炭素源混合物を得る炭素源混合工程と、該炭素源混合物を、不活性または還元雰囲気下において、500~800℃で焼成する焼成工程とを、備えることを特徴とするリチウム二次電池用正極活物質の製造方法が提供される。
 さらに、本発明の第8の発明によれば、第7の発明において、前記リン酸アンモニウムマンガン鉄マグネシウムとリチウム塩との混合時に、粉砕を同時に行うことを特徴とするリチウム二次電池用正極活物質の製造方法が提供される。
According to the seventh aspect of the present invention, the heat treatment step of mixing the ammonium manganese iron magnesium phosphate according to the sixth aspect and the lithium salt and then heat-treating at 200 to 500 ° C. in an inert or reducing atmosphere. And a compound serving as a carbon source in LiMn 1-а-b Fe a Mg b PO 4 (0.2 ≦ a ≦ 0.4, 0 <b <0.1) obtained by the heat treatment step after firing. A carbon source mixing step of mixing to obtain a carbon source mixture so that the carbon content is 1 to 5% by mass, and firing in which the carbon source mixture is fired at 500 to 800 ° C. in an inert or reducing atmosphere And a process for producing a positive electrode active material for a lithium secondary battery.
Further, according to an eighth invention of the present invention, in the seventh invention, the positive electrode active for a lithium secondary battery, wherein the pulverization is simultaneously performed when the ammonium manganese iron phosphate magnesium and the lithium salt are mixed. A method of manufacturing a material is provided.
 また、本発明の第9の発明によれば、一般式:LiMn1-a-bFeMgPO(0.2≦a≦0.4、0<b<0.1)で表されるオリビン型リチウムマンガン鉄マグネシウム複合リン酸塩からなるリチウム二次電池用正極活物質であって、X線回折における(131)面より求めた結晶子径が55nm以下であり、BET比表面積が15m/g以上であり、炭素含有率が1~5質量%であることを特徴とするリチウム二次電池用正極活物質が提供される。
 さらに、本発明の第10の発明によれば、第9の発明において、C2023型コイン電池の正極活物質として用いた場合、初期放電容量が145mAh/g以上、平均放電電圧3.8V以上および充放電効率85%以上の電池特性を示すことを特徴とするリチウム二次電池用正極活物質が提供される。
Further, according to the ninth aspect of the present invention, it is represented by a general formula: LiMn 1-ab Fe a Mg b PO 4 (0.2 ≦ a ≦ 0.4, 0 <b <0.1). A positive electrode active material for a lithium secondary battery comprising a olivine-type lithium manganese iron-magnesium composite phosphate, wherein the crystallite diameter determined from the (131) plane in X-ray diffraction is 55 nm or less, and the BET specific surface area is 15 m A positive electrode active material for a lithium secondary battery, characterized by having a carbon content of 1 to 5% by mass and at least 2 / g.
Furthermore, according to the tenth aspect of the present invention, in the ninth aspect, when used as the positive electrode active material of a C2023 type coin battery, the initial discharge capacity is 145 mAh / g or more, the average discharge voltage is 3.8 V or more, and Provided is a positive electrode active material for a lithium secondary battery that exhibits battery characteristics with a discharge efficiency of 85% or more.
 また、本発明の第11の発明によれば、第9又は10の発明に係るリチウム二次電池用正極活物質から構成される正極を備えることを特徴とするリチウム二次電池が提供される。 Further, according to the eleventh aspect of the present invention, there is provided a lithium secondary battery comprising a positive electrode composed of a positive electrode active material for a lithium secondary battery according to the ninth or tenth invention.
 本発明によれば、MnとFeとMgが原子レベルに均一に混合したオリビン型リチウム二次電池用正極活物質の前駆体を得ることができ、該前駆体を用いて得られる正極活物質は、粒子径が微細で組成的にも均一であり、該正極活物質を用いたリチウム二次電池は、高容量かつ高エネルギー密度と高充放電効率の優れた電池特性を示すものである。さらに、その製造方法は、毒性のある化合物を用いることなく、容易で工業的規模の生産にも適したものであり、その工業的価値は極めて大きい。 According to the present invention, a precursor of a positive electrode active material for an olivine-type lithium secondary battery in which Mn, Fe, and Mg are uniformly mixed at an atomic level can be obtained, and a positive electrode active material obtained using the precursor is The lithium secondary battery using the positive electrode active material exhibits excellent battery characteristics such as high capacity, high energy density, and high charge / discharge efficiency. Furthermore, the production method is easy and suitable for industrial scale production without using toxic compounds, and its industrial value is extremely high.
 以下、本発明について、詳細に説明する。
(1)リン酸アンモニウムマンガン鉄マグネシウムの製造方法
 本発明の二次電池用正極活物質の前駆体となるリン酸アンモニウムマンガン鉄マグネシウムの製造方法は、2価のMnイオン、FeイオンおよびMgイオンとリン酸化物イオンとの混合溶液を調製する混合溶液調製工程と、アンモニアを添加して該混合溶液のpHを7~9の範囲に調整して共沈殿させ、一般式:NHMn1-а-bFeMgPO・HO(0.2≦a≦0.4、0<b<0.1)で表されるリン酸アンモニウムマンガン鉄マグネシウムを得る晶析工程とを、備えることを特徴とする。
Hereinafter, the present invention will be described in detail.
(1) Method for Producing Ammonium Manganese Iron Magnesium Phosphate A method for producing ammonium manganese iron magnesium phosphate as a precursor of the positive electrode active material for secondary battery of the present invention comprises divalent Mn ion, Fe ion and Mg ion. A mixed solution preparation step for preparing a mixed solution with phosphoric acid ions, and co-precipitation by adding ammonia to adjust the pH of the mixed solution to a range of 7 to 9, and the general formula: NH 4 Mn 1-а And a crystallization step of obtaining ammonium manganese iron phosphate magnesium represented by -b Fe a Mg b PO 4 .H 2 O (0.2 ≦ a ≦ 0.4, 0 <b <0.1). It is characterized by that.
 上記混合溶液調製工程においては、2価のMnイオン、FeイオンおよびMgイオンとリン酸化物イオンの混合溶液を調製する。次工程の晶析工程で得られるリン酸マンガン鉄の組成は、混合溶液の組成比に一致するため、混合溶液に含有されるMnイオンおよびFeイオンとリン酸化物イオンの比が下記一般式(1)の組成比となるように2価のMn塩およびFe塩とリン酸化物を水に溶解させる。
 ここで、MnとFeとMgの合計量とリン酸化物のモル比は、化学量論では1:1であるが、晶析時の収率を考慮して、リン酸化物に対するMnとFeの合計量のモル比を0.9~1.1までの範囲とすることができる。モル比が0.90以下では、リン酸イオンの収率が悪化し、一方、1.1以上では、FeやMnOといった不純物が生成しやすくなる。好ましくは0.95~1.05となるように溶解する。MnとFeとMgのモル比は、得ようとするリン酸アンモニウムマンガン鉄マグネシウムにおけるモル比とすればよい。
  一般式:NHMn1-а-bFeMgPO・HO  (1)
(式中、aは、0.2≦a≦0.4であり、bは、0<b<0.1である。)
In the mixed solution preparation step, a mixed solution of divalent Mn ions, Fe ions, Mg ions and phosphate ions is prepared. Since the composition of manganese iron phosphate obtained in the crystallization process of the next step matches the composition ratio of the mixed solution, the ratio of Mn ions and Fe ions contained in the mixed solution to the phosphate ions is represented by the following general formula ( The divalent Mn salt, Fe salt and phosphorous oxide are dissolved in water so as to achieve the composition ratio of 1).
Here, the total amount of Mn, Fe and Mg and the molar ratio of phosphorous oxide is 1: 1 in terms of stoichiometry, but considering the yield during crystallization, the ratio of Mn and Fe to phosphorous oxide The total molar ratio can range from 0.9 to 1.1. When the molar ratio is 0.90 or less, the yield of phosphate ions deteriorates. On the other hand, when the molar ratio is 1.1 or more, impurities such as Fe 3 O 4 and MnO 2 are likely to be generated. It is preferably dissolved so as to be 0.95 to 1.05. What is necessary is just to let the molar ratio of Mn, Fe, and Mg be the molar ratio in the ammonium manganese iron phosphate magnesium to be obtained.
General formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (1)
(In the formula, a is 0.2 ≦ a ≦ 0.4, and b is 0 <b <0.1.)
 上記製造方法では、2価のMnイオン、FeイオンおよびMgイオンとリン酸化物イオンとの混合溶液を調製して、MnおよびFeとリン酸化物を同時に共沈殿させているが、2価のMnイオンとリン酸化物イオンの混合溶液、および2価のFeイオンとリン酸化物イオンの混合溶液を個別に調製し、2価のMgイオンを上記MnイオンもしくはFeイオンを含む混合溶液に添加するとともに、晶析工程においても、各混合溶液を個別にpH調整して共沈させ、Mn、FeおよびMgが得ようとするリチウムマンガン鉄複合リン酸塩のモル比となるように混合して前駆体としてもよい。
 リン酸アンモニウムマンガンとリン酸アンモニウム鉄は、類似の構造を持つため、それぞれを十分に混合することで、低温の熱処理でも、均一な組成のリチウムマンガン鉄複合リン酸塩を得ることができる。一方、Mgは、添加量が少ないため、MnあるいはFeと共沈殿させることで、リチウムマンガン鉄複合リン酸塩中に均一に分散させ、良好な電池特性を実現できる。
In the above production method, a mixed solution of divalent Mn ions, Fe ions and Mg ions and phosphoric oxide ions is prepared, and Mn, Fe and phosphorous oxide are co-precipitated simultaneously. A mixed solution of ions and phosphate ions, and a mixed solution of divalent Fe ions and phosphate ions are separately prepared, and the divalent Mg ions are added to the mixed solution containing Mn ions or Fe ions. In the crystallization process, the pH of each mixed solution is individually adjusted and coprecipitated, and mixed to obtain a molar ratio of lithium manganese iron composite phosphate to obtain Mn, Fe and Mg. It is good.
Since ammonium manganese phosphate and iron iron phosphate have similar structures, a lithium manganese iron composite phosphate having a uniform composition can be obtained even by low-temperature heat treatment by thoroughly mixing each of them. On the other hand, since Mg is added in a small amount, it can be co-precipitated with Mn or Fe to be uniformly dispersed in the lithium manganese iron composite phosphate, thereby realizing good battery characteristics.
 2価のMn塩、Fe塩およびMg塩としては、水溶性の塩を広く用いることができるが、2価の無機塩が好ましい。具体的には、MnイオンおよびFeイオンの供給原料として、硫酸塩、塩化物塩から選択される1種以上の水溶性金属塩を用いることが好ましい。
 リン酸化物としては、水溶性のものを用いることができ、具体的には、リン酸化物イオンの供給原料として、リン酸またはリン酸二水素アンモニウムから選択される1種以上の水溶性金属塩を用いることが好ましい。
As the divalent Mn salt, Fe salt and Mg salt, water-soluble salts can be widely used, but divalent inorganic salts are preferred. Specifically, it is preferable to use one or more water-soluble metal salts selected from sulfates and chloride salts as a feedstock for Mn ions and Fe ions.
As the phosphor oxide, a water-soluble one can be used. Specifically, as a feedstock of phosphor oxide ions, one or more water-soluble metal salts selected from phosphoric acid or ammonium dihydrogen phosphate Is preferably used.
 次工程である晶析工程では、酸性を示す混合溶液にアンモニアを添加し、該混合溶液のpHを7~9の範囲に調整して、MnイオンおよびFeイオンとリン酸化物イオンを共沈殿させ、リン酸アンモニウムマンガン鉄マグネシウムを得る。リン酸アニオンと金属イオンは、溶液中での共存状態では、完全に均一に混合された状態となっており、これを共沈殿させることで、MnおよびFeとリン酸が厳密に混合され、均一な組成の共沈物を得ることができる。
 ここで、制御するpHの範囲とアンモニアを用いることが重要である。pHが7未満では、アンモニアと金属イオンとリン酸イオンが完全に反応せず、混合溶液中に残存し、収率が低下するとともに組成ずれを起こす。また、pHが9超では、MnおよびFeの酸化が起こりすくなり、FeやMnOといった不純物が生成し、リチウム塩と混合して熱処理した後も、異相として残り、特性を悪化させる。
 pHを高pH側に制御して、共沈殿させる目的のみであれば、アルカリ金属水酸化物等を用いることができるが、アルカリ金属水酸化物を用いると、アルカリ金属が共沈殿物に残留して不純物となる。特に、水酸化ナトリウムを用いると、残留する不純物としてナトリウムが多くなり、最終的に得られるリチウム二次電池用正極活物質中のナトリウムが高くなり、正極活物質の特性を悪化させる。
 pHを7~9に制御することで、組成ずれがなく、不純物を含まないリチウム二次電池用正極活物質の前駆体として適したリン酸アンモニウムマンガン鉄マグネシウムを得ることができる。
In the crystallization step, which is the next step, ammonia is added to the acidic mixed solution, and the pH of the mixed solution is adjusted to a range of 7 to 9 to coprecipitate Mn ions, Fe ions, and phosphate ions. To obtain ammonium manganese iron phosphate magnesium. In the coexistence state in the solution, the phosphate anion and the metal ion are in a state of being completely uniformly mixed, and by coprecipitation, Mn and Fe and phosphoric acid are strictly mixed and uniform. A coprecipitate having a proper composition can be obtained.
Here, it is important to use a pH range to be controlled and ammonia. If the pH is less than 7, ammonia, metal ions, and phosphate ions do not react completely and remain in the mixed solution, resulting in a decrease in yield and compositional deviation. On the other hand, when the pH is more than 9, oxidation of Mn and Fe hardly occurs, impurities such as Fe 3 O 4 and MnO 2 are generated and remain as a different phase even after heat treatment by mixing with lithium salt, thereby deteriorating the characteristics. .
If the purpose is to co-precipitate by controlling the pH to a high pH side, an alkali metal hydroxide or the like can be used. However, if an alkali metal hydroxide is used, the alkali metal remains in the coprecipitate. It becomes an impurity. In particular, when sodium hydroxide is used, sodium is increased as a residual impurity, so that sodium in the finally obtained positive electrode active material for a lithium secondary battery is increased and the characteristics of the positive electrode active material are deteriorated.
By controlling the pH to 7 to 9, it is possible to obtain ammonium manganese iron phosphate magnesium suitable as a precursor of a positive electrode active material for a lithium secondary battery that has no composition deviation and does not contain impurities.
 上記晶析工程においては、不活性雰囲気下で共沈殿させることが好ましい。不活性雰囲気下とすることで、酸化によるFeやMnOといった不純物の生成を抑制することができる。不活性雰囲気としては、窒素ガス等の不活性ガス雰囲気とすることが好ましい。
 また、晶析中は、混合溶液の液温を25~60℃に保持することが好ましい。該液温が25℃未満では、混合溶液中での金属イオンの溶解度が低く、MnとFeとMgの析出速度に差が生じて、組成ずれを起こすことがある。また、該液温が60℃を超えると、混合溶液中での金属イオンの溶解度が高くなり、析出速度が低下して得られるリン酸アンモニウムマンガン鉄マグネシウムの結晶性が高くなり過ぎ、最終的に得られる正極活物質が粗粒化する場合がある。
In the crystallization step, it is preferable to coprecipitate in an inert atmosphere. By an inert atmosphere, it is possible to suppress the formation of impurities such as Fe 3 O 4 and MnO 2 by oxidation. The inert atmosphere is preferably an inert gas atmosphere such as nitrogen gas.
During crystallization, the liquid temperature of the mixed solution is preferably maintained at 25 to 60 ° C. When the liquid temperature is less than 25 ° C., the solubility of metal ions in the mixed solution is low, and the precipitation rate of Mn, Fe, and Mg is different, which may cause a composition shift. Moreover, when the liquid temperature exceeds 60 ° C., the solubility of metal ions in the mixed solution becomes high, and the crystallinity of ammonium manganese iron magnesium phosphate obtained by decreasing the precipitation rate becomes too high. The obtained positive electrode active material may be coarsened.
 上記晶析工程に用いられる装置としては、反応を均一に生じさせるため、撹拌装置付の反応槽が好ましく、晶析時の雰囲気制御を可能とするため、密閉構造を有するものとすることがより好ましい。 As an apparatus used for the crystallization step, a reaction vessel with a stirrer is preferable in order to cause the reaction to occur uniformly, and in order to control the atmosphere during crystallization, it is preferable to have a sealed structure. preferable.
 晶析反応終了後、ろ過、遠心分離などにより固液分離し、不純物を除去するため、上記晶析工程で得られたリン酸アンモニウムマンガン鉄マグネシウムを十分に水洗した後、乾燥させる。ここで、上記リン酸アンモニウムマンガン鉄マグネシウムは、微細な粒子構造を持っているため、水洗により、ナトリウム等の不純物が容易に除去可能である。 After completion of the crystallization reaction, solid-liquid separation is performed by filtration, centrifugation, etc., and in order to remove impurities, the ammonium manganese iron phosphate magnesium obtained in the crystallization step is sufficiently washed and then dried. Here, since the ammonium manganese iron phosphate magnesium has a fine particle structure, impurities such as sodium can be easily removed by washing with water.
 晶析工程で得られたリン酸アンモニウムマンガン鉄マグネシウムは、乾燥時に酸化しやすく、Mn、FeあるいはMgが酸化して、不純物としての異相が残ることがある。このため、洗浄後の乾燥は、非酸化性雰囲気中で行う。非酸化性雰囲気中であれば、特に限定されるものではないが、不活性雰囲気中または真空雰囲気中で行うこと好ましい。
 また、乾燥温度は、酸化が抑制可能な範囲であればよく、250℃以下とすることが好ましく、150℃以下とすることがより好ましい。一方、60℃未満では、乾燥に時間がかかるため、好ましくない。
The ammonium manganese iron phosphate magnesium obtained in the crystallization step is easily oxidized during drying, and Mn, Fe or Mg may be oxidized to leave a foreign phase as an impurity. For this reason, drying after washing is performed in a non-oxidizing atmosphere. Although it will not specifically limit if it is in a non-oxidizing atmosphere, It is preferable to carry out in an inert atmosphere or a vacuum atmosphere.
Moreover, the drying temperature should just be the range which can suppress oxidation, it is preferable to set it as 250 degrees C or less, and it is more preferable to set it as 150 degrees C or less. On the other hand, if it is less than 60 ° C., it takes time to dry, which is not preferable.
(2)リン酸アンモニウムマンガン鉄マグネシウム
 本発明のリン酸アンモニウムマンガン鉄マグネシウムは、リチウム二次電池用正極活物質の前駆体であって、上記の製造方法によって得られる共沈澱物であり、上記一般式(1)で表される。
 また、本発明のリン酸アンモニウムマンガン鉄マグネシウムは、上記製造方法によって得られるため、Mn、FeとMgが原子レベルで均一に混合されたものとなっている。このため、リチウム塩と混合後に、低温の熱処理によっても、組成の均一化が可能であり、粒子径が微細なリチウムマンガン鉄マグネシウム複合リン酸塩が得られる。
(2) Ammonium Manganese Iron Magnesium Phosphate The ammonium manganese iron magnesium phosphate of the present invention is a precursor of a positive electrode active material for a lithium secondary battery, and is a coprecipitate obtained by the above production method. It is represented by Formula (1).
Moreover, since the ammonium manganese iron magnesium phosphate of the present invention is obtained by the above production method, Mn, Fe and Mg are uniformly mixed at the atomic level. For this reason, after mixing with the lithium salt, the composition can be made uniform by low-temperature heat treatment, and a lithium manganese iron-magnesium composite phosphate with a fine particle size can be obtained.
 また、本発明のリン酸アンモニウムマンガン鉄マグネシウムは、ナトリウム含有量が0.01質量%以下であり、得られる正極活物質で十分な特性が得られる。ナトリウム含有量が0.01質量%を超えると、オリビン構造中のLiイオンの移動がNaで阻害されるために、得られた正極活物質を用いた容量や出力などの正極性能が低下する。 In addition, the ammonium manganese iron magnesium phosphate of the present invention has a sodium content of 0.01% by mass or less, and sufficient characteristics can be obtained with the obtained positive electrode active material. When the sodium content exceeds 0.01% by mass, the movement of Li ions in the olivine structure is inhibited by Na, so that the positive electrode performance such as capacity and output using the obtained positive electrode active material is deteriorated.
(3)リチウム二次電池用正極活物質の製造方法
 本発明のリチウム二次電池用正極活物質の製造方法は、リチウム二次電池用正極活物質(以下、単に正極活物質ということがある)の前駆体である上記リン酸アンモニウムマンガン鉄マグネシウムとリチウム塩を混合後、不活性または還元雰囲気下において、200~500℃で熱処理する熱処理工程と、炭素源となる化合物を焼成後に炭素含有率が1~5質量%になるように混合して炭素源混合物を得る炭素源混合工程と、該炭素源混合物を不活性または還元雰囲気下において、500~800℃で焼成する焼成工程とを、備えることを特徴とする。
(3) Method for producing positive electrode active material for lithium secondary battery The method for producing a positive electrode active material for lithium secondary battery according to the present invention is a positive electrode active material for lithium secondary battery (hereinafter sometimes simply referred to as a positive electrode active material). A heat treatment step of heat-treating at 200 to 500 ° C. in an inert or reducing atmosphere after mixing the ammonium manganese iron magnesium magnesium phosphate and the lithium precursor, and a carbon content after firing the compound serving as the carbon source A carbon source mixing step of mixing to obtain 1 to 5% by mass to obtain a carbon source mixture, and a baking step of baking the carbon source mixture at 500 to 800 ° C. in an inert or reducing atmosphere. It is characterized by.
(3-1)熱処理工程
 熱処理工程においては、まず、上記リン酸アンモニウムマンガン鉄マグネシウムとリチウム塩を混合する。リチウム塩との混合は、リン酸アンモニウムマンガン鉄マグネシウムとリチウム塩を、下記一般式(2)で表されるリチウムマンガン鉄複合リン酸塩が得られるように、混合するものであり、モル比でMnとFeの合計(Me)に対するLiの比(Li/Me)を0.95~1.05とすることが好ましい。
  一般式:LiMn1-a-bFeMgPO  (2)
(式中、aは、0.2≦a≦0.4であり、bは、0<b<0.1である。)
(3-1) Heat Treatment Step In the heat treatment step, first, the ammonium manganese iron phosphate magnesium and the lithium salt are mixed. Mixing with a lithium salt mixes ammonium manganese iron magnesium phosphate and a lithium salt so that a lithium manganese iron composite phosphate represented by the following general formula (2) is obtained, and in a molar ratio: The ratio of Li to the sum of Mn and Fe (Me) (Li / Me) is preferably 0.95 to 1.05.
General formula: LiMn 1-ab Fe a Mg b PO 4 (2)
(In the formula, a is 0.2 ≦ a ≦ 0.4, and b is 0 <b <0.1.)
 リチウム塩としては、特に限定されるものではなく、水酸化リチウム、炭酸リチウム、酢酸リチウムなど一般的なリチウム塩を用いることができる。
 混合方法は、リン酸アンモニウムマンガン鉄マグネシウムとリチウム塩を十分に混合できる混合機を用いればよく、具体的には、シェイカーミキサー、あるいはアルミナ、ジルコニア球を用いた乾式、湿式ミルなどを用いることができる。特に、最終的に得られる正極活物質を微粒化するためには、リン酸アンモニウムマンガン鉄マグネシウムを予め粉砕しておくことが好ましく、リチウム塩との混合時に、粉砕を同時にすることが好ましい。この場合には、ボールミル、遊星ミル、振動ミル、ビーズミル等などのミルを用いることで、混合と同時に粉砕を行うことも可能となり、好ましい。
The lithium salt is not particularly limited, and general lithium salts such as lithium hydroxide, lithium carbonate, and lithium acetate can be used.
As a mixing method, a mixer capable of sufficiently mixing ammonium manganese iron magnesium phosphate and lithium salt may be used. Specifically, a shaker mixer or a dry or wet mill using alumina or zirconia spheres may be used. it can. In particular, in order to atomize the finally obtained positive electrode active material, it is preferable to pulverize ammonium manganese iron phosphate magnesium in advance, and it is preferable to pulverize simultaneously with mixing with the lithium salt. In this case, using a mill such as a ball mill, a planetary mill, a vibration mill, a bead mill or the like is preferable because pulverization can be performed simultaneously with mixing.
 リチウム塩との混合後、該混合物を不活性または還元雰囲気下で、200~500℃、好ましくは300~400℃で熱処理する。
 本発明のリン酸アンモニウムマンガン鉄マグネシウムは、原子レベルでMn、Feとマグネシウムが均一に混合された状態となっていることから、上記温度範囲による熱処理でも、上記構成元素が均一に混合され、良好な結晶性を有するリチウムマンガン鉄複合リン酸塩(LiMn1-a-bFeMgPO)を得ることができる。熱処理温度が200℃未満では、反応原料である炭酸リチウムなどが残存することがあり、また、500℃を超えると、粒子の焼結が進行して粗大粒子が生成され、最終的に得られる正極活物質の導電性が低下する。
 上記還元雰囲気としては、不純物の混入を抑制するため、不活性ガスと水素ガスの混合ガスが好ましく、混合ガス中の水素ガス含有量としては、1~20容量%とすることが好ましい。
After mixing with the lithium salt, the mixture is heat-treated at 200 to 500 ° C., preferably 300 to 400 ° C. in an inert or reducing atmosphere.
Since the ammonium manganese iron phosphate magnesium of the present invention is in a state in which Mn, Fe and magnesium are uniformly mixed at the atomic level, the above constituent elements are uniformly mixed even in heat treatment in the above temperature range, which is good Lithium manganese iron composite phosphate (LiMn 1-ab Fe a Mg b PO 4 ) having excellent crystallinity can be obtained. When the heat treatment temperature is less than 200 ° C., lithium carbonate as a reaction raw material may remain. When the heat treatment temperature exceeds 500 ° C., sintering of the particles proceeds and coarse particles are generated, and finally obtained positive electrode The conductivity of the active material is reduced.
The reducing atmosphere is preferably a mixed gas of an inert gas and hydrogen gas in order to suppress contamination of impurities, and the hydrogen gas content in the mixed gas is preferably 1 to 20% by volume.
(3-2)炭素源混合工程
 炭素源混合工程は、熱処理工程によって得られたLiMn1-a-bFeMgPOに導電性を付与するために、炭素源となる化合物(以下、単に炭素源ということがある)を焼成後に炭素含有率が1~5質量%になるように、混合する工程である。
 炭素源としては、焼成によって黒鉛化して導電性炭素質材料となるものであれば、特に限定されるものではなく、天然黒鉛、人工黒鉛等の黒鉛、アセチレンブラックやケッチェンブラックなど等のカーボンブラック類、炭素繊維、ショ糖などの一般的な炭化水素類、アスコルビン酸その他、分解によって炭素質を生じる有機化合物等を幅広く用いることができる。
 また、炭素源に含まれる炭素原子の量は、焼成により、炭素源より減少する傾向がある。このため、炭素源の配合量は、焼成後に含有される炭素量に対して、質量比で40~120%多くすることが好ましく、50~120%多くすることがより好ましい。
 上記混合は、上記LiMn1-a-bFeMgPOと炭素源が均一に混合されるように、シェイカーミキサー、あるいはアルミナ、ジルコニア球を用いた乾式、湿式ミルなどを用いて十分に行うことが好ましい。
 炭素源混合工程においても、熱処理工程によって得られたLiMn1-a-bFeMgPOを粉砕することで、最終的に得られる正極活物質を微粒化するとともに、均一に粒子を導電性炭素質材料で被覆することができるため、混合と同時に粉砕しておくことが好ましい。このため、ボールミル、遊星ミル、振動ミル、ビーズミル等などのミル上記ミルを用いることが好ましい。
(3-2) Carbon Source Mixing Step The carbon source mixing step is a compound (hereinafter referred to as a carbon source) for imparting conductivity to LiMn 1-ab Fe a Mg b PO 4 obtained by the heat treatment step. This is a step of mixing so that the carbon content is 1 to 5% by mass after firing.
The carbon source is not particularly limited as long as it is graphitized by firing to become a conductive carbonaceous material. Graphite such as natural graphite and artificial graphite, carbon black such as acetylene black and ketjen black , Carbon fibers, common hydrocarbons such as sucrose, ascorbic acid, and other organic compounds that generate carbonaceous matter by decomposition can be widely used.
Further, the amount of carbon atoms contained in the carbon source tends to be smaller than that of the carbon source by firing. For this reason, the blending amount of the carbon source is preferably increased by 40 to 120%, more preferably by 50 to 120% by mass ratio with respect to the amount of carbon contained after firing.
The above mixing is sufficiently performed using a shaker mixer or a dry or wet mill using alumina or zirconia spheres so that the LiMn 1-ab Fe a Mg b PO 4 and the carbon source are uniformly mixed. Preferably it is done.
Also in the carbon source mixing step, LiMn 1-ab Fe a Mg b PO 4 obtained in the heat treatment step is pulverized to atomize the positive electrode active material finally obtained and uniformly conduct the particles. Since it can be coated with a carbonaceous material, it is preferable to grind at the same time as mixing. Therefore, it is preferable to use a mill such as a ball mill, a planetary mill, a vibration mill, or a bead mill.
(3-3)焼成工程
 炭素源混合工程で炭素源を混合したLiMn1-a-bFeMgPOを、不活性または還元雰囲気下で、600~800℃、好ましくは600~700℃で焼成することにより、炭素質材料と複合化され導電性が良好なLiMn1-a-bFeMgPO、すなわち、リチウム二次電池用正極活物質を得ることができる。
 焼成温度が600℃未満では、炭素の黒鉛化が進行せず、正極活物質に十分な導電性が得られない。また、焼成温度が800℃を超えると、粒子の焼結が進行して粗大化し、正極活物質の導電性が低下する。
 上記熱処理工程および焼成工程における炉としては、例えば、バッチ炉、ローラーハースキルン、プッシャー炉、ロータリーキルン、流動床炉など一般的な熱処理炉・焼成炉を用いることができる。熱処理中は、鉄、マンガンおよびマグネシウムの酸化を抑制するため、窒素、アルゴンなどの不活性ガス、または窒素と水素の混合ガスの還元雰囲気とすることから、雰囲気制御が可能な炉を用いることが好ましい。
 上記、正極活物質は、均一微細な一次粒子で構成されているが、電池の電極作製工程の必要に応じて、これを粉砕、分級して用いることができる。
(3-3) Firing step LiMn 1-ab Fe a Mg b PO 4 mixed with a carbon source in the carbon source mixing step is 600 to 800 ° C., preferably 600 to 700 ° C. in an inert or reducing atmosphere. By firing at, it is possible to obtain LiMn 1-ab Fe a Mg b PO 4 that is complex with the carbonaceous material and has good conductivity, that is, a positive electrode active material for a lithium secondary battery.
When the firing temperature is less than 600 ° C., graphitization of carbon does not proceed, and sufficient conductivity cannot be obtained for the positive electrode active material. On the other hand, when the firing temperature exceeds 800 ° C., the sintering of the particles proceeds and becomes coarse, and the conductivity of the positive electrode active material is lowered.
As a furnace in the heat treatment step and the firing step, for example, a general heat treatment furnace / firing furnace such as a batch furnace, a roller hearth kiln, a pusher furnace, a rotary kiln, or a fluidized bed furnace can be used. During the heat treatment, in order to suppress oxidation of iron, manganese, and magnesium, a reducing atmosphere of an inert gas such as nitrogen or argon or a mixed gas of nitrogen and hydrogen is used. preferable.
The positive electrode active material is composed of uniform fine primary particles, which can be used after being pulverized and classified according to the necessity of the battery electrode manufacturing process.
(4)リチウム二次電池用正極活物質
 本発明の正極活物質は、炭素質材料と複合化され、組成が均一で、かつ均一微細な一次粒子で構成された、上記一般式(2)で表されるオリビン型リチウムマンガン鉄マグネシウム複合リン酸塩からなるものである。
 上記一般式(2)において、aは、0.2≦a≦0.4であるが、aが0.2より少ない場合、複合リン酸塩中のマンガン量が高くなり、高抵抗な正極材となる。また、aが0.4より多い場合、対Li電位が約3.45のFe2+/Fe3+の酸化還元が電池反応を占める割合が大きくなり、リチウム二次電池としたときの平均電位が低下して充放電効率が低下する。
 一方、本発明の正極活物質においては、マグネシウムは、正極活物質中で組成的に均一なものとなっており、放電電圧を上昇させ、高エネルギーと高充放電効率を実現している。
 しかしながら、上記一般式(2)において、bは、0<b<0.1であるが、bが0.1以上の場合、電池反応において酸化還元に寄与しないマグネシウムを過剰に含むことになるとともに、焼成時に結晶子が成長して大きくなり過ぎるため、リチウム二次に用いたときの容量が低下する。マグネシウムは、微量の添加で上記効果が得られるが、十分な効果を得るためには、bは0.005以上とすることが好ましい。したがって、bの範囲としては0.005~0.08とすることが好ましく、0.01~0.07とすることがより好ましい。
(4) Positive electrode active material for lithium secondary battery The positive electrode active material of the present invention is composed of primary particles having a uniform composition and uniform fine particles that are combined with a carbonaceous material. The olivine type lithium manganese iron magnesium composite phosphate represented.
In the above general formula (2), a is 0.2 ≦ a ≦ 0.4, but when a is less than 0.2, the amount of manganese in the composite phosphate increases, and the positive electrode material has high resistance. It becomes. Further, when a is more than 0.4, the ratio of Fe 2+ / Fe 3+ oxidation-reduction with a Li potential of about 3.45 occupies the battery reaction, and the average potential when a lithium secondary battery is formed decreases. Thus, the charge / discharge efficiency decreases.
On the other hand, in the positive electrode active material of the present invention, magnesium is compositionally uniform in the positive electrode active material, increasing the discharge voltage and realizing high energy and high charge / discharge efficiency.
However, in the above general formula (2), b is 0 <b <0.1, but when b is 0.1 or more, magnesium that does not contribute to redox in the battery reaction is included excessively. Since the crystallite grows and becomes too large at the time of firing, the capacity when lithium secondary is used is reduced. Magnesium can achieve the above effect with a small amount of addition, but in order to obtain a sufficient effect, b is preferably 0.005 or more. Therefore, the range of b is preferably 0.005 to 0.08, and more preferably 0.01 to 0.07.
 上記一次粒子径の測定は、走査型電子顕微鏡観察による外観からの測定などの手段に限られており、正確な値を得ることが困難である。
 したがって、本発明においては、定量的に評価が可能なX線回折プロファイルの結晶面ピーク半価幅よりシェラー式で求められる結晶子径を用いて一次粒子径の評価を行った。
 結晶子径とは、単結晶から構成される粒子の構成単位であり、一次粒子は、その集合体である場合があるので、必ずしも同等ではないが、一次粒子が十分に微細であれば、結晶子径と一次粒子径は、比例関係にあると考えられ、一次粒子径の評価が可能である。
 すなわち、本発明の正極活物質のX線回折における(131)面より求めた結晶子径が55nm以下である。結晶子径を55nm以下とすることで、上記リチウムマンガン鉄マグネシウム複合リン酸塩を正極活物質としたときに十分な導電性が得られる。55nmを超えるような巨大な結晶子径では、電池反応の際のリチウムイオン及び電子伝導率が低く高抵抗なリチウムマンガン鉄マグネシウム複合リン酸塩粒子内部をリチウムイオン、電子が移動する距離が大きくなり、電池の反応速度が極めて遅くなり、電池抵抗が上昇するとともに、十分な導電性が得られない。このため、電池の正極に用いた場合に、電池容量と出力特性が低下する。
 上記結晶子径は10nm以上であることが好ましい。結晶子径が10nm未満になると、正極活物質のかさ密度が低下して、電池として構成した場合の単位容積あたりの電池容量が十分に得られない場合がある。
The measurement of the primary particle size is limited to means such as measurement from the appearance by scanning electron microscope observation, and it is difficult to obtain an accurate value.
Therefore, in the present invention, the primary particle diameter was evaluated using the crystallite diameter determined by the Scherrer formula from the half-width of the crystal plane peak of the X-ray diffraction profile that can be quantitatively evaluated.
The crystallite size is a structural unit of particles composed of a single crystal, and the primary particles may be aggregates thereof, and thus are not necessarily equal, but if the primary particles are sufficiently fine, The child diameter and the primary particle diameter are considered to have a proportional relationship, and the primary particle diameter can be evaluated.
That is, the crystallite diameter determined from the (131) plane in the X-ray diffraction of the positive electrode active material of the present invention is 55 nm or less. By setting the crystallite diameter to 55 nm or less, sufficient conductivity can be obtained when the lithium manganese iron magnesium composite phosphate is used as a positive electrode active material. When the crystallite diameter is larger than 55 nm, the distance that lithium ions and electrons move inside the lithium manganese iron-magnesium composite phosphate particles having a low resistance and a high resistance of lithium ions and electrons during the battery reaction increases. The reaction rate of the battery becomes extremely slow, the battery resistance increases, and sufficient conductivity cannot be obtained. For this reason, when it uses for the positive electrode of a battery, battery capacity and an output characteristic fall.
The crystallite diameter is preferably 10 nm or more. When the crystallite diameter is less than 10 nm, the bulk density of the positive electrode active material decreases, and the battery capacity per unit volume when configured as a battery may not be sufficiently obtained.
 また、本発明の正極活物質は、BET比表面積が15m/g以上であり、炭素含有率が1~5質量%であり、電池の正極活物質として用いたときに、良好な電池特性が得られる。BET比表面積が15m/g未満では、電池の正極を構成したときに、十分な電解液との接触が得られず、電池抵抗の上昇や導電性の低下が生じる。BET比表面積の上限は、特に限定されるものではないが、40m/g以下であることが好ましい。40m/gを超えると、かさ密度が低くなり、容積のあたりの電池容量が低くなりすぎることがある。
 また、炭素含有率が1質量%未満であると、十分な正極活物質の導電性が得られず、一方、5質量%を超えると、正極活物質中のリチウムマンガン鉄マグネシウム複合リン酸塩が少なくなり、電池容量が低下する。
 本発明の正極活物質は、例えば、C2023型コイン電池の正極活物質として用いた場合、初期放電容量145mAh/g以上、平均放電電位3.8V以上、充放電効率85%以上の良好な電池特性を示すものであり、リチウム二次電池用として好適である。
Further, the positive electrode active material of the present invention has a BET specific surface area of 15 m 2 / g or more and a carbon content of 1 to 5% by mass, and has good battery characteristics when used as a positive electrode active material for a battery. can get. When the BET specific surface area is less than 15 m 2 / g, when the positive electrode of the battery is constructed, sufficient contact with the electrolytic solution cannot be obtained, resulting in an increase in battery resistance and a decrease in conductivity. The upper limit of the BET specific surface area is not particularly limited, but is preferably 40 m 2 / g or less. If it exceeds 40 m 2 / g, the bulk density will be low, and the battery capacity per unit volume may be too low.
Moreover, when the carbon content is less than 1% by mass, sufficient conductivity of the positive electrode active material cannot be obtained. On the other hand, when the carbon content exceeds 5% by mass, the lithium manganese iron magnesium composite phosphate in the positive electrode active material is reduced. Battery capacity is reduced.
When the positive electrode active material of the present invention is used, for example, as a positive electrode active material of a C2023 type coin battery, good battery characteristics with an initial discharge capacity of 145 mAh / g or more, an average discharge potential of 3.8 V or more, and a charge / discharge efficiency of 85% or more. It is suitable for a lithium secondary battery.
(5)リチウム二次電池
 本発明によるリチウム二次電池は、正極、負極、非水電解質など、一般のリチウム二次電池と同様の構成要素から構成される。
 以下、本発明のリチウム二次電池の実施形態について、その構成要素、用途などの項目に分けて詳しく説明するが、以下の実施形態は、例示にすぎず、本発明のリチウム二次電池は、本明細書に記載の実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
(5) Lithium Secondary Battery The lithium secondary battery according to the present invention is composed of the same constituent elements as a general lithium secondary battery, such as a positive electrode, a negative electrode, and a nonaqueous electrolyte.
Hereinafter, the embodiment of the lithium secondary battery of the present invention will be described in detail by dividing into its components, uses, etc., but the following embodiments are merely examples, and the lithium secondary battery of the present invention is In addition to the embodiments described in the present specification, various modifications and improvements can be made based on the knowledge of those skilled in the art.
(a)正極
 正極は、本発明の正極活物質、導電材および結着剤を含んだ正極合材から形成される。
 詳しくは、粉末状の正極活物質、導電材を混合し、それに結着剤を加え、必要に応じて、粘度調整などのための溶剤をさらに添加して、正極合材ペーストを調整し、その正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布、乾燥、必要に応じて加圧することにより、シート状の正極を作製する。
 導電材は、正極の電気伝導性を確保するためのものであり、たとえば、カーボンブラック、アセチレンブラック、黒鉛などの炭素物質粉状体の1種または2種以上を混合したものを用いることができる。
 結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴムなどの含フッ素樹脂、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂、その他の適切な材料を用いることができる。必要に応じて正極合材に添加する溶剤、つまり、活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、活性炭を、電気二重層容量を増加させるために添加することができる。
 このような正極活物質、導電材、および結着剤を混合し、必要に応じて、活性炭、溶剤を添加し、これを混練して正極合材ペーストを調製する。
 正極合材中のそれぞれの混合比も、リチウムイオン二次電池の性能を決定する重要な要素となりうる。正極合材の固形分の全体(溶剤を除く意味)を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質は60~95質量%、導電材は1~20質量%、結着剤は1~20質量%とすることが望ましい。
 たとえば、アルミニウムなどの金属箔集電体の表面に、充分に混練した上記の正極合材ペーストを塗布し、乾燥して溶剤を飛散させ、必要に応じて、その後に電極密度を高めるべく、ロールプレスなどにより圧縮することにより、正極をシート状に形成することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などを行い、電池の作製に供することができる。
(A) Positive electrode A positive electrode is formed from the positive electrode compound material containing the positive electrode active material of this invention, the electrically conductive material, and the binder.
Specifically, a powdered positive electrode active material and a conductive material are mixed, a binder is added thereto, and if necessary, a solvent for viscosity adjustment is further added to adjust the positive electrode mixture paste, For example, the positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, dried, and pressurized as necessary to produce a sheet-like positive electrode.
The conductive material is for ensuring the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or more carbon material powders such as carbon black, acetylene black, and graphite can be used. .
The binder plays a role of anchoring the active material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, a thermoplastic resin such as polypropylene and polyethylene, and other suitable materials. Can be used. An organic solvent such as N-methyl-2-pyrrolidone is used as a solvent added to the positive electrode mixture as needed, that is, as a solvent for dispersing the active material, conductive material, and activated carbon and dissolving the binder. it can. Activated carbon can also be added to increase the electric double layer capacity.
Such a positive electrode active material, a conductive material, and a binder are mixed, and if necessary, activated carbon and a solvent are added and kneaded to prepare a positive electrode mixture paste.
Each mixing ratio in the positive electrode mixture can also be an important factor that determines the performance of the lithium ion secondary battery. When the total solid content (meaning excluding solvent) of the positive electrode mixture is 100% by mass, the positive electrode active material is 60 to 95% by mass, the conductive material is 1 to It is desirable that the content is 20% by mass and the binder is 1 to 20% by mass.
For example, the above-mentioned positive electrode mixture paste sufficiently kneaded is applied to the surface of a metal foil current collector such as aluminum, dried to disperse the solvent, and then, if necessary, a roll to increase the electrode density By compressing with a press or the like, the positive electrode can be formed into a sheet. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.
(b)負極
 負極には、金属リチウム、リチウム合金など、また、リチウムイオンを吸蔵および脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して、形成したものを使用する。このとき、負極活物質として、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、コークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極と同様に、ポリフッ化ビニリデンなどの含フッ素樹脂などを、これら負極活物質および結着剤を分散させる溶剤としてはN-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
(B) Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of inserting and extracting lithium ions and adding a suitable solvent to form a paste. , And applied to the surface of a current collector of a metal foil such as copper, dried, and compressed to increase the electrode density as necessary. At this time, as the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery carbon material such as coke can be used. In this case, the negative electrode binder is a fluorine-containing resin such as polyvinylidene fluoride as in the case of the positive electrode, and the negative electrode active material and the binder are dispersed in an organic material such as N-methyl-2-pyrrolidone. A solvent can be used.
(c)セパレータ
 正極と負極の間には、セパレータを挟み装填する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い微多孔膜を用いることができる。
(C) Separator A separator is sandwiched and loaded between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.
(d)非水系電解質
 非水電解質は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、リン酸トリエチル、リン酸トリエチル、リン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiASF、LiN(CFSOなど、およびそれらの複合塩を用いることができる。さらに、非水電解質は、ラジカル補足剤、界面活性剤や難燃剤などを含んでいてもよい。
(D) Nonaqueous electrolyte The nonaqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorous compounds such as triethyl phosphate, triethyl phosphate and trioctyl phosphate alone, or two or more kinds It can be used by mixing.
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiASF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used. Further, the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
 以上のように構成される本発明のリチウム二次電池であるが、その形状は、円筒型、積層型など、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リードなどを用いて接続し、この電極体に上記の非水電解質を含浸させ、電池ケースに密閉して電池を完成させる。 The lithium secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type and a stacked type. Even if any shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal, A current collecting lead or the like is used for connection, the electrode body is impregnated with the nonaqueous electrolyte, and the battery case is sealed to complete the battery.
 本発明のリチウム二次電池においては、本発明のリチウム二次電池用正極活物質を正極材料として用いた正極を備えており、3.0~4.5Vの電位で充放電を行なうことで、従来のリチウム金属複合酸化物よりも、安全性がきわめて高く、さらに高容量を兼ね備えたリチウム二次電池を工業的に実現できる。 The lithium secondary battery of the present invention includes a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode material, and is charged and discharged at a potential of 3.0 to 4.5 V, It is possible to industrially realize a lithium secondary battery that is extremely safer than conventional lithium metal composite oxides and also has a high capacity.
 以下、本発明を実施例及び比較例により更に具体的に説明する。なお、実施例で用いた金属の化学分析方法、X線回折及び比表面積の測定方法、電池容量の評価方法は、以下の通りである。
(1)金属の分析:
 ICP発光分析装置(VARIAN社製、725ES)を用いて、ICP発光分析法で行った。
(2)X線回折:
 粉末X線回折装置(PANalytical社製、X‘Prt PRO)を用いて、得られた正極活物質について、Cu-Kα線による粉末X線回折で測定した。
(3)比表面積の測定:
 BET法測定機(ユアサアイオニックス株式会社製、カンタソーブQS-10)を用いて、窒素ガス吸着によるBET法で行った。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the chemical analysis method of the metal used in the Example, the measurement method of X-ray diffraction and a specific surface area, and the evaluation method of battery capacity are as follows.
(1) Analysis of metals:
An ICP emission analysis method (Varian, 725ES) was used for ICP emission analysis.
(2) X-ray diffraction:
Using a powder X-ray diffractometer (manufactured by PANalytical, X′Prt PRO), the obtained positive electrode active material was measured by powder X-ray diffraction using Cu—Kα rays.
(3) Measurement of specific surface area:
Using a BET method measuring machine (manufactured by Yuasa Ionix Co., Ltd., Kantasorb QS-10), the BET method was performed by nitrogen gas adsorption.
(4)電池容量の評価:
 得られた正極活物質について、以下の手順でコイン型電池を作製し、電池の充放電容量を測定して評価した。
 正極活物質に導電材としてアセチレンブラック33wt%、結着材としてポリビニリデンフルオライド(PVDF)17wt%、N-メチルピロリドン(NMP)溶液を添加混合し、上記正極活物質50wt%-導電材33wt%-PVDF17wt%の混合物を得た。
 この混合物をアルミ箔上に塗布し、80℃で乾燥後、電極寸法の直径11mmφに打ち抜き、プレス圧98MPa(1.0tonf/cm)でプレスして電極を作製した。
 この電極を正極とし、グローブボックス内で負極として金属Li、電解液として電解質LiPF1モル/Lを含んだエチレンカーボネート(EC)とジメチルカーボネート(DEC)の混合液(容積比でEC:DEC=7:3)、セパレータとしてガラスセパレータを用いてC2023コイン電池を作製した。
 電池の充放電を、充電0.2mA/cm、4.5V、休止60分、放電0.2mA/cm、2.0V、25℃の条件で実施し、1サイクル目の放電容量を、評価値として用いるとともに初期充放電効率(放電容量/充電容量)を求めた。また、充放電時に測定される電圧曲線から平均放電電圧を求めた。
(4) Battery capacity evaluation:
About the obtained positive electrode active material, the coin type battery was produced in the following procedures, and the charge / discharge capacity of the battery was measured and evaluated.
A positive electrode active material is mixed with 33% by weight of acetylene black as a conductive material, 17% by weight of polyvinylidene fluoride (PVDF) as a binder, and an N-methylpyrrolidone (NMP) solution. -A PVDF 17 wt% mixture was obtained.
This mixture was applied onto an aluminum foil, dried at 80 ° C., punched to an electrode size of 11 mmφ, and pressed at a press pressure of 98 MPa (1.0 tonf / cm 2 ) to produce an electrode.
Using this electrode as a positive electrode, a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DEC) containing metal Li as a negative electrode and 1 mol / L of electrolyte LiPF 6 as an electrolytic solution in a glove box (EC: DEC = volume ratio) 7: 3) A C2023 coin battery was produced using a glass separator as the separator.
The battery was charged and discharged under the conditions of charge 0.2 mA / cm 2 , 4.5 V, rest 60 minutes, discharge 0.2 mA / cm 2 , 2.0 V, 25 ° C., and the discharge capacity at the first cycle was While used as an evaluation value, the initial charge / discharge efficiency (discharge capacity / charge capacity) was determined. Moreover, the average discharge voltage was calculated | required from the voltage curve measured at the time of charging / discharging.
[実施例1]
 硫酸鉄7水和物(和光社製試薬特級:純度99.5質量%)0.368モル(102.2g)と硫酸マンガンn水和物(中央電工製:99.9質量%)1.103mol(188.1g)と硫酸マグネシウム7水和物(和光社製試薬特級:純度99.5質量%)0.030mol(7.4g)とリン酸(和光社製:純度85.0質量%以上)1.5モル(172.9g)を蒸留水で3Lにメスアップし、攪拌機で1時間攪拌し、原料溶液とした。また、25質量%アンモニア水溶液をpH調整溶液とした。
 撹拌機付5Lのセパラブルフラスコに1Lの純水をいれ、内部を窒素で置換しながら、30分攪拌した。pH調整溶液をpHコントローラにつなぎ、pHを8.0~8.2に制御しながら、原料溶液を毎分10mLの速度で添加した。滴下終了後、セパラブルフラスコを窒素で置換しながら30分撹拌を継続して共沈殿反応を完全に進行させた。反応後のスラリーを吸引濾過で固液分離した後、純水で2回レパルプ水洗浄を行った。
 水洗後、120℃真空下で24時間乾燥して、リン酸アンモニウムマンガン鉄マグネシウムを得た。
[Example 1]
Iron sulfate heptahydrate (special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.368 mol (102.2 g) and manganese sulfate n-hydrate (Chuo Electric Works: 99.9% by mass) 1.103 mol (188.1 g) and magnesium sulfate heptahydrate (special grade by Wako Co., Ltd .: purity 99.5% by mass) 0.030 mol (7.4 g) and phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more) 1.5 mol (172.9 g) was made up to 3 L with distilled water and stirred with a stirrer for 1 hour to obtain a raw material solution. Moreover, 25 mass% ammonia aqueous solution was used as pH adjustment solution.
1 L of pure water was put into a 5 L separable flask equipped with a stirrer and stirred for 30 minutes while the inside was replaced with nitrogen. The raw material solution was added at a rate of 10 mL per minute while the pH adjustment solution was connected to a pH controller and the pH was controlled at 8.0 to 8.2. After completion of dropping, stirring was continued for 30 minutes while replacing the separable flask with nitrogen to complete the coprecipitation reaction. The slurry after the reaction was subjected to solid-liquid separation by suction filtration, and then washed with pure water twice with pure water.
After washing with water and drying under vacuum at 120 ° C. for 24 hours, ammonium manganese iron phosphate magnesium was obtained.
 上記リン酸アンモニウムマンガン鉄マグネシウム30g、炭酸リチウム(関東化学社製鹿特級:99.0質量%)5.94gおよびエタノール60mlを、φ1.0mmジルコニアボール650gの入った内容積500mlジルコニア製ポットに入れ、遊星ボールミル(フリッチュジャパン製)により350rpmで10分間混合するとともに粉砕した。処理後、スラリーとジルコニアボールを篩い分けし、常温、真空下で24時間乾燥してエタノールを除去した。
 電気炉を用いて得られた混合物を、98容量%窒素と2容量%水素の混合ガスを1L/分の流量で炉内にパージしながら10℃/分で昇温した後、350℃5時間焼成した。焼成物をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定され、リチウムマンガン鉄複合リン酸塩にマグネシウムが固溶したリチウムマンガン鉄マグネシウム複合リン酸塩が得られたことが確認された。
30 g of the above-mentioned ammonium manganese iron magnesium phosphate, 5.94 g of lithium carbonate (Kanto Chemical Co., Ltd .: 99.0% by mass) and 60 ml of ethanol are placed in a 500 ml zirconia pot having an internal volume of 650 g of φ1.0 mm zirconia balls. The mixture was mixed and pulverized with a planetary ball mill (manufactured by Fritsch Japan) at 350 rpm for 10 minutes. After the treatment, the slurry and zirconia balls were sieved and dried at room temperature under vacuum for 24 hours to remove ethanol.
The mixture obtained by using an electric furnace was heated at 10 ° C./min while purging a mixed gas of 98 vol% nitrogen and 2 vol% hydrogen into the furnace at a flow rate of 1 L / min, and then 350 ° C. for 5 hours. Baked. When the fired product was analyzed by X-ray diffraction, it was identified as an olivine-type lithium manganese iron composite phosphate single phase, and lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate was obtained. It was confirmed.
 上記リチウムマンガン鉄マグネシウム複合リン酸塩30gとスクロース3.00gを、φ5mmジルコニアボール350gの入った内容積500mlジルコニア製ポットに入れ、遊星ボールミル(フリッチュジャパン製)により250rpmで10分間混合した。処理後、ジルコニアボールを篩い分けした後、この混合物を、電気炉を用いて98容量%窒素+2容量%水素の混合ガスを1L/分の流量で炉内にパージしながら昇温速度10℃/分で190℃まで昇温後、2時間保持し、さらに昇温して650℃で5時間の焼成を行い、正極活物質を得た。 30 g of the above lithium manganese iron magnesium composite phosphate and 3.00 g of sucrose were placed in a 500 ml zirconia pot containing 350 g of φ5 mm zirconia balls, and mixed for 10 minutes at 250 rpm with a planetary ball mill (manufactured by Fritsch Japan). After the treatment, the zirconia balls were sieved, and then the mixture was heated at a rate of temperature increase of 10 ° C./hour while purging the mixed gas of 98 volume% nitrogen + 2 volume% hydrogen into the furnace at a flow rate of 1 L / min using an electric furnace. The temperature was raised to 190 ° C. in minutes, held for 2 hours, further heated and baked at 650 ° C. for 5 hours to obtain a positive electrode active material.
 この正極活物質のLi:Mn:Fe:Mg:Pの組成は、モル比で1.00:0.74:0.24:0.02:1.00であり、炭素量は2.2質量%であった。
 X線回折分析から、オリビン型リチウムマンガン鉄複合リン酸塩単相であることが確認され、X線回折分析プロファイルからシェラー式を用いて(131)面の結晶子径を求めると50nmであった。また、走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は100~200nmであった。また、BET法により求めた正極活物質の比表面積は、26.5m/gであった。
 正極活物質の電池評価を実施したところ、初期充電容量は157mAh/g、初期放電容量は151mAh/g、平均放電電圧は3.81V、初期効率は96%であった。
The composition of Li: Mn: Fe: Mg: P of this positive electrode active material is 1.00: 0.74: 0.24: 0.02: 1.00 in molar ratio, and the carbon content is 2.2 mass. %Met.
From the X-ray diffraction analysis, it was confirmed that it was an olivine type lithium manganese iron composite phosphate single phase, and the crystallite size of the (131) plane was found from the X-ray diffraction analysis profile using the Scherrer equation, and it was 50 nm. . When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm. The specific surface area of the positive electrode active material determined by the BET method was 26.5 m 2 / g.
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 157 mAh / g, the initial discharge capacity was 151 mAh / g, the average discharge voltage was 3.81 V, and the initial efficiency was 96%.
[実施例2]
 硫酸鉄7水和物(和光社製試薬特級:純度99.5質量%)0.356モル(99.0g)と硫酸マンガンn水和物(中央電工製:99.9質量%)1.069mol(182.3g)と硫酸マグネシウム7水和物(和光社製試薬特級:純度99.5質量%)0.075mol(18.5g)とリン酸(和光社製:純度85.0質量%以上)1.5モル(172.9g)を蒸留水で3Lにメスアップし、攪拌機で1時間攪拌し、原料溶液とした以外、実施例1と同様にして正極活物質を得た。
 この正極活物質のLi:Mn:Fe:Mg:Pの組成は、モル比で1.00:0.71:0.24:0.05:1.00であり、炭素量は2.1質量%であった。
 X線回折分析から、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定され、リチウムマンガン鉄複合リン酸塩にマグネシウムが固溶したリチウムマンガン鉄マグネシウム複合リン酸塩であることが確認され、X線回折分析プロファイルからシェラー式を用いて(131)面の結晶子径を求めると54nmであった。また、走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は100~200nmであった。また、BET法により求めた正極活物質の比表面積は、26.3m/gであった。
 正極活物質の電池評価を実施したところ、初期充電容量は156mAh/g、初期放電容量は149mAh/g、平均放電電圧は3.84V、初期効率は96%であった。
[Example 2]
Iron sulfate heptahydrate (special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.356 mol (99.0 g) and manganese sulfate n-hydrate (Chuo Denko: 99.9% by mass) 1.069 mol (182.3 g) and magnesium sulfate heptahydrate (special grade by Wako Co., Ltd .: purity 99.5% by mass) 0.075 mol (18.5 g) and phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more) A positive electrode active material was obtained in the same manner as in Example 1, except that 1.5 mol (172.9 g) was made up to 3 L with distilled water and stirred for 1 hour with a stirrer to obtain a raw material solution.
The composition of Li: Mn: Fe: Mg: P of this positive electrode active material is 1.00: 0.71: 0.24: 0.05: 1.00 in terms of molar ratio, and the carbon content is 2.1 mass. %Met.
From X-ray diffraction analysis, it was identified as a single phase of olivine type lithium manganese iron composite phosphate, and it was confirmed that it was lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate. The crystallite diameter of the (131) plane was determined from the line diffraction analysis profile using the Scherrer equation and found to be 54 nm. When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm. The specific surface area of the positive electrode active material determined by the BET method was 26.3 m 2 / g.
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 156 mAh / g, the initial discharge capacity was 149 mAh / g, the average discharge voltage was 3.84 V, and the initial efficiency was 96%.
[比較例1]
 硫酸鉄7水和物(和光社製試薬特級:純度99.5質量%)0.338モル(93.8g)と硫酸マンガンn水和物(中央電工製:99.9質量%)1.013mol(172.7g)と硫酸マグネシウム7水和物(和光社製試薬特級:純度99.5質量%)0.150mol(37.0g)とリン酸(和光社製:純度85.0質量%以上)1.5モル(172.9g)を蒸留水で3Lにメスアップし、攪拌機で1時間攪拌し、原料溶液とした以外、実施例1と同様にして、正極活物質を得た。
 この正極活物質のLi:Mn:Fe:Mg:Pの組成は、モル比で1.00:0.67:0.23:0.10:1.00であり、炭素量は2.0質量%であった。
 X線回折分析から、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定され、リチウムマンガン鉄複合リン酸塩にマグネシウムが固溶したリチウムマンガン鉄マグネシウム複合リン酸塩であることが確認され、X線回折分析プロファイルからシェラー式を用いて(131)面の結晶子径を求めると58nmであった。また、走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は100~200nmであった。また、BET法により求めた正極活物質の比表面積は、27.0m/gであった。
 正極活物質の電池評価を実施したところ、初期充電容量は153mAh/g、初期放電容量は143mAh/g、平均放電電圧は3.84V、初期効率は94%であった。
[Comparative Example 1]
Iron sulfate heptahydrate (special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.338 mol (93.8 g) and manganese sulfate n-hydrate (manufactured by Chuo Denko: 99.9% by mass) 1.013 mol (172.7 g) and magnesium sulfate heptahydrate (reagent special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.150 mol (37.0 g) and phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more) A positive electrode active material was obtained in the same manner as in Example 1 except that 1.5 mol (172.9 g) was made up to 3 L with distilled water and stirred for 1 hour with a stirrer to obtain a raw material solution.
The composition of Li: Mn: Fe: Mg: P of this positive electrode active material is 1.00: 0.67: 0.23: 0.10: 1.00 in terms of molar ratio, and the carbon content is 2.0 mass. %Met.
From X-ray diffraction analysis, it was identified as a single phase of olivine type lithium manganese iron composite phosphate, and it was confirmed that it was lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate. The crystallite diameter of the (131) plane was determined from the line diffraction analysis profile using the Scherrer equation and found to be 58 nm. When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm. The specific surface area of the positive electrode active material determined by the BET method was 27.0 m 2 / g.
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 153 mAh / g, the initial discharge capacity was 143 mAh / g, the average discharge voltage was 3.84 V, and the initial efficiency was 94%.
[比較例2]
 晶析工程でpHを6~6.2に制御した以外、実施例1と同様にして、晶析工程を行った。晶析反応後に固液分離したろ液中のFe、Mn、P量を測定すると、Fe、Mn、Mg、Pのモル比で10%以上のそれぞれ反応原料が未反応で残存していたため、熱処理工程以降を中断した。
[Comparative Example 2]
The crystallization step was performed in the same manner as in Example 1 except that the pH was controlled to 6 to 6.2 in the crystallization step. When the amounts of Fe, Mn, and P in the filtrate that was solid-liquid separated after the crystallization reaction were measured, the reaction raw materials of 10% or more in terms of Fe, Mn, Mg, and P had remained unreacted. The rest of the process was interrupted.
[比較例3]
 晶析工程でpHを9.1~9.3に制御した以外、実施例1と同様にして、晶析工程を行った。晶析工程で得られたリン酸アンモニウムマンガン鉄マグネシウムをX線回折で分析すると、Fe、Fe、MnOなどの金属の価数が2価以上になった異相が多く検出されたため、熱処理工程以降を中断した。
[Comparative Example 3]
The crystallization step was performed in the same manner as in Example 1 except that the pH was controlled to 9.1 to 9.3 in the crystallization step. When the magnesium manganese iron phosphate ammonium obtained in the crystallization process is analyzed by X-ray diffraction, many different phases in which the valence of metals such as Fe 3 O 4 , Fe 2 O 3 , and MnO 2 are more than 2 are detected. Therefore, the heat treatment process and subsequent steps were interrupted.
[比較例4]
 晶析工程で得られるリン酸アンモニウムマンガン鉄マグネシウムに替えて、FeCとMnCOとMg(OH)と(NHHPOを原料とした以外、実施例1と同様にして、正極活物質を得た。
 得られた正極活物質をX線回折で分析すると、LiMn0.75Fe0.25POの他に、LiPO、MnO、Feといった異相が観察された。これらの異相は、正極活物質まで残ったが、Li:Mn:Fe:Mg:Pの組成は、モル比で1.00:0.74:0.24:0.02:1.00であり、炭素量は2.4質量%であった。また、一次粒子径は100~200nmであり、BET比表面積は25.1m/gであった。
 電池評価による初期充電容量は141mAh/g、初期放電容量は133mAh/g、平均放電電圧は3.79V、初期効率は88%であった。
[Comparative Example 4]
Instead of the ammonium manganese iron phosphate magnesium obtained in the crystallization step, FeC 2 O 4 , MnCO 2 , Mg (OH) 2 and (NH 4 ) 2 HPO 4 were used as raw materials in the same manner as in Example 1. A positive electrode active material was obtained.
When the obtained positive electrode active material was analyzed by X-ray diffraction, different phases such as Li 3 PO 4 , MnO and Fe 3 O 4 were observed in addition to LiMn 0.75 Fe 0.25 PO 4 . These different phases remained up to the positive electrode active material, but the composition of Li: Mn: Fe: Mg: P was 1.00: 0.74: 0.24: 0.02: 1.00 in molar ratio. The carbon content was 2.4% by mass. The primary particle diameter was 100 to 200 nm, and the BET specific surface area was 25.1 m 2 / g.
According to battery evaluation, the initial charge capacity was 141 mAh / g, the initial discharge capacity was 133 mAh / g, the average discharge voltage was 3.79 V, and the initial efficiency was 88%.
[比較例5]
 硫酸鉄7水和物(和光社製試薬特級:純度99.5質量%)0.375モル(104.8g)と硫酸マンガンn水和物(中央電工製:99.9質量%)1.125mol(191.9g)とリン酸(和光社製:純度85.0質量%以上)1.5モル(172.9g)を蒸留水で3Lにメスアップし、攪拌機で1時間攪拌し、原料溶液とした以外、実施例1と同様にして、正極活物質を得た。
 この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は2.2質量%であった。
 X線回折分析から、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定され、リチウムマンガン鉄複合リン酸塩にマグネシウムが固溶したリチウムマンガン鉄マグネシウム複合リン酸塩であることが確認され、X線回折分析プロファイルからシェラー式を用いて(131)面の結晶子径を求めると49nmであった。また、走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は100~200nmであった。また、BET法により求めた正極活物質の比表面積は、24.3m/gであった。
 正極活物質の電池評価を実施したところ、初期充電容量は155mAh/g、初期放電容量は148mAh/g、平均放電電圧は3.71V、初期効率は96%であった。
[Comparative Example 5]
Iron sulfate heptahydrate (special grade manufactured by Wako Co., Ltd .: purity 99.5% by mass) 0.375 mol (104.8 g) and manganese sulfate n-hydrate (Chuo Electric Works: 99.9% by mass) 1.125 mol (191.9 g) and phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more) 1.5 mol (172.9 g) were made up to 3 L with distilled water, stirred with a stirrer for 1 hour, A positive electrode active material was obtained in the same manner as in Example 1 except that.
The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.2 mass%.
From X-ray diffraction analysis, it was identified as a single phase of olivine type lithium manganese iron composite phosphate, and it was confirmed that it was lithium manganese iron magnesium composite phosphate in which magnesium was dissolved in lithium manganese iron composite phosphate. The crystallite size of the (131) plane was found from the line diffraction analysis profile using the Scherrer equation to be 49 nm. When observed with a scanning electron microscope (SEM), the primary particle size was 100 to 200 nm. The specific surface area of the positive electrode active material determined by the BET method was 24.3 m 2 / g.
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 155 mAh / g, the initial discharge capacity was 148 mAh / g, the average discharge voltage was 3.71 V, and the initial efficiency was 96%.
 以上より明らかなように、本発明のリン酸アンモニウムマンガン鉄マグネシウムの製造方法は、リチウム二次電池用正極活物質の前駆体の製造方法であって、MnとFeとMgが原子レベルに均一に混合したオリビン型リチウム二次電池用正極活物質の前駆体を得ることができ、該前駆体を用いて得られる正極活物質は、粒子径が微細で組成的にも均一であり、該正極活物質を用いたリチウム二次電池は、高容量かつ高エネルギー密度と高充放電効率の優れた電池特性を示すものであり、その産業上の利用可能性は極めて大きい。 As is clear from the above, the method for producing ammonium manganese iron-magnesium phosphate of the present invention is a method for producing a precursor of a positive electrode active material for a lithium secondary battery, and Mn, Fe, and Mg are uniformly distributed at an atomic level. A mixed positive electrode active material precursor for an olivine type lithium secondary battery can be obtained, and the positive electrode active material obtained using the precursor has a fine particle size and is uniform in composition, A lithium secondary battery using a substance exhibits excellent battery characteristics such as high capacity, high energy density, and high charge / discharge efficiency, and its industrial applicability is extremely large.

Claims (11)

  1.  リチウム二次電池用正極活物質の前駆体の製造方法であって、
     2価のMnイオン、FeイオンおよびMgイオンと、リン酸化物イオンとの混合溶液を調製する混合溶液調製工程と、アンモニアを添加して該混合溶液のpHを7~9の範囲に調整して共沈殿させ、一般式:NHMn1-а-bFeMgPO・HO(0.2≦a≦0.4、0<b<0.1)で表されるリン酸アンモニウムマンガン鉄マグネシウムを得る晶析工程とを、備えることを特徴とするリン酸アンモニウムマンガン鉄マグネシウムの製造方法。
    A method for producing a precursor of a positive electrode active material for a lithium secondary battery, comprising:
    A mixed solution preparation step of preparing a mixed solution of divalent Mn ions, Fe ions and Mg ions and phosphoric acid ions; and adding ammonia to adjust the pH of the mixed solution to a range of 7-9; Phosphoric acid co-precipitated and represented by the general formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (0.2 ≦ a ≦ 0.4, 0 <b <0.1) And a crystallization step of obtaining ammonium manganese iron magnesium.
  2.  前記混合溶液調製工程では、Mnイオン、Feイオン及びMgイオンの供給原料として、硫酸塩または塩化物塩から選択される1種以上の水溶性金属塩が用いられることを特徴とする請求項1に記載のリン酸アンモニウムマンガン鉄マグネシウムの製造方法。 The mixed solution preparation step uses at least one water-soluble metal salt selected from sulfates or chloride salts as a feedstock for Mn ions, Fe ions, and Mg ions. The manufacturing method of ammonium manganese iron phosphate magnesium of description.
  3.  前記混合溶液調製工程では、リン酸化物イオンの供給原料として、リン酸またはリン酸二水素アンモニウムから選択される1種以上の水溶性塩が用いられることを特徴とする請求項1に記載のリン酸アンモニウムマンガン鉄マグネシウムの製造方法。 2. The phosphorus according to claim 1, wherein in the mixed solution preparation step, at least one water-soluble salt selected from phosphoric acid or ammonium dihydrogen phosphate is used as a feedstock for the phosphate oxide ions. Method for producing ammonium manganese iron magnesium oxide.
  4.  前記晶析工程が非酸化性雰囲気下で行われること特徴とする請求項1~3のいずれか1項に記載のリン酸アンモニウムマンガン鉄マグネシウムの製造方法。 4. The method for producing ammonium manganese iron phosphate magnesium according to claim 1, wherein the crystallization step is performed in a non-oxidizing atmosphere.
  5.  前記晶析工程は、pH調整した混合溶液の液温が25~60℃に保持されることを特徴とする請求項1~4のいずれか1項に記載のリン酸アンモニウムマンガン鉄マグネシウムの製造方法。 5. The method for producing ammonium manganese iron-magnesium phosphate according to claim 1, wherein in the crystallization step, the liquid temperature of the pH-adjusted mixed solution is maintained at 25 to 60 ° C. .
  6.  請求項1~5いずれか1項に記載の製造方法によって得られるリチウム二次電池用正極活物質の前駆体であって、
     一般式:NHMn1-а-bFeMgPO・HO(0.2≦a≦0.4、0<b<0.1)で表されることを特徴とするリン酸アンモニウムマンガン鉄マグネシウム。
    A precursor of a positive electrode active material for a lithium secondary battery obtained by the production method according to any one of claims 1 to 5,
    Phosphorus characterized by being represented by the general formula: NH 4 Mn 1-a-b Fe a Mg b PO 4 .H 2 O (0.2 ≦ a ≦ 0.4, 0 <b <0.1) Acid ammonium manganese iron magnesium.
  7.  請求項6に記載のリン酸アンモニウムマンガン鉄マグネシウムとリチウム塩とを混合後、不活性または還元雰囲気下において、200~500℃で熱処理する熱処理工程と、熱処理工程によって得られたLiMn1-а-bFeMgPO(0.2≦a≦0.4、0<b<0.1)に、炭素源となる化合物を、焼成後に炭素含有率が1~5質量%になるように、混合して炭素源混合物を得る炭素源混合工程と、該炭素源混合物を、不活性または還元雰囲気下において、500~800℃で焼成する焼成工程とを、備えることを特徴とするリチウム二次電池用正極活物質の製造方法。 A heat treatment step in which the ammonium manganese iron phosphate magnesium according to claim 6 is mixed with a lithium salt and then heat-treated at 200 to 500 ° C in an inert or reducing atmosphere, and LiMn 1-а- obtained by the heat treatment step. In b Fe a Mg b PO 4 (0.2 ≦ a ≦ 0.4, 0 <b <0.1), the carbon content is set to 1 to 5% by mass after firing. A carbon source mixing step of mixing to obtain a carbon source mixture, and a firing step of firing the carbon source mixture at 500 to 800 ° C. in an inert or reducing atmosphere. A method for producing a positive electrode active material for a battery.
  8.  前記リン酸アンモニウムマンガン鉄マグネシウムとリチウム塩との混合時に、粉砕を同時に行うことを特徴とする請求項7に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 7, wherein pulverization is simultaneously performed when mixing the ammonium manganese iron magnesium phosphate and the lithium salt.
  9.  一般式:LiMn1-a-bFeMgPO(0.2≦a≦0.4、0<b<0.1)で表されるオリビン型リチウムマンガン鉄マグネシウム複合リン酸塩からなるリチウム二次電池用正極活物質であって、
     X線回折における(131)面より求めた結晶子径が55nm以下であり、BET比表面積が15m/g以上であり、炭素含有率が1~5質量%であることを特徴とするリチウム二次電池用正極活物質。
    General formula: LiMn 1-ab Fe a Mg b PO 4 (0.2 ≦ a ≦ 0.4, 0 <b <0.1) olivine type lithium manganese iron magnesium composite phosphate represented by A positive electrode active material for a lithium secondary battery,
    The crystallite diameter determined from the (131) plane in X-ray diffraction is 55 nm or less, the BET specific surface area is 15 m 2 / g or more, and the carbon content is 1 to 5 mass%. Positive electrode active material for secondary battery.
  10.  C2023型コイン電池の正極活物質として用いた場合、初期放電容量が145mAh/g以上、平均放電電圧3.8V以上および充放電効率85%以上の電池特性を示すことを特徴とする請求項9に記載のリチウム二次電池用正極活物質。 10. When used as a positive electrode active material of a C2023 type coin battery, the battery has an initial discharge capacity of 145 mAh / g or more, an average discharge voltage of 3.8 V or more, and a charge / discharge efficiency of 85% or more. The positive electrode active material for lithium secondary batteries as described.
  11.  請求項9又は10に記載のリチウム二次電池用正極活物質から構成される正極を備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode comprising the positive electrode active material for a lithium secondary battery according to claim 9 or 10.
PCT/JP2011/070947 2011-09-14 2011-09-14 Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material WO2013038517A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012528181A JP5120523B1 (en) 2011-09-14 2011-09-14 Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
PCT/JP2011/070947 WO2013038517A1 (en) 2011-09-14 2011-09-14 Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070947 WO2013038517A1 (en) 2011-09-14 2011-09-14 Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material

Publications (1)

Publication Number Publication Date
WO2013038517A1 true WO2013038517A1 (en) 2013-03-21

Family

ID=47692828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070947 WO2013038517A1 (en) 2011-09-14 2011-09-14 Manganese iron magnesium ammonium phosphate, method for producing same, positive electrode active material for lithium secondary batteries using manganese iron magnesium ammonium phosphate, method for producing same, and lithium secondary battery using said positive electrode active material

Country Status (2)

Country Link
JP (1) JP5120523B1 (en)
WO (1) WO2013038517A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071968A (en) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd Precursor for lithium secondary battery and production method therefor, positive electrode active material for lithium secondary battery using precursor and production method therefor, and lithium secondary battery using positive electrode active material
CN104085870A (en) * 2014-06-17 2014-10-08 湖北富邦科技股份有限公司 Synthetic method of slow release manganese fertilizer
JP2016129145A (en) * 2016-02-18 2016-07-14 住友金属鉱山株式会社 Precursor of positive electrode active material for lithium secondary batteries and its manufacturing method, positive electrode active material for lithium secondary batteries arranged by use thereof and its manufacturing method, and lithium secondary battery arranged by use of positive electrode active material
JP2016524307A (en) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Mixed positively active material comprising lithium metal oxide and lithium metal phosphate
CN111268664A (en) * 2020-02-13 2020-06-12 上海华谊(集团)公司 Ferromanganese phosphate intermediate, lithium iron manganese phosphate, and methods for producing these
CN114261952A (en) * 2021-12-21 2022-04-01 蜂巢能源科技股份有限公司 Lithium iron phosphate anode material, preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326467B (en) * 2014-10-21 2016-03-09 浙江大学 A kind of preparation method of flower-shaped lithium manganese phosphate nano particle and product
CN114348982A (en) * 2022-01-10 2022-04-15 雅安天蓝新材料科技有限公司 Ferrous manganous phosphate, ferrous manganous lithium phosphate, preparation methods thereof, lithium ion battery and electric equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047751A (en) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Method of manufacturing lithium iron phosphorus-based multiple oxide carbon composite body containing manganese atom
JP2006056754A (en) * 2004-08-20 2006-03-02 Mitsui Mining Co Ltd Method for manufacturing ammonium iron phosphate and positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2009218205A (en) * 2008-02-12 2009-09-24 Gs Yuasa Corporation Cathode active material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery, and their manufacturing method
JP2009259853A (en) * 2009-08-12 2009-11-05 Sony Corp Cathode active material and nonaqueous electrolyte battery
JP2010033924A (en) * 2008-07-30 2010-02-12 Nec Tokin Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP2011100592A (en) * 2009-11-05 2011-05-19 Tayca Corp Method of manufacturing carbon-olivine type lithium ferromanganese phosphate complex, and positive electrode material for lithium ion battery
JP2011517053A (en) * 2008-04-14 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー Lithium manganese phosphate / carbon nanocomposite as cathode active material for secondary lithium battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047751A (en) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Method of manufacturing lithium iron phosphorus-based multiple oxide carbon composite body containing manganese atom
JP2006056754A (en) * 2004-08-20 2006-03-02 Mitsui Mining Co Ltd Method for manufacturing ammonium iron phosphate and positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2009218205A (en) * 2008-02-12 2009-09-24 Gs Yuasa Corporation Cathode active material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery, and their manufacturing method
JP2011517053A (en) * 2008-04-14 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー Lithium manganese phosphate / carbon nanocomposite as cathode active material for secondary lithium battery
JP2010033924A (en) * 2008-07-30 2010-02-12 Nec Tokin Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP2009259853A (en) * 2009-08-12 2009-11-05 Sony Corp Cathode active material and nonaqueous electrolyte battery
JP2011100592A (en) * 2009-11-05 2011-05-19 Tayca Corp Method of manufacturing carbon-olivine type lithium ferromanganese phosphate complex, and positive electrode material for lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071968A (en) * 2012-09-28 2014-04-21 Sumitomo Metal Mining Co Ltd Precursor for lithium secondary battery and production method therefor, positive electrode active material for lithium secondary battery using precursor and production method therefor, and lithium secondary battery using positive electrode active material
JP2016524307A (en) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Mixed positively active material comprising lithium metal oxide and lithium metal phosphate
CN104085870A (en) * 2014-06-17 2014-10-08 湖北富邦科技股份有限公司 Synthetic method of slow release manganese fertilizer
JP2016129145A (en) * 2016-02-18 2016-07-14 住友金属鉱山株式会社 Precursor of positive electrode active material for lithium secondary batteries and its manufacturing method, positive electrode active material for lithium secondary batteries arranged by use thereof and its manufacturing method, and lithium secondary battery arranged by use of positive electrode active material
CN111268664A (en) * 2020-02-13 2020-06-12 上海华谊(集团)公司 Ferromanganese phosphate intermediate, lithium iron manganese phosphate, and methods for producing these
CN114261952A (en) * 2021-12-21 2022-04-01 蜂巢能源科技股份有限公司 Lithium iron phosphate anode material, preparation method and application thereof
CN114261952B (en) * 2021-12-21 2024-03-29 蜂巢能源科技股份有限公司 Lithium iron phosphate positive electrode material, preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2013038517A1 (en) 2015-03-23
JP5120523B1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5835334B2 (en) Ammonium manganese iron phosphate, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate
JP5120523B1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
EP2936590B1 (en) Lmfp cathode materials with improved electrochemical performance
JP5165515B2 (en) Lithium ion secondary battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP5712959B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the precursor
JP5901492B2 (en) Method for producing lithium silicate compound, method for producing lithium silicate compound aggregate, and method for producing lithium ion battery
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5988095B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP6013125B2 (en) Method for producing lithium silicate compound and method for producing lithium ion battery
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP6064309B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP5860377B2 (en) Lithium silicate compound and lithium ion battery using the same
JP2013077517A (en) Secondary battery active material, secondary battery active material electrode, and secondary battery using the same
JP7194493B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2016186877A (en) Olivine-type positive electrode active material and method for producing the same
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2016186878A (en) Lithium secondary battery positive electrode active material and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012528181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872507

Country of ref document: EP

Kind code of ref document: A1