JP2016186877A - Olivine-type positive electrode active material and method for producing the same - Google Patents

Olivine-type positive electrode active material and method for producing the same Download PDF

Info

Publication number
JP2016186877A
JP2016186877A JP2015066387A JP2015066387A JP2016186877A JP 2016186877 A JP2016186877 A JP 2016186877A JP 2015066387 A JP2015066387 A JP 2015066387A JP 2015066387 A JP2015066387 A JP 2015066387A JP 2016186877 A JP2016186877 A JP 2016186877A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
carbon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015066387A
Other languages
Japanese (ja)
Inventor
遼介 岡本
Ryosuke Okamoto
遼介 岡本
牛尾 亮三
Ryozo Ushio
亮三 牛尾
若林 正男
Masao Wakabayashi
正男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015066387A priority Critical patent/JP2016186877A/en
Publication of JP2016186877A publication Critical patent/JP2016186877A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an olivine-type positive electrode active material that exhibits excellent battery characteristics of high capacity and high energy density, and the positive electrode active material.SOLUTION: In a method for producing an olivine-type positive electrode active material, powder carbon such as acetylene black and graphite is added during a pulverizing and mixing process to be dispersed uniformly into raw materials and to be granulated so that the inside of secondary particles is coated with carbon and then both the inside and the surface of the secondary participles are coated with carbon by coating the vicinity of the surfaces of the secondary particles with carbon by means of a method that decomposes an organic compound under an inert atmosphere.SELECTED DRAWING: Figure 1

Description

本発明は、オリビン型正極活物質とその製造方法に関する。   The present invention relates to an olivine-type positive electrode active material and a method for producing the same.

リチウム二次電池は、軽量でエネルギー密度が高いことから、携帯電話、ノート型パソコン、その他IT機器などの小型電池に幅広く使用されており、これらの用途には、主としてLiCoO2、LiCo1/3Ni1/3Mn1/32、LiNiO2などの層状岩塩化合物正極活物質が用いられている。 Lithium secondary batteries are lightweight and have high energy density, so they are widely used in small batteries such as mobile phones, notebook computers, and other IT equipment. LiCoO 2 and LiCo 1/3 are mainly used for these applications. Layered rock salt compound positive electrode active materials such as Ni 1/3 Mn 1/3 O 2 and LiNiO 2 are used.

IT機器の発展、普及に伴い、現在もその需要が世界的な規模で伸びている。これらの小型電池に加えて、産業用の大型電池においても、ハイブリッド自動車(HEV)用、プラグインハイブリッド自動車(PHEV)、電気自動車(EV)用、電力平準化用、電力貯蔵用など、さらに多方面にその需要の拡大が期待され、研究開発も盛んに行われている。   With the development and popularization of IT equipment, the demand is still growing on a global scale. In addition to these small batteries, industrial large batteries can also be used for hybrid vehicles (HEV), plug-in hybrid vehicles (PHEV), electric vehicles (EV), power leveling, power storage, and more. The demand is expected to expand in the direction, and research and development are also actively conducted.

このような状況下で産業用の大型電池が本格的に実用化されるための課題として、正極活物質には、高い安全性、高寿命、高出力、低価格が要求されている。その中で高い安全性と優れたサイクル性能を示す材料として、オリビン型正極活物質がLiCoO2やLiCo1/3Ni1/3Mn1/32等の代替正極活物質として注目されている。 Under such circumstances, high safety, long life, high output, and low cost are required for the positive electrode active material as a problem for full-scale commercialization of large industrial batteries. Among them, as a material exhibiting high safety and excellent cycle performance, an olivine-type positive electrode active material has attracted attention as an alternative positive electrode active material such as LiCoO 2 or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 . .

オリビン型正極活物質は、理論容量約170mAh/gという高容量を持ちながら、全てのOがPと共有結合しているため、電池が発熱しても、酸素放出せずに発火の危険性が低く、また、リン酸の骨格により構造が安定なため、繰り返し充放電を行っても、電極が劣化しにくくサイクル寿命が長いといった特徴を持つ。   The olivine-type positive electrode active material has a theoretical capacity of about 170 mAh / g and all O is covalently bonded to P. Therefore, even if the battery generates heat, there is a risk of ignition without releasing oxygen. In addition, the structure is stable due to the skeleton of phosphoric acid, and therefore, the electrode is not easily deteriorated even after repeated charge and discharge, and the cycle life is long.

オリビン型正極活物質のなかで最も一般的な材料はリチウム鉄リン酸塩である。しかし、充放電電位が3.4V(対Li/Li+)と従来のリチウムイオン二次電池よりも低いためエネルギー密度が低い欠点がある。リチウムマンガンリン酸塩(LiMnPO4)は、Li金属に対し4.1Vと、層状岩塩化合物正極活物質と同等の電位を示すため、高エネルギー密度が期待されるため、世界中の開発者の注目を集めている。その他、LiCoPO4やLiNiPO4等の4.5V以上の充放電電位を示す材料もオリビン型正極活物質に含まれ、今後より高エネルギー密度な電池に使用される可能性がある。 The most common material among the olivine-type positive electrode active materials is lithium iron phosphate. However, since the charge / discharge potential is 3.4 V (vs. Li / Li + ), which is lower than that of the conventional lithium ion secondary battery, the energy density is low. Lithium manganese phosphate (LiMnPO 4 ) is 4.1 V against Li metal, which is equivalent to the layered rock salt compound positive electrode active material, and is expected to have high energy density. Collecting. In addition, materials exhibiting a charge / discharge potential of 4.5 V or higher, such as LiCoPO 4 and LiNiPO 4, are also included in the olivine-type positive electrode active material, and may be used for batteries with higher energy density in the future.

オリビン型正極活物質は、電子伝導性とLiイオン伝導性が従来の層状岩塩化合物正極活物質と比較して低いため、実用的な充放電容量を得ることが困難という課題が一般的にあった。この課題に対して、LiMnPO4粒子の微細化による電子、リチウムイオンの粒子内移動距離の短縮(特許文献1)や、カーボンなどの被覆等の処理による導電性の付与といった低抵抗化の対策の工程(特許文献2)が含まれる。 The olivine-type positive electrode active material generally has a problem that it is difficult to obtain a practical charge / discharge capacity because the electron conductivity and Li ion conductivity are lower than those of the conventional layered rock salt compound positive electrode active material. . In response to this problem, countermeasures for reducing resistance such as shortening of the movement distance of electrons and lithium ions in the particles by miniaturization of LiMnPO 4 particles (Patent Document 1) and imparting conductivity by treatment of carbon or the like are provided. A process (patent document 2) is included.

オリビン型正極活物質は遷移金属の酸化物、シュウ酸塩、リン酸塩などとリン源、リチウム源をボールミルなどで粉砕混合し、焼成するという固相合成法で合成されるのが一般的である。このとき、原料を均一に混合するには長時間の混合時間が要るため、生産性が低い。そのため、遷移金属とリンを共沈したNH4MPO4・H2O(M=Mg,Fe,Mn,Co,Niからの一つ以上の元素)が、原子レベルで構成元素が均一化された原料として注目されている(特許文献3)。 The olivine-type positive electrode active material is generally synthesized by a solid-phase synthesis method in which transition metal oxides, oxalates, phosphates, etc., and a phosphorus source and a lithium source are pulverized and mixed with a ball mill or the like and fired. is there. At this time, since mixing for a long time is required to uniformly mix the raw materials, the productivity is low. Therefore, NH 4 MPO 4 · H 2 O (M = one or more elements from Mg, Fe, Mn, Co, and Ni) co-precipitated with transition metal and phosphorus has been made uniform at the atomic level. It has attracted attention as a raw material (Patent Document 3).

NH4MPO4・H2Oは粉砕工程で容易にサブミクロンオーダーまで微細化され、最終製品までその微細粒径を保つため、先述の充放電容量を得るために必要な微細化処理という観点でも有益である。しかし微細化されたNH4MPO4・H2Oはハンドリングが非常に困難なため、工業的な大量生産規模では取り扱うことは困難である。そこでスプレードライヤーによる1〜75μmの二次粒子径となるような造粒工程が必要となる。 NH 4 MPO 4 · H 2 O is easily refined to the submicron order in the pulverization process, and maintains the fine particle size until the final product. It is beneficial. However NH 4 MPO 4 · H 2 O because handling is very difficult to miniaturized, in industrial mass production scale it is difficult to handle. Therefore, a granulation step is required to obtain a secondary particle size of 1 to 75 μm using a spray dryer.

通常、粉砕は水、エタノールなどの溶媒中で行われるため、スプレードライ工程は原料の分散混合直後に行うことが効率的である。造粒と乾燥工程を同時に行い、次にオリビン型正極活物質が生成される焼成工程を行う。   Usually, since the pulverization is performed in a solvent such as water and ethanol, it is efficient to perform the spray drying process immediately after the raw materials are dispersed and mixed. The granulation and drying steps are performed at the same time, followed by a firing step in which an olivine-type positive electrode active material is generated.

先述のとおり本来非導電性のオリビン型正極活物質より高容量を得るためには、カーボン被覆処理をして導電性を付与する必要がある。カーボン被覆処理は糖類、高分子化合物、石炭乾留物などの有機化合物をオリビン型正極活物質と混合し、不活性ガス中で焼成する方法が一般的である。通常カーボン被覆処理は一次粒子の表面を均一に覆うこと好ましく、そのためにはオリビン型正極活物質を合成する焼成と、カーボンコート処理に行う焼成は二段に分けることが望ましい(特許文献4)。   As described above, in order to obtain a higher capacity than the originally non-conductive olivine type positive electrode active material, it is necessary to impart conductivity by carbon coating treatment. The carbon coating treatment is generally performed by mixing an organic compound such as a saccharide, a polymer compound, or a coal dry product with an olivine-type positive electrode active material and baking it in an inert gas. In general, it is preferable that the carbon coating treatment uniformly covers the surface of the primary particles. For this purpose, it is desirable to divide the firing for synthesizing the olivine-type positive electrode active material and the firing for the carbon coating treatment into two stages (Patent Document 4).

しかし、スプレードライにより二次粒子を造粒した後、焼成されたオリビン型正極活物質に従来的なカーボン被覆処理を行うと、二次粒子表面のみにカーボン被覆が集中し、造粒粒子内部の一次粒子まで均一にカーボンコートされずに、粒子内部の粒子は充放電に寄与せず充放電容量が低下してしまうという問題があった。   However, after the secondary particles are granulated by spray drying, if the conventional carbon coating treatment is performed on the calcined olivine-type positive electrode active material, the carbon coating concentrates only on the surface of the secondary particles, and the inside of the granulated particles There is a problem that the particles inside the particles do not contribute to charging / discharging and the charge / discharge capacity decreases without being uniformly carbon-coated to the primary particles.

特開2002−151082号公報JP 2002-151082 A 特開2003−292308公報JP 2003-292308 A 特許第5120523号公報Japanese Patent No. 5120523 特許第5464322号公報Japanese Patent No. 5464322

本発明の目的は、上記の従来技術の問題点に鑑み、NH4MPO4・H2Oをオリビン型正極活物質の原料として用いた場合、二次粒子を造粒しつつ二次粒子内部の一次粒子までカーボン被覆され、高容量、かつ高エネルギー密度の優れた電池特性を示すオリビン型正極活物質の製造方法と、その正極活物質を用いて良好な特性を有するリチウム二次電池を、提供することにある。
In view of the above-mentioned problems of the prior art, the object of the present invention is to use the NH 4 MPO 4 · H 2 O as a raw material for the olivine-type positive electrode active material while granulating the secondary particles. Provided a method for producing an olivine-type positive electrode active material that is coated with carbon up to primary particles and exhibits excellent battery characteristics of high capacity and high energy density, and a lithium secondary battery having good characteristics using the positive electrode active material There is to do.

本発明者らは、上記目的を達成するために、二次粒子を造粒しつつ二次粒子内部の一次粒子までカーボン被覆されたオリビン型正極活物質について鋭意検討した結果、粉砕混合過程で、アセチレンブラックや黒鉛といった粉末カーボンを添加し、原料に対して均一に分散させ、それを造粒することで二次粒子内部にカーボンを被覆させ、その後、有機化合物を不活性雰囲気下で分解する方法でカーボンを二次粒子表面近傍に被覆することで、二次粒子の内部と表面の双方にカーボン被覆することで高い充放電容量が得られるとの知見を得た。本発明は、これらの知見により完成されたものである。   In order to achieve the above object, the present inventors have intensively studied the olivine-type positive electrode active material coated with carbon up to the primary particles inside the secondary particles while granulating the secondary particles. A method of adding powdered carbon such as acetylene black or graphite, uniformly dispersing it in the raw material, granulating it and coating the carbon inside the secondary particles, and then decomposing the organic compound in an inert atmosphere Thus, it was found that by covering the surface of the secondary particles with carbon near the surface of the secondary particles, high charge / discharge capacity can be obtained by covering both the inside and the surface of the secondary particles. The present invention has been completed based on these findings.

本発明の第一の発明は、リチウム二次電池用正極活物質の製造方法であって、原料であるM(M=Mg,Fe,Mn,Co,Niから選択される一つ以上の元素)化合物とリン化合物を共沈させて得られる共沈化合物とリチウム化合物とカーボン粉末を溶媒中で粉砕混合してスラリーを得る第一工程、前記スラリーを造粒乾燥して造粒粉末を得る第二工程、前記造粒粉末をリチウム二次電池用正極活物質が生成する温度、雰囲気で焼成してリチウム二次電池用正極活物質を得る第三工程、前記リチウム二次電池用正極活物質にカーボン前駆体物質を混合し、カーボン前駆体物質が熱分解する温度、雰囲気で再焼成する第四工程を備えることを特徴とする炭素被覆リチウム二次電池用正極活物質の製造方法である。   The first invention of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, and is a raw material M (one or more elements selected from M = Mg, Fe, Mn, Co, Ni) A first step of obtaining a slurry by pulverizing and mixing a coprecipitation compound obtained by coprecipitation of a compound and a phosphorus compound, a lithium compound, and carbon powder in a solvent, and secondly obtaining a granulated powder by granulating and drying the slurry A step, a third step of obtaining the positive electrode active material for a lithium secondary battery by calcining the granulated powder at a temperature and atmosphere at which the positive electrode active material for the lithium secondary battery is produced, and carbon in the positive electrode active material for the lithium secondary battery A method for producing a positive electrode active material for a carbon-coated lithium secondary battery, comprising a fourth step of mixing precursor materials and re-baking at a temperature and atmosphere where the carbon precursor materials are thermally decomposed.

本発明の第二の発明は、前記、共沈化合物がNH4MPO4・H2O(M=Mg,Fe,Mn,Co,Niからの一つ以上の元素)であることを特徴とするリチウム二次電池用正極活物質の製造方法である。 The second aspect of the present invention, the coprecipitation compound NH 4 MPO 4 · H 2 O wherein a is (M = Mg, Fe, Mn , Co, one or more elements from Ni) to It is a manufacturing method of the positive electrode active material for lithium secondary batteries.

本発明の第三の発明は、前記カーボン粉末は、アセチレンブラック、ケッチェンブラック、気相成長炭素、黒鉛、活性炭、カーボンナノチューブのいずれか一種以上のものであることを特徴とするリチウム二次電池用正極活物質の製造方法である。   A third aspect of the present invention is the lithium secondary battery, wherein the carbon powder is one or more of acetylene black, ketjen black, vapor grown carbon, graphite, activated carbon, and carbon nanotube. It is a manufacturing method of the positive electrode active material.

本発明の第四の発明は、前記カーボン粉末の平均一次粒子径が30〜200nmであることを特徴とするリチウム二次電池用正極活物質の製造方法である。   A fourth invention of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, wherein the carbon powder has an average primary particle diameter of 30 to 200 nm.

本発明の第五の発明は、前記溶媒中にカーボン粉末が分散するように分散剤を添加することを特徴とするリチウム二次電池用正極活物質の製造方法である。   A fifth invention of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, wherein a dispersant is added so that carbon powder is dispersed in the solvent.

本発明の第六の発明は、前記粉砕混合過程で、各種原料の平均粒子径を50nm〜1000nmまで粉砕することを特徴とするリチウム二次電池用正極活物質の製造方法である。   A sixth invention of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, wherein the average particle size of various raw materials is pulverized to 50 nm to 1000 nm in the pulverization and mixing process.

本発明の第七の発明は、前記造粒過程で、平均二次粒子径を1〜75μmに造粒することを特徴とするリチウム二次電池用正極活物質の製造方法である。   A seventh invention of the present invention is a method for producing a positive electrode active material for a lithium secondary battery, wherein an average secondary particle diameter is granulated to 1 to 75 μm in the granulation process.

本発明の第八の発明は、第一から第七発明に記載の製造方法で作製されたリチウム二次電池用正極活物質であって、活物質粒子表面に0.5〜6.0wt%のカーボン前駆体物質の熱分解により生成される炭素が担持され、さらに活物質中に含まれる総カーボン量の内、20〜65%が粉末状カーボンにより供給されることを特徴とするリチウム二次電池用正極活物質である。   An eighth invention of the present invention is a positive electrode active material for a lithium secondary battery produced by the production method according to the first to seventh inventions, wherein 0.5 to 6.0 wt% of the active material particle surface is formed. Lithium secondary battery characterized in that carbon generated by thermal decomposition of a carbon precursor material is supported, and 20 to 65% of the total amount of carbon contained in the active material is supplied by powdered carbon. Cathode active material.

本発明の第九の発明は、放電容量が140mAh/g以上かつ平均放電電圧3.70V以上であることを特徴とするリチウム二次電池用正極活物質である。   A ninth invention of the present invention is a positive electrode active material for a lithium secondary battery, characterized in that the discharge capacity is 140 mAh / g or more and the average discharge voltage is 3.70 V or more.

本発明の第十の発明は、XRDの測定でオリビン構造の結晶を持つことを特徴とするリチウム二次電池用正極活物質である。
A tenth aspect of the present invention is a positive electrode active material for a lithium secondary battery characterized by having an olivine-structure crystal as measured by XRD.

本発明によれば、二次粒子を造粒しつつ二次粒子内部の一次粒子までカーボン被覆されたオリビン型正極活物質を得ることができ、該正極活物質を用いて得られるリチウム二次電池は、高容量かつ高エネルギー密度と高充放電効率の優れた電池特性を示すものであり、その工業的価値は極めて大きい。
According to the present invention, it is possible to obtain an olivine-type positive electrode active material coated with carbon up to primary particles inside secondary particles while granulating the secondary particles, and a lithium secondary battery obtained using the positive electrode active material Shows excellent battery characteristics such as high capacity, high energy density and high charge / discharge efficiency, and its industrial value is extremely large.

本発明の実施例および比較例に係る正極活物質を用いた二次電池の充放電曲線Charge / discharge curves of secondary batteries using positive electrode active materials according to examples and comparative examples of the present invention

以下、本発明について、詳細に説明する。説明に当たっては共沈化合物としてNH4MPO4・H2O(M=Mg,Fe,Mn,Co,Niから選択される一つ以上の元素)を用いる例を記載するが、それに限定するものではない。
(1)第一工程
本発明の二次電池用正極活物質の原料となるNH4MPO4・H2O(M=Mg,Fe,Mn,Co,Niから選択される一つ以上の元素)は、2価のMgイオン、Mnイオン、Feイオン、CoイオンおよびNiイオンとリン酸イオンとの混合溶液を調製する混合溶液とアンモニアを溶媒が攪拌された反応槽に滴下して、反応槽内のpHを7〜9の範囲に調整して共沈殿させ、固形分をろ過、洗浄後、乾燥することで得られる。
Hereinafter, the present invention will be described in detail. NH is when described as coprecipitated compound 4 MPO 4 · H 2 O will be described an example of using a (M = Mg, Fe, Mn , Co, one or more elements selected from Ni), limited to it Absent.
(1) First Step NH 4 MPO 4 .H 2 O (M = one or more elements selected from Mg, Fe, Mn, Co, Ni) used as a raw material for the positive electrode active material for a secondary battery of the present invention Is a mixture solution for preparing a mixed solution of divalent Mg ions, Mn ions, Fe ions, Co ions, Ni ions and phosphate ions, and ammonia dropwise into the reaction vessel in which the solvent is stirred, The pH is adjusted to a range of 7 to 9 and coprecipitated, and the solid content is filtered, washed and dried.

次に、上記NH4MPO4・H2Oとリチウム塩とカーボン粉末を溶媒中で粉砕混合する。リチウム化合物とNH4MPO4・H2Oは、下記一般式(2)で表されるリチウムマンガン鉄複合リン酸塩が得られるように、混合するものであり、モル比でMに対するLiの比(Li/M)を0.95〜1.05とすることが好ましい。 Next, ground and mixed with the NH 4 MPO 4 · H 2 O and a lithium salt and carbon powder in a solvent. Lithium compound and NH 4 MPO 4 · H 2 O, as lithium manganese iron composite phosphate represented by the following general formula (2) is obtained, which is mixed, the ratio of Li to M in a molar ratio (Li / M) is preferably 0.95 to 1.05.

一般式:LiMPO4 (2)
(式中、M=Mg,Fe,Mn,Co,Niからの一つ以上の元素である。)

リチウム塩としては、特に限定されるものではなく、水酸化リチウム、炭酸リチウム、酢酸リチウムなど一般的なリチウム塩を一種類以上用いることができる。
General formula: LiMPO 4 (2)
(Wherein M = one or more elements from Mg, Fe, Mn, Co, Ni).

The lithium salt is not particularly limited, and one or more general lithium salts such as lithium hydroxide, lithium carbonate, and lithium acetate can be used.

粉砕に用いる溶媒には水、アルコール類などを用いることができるが、溶媒のコストと後の造粒工程での乾燥時に気化させることを考えると水を用いることが好ましい。   Water, alcohols, and the like can be used as a solvent for pulverization, but it is preferable to use water in view of the cost of the solvent and vaporization at the time of drying in a subsequent granulation step.

カーボン粉末はアセチレンブラック、ケッチェンブラック、気相成長炭素、黒鉛、活性炭、カーボンナノチューブなどの導電性あるものであれば特に制限はない。カーボン粉末の平均一次粒子径が5〜200nm、特に10〜50nmであることが好ましい。平均一次粒子径が5nm未満であると、比表面積が大きくなり、粉砕時のスラリー粘度が高くなり、分散が困難になる。また、平均一次粒子径が200nmを超えると、粉砕後のNH4MPO4・H2Oよりも粒径が大きくなり、NH4MPO4・H2Oの表面をカーボンで被覆するという目的に対して適切でない。 The carbon powder is not particularly limited as long as it is conductive such as acetylene black, ketjen black, vapor-grown carbon, graphite, activated carbon, and carbon nanotube. The average primary particle size of the carbon powder is preferably 5 to 200 nm, particularly preferably 10 to 50 nm. When the average primary particle diameter is less than 5 nm, the specific surface area increases, the slurry viscosity during pulverization increases, and dispersion becomes difficult. Further, the average primary particle size exceeds 200 nm, for the purposes of particle size than NH 4 MPO 4 · H 2 O after grinding is increased, to cover the NH 4 MPO 4 · H 2 O surface carbon Is not appropriate.

ここでいう平均一次粒子径とは電子顕微鏡等により粒子を観察し、無作為に選択した100個の粒子の直径を測定し、それらの算術平均を取ることをいう。また平均二次粒子径は、粒子の粒度分布計による測定から得られる体積平均粒径のことをいう。   The average primary particle diameter here refers to observing particles with an electron microscope or the like, measuring the diameters of 100 randomly selected particles, and taking their arithmetic average. Moreover, an average secondary particle diameter means the volume average particle diameter obtained from the measurement by the particle size distribution analyzer of particle | grains.

カーボン粉末の添加量は最終製品に中に含まれるカーボンの20〜65%の範囲にすることが好ましい20%未満では粒子内部のカーボンによる導電パスが確保されずに十分な充放電容量を得ることができない。65%以上では充放電に寄与しない過剰なカーボンにより充放電容量が低下する。   The amount of carbon powder added is preferably in the range of 20 to 65% of the carbon contained in the final product. If it is less than 20%, a sufficient charge / discharge capacity can be obtained without ensuring a conductive path due to carbon inside the particles. I can't. If it is 65% or more, the charge / discharge capacity decreases due to excessive carbon that does not contribute to charge / discharge.

一般的にカーボン粉末は疎水性であり、粉砕に水系溶媒を用いた際は均一に分散しない。そのため、水系溶媒中にカーボン粉末が分散するように分散剤を添加することができる。使用する分散剤に特に制限は無いが、オリビン型正極活物質を構成する元素以外の持ち込みがないポリビニルアルコール、ゼラチン、カルボキシメチルセルロースなどの非イオン性界面活性剤を用いることが望ましい。有機系溶媒の場合でも分散剤を用いることに問題はない。   In general, carbon powder is hydrophobic and does not disperse uniformly when an aqueous solvent is used for grinding. Therefore, a dispersant can be added so that the carbon powder is dispersed in the aqueous solvent. The dispersant to be used is not particularly limited, but it is desirable to use a nonionic surfactant such as polyvinyl alcohol, gelatin or carboxymethylcellulose which does not bring in other elements than those constituting the olivine type positive electrode active material. There is no problem in using a dispersant even in the case of an organic solvent.

分散剤はそれ自身炭素を持つものが多いため、後の焼成工程で熱分解して被覆カーボンの一部となる。ただし、オリビン型正極活物質の生成反応とカーボン熱分解反応が並行すると結果としてできる被覆カーボン層が不均一になるため好ましくない。よって粉末カーボンの分散のために添加する分散剤の量は、種類にもよるが粉末カーボンの17wt%以下にすることが好ましい。   Since many dispersants themselves have carbon, they are thermally decomposed in a later firing step to become part of the coated carbon. However, if the generation reaction of the olivine-type positive electrode active material and the carbon pyrolysis reaction are performed in parallel, the resulting coated carbon layer is not preferable. Therefore, the amount of the dispersant added for dispersing the powdered carbon is preferably 17 wt% or less of the powdered carbon, although it depends on the type.

粉砕混合方法は、NH4MPO4・H2Oを平均粒子径で50nm〜1000nmまで粉砕でき、リチウム化合物とカーボン粉末を十分に混合できる粉砕混合機を用いれば特に制限はない具体的には、溶媒中でアルミナ、ジルコニア球などの粉砕媒体を用いたボールミル、遊星ボールミル、ビーズミルなどが使用できる。 The pulverization and mixing method is not particularly limited as long as a pulverization mixer that can pulverize NH 4 MPO 4 · H 2 O to an average particle size of 50 nm to 1000 nm and sufficiently mix a lithium compound and carbon powder is used. A ball mill, planetary ball mill, bead mill, or the like using a grinding medium such as alumina or zirconia sphere in a solvent can be used.

NH4MPO4・H2Oの平均粒子を50nmまで微細化すれば、十分に良好な放電容量を得ることができるため、50nm未満の粉砕は無意味に粉砕工程にかかる時間を大きくするだけであるため適当でない。NH4MPO4・H2Oの平均粒子が1000nmを超えると、最終的な正極活物質の反応界面が不足し充放電容量が取り出せなくなるため不適当である。
粉砕と混合は必ずしも同時行う必要は無いが、生産性から同時に行うことが好ましい。

(2)第二工程
第二工程では、前記第一工程で得られたNH4MPO4・H2O、リチウム化合物、カーボン粉末が分散したスラリーを乾燥させながら造粒する。
If NH 4 finer average particle MPO 4 · H 2 O to 50nm, it is possible to obtain sufficiently good discharge capacity, grinding of less than 50nm only increases the time it takes meaningless grinding step Because there is, it is not appropriate. NH 4 When MPO 4 · H 2 O average particle exceeds 1000 nm, the charge-discharge capacity reaction interface is insufficient final cathode active material is inappropriate for might become caught.
Crushing and mixing are not necessarily performed at the same time, but are preferably performed simultaneously from the viewpoint of productivity.

(2) Second Step In the second step, the slurry in which NH 4 MPO 4 · H 2 O, lithium compound, and carbon powder obtained in the first step are dispersed is granulated while drying.

造粒粒子の平均二次粒子径は1〜75μmであることが好ましく、3〜50μmであることがより好ましい。1μm未満では造粒によるハンドリング性の向上への寄与が少ない。75μmを超えると後工程で電池を作製することが困難になる。   The average secondary particle diameter of the granulated particles is preferably 1 to 75 μm, and more preferably 3 to 50 μm. If it is less than 1 μm, there is little contribution to the improvement of handling by granulation. If it exceeds 75 μm, it will be difficult to produce a battery in a later step.

造粒方法はスラリーから目標粒径の二次粒子を得られれば特に制限はない。具体的にはスプレードライヤー、媒体流動乾燥機などが挙げられる。

(3)第三工程
第三工程では、前記第二工程で得られた造粒粉をリチウム二次電池正極物質が生成する温度で熱処理する。
The granulation method is not particularly limited as long as secondary particles having a target particle diameter can be obtained from the slurry. Specific examples include a spray dryer and a medium fluidized dryer.

(3) Third Step In the third step, the granulated powder obtained in the second step is heat-treated at a temperature at which the lithium secondary battery positive electrode material is generated.

オリビン型リチウム二次電池正極活物質の場合、200〜500℃、好ましくは300〜400℃で熱処理する。熱処理温度が200℃未満では、反応原料である炭酸リチウムなどが残存することがあり、また、500℃を超えると、粒子の焼結が進行して粗大粒子が生成され、最終的に得られる正極活物質の充放電容量が低下する。   In the case of an olivine-type lithium secondary battery positive electrode active material, heat treatment is performed at 200 to 500 ° C, preferably 300 to 400 ° C. When the heat treatment temperature is less than 200 ° C., lithium carbonate as a reaction raw material may remain. When the heat treatment temperature exceeds 500 ° C., sintering of the particles proceeds and coarse particles are generated, and finally obtained positive electrode The charge / discharge capacity of the active material is reduced.

熱処理は混合したカーボン粉末が燃焼することを防ぐために、N2、Ar、Heなど不活性ガス、または不活性ガスと水素ガスの混合ガス中で行うことが好ましい。水素ガス含有量としては、20容量%までとすることが好ましい。20容量%を超えると、還元ポテンシャルが過剰になり、Ni,Co,Fe、Mnが還元され、材料中にメタルとして析出するため好ましくない。 In order to prevent the mixed carbon powder from burning, the heat treatment is preferably performed in an inert gas such as N 2 , Ar, or He, or a mixed gas of an inert gas and hydrogen gas. The hydrogen gas content is preferably up to 20% by volume. If it exceeds 20% by volume, the reduction potential becomes excessive, Ni, Co, Fe, and Mn are reduced and deposited as a metal in the material, which is not preferable.

熱処理に用いる炉としては、例えば、バッチ炉、ローラーハースキルン、プッシャー炉、ロータリーキルン、流動床炉など一般的な熱処理炉・焼成炉を用いることができる。

(4)第四工程
第四工程では、前記第三によって得られたリチウム二次電池正極活物質に、カーボン粉末のほかにより均一にカーボンを被覆し導電性を付与するために、カーボン前駆体を混合する。
As a furnace used for heat treatment, for example, a general heat treatment furnace / firing furnace such as a batch furnace, a roller hearth kiln, a pusher furnace, a rotary kiln, or a fluidized bed furnace can be used.

(4) Fourth Step In the fourth step, in order to coat the lithium secondary battery positive electrode active material obtained by the third in addition to the carbon powder more uniformly and impart conductivity, a carbon precursor is added. Mix.

カーボン前駆体としては、焼成によって黒鉛化して導電性炭素質材料となるものであれば、特に限定されるものではなく、ショ糖などの一般的な炭化水素類、石炭乾留物、アスコルビン酸その他、分解によって炭素質を生じる有機化合物等を幅広く用いることができる。   The carbon precursor is not particularly limited as long as it is graphitized by firing to become a conductive carbonaceous material. Common hydrocarbons such as sucrose, coal distillate, ascorbic acid and others, A wide variety of organic compounds that produce carbonaceous materials by decomposition can be used.

カーボン前駆体の添加量は前駆体から最終製品に残るカーボン含有量が0.5〜6.0wt%になるように添加する。0.5wt%以下ではカーボンによる導電パスが確保されずに、電池としての充放電容量が低下する。6.0wt%以上では比表面積が増大し、電池作製時のハンドリングが悪くなり好ましくない。   The carbon precursor is added so that the carbon content remaining in the final product from the precursor is 0.5 to 6.0 wt%. If it is 0.5 wt% or less, a conductive path by carbon is not secured, and the charge / discharge capacity as a battery is reduced. If it is 6.0 wt% or more, the specific surface area increases, and handling at the time of producing a battery is deteriorated.

上記混合は、リチウム二次電池正極活物質とカーボン前駆体が均一に混合されれば特に制限は無い。混合力が過剰な場合、造粒二次粒子が粉砕されることもあり、好ましくない。具体的にはシェイカーミキサー、アルミナ、ジルコニア球を用いた乾式ミル、水、エタノールなどにリチウム二次電池正極活物質とC前駆体を溶解、分散させて、攪拌しながら、加熱して溶媒を乾燥させる方法などが挙げられる。   The mixing is not particularly limited as long as the lithium secondary battery positive electrode active material and the carbon precursor are uniformly mixed. If the mixing force is excessive, the granulated secondary particles may be pulverized, which is not preferable. Specifically, a dry mill using a shaker mixer, alumina, zirconia sphere, water, ethanol, etc., dissolve and disperse the lithium secondary battery positive electrode active material and C precursor, and heat the solvent while stirring to dry the solvent. The method of making it, etc. are mentioned.

カーボン前駆体を混合したリチウム二次電池正極活物質を、不活性または還元雰囲気下で、600〜800℃、好ましくは600〜700℃で焼成することにより、カーボン前駆体が熱分解し、導電性が良好なカーボンとなりリチウム二次電池正極活物質表面を被覆する。   A lithium secondary battery positive electrode active material mixed with a carbon precursor is calcined at 600 to 800 ° C., preferably 600 to 700 ° C. in an inert or reducing atmosphere, whereby the carbon precursor is thermally decomposed and becomes conductive. Becomes good carbon and covers the surface of the positive electrode active material of the lithium secondary battery.

焼成温度が600℃未満では、カーボンの黒鉛化が進行せず、正極活物質に十分な導電性が得られない。また、焼成温度が800℃を超えると、粒子の焼結が進行して粗大化し、正極活物質の導電性が低下する。   When the firing temperature is less than 600 ° C., graphitization of carbon does not proceed and sufficient conductivity cannot be obtained for the positive electrode active material. On the other hand, when the firing temperature exceeds 800 ° C., the sintering of the particles proceeds and becomes coarse, and the conductivity of the positive electrode active material is lowered.

カーボン被覆工程においても上記焼成工程と同様に炉としては、例えば、バッチ炉、ローラーハースキルン、プッシャー炉、ロータリーキルン、流動床炉など一般的な熱処理炉・焼成炉を用いることができる。

(5)正極活物質
本発明のリチウム二次電池用正極活物質は、活物質粒子表面に0.5〜6.0wt%のカーボン前駆体物質の熱分解により生成される炭素が担持され、さらに活物質中に含まれる総カーボン量の内、20〜65%が粉末状カーボンにより供給されることを特徴とする。つまり、正極活物質粒子に含まれるカーボン粉末はおおよそ0.13〜11wt%となる。
In the carbon coating step, as in the case of the firing step, a general heat treatment furnace / firing furnace such as a batch furnace, a roller hearth kiln, a pusher furnace, a rotary kiln, or a fluidized bed furnace can be used.

(5) Positive electrode active material In the positive electrode active material for a lithium secondary battery of the present invention, carbon generated by thermal decomposition of 0.5 to 6.0 wt% of a carbon precursor material is supported on the surface of the active material particles, and Of the total amount of carbon contained in the active material, 20 to 65% is supplied by powdered carbon. That is, the carbon powder contained in the positive electrode active material particles is approximately 0.13 to 11 wt%.

ここで、カーボン粉末はアセチレンブラック、ケッチェンブラック、気相成長炭素、黒鉛、活性炭、カーボンナノチューブなどの導電性あるものであれば特に制限はない。カーボン粉末の平均一次粒子径は5〜200nmであることが好ましく、10〜50nmであるとより好ましい。平均一次粒子径が5nm未満であると、カーボン粉末の比表面積が大きくなることから、粉砕時のスラリー粘度が高くなり、その結果分散が困難になる。また、平均一次粒子径が200nmを超えると、粉砕後のNH4MPO4・H2Oの表面を被覆するには粒径が大きすぎるため、適切でない。 Here, the carbon powder is not particularly limited as long as it is conductive such as acetylene black, ketjen black, vapor-grown carbon, graphite, activated carbon, and carbon nanotube. The average primary particle size of the carbon powder is preferably 5 to 200 nm, and more preferably 10 to 50 nm. When the average primary particle diameter is less than 5 nm, the specific surface area of the carbon powder increases, so that the slurry viscosity during pulverization increases, and as a result, dispersion becomes difficult. On the other hand, if the average primary particle diameter exceeds 200 nm, the particle diameter is too large to cover the surface of the NH 4 MPO 4 .H 2 O after pulverization, which is not appropriate.

正極活物質粒子に含まれるカーボン粉末は0.13〜11wt%であり、0.4〜8.0wt%であること好ましい。カーボン粉末が0.13wt%未満では正極活物質内の導電性が十分に得られず、11wt%を超えると充放電に寄与しない過剰なカーボンにより充放電容量が低下する。

(5)リチウム二次電池
本発明によるリチウム二次電池は、正極、負極、非水電解質など、一般のリチウム二次電池と同様の構成要素から構成される。
The carbon powder contained in the positive electrode active material particles is 0.13 to 11 wt%, preferably 0.4 to 8.0 wt%. If the carbon powder is less than 0.13 wt%, sufficient conductivity in the positive electrode active material cannot be obtained, and if it exceeds 11 wt%, the charge / discharge capacity is reduced due to excess carbon that does not contribute to charge / discharge.

(5) Lithium Secondary Battery The lithium secondary battery according to the present invention is composed of the same constituent elements as a general lithium secondary battery, such as a positive electrode, a negative electrode, and a nonaqueous electrolyte.

以下、本発明のリチウム二次電池の実施形態について、その構成要素、用途などの項目に分けて詳しく説明するが、以下の実施形態は、例示にすぎず、本発明のリチウム二次電池は、本明細書に記載の実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。

(a)正極
正極は、本発明の正極活物質、導電材および結着剤を含んだ正極合材から形成される。
Hereinafter, the embodiment of the lithium secondary battery of the present invention will be described in detail by dividing into its components, uses, etc., but the following embodiments are merely examples, and the lithium secondary battery of the present invention is In addition to the embodiments described in the present specification, various modifications and improvements can be made based on the knowledge of those skilled in the art.

(A) Positive electrode A positive electrode is formed from the positive electrode compound material containing the positive electrode active material of this invention, the electrically conductive material, and the binder.

詳しくは、粉末状の正極活物質、導電材を混合し、それに結着剤を加え、必要に応じて、粘度調整などのための溶剤をさらに添加して、正極合材ペーストを調整し、その正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布、乾燥、必要に応じて加圧することにより、シート状の正極を作製する。   Specifically, a powdered positive electrode active material and a conductive material are mixed, a binder is added thereto, and if necessary, a solvent for viscosity adjustment is further added to adjust the positive electrode mixture paste, For example, the positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, dried, and pressurized as necessary to produce a sheet-like positive electrode.

導電材は、正極の電気伝導性を確保するためのものであり、たとえば、カーボンブラック、アセチレンブラック、黒鉛などの炭素物質粉状体の1種または2種以上を混合したものを用いることができる。   The conductive material is for ensuring the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or more carbon material powders such as carbon black, acetylene black, and graphite can be used. .

結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴムなどの含フッ素樹脂、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂、その他の適切な材料を用いることができる。必要に応じて正極合材に添加する溶剤、つまり、活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤としては、N−メチル−2−ピロリドンなどの有機溶剤を用いることができる。また、活性炭を、電気二重層容量を増加させるために添加することができる。   The binder plays a role of anchoring the active material particles. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, a thermoplastic resin such as polypropylene and polyethylene, and other suitable materials. Can be used. If necessary, an organic solvent such as N-methyl-2-pyrrolidone is used as a solvent to be added to the positive electrode mixture, that is, as a solvent for dispersing the active material, conductive material, activated carbon, and dissolving the binder. it can. Activated carbon can also be added to increase the electric double layer capacity.

このような正極活物質、導電材、および結着剤を混合し、必要に応じて、活性炭、溶剤を添加し、これを混練して正極合材ペーストを調製する。   Such a positive electrode active material, a conductive material, and a binder are mixed, and if necessary, activated carbon and a solvent are added and kneaded to prepare a positive electrode mixture paste.

正極合材中のそれぞれの混合比も、リチウムイオン二次電池の性能を決定する重要な要素となりうる。正極合材の固形分の全体(溶剤を除く意味)を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質は60〜95質量%、導電材は1〜20質量%、結着剤は1〜20質量%とすることが望ましい。   Each mixing ratio in the positive electrode mixture can also be an important factor that determines the performance of the lithium ion secondary battery. When the total solid content (meaning excluding the solvent) of the positive electrode mixture is 100% by mass, the positive electrode active material is 60 to 95% by mass, and the conductive material is 1 to 5 like the positive electrode of a general lithium secondary battery. It is desirable that 20% by mass and the binder be 1 to 20% by mass.

たとえば、アルミニウムなどの金属箔集電体の表面に、充分に混練した上記の正極合材ペーストを塗布し、乾燥して溶剤を飛散させ、必要に応じて、その後に電極密度を高めるべく、ロールプレスなどにより圧縮することにより、正極をシート状に形成することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などを行い、電池の作製に供することができる。

(b)負極
負極には、金属リチウム、リチウム合金など、また、リチウムイオンを吸蔵および脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して、形成したものを使用する。このとき、負極活物質として、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、コークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極と同様に、ポリフッ化ビニリデンなどの含フッ素樹脂などを、これら負極活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドンなどの有機溶剤を用いることができる。

(c)セパレータ
正極と負極の間には、セパレータを挟み装填する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い微多孔膜を用いることができる。

(d)非水系電解質
非水電解質は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、リン酸トリエチル、リン酸トリエチル、リン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
For example, the above-mentioned positive electrode mixture paste sufficiently kneaded is applied to the surface of a metal foil current collector such as aluminum, dried to disperse the solvent, and then, if necessary, a roll to increase the electrode density By compressing with a press or the like, the positive electrode can be formed into a sheet. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.

(B) Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of inserting and extracting lithium ions and adding a suitable solvent to form a paste. , And applied to the surface of a current collector of a metal foil such as copper, dried, and compressed to increase the electrode density as necessary. At this time, as the negative electrode active material, for example, a fired organic compound such as natural graphite, artificial graphite, or a phenol resin, or a powdery carbon material such as coke can be used. In this case, the negative electrode binder is a fluorine-containing resin such as polyvinylidene fluoride as in the positive electrode, and the negative electrode active material and the binder are organic solvents such as N-methyl-2-pyrrolidone. A solvent can be used.

(C) Separator A separator is sandwiched and loaded between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

(D) Nonaqueous electrolyte The nonaqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorous compounds such as triethyl phosphate, triethyl phosphate and trioctyl phosphate alone, or two or more kinds It can be used by mixing.

支持塩としては、LiPF6、LiBF4、LiClO4、LiASF6、LiN(CF3SO22など、およびそれらの複合塩を用いることができる。さらに、非水電解質は、ラジカル補足剤、界面活性剤や難燃剤などを含んでいてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiASF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used. Further, the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.

以上のように構成される本発明のリチウム二次電池であるが、その形状は、円筒型、積層型など、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リードなどを用いて接続し、この電極体に上記の非水電解質を含浸させ、電池ケースに密閉して電池を完成させる。   The lithium secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type and a stacked type. Even if any shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal, A current collecting lead or the like is used for connection, the electrode body is impregnated with the nonaqueous electrolyte, and the battery case is sealed to complete the battery.

本発明のリチウム二次電池においては、本発明のリチウム二次電池用正極活物質を正極材料として用いた正極を備えており、3.0〜4.5Vの電位で充放電を行なうことで、従来のリチウム金属複合酸化物よりも、安全性がきわめて高く、さらに高容量を兼ね備えたリチウム二次電池を工業的に実現できる。   The lithium secondary battery of the present invention includes a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode material, and is charged and discharged at a potential of 3.0 to 4.5 V. It is possible to industrially realize a lithium secondary battery that is extremely safer than conventional lithium metal composite oxides and also has a high capacity.

以下、本発明を実施例及び比較例により更に具体的に説明する。なお、実施例で用いた金属の化学分析方法、X線回折及び電池容量の評価方法は、以下の通りである。
(1)金属の分析:
ICP発光分析装置(VARIAN社製、725ES)を用いて、ICP発光分析法で行った。
(2)X線回折:
粉末X線回折装置(PANalytical社製、X‘Prt PRO)を用いて、得られた正極活物質について、Cu−Kα線による粉末X線回折で測定した。
(3)粒度分布の測定:
スラリー、造粒粒子および正極活物質の平均二次粒径は、粒度分布測定器(日機装株式会社製、マイクロトラックMT3000II)を用いて測定した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the chemical analysis method of the metal used in the Example, the X-ray diffraction, and the evaluation method of battery capacity are as follows.
(1) Analysis of metals:
An ICP emission analysis method (Varian, 725ES) was used for ICP emission analysis.
(2) X-ray diffraction:
Using a powder X-ray diffractometer (manufactured by PANalytical, X'Prt PRO), the obtained positive electrode active material was measured by powder X-ray diffraction using Cu-Kα rays.
(3) Measurement of particle size distribution:
The average secondary particle size of the slurry, the granulated particles and the positive electrode active material was measured using a particle size distribution measuring device (Nikkiso Co., Ltd., Microtrac MT3000II).

粉末カーボンおよび正極活物質の一次粒子径は、走査型電子顕微鏡(JEOL製、JSM-7001F)を用いて粉末を観察し、無作為に選んだ100個の粒子の大きさを測定することにより得た。
(4) カーボン量:
リチウムシリケート化合物の表面に形成されたカーボン量は、LECO社製炭素分析装置(CS−600)を用いて、高周波燃焼赤外吸収法で行った。なお、助燃剤として銅と鉄のチップを用いて正極活物質0.2gを高周波炉内で酸素気流中にて燃焼を行い、その際にCO2となった炭素を赤外線のエネルギー量で測定した。

(5)電池容量の評価:
得られた正極活物質について、以下の手順でコイン型電池を作製し、電池の充放電容量を測定して評価した。
The primary particle size of the powder carbon and the positive electrode active material is obtained by observing the powder using a scanning electron microscope (manufactured by JEOL, JSM-7001F) and measuring the size of 100 randomly selected particles. It was.
(4) Carbon content:
The amount of carbon formed on the surface of the lithium silicate compound was measured by a high frequency combustion infrared absorption method using a carbon analyzer (CS-600) manufactured by LECO. In addition, 0.2 g of the positive electrode active material was burned in an oxygen stream in a high-frequency furnace using a copper and iron tip as a combustion aid, and the carbon that became CO 2 at that time was measured by the amount of infrared energy. .

(5) Battery capacity evaluation:
About the obtained positive electrode active material, the coin type battery was produced in the following procedures, and the charge / discharge capacity of the battery was measured and evaluated.

正極活物質に導電材としてアセチレンブラック33wt%、結着材としてポリビニリデンフルオライド(PVDF)17wt%、N−メチルピロリドン(NMP)溶液を添加混合し、上記正極活物質50wt%−導電材33wt%−PVDF17wt%の混合物を得た。   The positive electrode active material was mixed with 33 wt% of acetylene black as a conductive material, 17 wt% of polyvinylidene fluoride (PVDF) as a binder, and an N-methylpyrrolidone (NMP) solution, and the positive electrode active material was 50 wt% —the conductive material was 33 wt%. -A PVDF 17 wt% mixture was obtained.

この混合物をアルミ箔上に塗布し、80℃で乾燥後、電極寸法の直径11mmφに打ち抜き、プレス圧98MPa(1.0tonf/cm2)でプレスして電極を作製した。 This mixture was applied onto an aluminum foil, dried at 80 ° C., punched to an electrode size of 11 mmφ, and pressed at a press pressure of 98 MPa (1.0 tonf / cm 2 ) to produce an electrode.

この電極を正極とし、グローブボックス内で負極として金属Li、電解液として電解質LiPF61モル/Lを含んだエチレンカーボネート(EC)とジメチルカーボネート(DEC)の混合液(容積比でEC:DEC=7:3)、セパレータとしてガラスセパレータを用いてC2023コイン電池を作製した。 Using this electrode as a positive electrode, a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DEC) containing metal Li as a negative electrode and 1 mol / L of electrolyte LiPF 6 as an electrolyte in a glove box (EC: DEC = volume ratio) 7: 3) A C2023 coin battery was produced using a glass separator as the separator.

電池の充放電を、充電0.2mA/cm2、4.5V、休止60分、放電0.2mA/cm2、2.0V、25℃の条件で実施し、1サイクル目の放電容量を、評価値として用いるとともに初期充放電効率(放電容量/充電容量)を求めた。また、充放電時に測定される電圧曲線から平均放電電圧を求めた。

[実施例1]
硫酸鉄7水和物(和光社製試薬特級:純度99.5質量%)7.5mol(2095.4g)と硫酸マンガンn水和物(中央電工製:純度99.9質量%)22.5mol(3807.2g)とリン酸(和光社製:純度85.0質量%以上)30モル(3458.4g)を攪拌機で1時間、イオン交換水中で攪拌し溶解し、体積を30Lに調整して原料溶液とした。また、25質量%アンモニア水溶液をpH調整溶液とした。
The battery was charged and discharged under the conditions of charge 0.2 mA / cm 2 , 4.5 V, rest 60 minutes, discharge 0.2 mA / cm 2 , 2.0 V, 25 ° C., and the discharge capacity at the first cycle was While used as an evaluation value, the initial charge / discharge efficiency (discharge capacity / charge capacity) was determined. Moreover, the average discharge voltage was calculated | required from the voltage curve measured at the time of charging / discharging.

[Example 1]
Iron sulfate heptahydrate (special grade by Wako Co., Ltd .: purity 99.5% by mass) 7.5 mol (2095.4 g) and manganese sulfate n-hydrate (Chuo Denko: purity 99.9% by mass) 22.5 mol (3807.2 g) and 30 mol (3458.4 g) of phosphoric acid (manufactured by Wako Co., Ltd .: purity 85.0% by mass or more) were dissolved by stirring in ion-exchange water for 1 hour with a stirrer, and the volume was adjusted to 30 L. A raw material solution was obtained. Moreover, 25 mass% ammonia aqueous solution was used as pH adjustment solution.

撹拌機付50Lのセパラブルフラスコに1Lの純水をいれ、内部を窒素で置換しながら、30分攪拌した。pH調整溶液をpHコントローラにつなぎ、pHを8.0〜8.2に制御しながら、原料溶液を毎秒10mLの速度で添加した。滴下終了後、セパラブルフラスコを窒素で置換しながら30分撹拌を継続して共沈殿反応を完全に進行させた。反応後のスラリーを吸引濾過で固液分離した後、純水で2回レパルプ水洗浄を行った。   1 L of pure water was put into a 50 L separable flask equipped with a stirrer, and the mixture was stirred for 30 minutes while the inside was replaced with nitrogen. The raw material solution was added at a rate of 10 mL per second while the pH adjustment solution was connected to a pH controller and the pH was controlled at 8.0 to 8.2. After completion of dropping, stirring was continued for 30 minutes while replacing the separable flask with nitrogen to complete the coprecipitation reaction. The slurry after the reaction was subjected to solid-liquid separation by suction filtration, and then washed with pure water twice with pure water.

水洗後、120℃真空下で24時間乾燥して、リン酸アンモニウムマンガン鉄を得た。   After washing with water, it was dried under vacuum at 120 ° C. for 24 hours to obtain ammonium manganese iron phosphate.

上記リン酸アンモニウムマンガン鉄2000g、炭酸リチウム(関東化学社製鹿特級:99.0質量%)408.2g、平均一次粒径48nmの粉末状カーボン(デンカブラックHS−100)22.0g、PVA3.66gおよびイオン交換水10Lを、攪拌機で一昼夜攪拌し、スラリー化した。スラリーをナノグレンミル(NGL−2、浅田鉄工製)に通液して粉砕した。粉砕媒体にはφ0.3mmジルコニアボール5kgを用い、周速12m/sでベッセル内を攪拌した。スラリーの粒度分布を測定し、平均二次粒子径が500nm以下になったことを確認して粉砕を終了した。   2000 g of ammonium manganese iron phosphate, 408.2 g of lithium carbonate (Kanto Chemical Co., Ltd. deer special grade: 99.0 mass%), 22.0 g of powdery carbon (Denka Black HS-100) having an average primary particle size of 48 nm, PVA3. 66 g and 10 L of ion exchange water were stirred with a stirrer all day and night to make a slurry. The slurry was passed through a nanograin mill (NGL-2, manufactured by Asada Tekko) and pulverized. As a grinding medium, 5 kg of φ0.3 mm zirconia balls were used, and the inside of the vessel was stirred at a peripheral speed of 12 m / s. The particle size distribution of the slurry was measured, and it was confirmed that the average secondary particle size was 500 nm or less.

マイクロミストドライヤー(藤崎電機製、型番MDL−050M)を用いて粉砕後のスラリーを乾燥し、粉砕された各原料から構成された二次粒子を造粒した。造粒は三流体ノズルを使用し、100L/minのエアでスラリーを噴霧しながら乾燥することで行った。装置入口温度を130℃とし、排気温度が60〜70℃になるようにスラリーの送液量を調整した。得られた造粒粒子の粒度分布を測定すると平均二次粒子径4.3μmであった。   The slurry after pulverization was dried using a micro mist dryer (manufactured by Fujisaki Electric, model number MDL-050M), and secondary particles composed of each pulverized raw material were granulated. Granulation was performed by using a three-fluid nozzle and drying while spraying the slurry with 100 L / min of air. The apparatus inlet temperature was 130 ° C., and the amount of slurry fed was adjusted so that the exhaust temperature was 60 to 70 ° C. When the particle size distribution of the obtained granulated particles was measured, the average secondary particle size was 4.3 μm.

電気炉を用いて得られた造粒粒子を焼成した。98容量%窒素と2容量%水素の混合ガスを1L/分の流量で炉内にパージしながら10℃/分で昇温した後、350℃5時間焼成した。焼成物をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定された。炭素含有量を測定すると1.3wt%であった。   The granulated particles obtained using an electric furnace were fired. The mixture was heated at 10 ° C./min while purging a mixed gas of 98 vol% nitrogen and 2 vol% hydrogen into the furnace at a flow rate of 1 L / min, and then calcined at 350 ° C. for 5 hours. When the fired product was analyzed by X-ray diffraction, it was identified as an olivine type lithium manganese iron composite phosphate single phase. The carbon content was measured and found to be 1.3 wt%.

上記リチウムマンガン鉄複合リン酸塩30gとデキストリンn水和物(関東化学株式会社)1.23gを、100mlのプラスチック容器に取り、ターブラーミキサー(シンマルエンタープライゼス製、型番T2F型)を用いて100rpmで10分間混合した。この混合物を、電気炉を用いて98容量%窒素+2容量%水素の混合ガスを1L/分の流量で炉内にパージしながら昇温速度10℃/分、650℃で5時間の焼成を行い、正極活物質を得た。   Take 30 g of the above lithium manganese iron complex phosphate and 1.23 g of dextrin n hydrate (Kanto Chemical Co., Ltd.) in a 100 ml plastic container and use a tumbler mixer (manufactured by Shinmaru Enterprises, model number T2F type). Mix for 10 minutes at 100 rpm. The mixture was baked for 5 hours at 650 ° C. with a temperature rising rate of 10 ° C./min while purging the mixed gas of 98 vol% nitrogen + 2 vol% hydrogen into the furnace at a flow rate of 1 L / min using an electric furnace. A positive electrode active material was obtained.

この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は2.2質量%であった。デキストリンの熱分解により生成したカーボンは被覆したカーボン全体の40.9%といえる。   The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.2 mass%. It can be said that the carbon produced by pyrolysis of dextrin is 40.9% of the total coated carbon.

この正極活物質の走査型電子顕微鏡(SEM)(JEOL製、JSM-7001F)観察を行うと、一次粒子径は50〜400nmであった。また、粒度分布測定では平均二次粒子径が4.4μmであった。   When this positive electrode active material was observed with a scanning electron microscope (SEM) (manufactured by JEOL, JSM-7001F), the primary particle size was 50 to 400 nm. In the particle size distribution measurement, the average secondary particle size was 4.4 μm.

この正極活物質を用い二次電池を作製し、電池評価を実施したところ、初期充電容量は155mAh/g、初期放電容量は149mAh/g、初期効率は96%、平均放電電圧は3.78Vであった。正極活物質の評価結果を表1に、電池評価の充放電曲線を図1にまとめる。

[実施例2]
初期のスラリー調製時に添加する粉末状カーボンの量を16.5g、PVAの量を2.7gにし、焼成後のリチウムマンガン鉄複合リン酸塩30gに添加するデキストリンn水和物の量を1.81gにする以外は実施例1と同様の方法で試料を作製した。
A secondary battery was fabricated using this positive electrode active material, and the battery was evaluated. The initial charge capacity was 155 mAh / g, the initial discharge capacity was 149 mAh / g, the initial efficiency was 96%, and the average discharge voltage was 3.78 V. there were. The evaluation results of the positive electrode active material are summarized in Table 1, and the charge / discharge curves for battery evaluation are summarized in FIG.

[Example 2]
The amount of powdered carbon added at the time of initial slurry preparation is 16.5 g, the amount of PVA is 2.7 g, and the amount of dextrin n hydrate added to 30 g of lithium manganese iron composite phosphate after firing is 1. A sample was prepared in the same manner as in Example 1 except that the amount was 81 g.

造粒粒子の粒度分布を測定すると平均二次粒子径4.7μmであった。   When the particle size distribution of the granulated particles was measured, the average secondary particle size was 4.7 μm.

焼成後の造粒品をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定された。炭素含有量を測定すると1.0wt%であった。   When the granulated product after firing was analyzed by X-ray diffraction, it was identified as an olivine type lithium manganese iron composite phosphate single phase. The carbon content was measured and found to be 1.0 wt%.

この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は2.3質量%であった。デキストリンの熱分解により生成したカーボンは被覆したカーボン全体の56.5%といえる。   The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.3 mass%. Carbon generated by thermal decomposition of dextrin can be said to be 56.5% of the total carbon coated.

この正極活物質の走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は50〜400nmであった。また、正極活物質の粒度分布測定では平均二次粒子径が4.9μmであった。   When this positive electrode active material was observed with a scanning electron microscope (SEM), the primary particle size was 50 to 400 nm. Further, in the particle size distribution measurement of the positive electrode active material, the average secondary particle size was 4.9 μm.

正極活物質の電池評価を実施したところ、初期充電容量は150mAh/g、初期放電容量は143mAh/g、初期効率は95%、平均放電電圧は3.77Vであった。正極活物質の評価結果を表1に、電池評価の充放電曲線を図1にまとめる。

[実施例3]
初期のスラリー調製時に添加する粉末状カーボンの量を6.8g、PVAの量を1.13gにし、焼成後のリチウムマンガン鉄複合リン酸塩30gに添加するデキストリンn水和物の量を2.05gにする以外は実施例1と同様の方法で試料を作製した。
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 150 mAh / g, the initial discharge capacity was 143 mAh / g, the initial efficiency was 95%, and the average discharge voltage was 3.77 V. The evaluation results of the positive electrode active material are summarized in Table 1, and the charge / discharge curves for battery evaluation are summarized in FIG.

[Example 3]
The amount of powdered carbon added during the initial slurry preparation is 6.8 g, the amount of PVA is 1.13 g, and the amount of dextrin n hydrate added to 30 g of lithium manganese iron composite phosphate after firing is 2. A sample was prepared in the same manner as in Example 1 except that the amount was 05 g.

造粒粒子の粒度分布を測定すると平均二次粒子径4.8μmであった。   When the particle size distribution of the granulated particles was measured, the average secondary particle size was 4.8 μm.

焼成後の造粒品をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定された。炭素含有量を測定すると0.4wt%であった。   When the granulated product after firing was analyzed by X-ray diffraction, it was identified as an olivine type lithium manganese iron composite phosphate single phase. The carbon content was measured and found to be 0.4 wt%.

この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は1.9質量%であった。デキストリンの熱分解により生成したカーボンは被覆したカーボン全体の78.9%といえる。   The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 1.9% by mass. Carbon generated by pyrolysis of dextrin can be said to be 78.9% of the total carbon coated.

この正極活物質の走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は50〜400nmであった。また、正極活物質の粒度分布測定では平均二次粒子径が4.8μmであった。   When this positive electrode active material was observed with a scanning electron microscope (SEM), the primary particle size was 50 to 400 nm. Further, in the particle size distribution measurement of the positive electrode active material, the average secondary particle size was 4.8 μm.

正極活物質の電池評価を実施したところ、初期充電容量は150mAh/g、初期放電容量は144mAh/g、初期効率は96%、平均放電電圧は3.71Vであった。正極活物質の評価結果を表1に、電池評価の充放電曲線を図1にまとめる。

[比較例1]
初期のスラリー調製時に添加する粉末状カーボンの量を37.2g、PVAの量を6.20gにし、焼成後のリチウムマンガン鉄複合リン酸塩30gにデキストリンn水和物を添加せずに実施例1と同様の方法で試料を作製した。
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 150 mAh / g, the initial discharge capacity was 144 mAh / g, the initial efficiency was 96%, and the average discharge voltage was 3.71V. The evaluation results of the positive electrode active material are summarized in Table 1, and the charge / discharge curves for battery evaluation are summarized in FIG.

[Comparative Example 1]
The amount of powdery carbon added at the time of initial slurry preparation was 37.2 g, the amount of PVA was 6.20 g, and dextrin n hydrate was not added to 30 g of lithium manganese iron composite phosphate after firing. A sample was prepared in the same manner as in 1.

造粒粒子の粒度分布を測定すると平均二次粒子径4.5μmであった。   When the particle size distribution of the granulated particles was measured, the average secondary particle size was 4.5 μm.

焼成後の造粒品をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定された。   When the granulated product after firing was analyzed by X-ray diffraction, it was identified as an olivine type lithium manganese iron composite phosphate single phase.

この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は2.2質量%であった。デキストリンの熱分解により生成したカーボンは添加されていないので、デキストリンの熱分解により生成したカーボンは被覆したカーボン全体の0%である。   The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.2 mass%. Since the carbon produced by pyrolysis of dextrin is not added, the carbon produced by pyrolysis of dextrin is 0% of the total coated carbon.

この正極活物質の走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は100〜500nmであった。また、正極活物質の粒度分布測定では平均二次粒子径が4.8μmであった。   When this positive electrode active material was observed with a scanning electron microscope (SEM), the primary particle diameter was 100 to 500 nm. Further, in the particle size distribution measurement of the positive electrode active material, the average secondary particle size was 4.8 μm.

正極活物質の電池評価を実施したところ、初期充電容量は64mAh/g、初期放電容量は32mAh/g、初期効率は50%、平均放電電圧は2.88Vであった。正極活物質の評価結果を表1に、電池評価の充放電曲線を図1にまとめる。

[比較例2]
初期のスラリー調製時に添加する粉末状カーボンの量を32.1g、PVAの量を5.35gにし、焼成後のリチウムマンガン鉄複合リン酸塩30gに添加するデキストリンn水和物の量を0.41gにする以外は実施例1と同様の方法で試料を作製した。
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 64 mAh / g, the initial discharge capacity was 32 mAh / g, the initial efficiency was 50%, and the average discharge voltage was 2.88V. The evaluation results of the positive electrode active material are summarized in Table 1, and the charge / discharge curves for battery evaluation are summarized in FIG.

[Comparative Example 2]
The amount of powdery carbon added at the time of initial slurry preparation is 32.1 g, the amount of PVA is 5.35 g, and the amount of dextrin n hydrate added to 30 g of lithium manganese iron composite phosphate after firing is 0.00. A sample was prepared in the same manner as in Example 1 except that the amount was 41 g.

造粒粒子の粒度分布を測定すると平均二次粒子径4.8μmであった。   When the particle size distribution of the granulated particles was measured, the average secondary particle size was 4.8 μm.

焼成後の造粒品をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定された。炭素含有量を測定すると1.9wt%であった。   When the granulated product after firing was analyzed by X-ray diffraction, it was identified as an olivine type lithium manganese iron composite phosphate single phase. The carbon content was measured and found to be 1.9 wt%.

この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は2.2質量%であった。デキストリンの熱分解により生成したカーボンは被覆したカーボン全体の13.6%といえる。   The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.2 mass%. Carbon generated by pyrolysis of dextrin can be said to be 13.6% of the total carbon coated.

この正極活物質の走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は100〜500nmであった。また、正極活物質の粒度分布測定では平均二次粒子径が4.8μmであった。   When this positive electrode active material was observed with a scanning electron microscope (SEM), the primary particle diameter was 100 to 500 nm. Further, in the particle size distribution measurement of the positive electrode active material, the average secondary particle size was 4.8 μm.

正極活物質の電池評価を実施したところ、初期充電容量は103mAh/g、初期放電容量は88mAh/g、初期効率は85%、平均放電電圧は3.25Vであった。正極活物質の評価結果を表1に、電池評価の充放電曲線を図1にまとめる。

[比較例3]
初期のスラリー調製時に粉末状カーボンとPVAを添加せず、焼成後のリチウムマンガン鉄複合リン酸塩30gに添加するデキストリンn水和物の量を3.0gにする以外は実施例1と同様の方法で試料を作製した。
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 103 mAh / g, the initial discharge capacity was 88 mAh / g, the initial efficiency was 85%, and the average discharge voltage was 3.25V. The evaluation results of the positive electrode active material are summarized in Table 1, and the charge / discharge curves for battery evaluation are summarized in FIG.

[Comparative Example 3]
The same as in Example 1 except that powdery carbon and PVA are not added at the initial slurry preparation, and the amount of dextrin n hydrate added to 30 g of the lithium manganese iron composite phosphate after firing is 3.0 g. A sample was prepared by this method.

造粒粒子の粒度分布を測定すると平均二次粒子径4.6μmであった。   When the particle size distribution of the granulated particles was measured, the average secondary particle size was 4.6 μm.

焼成後の造粒品をX線回折で分析すると、オリビン型リチウムマンガン鉄複合リン酸塩単相と同定された。   When the granulated product after firing was analyzed by X-ray diffraction, it was identified as an olivine type lithium manganese iron composite phosphate single phase.

この正極活物質のLi:Mn:Fe:Pの組成は、モル比で1.00:0.75:0.25:1.00であり、炭素量は2.2質量%であった。粉末状カーボンは加えていないので、デキストリンの熱分解により生成したCは全体の100%といえる。   The composition of Li: Mn: Fe: P of this positive electrode active material was 1.00: 0.75: 0.25: 1.00 in terms of molar ratio, and the carbon content was 2.2 mass%. Since powdered carbon is not added, it can be said that C generated by pyrolysis of dextrin is 100% of the total.

この正極活物質の走査型電子顕微鏡(SEM)観察を行うと、一次粒子径は50〜400nmであった。また、正極活物質の粒度分布測定では平均二次粒子径が4.7μmであった。   When this positive electrode active material was observed with a scanning electron microscope (SEM), the primary particle size was 50 to 400 nm. Further, in the particle size distribution measurement of the positive electrode active material, the average secondary particle size was 4.7 μm.

正極活物質の電池評価を実施したところ、初期充電容量は146mAh/g、初期放電容量は133mAh/g、初期効率は91%、平均放電電圧は3.46Vであった。正極活物質の評価結果を表1に、電池評価の充放電曲線を図1にまとめる。
When the battery evaluation of the positive electrode active material was performed, the initial charge capacity was 146 mAh / g, the initial discharge capacity was 133 mAh / g, the initial efficiency was 91%, and the average discharge voltage was 3.46V. The evaluation results of the positive electrode active material are summarized in Table 1, and the charge / discharge curves for battery evaluation are summarized in FIG.

Figure 2016186877
Figure 2016186877

以上より明らかなように、本発明のリチウム二次電子正極活物質の製造方法は、二次粒子内部まで導電パスを確保することでき、得られたリチウム二次電子正極活物質は高容量かつ高エネルギー密度を示すものであり、その産業上の利用可能性は極めて大きい。   As is clear from the above, the method for producing a lithium secondary electron cathode active material of the present invention can secure a conductive path to the inside of the secondary particles, and the obtained lithium secondary electron cathode active material has a high capacity and a high capacity. It shows energy density, and its industrial applicability is extremely large.

Claims (10)

リチウム二次電池用正極活物質の製造方法であって、原料であるM(M=Mg,Fe,Mn,Co,Niから選択される一つ以上の元素)化合物とリン化合物を共沈させて得られる共沈化合物とリチウム化合物とカーボン粉末を溶媒中で粉砕混合してスラリーを得る第一工程、前記スラリーを造粒乾燥して造粒粉末を得る第二工程、前記造粒粉末をリチウム二次電池用正極活物質が生成する温度、雰囲気で焼成してリチウム二次電池用正極活物質を得る第三工程、前記リチウム二次電池用正極活物質にカーボン前駆体物質を混合し、カーボン前駆体物質が熱分解する温度、雰囲気で再焼成する第四工程を備えることを特徴とした炭素被覆リチウム二次電池用正極活物質の製造方法。   A method for producing a positive electrode active material for a lithium secondary battery, wherein a raw material M (one or more elements selected from Mg, Fe, Mn, Co, Ni) and a phosphorus compound are co-precipitated. The first step of obtaining a slurry by pulverizing and mixing the coprecipitated compound, lithium compound and carbon powder obtained in a solvent, the second step of granulating and drying the slurry to obtain a granulated powder, A third step of obtaining a positive electrode active material for a lithium secondary battery by firing at a temperature and an atmosphere at which the positive electrode active material for the secondary battery is generated; a carbon precursor material is mixed with the positive electrode active material for a lithium secondary battery; A method for producing a positive electrode active material for a carbon-coated lithium secondary battery, comprising a fourth step of refiring in a temperature and atmosphere at which the body material is thermally decomposed. 前記、共沈化合物がNH4MPO4・H2O(M=Mg,Fe,Mn,Co,Niからの一つ以上の元素)であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。 The coprecipitation compound NH 4 MPO 4 · H 2 O lithium secondary according to claim 1, characterized in that the (M = Mg, Fe, Mn , Co, one or more elements from Ni) A method for producing a positive electrode active material for a battery. 前記カーボン粉末は、アセチレンブラック、ケッチェンブラック、気相成長炭素、黒鉛、活性炭、カーボンナノチューブのいずれか一種以上のものであることを特徴とする請求項1〜2に記載のリチウム二次電池用正極活物質の製造方法。   3. The lithium secondary battery according to claim 1, wherein the carbon powder is one or more of acetylene black, ketjen black, vapor-grown carbon, graphite, activated carbon, and carbon nanotube. A method for producing a positive electrode active material. 前記カーボン粉末の平均一次粒子径が5〜200nmであることを特徴とする請求項1〜3に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the carbon powder has an average primary particle size of 5 to 200 nm. 前記溶媒中にカーボン粉末が分散するように分散剤を添加することを特徴とする請求項1〜4に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein a dispersant is added so that the carbon powder is dispersed in the solvent. 前記粉砕混合過程で、各種原料の平均二次粒子径を50nm〜1000nmまで粉砕することを特徴とする請求項1〜5に記載のリチウム二次電池用正極活物質の製造方法。   6. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein an average secondary particle diameter of various raw materials is pulverized to 50 nm to 1000 nm in the pulverization and mixing process. 前記造粒過程で、平均二次粒子径を1〜75μmに造粒することを特徴とする請求項1〜6に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein an average secondary particle diameter is granulated to 1 to 75 μm in the granulation process. 請求項1〜7に記載の製造方法で作製されたリチウム二次電池用正極活物質であって、活物質粒子表面に0.5〜6.0wt%のカーボン前駆体物質の熱分解により生成される炭素が担持され、さらに活物質中に含まれる総カーボン量の内、20〜65%が粉末状カーボンにより供給されることを特徴とするリチウム二次電池用正極活物質。   A positive electrode active material for a lithium secondary battery produced by the production method according to claim 1, wherein the active material particle surface is produced by thermal decomposition of a carbon precursor material of 0.5 to 6.0 wt%. A positive electrode active material for a lithium secondary battery, wherein 20 to 65% of the total amount of carbon contained in the active material is supplied by powdered carbon. 放電容量が140mAh/g以上かつ平均放電電圧3.70V以上であることを特徴とする請求項8に記載のリチウム二次電池用正極活物質。   The positive electrode active material for a lithium secondary battery according to claim 8, wherein the discharge capacity is 140 mAh / g or more and the average discharge voltage is 3.70 V or more. XRDの測定でオリビン構造の結晶を持つことを特徴とする請求項8〜9に記載のリチウム二次電池用正極活物質。   The positive electrode active material for a lithium secondary battery according to claim 8, wherein the positive electrode active material has an olivine structure crystal as measured by XRD.
JP2015066387A 2015-03-27 2015-03-27 Olivine-type positive electrode active material and method for producing the same Pending JP2016186877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015066387A JP2016186877A (en) 2015-03-27 2015-03-27 Olivine-type positive electrode active material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066387A JP2016186877A (en) 2015-03-27 2015-03-27 Olivine-type positive electrode active material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016186877A true JP2016186877A (en) 2016-10-27

Family

ID=57202716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066387A Pending JP2016186877A (en) 2015-03-27 2015-03-27 Olivine-type positive electrode active material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016186877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117153A (en) * 2023-10-16 2023-11-24 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117153A (en) * 2023-10-16 2023-11-24 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery
CN117117153B (en) * 2023-10-16 2024-02-20 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Similar Documents

Publication Publication Date Title
JP5835334B2 (en) Ammonium manganese iron phosphate, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate
JP6098612B2 (en) COMPOSITE PARTICLE, SOLID BATTERY ELECTRODE AND METHOD FOR PRODUCING COMPOSITE PARTICLE
KR101939415B1 (en) Process for production of (vanadium phosphate)-lithium-carbon complex
WO2010109869A1 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5853850B2 (en) Method for producing positive electrode material particles for lithium ion battery
WO2012098970A1 (en) Positive electrode material for lithium ion secondary batteries and method for producing same
JP5165515B2 (en) Lithium ion secondary battery
JP5120523B1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP2008184346A (en) Ultrafine olivine type compound particle and its production method
JP5712959B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the precursor
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP2004259471A (en) Manufacturing method of positive electrode active material for lithium ion battery
JP5381115B2 (en) Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
JP5901492B2 (en) Method for producing lithium silicate compound, method for producing lithium silicate compound aggregate, and method for producing lithium ion battery
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5988095B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP6013125B2 (en) Method for producing lithium silicate compound and method for producing lithium ion battery
JP2012054077A (en) Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2016186877A (en) Olivine-type positive electrode active material and method for producing the same
JP6064309B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same, positive electrode active material for lithium secondary battery using the precursor and method for producing the same, and lithium secondary battery using the positive electrode active material
JP2008198364A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2016186878A (en) Lithium secondary battery positive electrode active material and method for producing the same