JPH09326387A - Film formation method and its device - Google Patents

Film formation method and its device

Info

Publication number
JPH09326387A
JPH09326387A JP14417596A JP14417596A JPH09326387A JP H09326387 A JPH09326387 A JP H09326387A JP 14417596 A JP14417596 A JP 14417596A JP 14417596 A JP14417596 A JP 14417596A JP H09326387 A JPH09326387 A JP H09326387A
Authority
JP
Japan
Prior art keywords
power source
power
reaction chamber
thin film
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14417596A
Other languages
Japanese (ja)
Other versions
JP3414934B2 (en
Inventor
Yasushi Arai
康司 新井
Kazuyuki Sawada
和幸 澤田
Tomohiro Okumura
智洋 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14417596A priority Critical patent/JP3414934B2/en
Publication of JPH09326387A publication Critical patent/JPH09326387A/en
Application granted granted Critical
Publication of JP3414934B2 publication Critical patent/JP3414934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To generate plasma discharge stably to form a good quality of film by impressing a first power source and a second power source, which generate a plasma in a reaction chamber, at a proper time lag. SOLUTION: Silane, ammonium, and nitrogen are introduced from a gas introduction port 6 so as to adjust the pressure within a reaction chamber into specified pressure. Then, a silicon nitride film is made on a silicon wafer 3 by impressing a first power source 8 with 250W after placing a silicon wafer 3 on a conductive stage 4 arranged within a reaction chamber 1 and keeping it at about 350 deg.C by a heater 5, and by impressing a second power source 9 with 300W after 0.01sec. by time difference by a power impression timing controller 10. Hereby, plasma discharge can be generated stably, so a good quality of film can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として半導体集
積回路の製造において、半導体基板の表面上に絶縁薄膜
を堆積形成する絶縁薄膜形成方法等に好適に適用される
薄膜形成方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming method and apparatus suitable for use in an insulating thin film forming method of depositing an insulating thin film on the surface of a semiconductor substrate, mainly in the manufacture of semiconductor integrated circuits. Is.

【0002】[0002]

【従来の技術】半導体集積回路の製造において、アルミ
ニウム配線を終えた半導体基板表面上に、保護膜として
シリコン窒化膜をプラズマ気相成長法(P−CVD法と
略称する)によって形成することが一般的に行なわれて
いる。この場合、反応ガスとしてシラン、アンモニア及
び窒素が一般的に用いられる。
2. Description of the Related Art In the manufacture of semiconductor integrated circuits, it is common to form a silicon nitride film as a protective film on the surface of a semiconductor substrate having aluminum wiring completed by plasma vapor deposition (abbreviated as P-CVD method). Is being carried out. In this case, silane, ammonia and nitrogen are generally used as the reaction gas.

【0003】ところで、近年は半導体集積回路の高集積
化に伴って、アルミニウム配線の微細化が進み、膜応力
によるアルミニウム配線の断線(ストレスマイグレーシ
ョン)が問題となってきた。そこで、周波数の異なる2
つの電源をP−CVD装置に設置してプラズマを発生さ
せ、低応力の保護膜を形成することにより、信頼性の向
上が図られている。
By the way, in recent years, with the high integration of semiconductor integrated circuits, the miniaturization of aluminum wiring has progressed, and disconnection (stress migration) of aluminum wiring due to film stress has become a problem. Therefore, 2
Reliability is improved by installing two power sources in a P-CVD apparatus to generate plasma and form a low-stress protective film.

【0004】図4は、従来の低応力の保護膜を形成する
薄膜形成装置を示す。図4において、11は反応室、1
2は反応ガス吹き出し口を有し、高周波電力が印加され
る上部電極、13は被処理体、14は反応室11内に配
置された導電性の支持台、15は支持台14を加熱する
ためのヒータ、16は反応室へのガス導入口、17はガ
スを導入した時に反応室内を真空に保持するための排気
口、18は支持台14に電力を印加するための第1の電
源、19は上部電極12に電力を印加するための第2の
電源である。一般的に、第1の電源18には300〜5
00kHzの低周波電源が、第2の電源19には13.
56MHzの高周波電源がそれぞれ使用されている。
FIG. 4 shows a conventional thin film forming apparatus for forming a low stress protective film. In FIG. 4, 11 is a reaction chamber, 1
2 is an upper electrode to which a high-frequency power is applied, which has a reaction gas outlet, 13 is an object to be treated, 14 is a conductive support placed in the reaction chamber 11, and 15 is for heating the support 14. , 16 is a gas introduction port to the reaction chamber, 17 is an exhaust port for keeping the reaction chamber vacuum when gas is introduced, 18 is a first power source for applying electric power to the support base 14, 19 Is a second power source for applying power to the upper electrode 12. Generally, the first power supply 18 has 300-5
A low frequency power source of 00 kHz is supplied to the second power source 19.
A 56 MHz high frequency power supply is used.

【0005】以上の構成において、支持台14に載置さ
れた被処理体13はヒータ15により約350℃に加熱
される。ガス導入口16より反応ガスを導入し、上部電
極12に第2の電源19より高周波電力、支持台14に
第1の電源18より低周波電力を同時に印加することに
より、上部電極12と支持台14間にプラズマが発生し
て反応ガスが分解して被処理体13上に堆積し、低応力
のシリコン窒化膜が被処理体13上に形成される。
In the above structure, the object to be processed 13 placed on the support 14 is heated to about 350 ° C. by the heater 15. By introducing a reactive gas from the gas inlet 16 and simultaneously applying high-frequency power from the second power supply 19 to the upper electrode 12 and low-frequency power from the first power supply 18 to the support 14, the upper electrode 12 and the support Plasma is generated between 14 and the reaction gas is decomposed and deposited on the object to be processed 13, and a low-stress silicon nitride film is formed on the object to be processed 13.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
薄膜形成装置では、半導体基板から成る被処理体13上
にP−CVD法により薄膜を形成する際に、図5に示す
ように、第1の電源18と第2の電源19を同時に印加
しているため、第1の電源+第2の電源の印加電力が急
速に立ち上がる。そのために両電源による放電が互いに
干渉し合い、プラズマ放電が起こり難くなる。その結果
プラズマ中に微粒子が多量に生成し、その微粒子を取り
囲む形で被処理体上に薄膜が形成されてしまい、製品の
信頼性が損なわれてしまうという問題があった。
However, in the conventional thin film forming apparatus, as shown in FIG. 5, when the thin film is formed on the object 13 made of the semiconductor substrate by the P-CVD method, the first thin film forming apparatus is used. Since the power source 18 and the second power source 19 are applied at the same time, the applied power of the first power source + the second power source rises rapidly. Therefore, the discharges from both power sources interfere with each other and plasma discharge is less likely to occur. As a result, a large amount of fine particles are generated in the plasma, and a thin film is formed on the object to be processed so as to surround the fine particles, which deteriorates the reliability of the product.

【0007】本発明は上記従来の問題点に鑑み、半導体
基板上にP−CVD法により薄膜を形成するに際してプ
ラズマ放電開始時に放電を安定して発生させ、良質の薄
膜を形成する薄膜形成方法及びその装置を提供すること
を目的としている。
In view of the above-mentioned conventional problems, the present invention provides a thin film forming method for forming a good quality thin film by stably generating discharge at the start of plasma discharge when forming a thin film on a semiconductor substrate by P-CVD. The purpose is to provide the device.

【0008】[0008]

【課題を解決するための手段】本発明の薄膜形成方法
は、互いに異なった周波数f1 、f2 を有する第1と第
2の電源により反応室内にプラズマを発生させ、反応室
内に導入した反応ガスをプラズマ放電エネルギーにより
活性化させ、反応ガスを化学的気相成長法により被処理
体へ堆積させる薄膜形成方法において、第1の電源と第
2の電源を適当な時間差を設けて印加することにより、
プラズマ放電を安定して発生させるようにしている。
According to the thin film forming method of the present invention, a plasma is generated in a reaction chamber by a first power source and a second power source having different frequencies f 1 and f 2 , and the reaction is introduced into the reaction chamber. In a thin film forming method in which a gas is activated by plasma discharge energy and a reaction gas is deposited on an object to be processed by a chemical vapor deposition method, a first power source and a second power source are applied with an appropriate time difference. Due to
The plasma discharge is generated stably.

【0009】詳しくは、第1の電源を印加した後その投
入電力が所望の投入電力の95%に達するまでの間に第
2の電源を印加するのが好ましく、また第1の電源の立
ち上がり時間をτ1 、第2の電源の立ち上がり時間をτ
2 、その立ち上がり時間を電源を印加してから所望の電
力に達するまでの時間として、第1の電源と第2の電源
を、その印加時間差tが、0<t≦τ1 −τ2 (但し、
τ1 >τ2 )の条件を満たすように印加するのがより好
ましく、さらにはほぼt=τ1 −τ2 の時間差で印加す
るのが最適である。また、これらの場合に低い周波数f
1 の電源から印加するのが好ましい。
More specifically, it is preferable to apply the second power source after applying the first power source until the applied power reaches 95% of the desired input power, and the rise time of the first power source is also applied. Is τ 1 , and the rise time of the second power supply is τ
2. The rising time is defined as the time from applying the power supply to reaching the desired power, and the difference in application time between the first power supply and the second power supply is 0 <t ≦ τ 1 −τ 2 (however, ,
It is more preferable to apply so as to satisfy the condition of τ 1 > τ 2 ), and it is optimal to apply with a time difference of approximately t = τ 1 −τ 2 . Also, in these cases, the low frequency f
It is preferable to apply from a power source of 1 .

【0010】また、本発明の薄膜形成装置は、真空保持
可能な反応容器と、反応容器内で被処理体を保持する手
段と、被処理体に対向する位置に配設された反応ガス吹
き出し電極と、反応ガス吹き出し電極に周波数の異なる
電力を印加する2つの電源と、周波数の異なる2つの電
源を時間差を設けて印加する手段とを備えることによ
り、上記薄膜形成方法を実施するようにしている。又
は、第1の電源を被処理体の保持手段に印加し、第2の
電源を反応ガス吹き出し電極に印加しても同様の作用が
得られる。
Further, the thin film forming apparatus of the present invention is provided with a reaction container capable of holding a vacuum, a means for holding an object to be processed in the reaction container, and a reaction gas blowing electrode arranged at a position facing the object to be processed. And a means for applying two power sources having different frequencies to the reactive gas blowing electrode and a means for applying two power sources having different frequencies with a time difference, thereby implementing the above-described thin film forming method. . Alternatively, the same effect can be obtained by applying the first power source to the holding means of the object to be processed and applying the second power source to the reactive gas blowing electrode.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施形態)以下、本発明の第1の実施形態の薄
膜形成装置について図1、図2を参照して説明する。
(First Embodiment) A thin film forming apparatus according to a first embodiment of the present invention will be described below with reference to FIGS.

【0012】図1において、1は反応室、2は反応ガス
吹き出し口を有し高周波電力が印加される上部電極、3
は被処理体、4は反応室1内に配置された導電性の支持
台、5は支持台4を加熱するためのヒータ、6は反応室
1へのガス導入口、7はガスを導入した時に反応室1内
を真空に保持するための排気口、8は支持台4に電力を
印加するための第1の電源、9は上部電極2に電力を印
加するための第2の電源である。第1の電源8に450
kHzの低周波電源、第2の電源に13.56MHzの
高周波電源が使用されている。10は第1の電源8と第
2の電源9を時間差tで印加するための電源印加タイミ
ング制御装置である。
In FIG. 1, 1 is a reaction chamber, 2 is an upper electrode having a reaction gas outlet, and high frequency power is applied, 3
Is an object to be treated, 4 is a conductive support placed in the reaction chamber 1, 5 is a heater for heating the support 4, 6 is a gas inlet to the reaction chamber 1, and 7 is a gas. Occasionally, an exhaust port for maintaining a vacuum inside the reaction chamber 1, 8 is a first power source for applying power to the support 4, and 9 is a second power source for applying power to the upper electrode 2. . 450 to the first power supply 8
A low frequency power source of kHz and a high frequency power source of 13.56 MHz are used as the second power source. Reference numeral 10 is a power supply application timing control device for applying the first power supply 8 and the second power supply 9 with a time difference t.

【0013】ガス導入口6よりシラン120SCCM
(但し、SCCMは0℃、大気圧換算cc/分)、アン
モニア150SCCM、窒素2000SCCMを導入
し、反応室1内を約2.0Torrに圧力調整する。支
持台4上にシリコンウエハを載置してヒータ5により約
350℃に保持した後、第1の電源8を250W印加
し、電源印加タイミング制御装置10により時間差で
0.01秒後、第2の電源9を300W印加すると、シ
リコンウエハ上にシリコン窒化膜が形成される。
Silane 120 SCCM from gas inlet 6
(However, SCCM is 0 ° C., atmospheric pressure conversion cc / min), ammonia 150 SCCM, nitrogen 2000 SCCM are introduced, and the pressure in the reaction chamber 1 is adjusted to about 2.0 Torr. After placing the silicon wafer on the support 4 and holding it at about 350 ° C. by the heater 5, 250 W of the first power supply 8 is applied, and after a time lag of 0.01 seconds by the power supply application timing control device 10, When the power source 9 of 300 W is applied, a silicon nitride film is formed on the silicon wafer.

【0014】上記電源印加タイミング制御装置10で設
定される時間差tは、τ1 を第1の電源8の立ち上がり
時間、τ2 を第2の電源9の立ち上がり時間、その立ち
上がり時間は電源を印加してから所望の電力に達するま
での時間として、t=(τ1−τ2 )(但し、τ1 >τ
2 )とされている。なお、tは、0<t≦(τ1
τ2 )であればよいが、(τ1 −τ2 )にできる限り近
くして第1の電源8と第2の電源9がほぼ同時に所望の
電力に達するようにするのが最適である。
The time difference t set by the power supply application timing control device 10 is as follows: τ 1 is the rise time of the first power supply 8, τ 2 is the rise time of the second power supply 9, and the power is applied for the rise time. T = (τ 1 −τ 2 ) (where τ 1 > τ
2 ) Note that t is 0 <t ≦ (τ 1
τ 2 ), but it is optimal that the first power source 8 and the second power source 9 reach the desired power almost at the same time as close as possible to (τ 1 −τ 2 ).

【0015】図2は本実施形態における第1の電源8と
第2の電源9の印加電力と時間の関係を示したものであ
る。第1の電源+第2の電源の印加電力を時間差をもっ
て放電開始することにより、放電開始時の印加電力の上
昇が緩やかとなるため、安定したプラズマ放電が得ら
れ、信頼性の優れた良質なシリコン窒化膜を形成するこ
とができる。
FIG. 2 shows the relationship between the applied power of the first power source 8 and the second power source 9 and time in this embodiment. By starting the discharge of the applied power of the first power supply + the second power supply with a time lag, the increase of the applied power at the start of discharge is moderated, so that stable plasma discharge can be obtained and the reliability is high. A silicon nitride film can be formed.

【0016】(第2の実施形態)図3は、本発明の第2
の実施形態における第1の電源8と第2の電源9の印加
電力と時間の関係を示したものである。反応ガス流量等
の条件は第1の実施形態と同様である。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention.
9 shows the relationship between the applied power of the first power supply 8 and the second power supply 9 and time in the embodiment of FIG. The conditions such as the flow rate of the reaction gas are the same as those in the first embodiment.

【0017】本実施形態では、電源印加タイミング制御
装置10により第1の電源8を印加した後、その第1の
電源8の投入電力が250Wの95%に達するまでの間
の適当な時間差を設けて第2の電源9を印加している。
このように第1の電源8と第2の電源9を時間差を設け
て印加することにより、第1電源8と第2の電源9を同
時に印加した時に比べ、放電開始時における第1の電源
+第2の電源の印加電力の上昇が緩やかとなるため安定
したプラズマ放電が得られ、信頼性の優れた良質なシリ
コン窒化膜を形成することができる。
In the present embodiment, an appropriate time difference is provided between the first power source 8 is applied by the power source application timing control device 10 and the input power of the first power source 8 reaches 95% of 250 W. The second power source 9 is applied.
By thus applying the first power source 8 and the second power source 9 with a time lag, the first power source + at the start of discharge can be compared with the case where the first power source 8 and the second power source 9 are simultaneously applied. Since the increase in the power applied by the second power source becomes gentle, stable plasma discharge can be obtained, and a high-quality silicon nitride film with excellent reliability can be formed.

【0018】以上の説明ではシリコン窒化膜を形成する
例について説明したが、TEOS(テトラエトキシシラ
ン)膜、SiOF膜等、2電源を使用するP−CVD装
置でも同様に実施可能である。
In the above description, an example of forming a silicon nitride film has been described, but a P-CVD apparatus using two power supplies, such as a TEOS (tetraethoxysilane) film and a SiOF film, can be similarly used.

【0019】なお、上記実施形態では上部電極に第2の
電源、支持台に第1の電源を各々印加したが、上部電極
に第1と第2の電源を印加する装置構成でも同様に実施
可能である。
In the above embodiment, the second power source is applied to the upper electrode and the first power source is applied to the support, respectively. However, a device configuration in which the first and second power sources are applied to the upper electrode can be similarly applied. Is.

【0020】[0020]

【発明の効果】本発明の薄膜形成方法によれば、以上の
説明から明らかなように、第1と第2の電源を適当な時
間差を設けて印加することにより、放電開始時での印加
電力の上昇を緩やかにできて、プラズマ放電を安定して
発生させることができ、P−CVD法により信頼性の優
れた良質の薄膜を形成することができる。
According to the thin film forming method of the present invention, as is apparent from the above description, by applying the first and second power supplies with an appropriate time difference, the applied power at the start of discharge can be improved. Can be moderately increased, plasma discharge can be stably generated, and a high-quality thin film having excellent reliability can be formed by the P-CVD method.

【0021】また、本発明の薄膜形成装置によれば、反
応ガス吹き出し電極に対して、又は被処理物の保持手段
と反応ガス吹き出し電極のそれぞれに、互いに周波数の
異なる電力を印加する2つの電源を時間差を設けて印加
する手段とを備えるので、上記薄膜形成方法を実施して
良質の薄膜を形成することができる。
Further, according to the thin film forming apparatus of the present invention, two power supplies for applying electric power having different frequencies to the reaction gas blowing electrode, or to the holding means of the object to be treated and the reaction gas blowing electrode, respectively. Is provided with a time difference, so that a thin film of good quality can be formed by implementing the above-mentioned thin film forming method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態における薄膜形成装置
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a thin film forming apparatus according to a first embodiment of the present invention.

【図2】同実施形態における印加電力と時間の関係を示
す図である。
FIG. 2 is a diagram showing a relationship between applied power and time in the same embodiment.

【図3】本発明の第2の実施形態における印加電力と時
間の関係を示す図である。
FIG. 3 is a diagram showing a relationship between applied power and time in the second embodiment of the present invention.

【図4】従来例の薄膜形成装置の概略構成図である。FIG. 4 is a schematic configuration diagram of a conventional thin film forming apparatus.

【図5】従来例における印加電力と時間の関係を示す図
である。
FIG. 5 is a diagram showing a relationship between applied power and time in a conventional example.

【符号の説明】 1 反応室 2 上部電極 3 被処理体 4 支持台 8 第1の電源 9 第2の電源 10 電源印加タイミング制御装置[Explanation of reference numerals] 1 reaction chamber 2 upper electrode 3 object to be treated 4 support base 8 first power supply 9 second power supply 10 power supply application timing control device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なった周波数f1 、f2 を有す
る第1と第2の電源により反応室内にプラズマを発生さ
せ、反応室内に導入した反応ガスをプラズマ放電エネル
ギーにより活性化させ、反応ガスを化学的気相成長法に
より被処理体へ堆積させる薄膜形成方法において、第1
の電源と第2の電源を適当な時間差を設けて印加するこ
とを特徴とする薄膜形成方法。
1. A plasma is generated in a reaction chamber by a first and a second power source having frequencies f 1 and f 2 different from each other, and the reaction gas introduced into the reaction chamber is activated by plasma discharge energy. In a thin film forming method for depositing a film on an object to be processed by a chemical vapor deposition method.
And a second power source are applied with an appropriate time difference, and applied.
【請求項2】 第1の電源を印加した後その投入電力が
所望の投入電力の95%に達するまでの間に第2の電源
を印加することを特徴とする請求項1記載の薄膜形成方
法。
2. The method for forming a thin film according to claim 1, wherein the second power source is applied after the first power source is applied and until the input power reaches 95% of the desired input power. .
【請求項3】 第1の電源の立ち上がり時間をτ1 、第
2の電源の立ち上がり時間をτ2 、立ち上がり時間を電
源を印加してから所望の電力に達するまでの時間とし
て、第1の電源と第2の電源を、その印加時間差tが、
0<t≦τ1 −τ2 (但し、τ1 >τ2 )の条件を満た
すように印加することを特徴とする請求項1記載の薄膜
形成方法。
3. A tau 1 the rise time of the first power source, 2 a rise time tau of the second power supply, as the time from application of power the rise time to reach the desired power, the first power supply And the second power source, the difference t in the application time is
The thin film forming method according to claim 1, wherein the voltage is applied so as to satisfy a condition of 0 <t ≦ τ 1 −τ 2 (where τ 1 > τ 2 ).
【請求項4】 低い周波数f1 の電源から印加すること
を特徴とする請求項1〜3の何れかに記載の薄膜形成方
法。
4. The thin film forming method according to claim 1, wherein the voltage is applied from a power source having a low frequency f 1 .
【請求項5】 真空保持可能な反応室と、反応室内で被
処理体を保持する支持手段と、被処理体に対向する位置
に配置されかつ周波数の異なる2つの電源が印加される
とともに反応ガスを吹き出す上部電極と、周波数の異な
る2つの電源を時間差を設けて上部電極に印加する手段
とを備えたことを特徴とする薄膜形成装置。
5. A reaction chamber capable of holding a vacuum, a supporting means for holding an object to be processed in the reaction chamber, two power sources arranged at positions facing the object to be processed and having different frequencies, and a reaction gas. And a means for applying two power supplies having different frequencies to the upper electrode with a time difference.
【請求項6】 真空保持可能な反応室と、反応室内で被
処理体を保持するとともに第1の電源が印加される支持
手段と、被処理体に対向する位置に配置されかつ第1の
電源と周波数の異なる第2の電源が印加されるとともに
反応ガスを吹き出す上部電極と、周波数の異なる2つの
電源を時間差を設けて印加する手段とを備えたことを特
徴とする薄膜形成装置。
6. A reaction chamber capable of holding a vacuum, a support means for holding an object to be processed in the reaction chamber and applying a first power source, and a first power source arranged at a position facing the object to be processed. And an upper electrode that blows out a reaction gas while a second power source having a different frequency is applied, and a means for applying two power sources having different frequencies with a time lag applied.
JP14417596A 1996-06-06 1996-06-06 Thin film formation method Expired - Fee Related JP3414934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14417596A JP3414934B2 (en) 1996-06-06 1996-06-06 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14417596A JP3414934B2 (en) 1996-06-06 1996-06-06 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH09326387A true JPH09326387A (en) 1997-12-16
JP3414934B2 JP3414934B2 (en) 2003-06-09

Family

ID=15355959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14417596A Expired - Fee Related JP3414934B2 (en) 1996-06-06 1996-06-06 Thin film formation method

Country Status (1)

Country Link
JP (1) JP3414934B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077035A (en) * 1999-09-07 2001-03-23 Nec Kyushu Ltd Device and method for manufacturing semiconductor
KR20030067308A (en) * 2002-02-08 2003-08-14 주식회사 유진테크 method for silicon nitride film using CVD apparatus of single chamber type
WO2005059202A1 (en) * 2003-12-16 2005-06-30 Konica Minolta Holdings, Inc. Method for forming thin film and base having thin film formed by such method
WO2005059203A1 (en) * 2003-12-16 2005-06-30 Konica Minolta Holdings, Inc. Transparent high-gas-barrier base and method for producing same
JP2007138301A (en) * 1998-10-07 2007-06-07 Lg Philips Lcd Co Ltd Thin film forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138301A (en) * 1998-10-07 2007-06-07 Lg Philips Lcd Co Ltd Thin film forming apparatus
JP2001077035A (en) * 1999-09-07 2001-03-23 Nec Kyushu Ltd Device and method for manufacturing semiconductor
KR20030067308A (en) * 2002-02-08 2003-08-14 주식회사 유진테크 method for silicon nitride film using CVD apparatus of single chamber type
WO2005059202A1 (en) * 2003-12-16 2005-06-30 Konica Minolta Holdings, Inc. Method for forming thin film and base having thin film formed by such method
WO2005059203A1 (en) * 2003-12-16 2005-06-30 Konica Minolta Holdings, Inc. Transparent high-gas-barrier base and method for producing same
JPWO2005059203A1 (en) * 2003-12-16 2007-07-12 コニカミノルタホールディングス株式会社 Transparent and highly gas-barrier substrate and method for producing the same
JP4821324B2 (en) * 2003-12-16 2011-11-24 コニカミノルタホールディングス株式会社 Transparent and highly gas-barrier substrate and method for producing the same

Also Published As

Publication number Publication date
JP3414934B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
US7989365B2 (en) Remote plasma source seasoning
JP4329403B2 (en) Plasma processing equipment
JP2005079254A (en) Deposition method of silicon nitride film
US6767829B2 (en) Plasma deposition method and system
JPH0745542A (en) Plasma cvd device and method
JP2023060085A (en) Method and apparatus for enhancing selectivity between titanium and titanium silicide during chemical vapor deposition
JP2002060945A5 (en)
JPH0766186A (en) Anisotropic depositing method of dielectric
JP3414934B2 (en) Thin film formation method
JPH0456770A (en) Method for cleaning plasma cvd device
JP2003218106A (en) Method for manufacturing semiconductor device
JPH07142400A (en) Plasma treating method and its apparatus
JP7221879B2 (en) Deposition of metal silicide layers on substrates and chamber components
JP3924183B2 (en) Plasma CVD film forming method
JPH08115911A (en) Manufacture of semiconductor device
JPS5941773B2 (en) Vapor phase growth method and apparatus
TWI797833B (en) Deposition methods for silicon oxide gap fill using capacitively coupled plasmas
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JPH0964025A (en) Manufacturing method for semiconductor device
JPH05218005A (en) Forming method for insulating film of thin film
JPH09298193A (en) Manufacture of passivation film
JPH0936040A (en) Method and device for forming film
WO2023049012A1 (en) Remote plasma deposition with electrostatic clamping
JPH05206118A (en) Formation of insulating film
JPH0831817A (en) Method and device for forming film by using organic silicon source and production of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees