JPH09320912A - Semiconductor substrate and manufacture thereof - Google Patents

Semiconductor substrate and manufacture thereof

Info

Publication number
JPH09320912A
JPH09320912A JP14039896A JP14039896A JPH09320912A JP H09320912 A JPH09320912 A JP H09320912A JP 14039896 A JP14039896 A JP 14039896A JP 14039896 A JP14039896 A JP 14039896A JP H09320912 A JPH09320912 A JP H09320912A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
semiconductor substrate
bonded
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14039896A
Other languages
Japanese (ja)
Other versions
JP2820120B2 (en
Inventor
Takuo Ohashi
拓夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8140398A priority Critical patent/JP2820120B2/en
Publication of JPH09320912A publication Critical patent/JPH09320912A/en
Application granted granted Critical
Publication of JP2820120B2 publication Critical patent/JP2820120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the quality of a semiconductor device, the yield and throughput in a semiconductor substrate with a large bore by performing a plurality of heat treatments by providing a semiconductor substrate having no propagation of a slip generated on the substrate rear side up to the substrate surface. SOLUTION: Two single crystal substrates 1, 2 having the same face azimuths are overlapped with the crystal axis azimuths shifted each other for being finished to a prescribed thickness after heat treatment so as to from a semiconductor substrate 11. In this case, a treatment such as ion implantation is performed into the surface of the side to which at least one side single crystal substrate is to be joined, or an oxide film is formed for performing joining together so as to strengthen slip prevention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に使用す
る半導体基板およびその製造方法に関し、特に直径の大
なる単結晶基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate used for a semiconductor device and a method of manufacturing the same, and more particularly to a single crystal substrate having a large diameter.

【0002】[0002]

【従来の技術】従来、この種の半導体装置に使用する半
導体基板には、シリコン(Si)単結晶のインゴットを
スライスしたウエハが用いられ、半導体装置の製造過程
において複数回の熱処理工程が加えられる。この熱処理
工程は、高温処理炉で行われるが、その際基板と、基板
を収容するボートとの接触部分において熱応力が発生す
る。この熱応力は基板とボートとの熱膨張係数が異なる
ために接触箇所において基板の自重により発生するもの
であって、半導体基板の直径が大きくなるにつれて大と
なっている。
2. Description of the Related Art Conventionally, a wafer obtained by slicing a silicon (Si) single crystal ingot has been used as a semiconductor substrate for use in this type of semiconductor device, and a plurality of heat treatment steps are added in the process of manufacturing the semiconductor device. . This heat treatment step is performed in a high-temperature processing furnace. At this time, thermal stress is generated at a contact portion between the substrate and a boat accommodating the substrate. This thermal stress is generated by the weight of the substrate at the contact point due to the difference in the coefficient of thermal expansion between the substrate and the boat. The thermal stress increases as the diameter of the semiconductor substrate increases.

【0003】この熱応力のために、基板にはボートとの
接触部分に転位が発生してスリップと呼ばれる結晶欠陥
やウエハの反りが生じる。一枚の基板において結晶軸が
一定方向の単結晶であるため、スリップはデバイス作成
領域の基板表面にまで伝播し易い。また半導体基板から
製造される半導体装置が微小化するにつれて、僅かのス
リップが発生しても半導体装置の製造歩留まりが低下す
る。
[0003] Due to this thermal stress, dislocation occurs in a portion of the substrate in contact with the boat, causing crystal defects called slip and wafer warpage. Since a single substrate is a single crystal in which the crystal axis is in a fixed direction, the slip easily propagates to the substrate surface in the device formation region. Further, as the size of a semiconductor device manufactured from a semiconductor substrate is reduced, the production yield of the semiconductor device is reduced even if a slight slip occurs.

【0004】またスループットの向上のために、半導体
基板の最外周部にまでデバイス作製領域を拡大する必要
があるが、外周部ほどスリップが発生し易い傾向がある
ために、外周部領域の利用には限度がある。
In order to improve the throughput, it is necessary to expand the device fabrication region to the outermost peripheral portion of the semiconductor substrate. However, since the outer peripheral portion tends to cause slip, the use of the outer peripheral region is difficult. Has a limit.

【0005】スリップ防止対策として従来行われている
方法に、熱処理工程における温度上昇下降時のサイクル
すなわち熱履歴を遅くして、熱応力の発生を減少させる
方法がとられているが、スループットが低下するという
欠点がある。
As a conventional method for preventing slippage, a method is adopted in which the cycle at the time of temperature rise and fall in the heat treatment step, that is, the thermal history is delayed to reduce the occurrence of thermal stress, but the throughput is reduced. There is a disadvantage of doing so.

【0006】これらの問題を解決するために、特開平5
−62867号公報において、図8に示すように、2枚
の平坦なウエハ32,33のうちの一方のウエハ32の
周辺に、エッチングによって溝36を設け、2枚のウエ
ハ32,33を真空中で貼り合わせた後熱処理を行って
半導体基板37を形成し、基板の内部に真空の空所36
を設け、この空所36によってウエハで発生する歪を緩
和し応力を減少させて、転位や結晶欠陥の発生を防止す
る方法が開示されている。
In order to solve these problems, Japanese Patent Laid-Open Publication No.
In JP-A-62867, as shown in FIG. 8, a groove 36 is provided around one wafer 32 of the two flat wafers 32 and 33 by etching, and the two wafers 32 and 33 are vacuumed. After the bonding, the semiconductor substrate 37 is formed by heat treatment, and a vacuum space 36 is formed inside the substrate.
A method is disclosed in which the voids 36 are used to alleviate the strain generated in the wafer and reduce the stress, thereby preventing the occurrence of dislocations and crystal defects.

【0007】[0007]

【発明が解決しようとする課題】上述した特開平5−6
2867号公報に開示された方法において、2枚の基板
のうちの1枚の表面に溝を設けて、溝を有する面と他の
基板とを貼り合わせ、基板内部に空所を設けることによ
って、ウエハに発生する歪を緩和して応力を減少させ、
転位や欠陥の発生を防止する方法は、基板裏面から発生
するスリップは止められるが、基板内部の空所により、
重ね合わせた基板の表面に凹凸が発生するために、微小
な半導体素子を形成することが困難になるという欠点が
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method disclosed in Japanese Patent No. 2867, a groove is provided on one surface of two substrates, the surface having the groove is bonded to another substrate, and a space is provided inside the substrate. Alleviates the strain generated on the wafer and reduces the stress,
The method to prevent the occurrence of dislocations and defects is to stop the slip generated from the back side of the substrate, but due to the void inside the substrate,
Since irregularities are generated on the surface of the superposed substrates, there is a disadvantage that it is difficult to form a minute semiconductor element.

【0008】本発明の目的は、複数回の熱処理を行う大
口径の基板において、基板裏面から発生したスリップが
基板表面にまで伝播することのない半導体基板を提供し
て、その基板を使用する半導体装置の品質、歩留まりお
よびスループットの向上を図ることにある。
It is an object of the present invention to provide a semiconductor substrate in which a slip generated from the back surface of a large-diameter substrate subjected to a plurality of heat treatments does not propagate to the substrate surface. An object of the present invention is to improve the quality, yield, and throughput of a device.

【0009】[0009]

【課題を解決するための手段】本発明の第1の半導体基
板は、面方位が同じ第1の単結晶基板と第2の単結晶基
板とが重ねられて、第1の基板と第2の基板の主面上の
結晶軸方位が一致しないように、基板の主面上の結晶軸
の方向を互いに0°を超え90°未満の角度だけずらせ
て接合し、これを所定の厚さまで研削・研磨して形成さ
れる。
According to a first semiconductor substrate of the present invention, a first single crystal substrate and a second single crystal substrate having the same plane orientation are stacked to form a first semiconductor substrate and a second semiconductor substrate. To prevent the crystal axis orientations on the main surface of the substrate from matching, the directions of the crystal axes on the main surface of the substrate are offset from each other by an angle of more than 0 ° and less than 90 °, and they are bonded to each other. It is formed by polishing.

【0010】このように2枚の単結晶基板の主面上の結
晶軸方位が一致しないように重ねて貼り合わせて半導体
基板を形成すれば、熱処理工程において基板裏面のボー
トとの接触部分から発生したスリップと呼ばれる結晶欠
陥が、2枚の単結晶基板の貼り合わせ面において、結晶
軸方位の異なる上側の単結晶基板の面でストップし、デ
バイス活性領域である上側の単結晶基板の上面側に伝播
することを防ぐことができる。
[0010] If a semiconductor substrate is formed by laminating and bonding two single-crystal substrates so that their crystal axis directions on the main surfaces do not coincide with each other, the heat is generated from the portion of the back surface of the substrates that contacts the boat. A crystal defect called a slip stops at the surface of the upper single crystal substrate with different crystal axis orientations on the surface where the two single crystal substrates are bonded, and the upper surface of the upper single crystal substrate, which is the device active region, Propagation can be prevented.

【0011】本発明の第2の半導体基板は、第1の単結
晶基板の主面方位に対して主面方位を変えて形成した第
2の単結晶基板と、第1の単結晶基板とを重ね合わせて
接合し、かつ所定の厚さまで研削・研磨して形成され
る。
A second semiconductor substrate of the present invention comprises a first single crystal substrate and a second single crystal substrate formed by changing the principal plane orientation with respect to the principal plane orientation of the first single crystal substrate. It is formed by superposing and joining, and grinding and polishing to a predetermined thickness.

【0012】このように異なる主面方位を有する第1と
第2の単結晶基板は、それぞれのスリップ転位面の角度
が一致しないために、熱処理時ボートに接触する下側の
単結晶基板にスリップ転位面が発生しても、貼り合わせ
面において上側の単結晶基板に影響を及ぼすことはな
い。
Since the first and second single-crystal substrates having different principal plane orientations do not have the same slip dislocation plane angle, the first and second single-crystal substrates have a lower slip surface that contacts the boat during the heat treatment. Even if a dislocation plane occurs, it does not affect the upper single crystal substrate in the bonding plane.

【0013】本発明の上述した第1と第2の半導体基板
は、第1と第2の単結晶基板の少なくとも一方の基板の
接合される側の面に、結晶欠陥の伝播を防止する手段と
して、イオン注入、サンドブラスト、転位、歪のなかの
何れか一つの結晶欠陥を作り込むための処置を施すこと
が好ましい。
The above-mentioned first and second semiconductor substrates of the present invention are provided as means for preventing the propagation of crystal defects on the surface of at least one of the first and second single crystal substrates which is to be joined. It is preferable to perform a treatment for creating any one of crystal defects of ion implantation, sandblast, dislocation, and strain.

【0014】さらにまた第1と第2の単結晶基板が、少
なくとも一方の基板の接合される側の面に酸化膜を有す
ることが好適である。
Furthermore, it is preferable that the first and second single crystal substrates have an oxide film on the surface of at least one of the substrates to be joined.

【0015】これらの処理を加えることによって、前述
の本発明の第1と第2の半導体基板は、半導体基板のボ
ートとの接触面に発生したスリップの伝播を二つの単結
晶基板の合わせ目において阻止する効果がさらに向上す
る。
By applying these treatments, the above-mentioned first and second semiconductor substrates of the present invention allow the propagation of the slip generated at the contact surface of the semiconductor substrate with the boat to occur at the joint between the two single crystal substrates. The blocking effect is further improved.

【0016】[0016]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。図1は本発明の半導体基板の
第1の実施の形態を示す図であって、図1(a)は側面
略図、図1(b)は2枚のウエハの展開斜視図であり、
図2はウエハの平面図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of a semiconductor substrate of the present invention, FIG. 1 (a) is a schematic side view, FIG. 1 (b) is an exploded perspective view of two wafers,
FIG. 2 is a plan view of the wafer.

【0017】図1(a)において、半導体基板11は同
一の面方位を有する、第1のウエハ1と、第2のウエハ
2とを重ね合わせて形成されている。2枚のウエハを重
ね合わせるとき、X線回折法などで測定された、2枚の
ウエハの主面上のそれぞれの結晶軸方位が一致しないよ
うに、図1(b)に示すように、ウエハの主面上の結晶
軸方位{011}が互いに一致しないように角θだけず
らせる。θの大きさは0<θ<90である。
In FIG. 1A, a semiconductor substrate 11 is formed by superimposing a first wafer 1 and a second wafer 2 having the same plane orientation. When the two wafers are superposed on each other, as shown in FIG. 1B, the crystal axis orientations on the main surfaces of the two wafers, which are measured by an X-ray diffraction method, do not match, as shown in FIG. The crystal axis orientations {011} on the principal plane of are shifted by the angle θ so that they do not coincide with each other. The magnitude of θ is 0 <θ <90.

【0018】この理由は、図2に示すような面方位が
(100)面であるウエハの場合、図5に示すように、
発生するスリップが(111)転位面10に沿って、へ
き開面<110>方向に発生するから、貼り合わせた2
枚のウエハのへき開面が一致しないようにするためであ
る。つまり面方位(100)面のウエハの場合、へき開
面が{110}であり、それぞれが90°の角度をもっ
ているためである。
The reason for this is that in the case of a wafer whose plane orientation is the (100) plane as shown in FIG. 2, as shown in FIG.
Since the generated slip occurs along the (111) dislocation plane 10 in the cleavage plane <110> direction,
This is to prevent the cleavage planes of the wafers from matching. That is, in the case of a wafer having a plane orientation of (100), the cleavage plane is {110}, and each has an angle of 90 °.

【0019】面方位が(110)、(111)面を有す
るウエハを貼り合わせる場合も、上述と同様にそれぞれ
へき開面が一致しないように貼り合わせればよい。ただ
し何れの場合もウエハの厚さは同じにすることが好まし
い。その理由は熱処理による基板の反りを防止するため
である。
Also in the case of bonding wafers having plane orientations of (110) and (111), they may be bonded so that the cleavage planes do not coincide with each other, as in the above. However, in any case, it is preferable that the thickness of the wafer be the same. The reason is to prevent the substrate from warping due to the heat treatment.

【0020】上述の第1と第2のウエハを貼り合わせる
工程を説明すれば、スライスされた状態のシリコンウエ
ハは、図3(a)の原理説明図に示すように、薬品処理
により親水化処理され、次に2枚のウエハを真空中で機
械的に貼り合わせ、貼り合わせた面の密着度を強化する
ため真空中で500℃〜1000℃に加熱して、図3
(b)の原理説明図に示すように、脱水縮合させる。
The step of bonding the first and second wafers will be described. The sliced silicon wafer is hydrophilized by chemical treatment as shown in FIG. 3A. Then, the two wafers are mechanically bonded in a vacuum and heated to 500 ° C. to 1000 ° C. in a vacuum in order to strengthen the adhesion of the bonded surfaces, and FIG.
Dehydration condensation is performed as shown in FIG.

【0021】このようにして2枚のウエハを貼り合わせ
た後、研削・研磨処理を行い半導体装置を製造する工程
で使用する所定の厚さに仕上げて、半導体基板11が形
成される。
After bonding the two wafers in this way, the semiconductor substrate 11 is formed by grinding and polishing to finish to a predetermined thickness used in the process of manufacturing a semiconductor device.

【0022】このように2枚のウエハの主面上の結晶軸
方位が一致しないように重ねて貼り合わせて半導体基板
を形成すれば、熱処理工程において基板裏面のボートと
の接触部分から発生したスリップと呼ばれる結晶欠陥
が、2枚のウエハの貼り合わせ面において、結晶軸方位
の異なる上側のウエハの貼り合わせ面でストップし、デ
バイス活性領域である上側のウエハの上面側に伝播する
ことを防ぐことができる。上側のウエハの裏面は、下側
のウエハと貼り合わされているので、ボートとの接触部
分がなくスリップが発生する原因は除去される。
If the two wafers are stacked and bonded so that the crystal axis directions on the main surfaces of the two wafers do not coincide with each other to form a semiconductor substrate, the slip generated from the contact portion of the back surface of the substrate with the boat in the heat treatment process can be obtained. A crystal defect called a crystal wafer stops at a bonding surface of an upper wafer having a different crystal axis orientation on a bonding surface of two wafers and is prevented from propagating to an upper surface side of the upper wafer which is a device active region. Can be. Since the lower surface of the upper wafer is bonded to the lower wafer, the cause of slippage due to no contact with the boat is eliminated.

【0023】次に本発明の第2の実施の形態について説
明する。図4は第1のウエハ11 と第2のウエハ21
主表面の切り出しの方向を示す模式的断面図、図5はシ
リコン単結晶におけるスリップ転位面と成長面との角度
の関係を説明する断面図である。
Next, a second embodiment of the present invention will be described. FIG. 4 is a schematic cross-sectional view showing the direction of cutting out the main surfaces of the first wafer 11 and the second wafer 21. FIG. 5 illustrates the relationship between the angle between the slip dislocation plane and the growth plane in a silicon single crystal. FIG.

【0024】この場合、第1と第2のウエハの主面方位
を互いに異なるように形成する。すなわち、第1の単結
晶基板11 の主面方位を<100>とすれば、第2の単
結晶基板21 の主面方位を図4に示すように<100>
からφ°だけ傾斜させて形成する。
In this case, the main surfaces of the first and second wafers are formed so as to be different from each other. That is, if the first main surface orientation of the single crystal substrate 1 1 and <100>, the second major surface orientation of the single crystal substrate 2 1 4 <100>
And is formed at an angle of φ °.

【0025】その理由は、図5の断面図に示すように、
面方位が(100)面の成長面を有するシリコンウエハ
9の場合には、スリップ転位面10は(111)面で表
わされ、(100)面との間に54.74°の角度をな
している。したがって第1のシリコンウエハ11 の主面
方位を(100)面とした場合に、第2のシリコンウエ
ハ21 の主面方位の傾斜角φを0<φ<54.74°の
範囲とすれば、二つのウエハのスリップ転位面が一致せ
ず、したがってウエハ21 に生じたスリップ転位面が、
ウエハ11 との貼り合わせ面においてウエハ11 に影響
を与えないからである。
The reason is as shown in the sectional view of FIG.
In the case of a silicon wafer 9 having a growth plane with a (100) plane orientation, the slip dislocation plane 10 is represented by a (111) plane and forms an angle of 54.74 ° with the (100) plane. ing. Therefore, when the first main surface orientation of the silicon wafer 1 1 (100) plane, by an inclination angle phi of the second silicon wafer 2 primary face orientation 0 <phi <a range of 54.74 ° if not match slip dislocation surfaces of the two wafers, thus slip dislocation surfaces generated in the wafer 2 1,
It does not affect the wafer 1 1 in the bonding surface of the wafer 1 1.

【0026】一方の面方位が(110)、(111)面
を有するウエハと貼り合わせる場合、上述と同様に、他
方のウエハの面方位をφ°だけ傾斜させて切り出し、お
互いにスリップ転位面が一致しないように貼り合わせる
とよい。
When the wafer is bonded to a wafer having one of the (110) and (111) planes, the other wafer is cut out by inclining the plane of the other wafer by φ ° in the same manner as described above, so that the slip dislocation planes are mutually formed. It is good to stick so that they do not match.

【0027】このように形成した2枚のウエハを貼り合
わせ、熱処理を行い、研磨処理を行って半導体基板を形
成する工程は、上述の第1の実施の形態で述べた工程と
同様である。
The steps of bonding the two wafers thus formed, performing a heat treatment, and performing a polishing treatment to form a semiconductor substrate are the same as the steps described in the first embodiment.

【0028】次に本発明に第3の実施の形態を説明す
る。この実施の形態は、図6に示すように第1のウエハ
2 と第2のウエハ22 の少なくとも何れか一方の貼り
合わされる面に、結晶欠陥の伝播を防止する手段とし
て、イオン注入、サンドブラスト、転位、歪の中の、何
れか一つの結晶欠陥を作り込むための処理を施した後、
2枚のウエハを貼り合わせ上述と同様の工程を経て半導
体基板12を形成するものである。この方法を上述の第
1と第2の実施の形態で説明したウエハに適用すれば、
それぞれの半導体基板の裏面に発生したスリップの伝播
を合わせ面において防止する上でさらに効果がある。
Next, a third embodiment of the present invention will be described. In this embodiment, as shown in FIG. 6, ion implantation, as means for preventing the propagation of crystal defects, is performed on at least one of the surfaces of the first wafer 1 2 and the second wafer 2 2 to be bonded. After performing processing to create any one of crystal defects in sandblast, dislocation, and strain,
The two wafers are bonded together and the semiconductor substrate 12 is formed through the same steps as described above. If this method is applied to the wafers described in the first and second embodiments,
It is further effective in preventing the propagation of slips generated on the back surface of each semiconductor substrate at the mating surface.

【0029】次に本発明の第4の実施形態について説明
する。この実施の形態は、図7に示すように、第1のウ
エハ13 と第2のウエハ23 の少なくとも一方の貼り合
わされる面に、酸化膜5を介在させて半導体基板13を
形成するものである。適当な酸化温度は1100℃程度
で、酸化時間は10分程度必要である。この酸化膜を形
成した面が貼り合わせ面にくるようにして、上述と同様
な工程を経て半導体基板13を形成する。この方法を上
述の第1と第2の実施の態様で説明したウエハに適用す
れば、半導体基板の裏面に発生したスリップの伝播を合
わせ面において防止する上でさらに効果がある。
Next, a fourth embodiment of the present invention will be described. In this embodiment, as shown in FIG. 7, a semiconductor substrate 13 is formed on at least one of the surfaces of the first wafer 1 3 and the second wafer 2 3 to be bonded together with an oxide film 5 interposed. Is. A suitable oxidation temperature is about 1100 ° C., and an oxidation time is about 10 minutes. The semiconductor substrate 13 is formed through the same steps as described above so that the surface on which the oxide film is formed is the bonding surface. If this method is applied to the wafers described in the first and second embodiments described above, it is further effective in preventing the propagation of slips generated on the back surface of the semiconductor substrate at the mating surface.

【0030】[0030]

【発明の効果】以上説明したように本発明の半導体基板
は、2枚の単結晶基板を重ねて形成し、重ね合わせた単
結晶基板の主面上の結晶軸方位を互いにずらせるか、ま
たは重ね合わせる単結晶基板の一方の主面方位を他方の
単結晶基板の主面方位と異なるように形成して、重ね合
わせる構造としたため、熱処理によって基板の裏面のボ
ートとの接触部に発生するスリップが、貼り合わせ界面
で阻止されて表側の基板のデバイスを作成する基板表層
部分にまで伝播しないという効果がある。したがってこ
の半導体基板を使用して半導体装置を製造すれば、その
品質、歩留まりを向上させることができ、また熱処理工
程における熱履歴を遅くする必要もなくなってスループ
ットが向上するという効果を奏する。
As described above, the semiconductor substrate of the present invention is formed by stacking two single crystal substrates and shifting the crystal axis directions on the main surfaces of the stacked single crystal substrates from each other. Slip that occurs at the contact part with the boat on the backside of the substrate due to the heat treatment because the main surface orientation of the superposed single crystal substrate is formed so as to be different from the main surface orientation of the other single crystal substrate, and the structure is superposed. However, there is an effect that it is blocked at the bonding interface and does not propagate to the surface layer of the substrate on which the device of the front side is formed. Therefore, if a semiconductor device is manufactured using this semiconductor substrate, its quality and yield can be improved, and it is not necessary to delay the thermal history in the heat treatment step, and throughput can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体基板の第1の実施の形態を示す
図であって、図1(a)は半導体基板の側面略図、図1
(b)は2枚のウエハの展開斜視図である。
FIG. 1 is a diagram showing a first embodiment of a semiconductor substrate of the present invention, wherein FIG. 1A is a schematic side view of the semiconductor substrate, and FIG.
(B) is a development perspective view of two wafers.

【図2】ウエハのへき開面の方向を示す平面略図であ
る。
FIG. 2 is a schematic plan view showing a direction of a cleavage plane of a wafer.

【図3】ウエハの貼り合せの原理を説明する図である。FIG. 3 is a diagram illustrating the principle of bonding wafers.

【図4】本発明の第2の実施の形態を示す図であって、
ウエハの主表面の方向を示す模式的断面図である。
FIG. 4 is a diagram showing a second embodiment of the present invention,
FIG. 3 is a schematic cross-sectional view illustrating a direction of a main surface of a wafer.

【図5】シリコン単結晶ウエハにおけるスリップ転位面
の角度を示す模式的断面図である。
FIG. 5 is a schematic sectional view showing an angle of a slip dislocation plane in a silicon single crystal wafer.

【図6】本発明の第3の実施の形態を示す半導体基板の
断面略図である。
FIG. 6 is a schematic cross-sectional view of a semiconductor substrate showing a third embodiment of the present invention.

【図7】本発明の第4の実施の形態を示す半導体基板の
断面略図である。
FIG. 7 is a schematic cross-sectional view of a semiconductor substrate showing a fourth embodiment of the present invention.

【図8】従来の技術による半導体基板の実施例の略図で
ある。
FIG. 8 is a schematic diagram of an example of a semiconductor substrate according to the prior art.

【符号の説明】[Explanation of symbols]

1,11 ,12 ,13 ,32 第1の単結晶基板/ウ
エハ 2,21 ,22 ,23 ,33 第2の単結晶基板/ウ
エハ 5 酸化膜 6 歪層 7 (100)半導体基板 8 へき開面 9 シリコンウエハ 10 スリップ転位面 11,12,13,37 半導体基板 36 溝/空所
1, 1 1 , 1 2 , 1 3 , 32 1st single crystal substrate / wafer 2, 2 1 , 2 2 , 2 3 , 33 2nd single crystal substrate / wafer 5 Oxide film 6 Strained layer 7 (100) Semiconductor substrate 8 Cleaved surface 9 Silicon wafer 10 Slip dislocation surface 11, 12, 13, 37 Semiconductor substrate 36 Groove / vacancy

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 面方位が同じ第1の単結晶基板と第2の
単結晶基板とが重ねられ、前記第1の基板と前記第2の
基板の平面上の結晶軸方位が一致しないように、互いに
0°を超え90°未満の角度だけずらせて接合され、か
つ所定の厚さまで研削・研磨して形成された半導体基
板。
1. A first single crystal substrate and a second single crystal substrate having the same plane orientation are overlapped with each other so that the crystal axis orientations on the planes of the first substrate and the second substrate do not match. , A semiconductor substrate formed by being bonded to each other with an angle of more than 0 ° and less than 90 ° and being ground and polished to a predetermined thickness.
【請求項2】 前記第1の単結晶基板と、該第1の基板
に対し主面方位を変えて形成した第2の単結晶基板とを
重ね合わせて形成された半導体基板。
2. A semiconductor substrate formed by superimposing the first single crystal substrate and a second single crystal substrate formed by changing the principal plane orientation on the first substrate.
【請求項3】 前記第1と第2の単結晶基板の少なくと
も一方の基板の、前記接合される側の面に、結晶欠陥の
伝播を防止する手段として、イオン注入、サンドブラス
ト、転位、歪などのうちいずれか一つの結晶欠陥を作り
こむための処理が施された、請求項1または2に記載の
半導体基板。
3. Ion implantation, sandblast, dislocation, strain, etc., as means for preventing the propagation of crystal defects on the surface of at least one of the first and second single crystal substrates on the side to be joined. The semiconductor substrate according to claim 1 or 2, which has been subjected to a treatment for producing one of the crystal defects.
【請求項4】 前記第1と第2の単結晶基板が、少なく
とも一方の基板の前記接合される側の面に酸化膜を有す
る、請求項1または2に記載の半導体基板。
4. The semiconductor substrate according to claim 1, wherein the first and second single crystal substrates have an oxide film on a surface of at least one of the substrates on the side to be bonded.
【請求項5】 同一の面方位を有する、第1の単結晶基
板および第2の単結晶基板の各々の主表面を互いに対向
させ、 該主表面の結晶軸方位が互いに一致しない位置で貼り合
わせ、 該貼り合わせた面の接着力を増すための熱処理を行い、 所定の厚さまで研削・研磨する半導体基板の製造方法。
5. The main surfaces of the first single crystal substrate and the second single crystal substrate having the same plane orientation are opposed to each other, and they are bonded at positions where the crystal axis orientations of the main surfaces do not coincide with each other. A method for manufacturing a semiconductor substrate, wherein heat treatment is performed to increase the adhesive strength of the bonded surfaces, and grinding / polishing is performed to a predetermined thickness.
【請求項6】 第1の単結晶基板を形成し、 該第1の単結晶基板の主面方位に対して異なる主面方位
を有する、第2の単結晶基板を形成し、 前記第1と第2の単結晶基板を対向させて貼り合わせ、 該貼り合わせた面の接合力を増すための熱処理を行い、 所定の厚さまで研削・研磨する半導体基板の製造方法。
6. A first single crystal substrate is formed, and a second single crystal substrate having a principal plane orientation different from a principal plane orientation of the first single crystal substrate is formed. A method for manufacturing a semiconductor substrate, which comprises bonding a second single crystal substrate so as to face each other, performing heat treatment for increasing the bonding force of the bonded surface, and grinding / polishing to a predetermined thickness.
【請求項7】 前記第1と第2の単結晶基板の、少なく
とも一方の基板の前記貼り合わせる面に、イオン注入、
サンドブラスト、転位、歪などのうちいずれか一つの処
理を施した後、貼り合わせて形成する、請求項5または
6に記載の半導体基板の製造方法。
7. Ion implantation is performed on the bonding surface of at least one of the first and second single crystal substrates,
The method for manufacturing a semiconductor substrate according to claim 5, wherein the semiconductor substrate is subjected to any one treatment of sandblasting, dislocation, strain, etc., and then bonded and formed.
【請求項8】 前記第1と第2の単結晶基板の、少なく
とも一方の基板の前記貼り合わせる面に酸化膜を施した
後、前記第1と第2の単結晶基板を貼り合わせて形成す
る、請求項5または6に記載の半導体基板の製造方法。
8. An oxide film is applied to the bonding surface of at least one of the first and second single crystal substrates, and then the first and second single crystal substrates are bonded to each other. 7. The method for manufacturing a semiconductor substrate according to claim 5 or 6.
JP8140398A 1996-06-03 1996-06-03 Semiconductor substrate manufacturing method Expired - Fee Related JP2820120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140398A JP2820120B2 (en) 1996-06-03 1996-06-03 Semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140398A JP2820120B2 (en) 1996-06-03 1996-06-03 Semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH09320912A true JPH09320912A (en) 1997-12-12
JP2820120B2 JP2820120B2 (en) 1998-11-05

Family

ID=15267871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140398A Expired - Fee Related JP2820120B2 (en) 1996-06-03 1996-06-03 Semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP2820120B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522296A (en) * 2000-12-28 2004-07-22 コミツサリア タ レネルジー アトミーク Method for forming a laminated structure
JP2006191029A (en) * 2005-01-07 2006-07-20 Internatl Business Mach Corp <Ibm> Inter-si pseudo hydrophobic wafer bonding using solution of interface bonding oxide and hydrophilic si surface
JP2009231376A (en) * 2008-03-19 2009-10-08 Shin Etsu Handotai Co Ltd Soi wafer and semiconductor device, and method of manufacturing the soi wafer
JP2011198962A (en) * 2010-03-18 2011-10-06 Toshiba Corp Method for manufacturing semiconductor light emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297377A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH07335511A (en) * 1994-06-13 1995-12-22 Nippon Telegr & Teleph Corp <Ntt> Bonded wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297377A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH07335511A (en) * 1994-06-13 1995-12-22 Nippon Telegr & Teleph Corp <Ntt> Bonded wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522296A (en) * 2000-12-28 2004-07-22 コミツサリア タ レネルジー アトミーク Method for forming a laminated structure
JP2006191029A (en) * 2005-01-07 2006-07-20 Internatl Business Mach Corp <Ibm> Inter-si pseudo hydrophobic wafer bonding using solution of interface bonding oxide and hydrophilic si surface
JP2009231376A (en) * 2008-03-19 2009-10-08 Shin Etsu Handotai Co Ltd Soi wafer and semiconductor device, and method of manufacturing the soi wafer
US8466538B2 (en) 2008-03-19 2013-06-18 Shin-Etsu Handotai Co., Ltd. SOI wafer, semiconductor device, and method for manufacturing SOI wafer
JP2011198962A (en) * 2010-03-18 2011-10-06 Toshiba Corp Method for manufacturing semiconductor light emitting element

Also Published As

Publication number Publication date
JP2820120B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JPH0355822A (en) Manufacture of substrate for forming semiconductor element
JPH08330878A (en) Manufacture of oscillator
EP0444943B1 (en) A method of manufacturing a bonded wafer
JP2004522296A (en) Method for forming a laminated structure
KR20140082652A (en) Method for producing transparent soi wafers
KR101486779B1 (en) Soi substrate manufacturing method and soi substrate
JP4576381B2 (en) Substrate assembly for stressed systems
JPH098124A (en) Insulation separation substrate and its manufacture
JP2018182146A (en) Manufacturing method of multilayer film soi wafer and multilayer film soi wafer
JP2820120B2 (en) Semiconductor substrate manufacturing method
WO2015074479A1 (en) Low-warpage semiconductor substrate and method of preparing same
JP2621325B2 (en) SOI substrate and manufacturing method thereof
JPH05226305A (en) Manufacture of laminated wafer
JPH07249573A (en) Manufacture of semiconductor substrate
JPH05275300A (en) Method of joining semiconductor wafers
JPH09251934A (en) Manufacturing method of semiconductor integrated circuit device and semiconductor wafer
JP3996557B2 (en) Manufacturing method of semiconductor junction wafer
JP2512243B2 (en) Manufacturing method of semiconductor element forming substrate
JPH05226464A (en) Manufacture of joined dielectric isolation wafer
TWI706632B (en) Composite substrate, piezoelectric element, and manufacturing method of composite substrate
JP6696473B2 (en) Multilayer SOI wafer and method of manufacturing the same
KR0180622B1 (en) Method of manufacturing soi wafer having a multi-layer structure by silicon wafer junction at low temperature and soi wafer manufactured by this method
JPH1126337A (en) Manufacture of laminated substrate
JP3390660B2 (en) Manufacturing method of dielectric isolation substrate
JPH1070054A (en) Manufacture of junction wafer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees