JPH07249573A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH07249573A
JPH07249573A JP4270794A JP4270794A JPH07249573A JP H07249573 A JPH07249573 A JP H07249573A JP 4270794 A JP4270794 A JP 4270794A JP 4270794 A JP4270794 A JP 4270794A JP H07249573 A JPH07249573 A JP H07249573A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
semiconductor
gaas
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4270794A
Other languages
Japanese (ja)
Inventor
Aiji Shirou
愛次 城生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4270794A priority Critical patent/JPH07249573A/en
Publication of JPH07249573A publication Critical patent/JPH07249573A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method to flatten effectively a substrate, which is formed by growing a compound semiconductor layer on a semiconductor substrate, without changing the characteristics of the semiconductor substrate. CONSTITUTION:An Si substrate 1 is previously held processed into a projected form or a recessed form by an amount (b) to correspond to the amount of warpage of the substrate at the time when a GaAs layer is grown on this Si substrate and the GaAs layer 7 is grown on the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異なる複数の種類の半
導体層で構成される半導体基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate composed of a plurality of different types of semiconductor layers.

【0002】[0002]

【従来の技術】一般に、シリコン(以下Siという)等
の半導体基板上にこの基板と異種の材料、例えばガリウ
ム砒素(以下GaAsという)等の化合物半導体を成長
させる場合(いわゆるヘテロエピタキシャル成長)、例
えば特開昭62−196813号公報の1頁右欄18行
〜2頁左上欄6行に記載されているように、一般にGa
As等の化合物半導体の熱膨張係数はSi等の半導体基
板の熱膨張係数よりも大きいため、化合物半導体の高い
成長温度(例えば400〜700℃)から室温(25
℃)程度にまで温度を下げると強い引っ張り応力が化合
物半導体層にかかり、そのために、作製した基板が成長
面の方向に凹状に反るという問題がある。反り量の程度
は、Si基板上にGaAs層をエピタキシャル成長させ
た基板(以下GaAs/Si基板という)を例にとる
と、例えば3インチの基板(Si基板の厚さ約400μ
m、GaAs層の厚さ約3μm)で50μmくらい、ま
た4インチの基板(Si基板の厚さ約600μm、Ga
As層の厚さ約3μm)で100μmくらいである。基
板上には集積回路などが形成されるので、特に今日のよ
うに半導体集積回路技術の急速な進展に伴って大面積の
基板上に大規模集積回路を形成する場合には、SiとG
aAsとの熱膨脹係数の差に起因するウェハの反りを低
減して基板表面に高度の平坦度を確保することが強く求
められている。
2. Description of the Related Art Generally, when a material different from the substrate, for example, a compound semiconductor such as gallium arsenide (hereinafter referred to as GaAs) is grown on a semiconductor substrate such as silicon (hereinafter referred to as Si) (so-called heteroepitaxial growth), In general, as described in page 1, right column, line 18 to page 2, upper left column, line 6 of JP-A-62-196813, Ga is generally used.
Since the thermal expansion coefficient of the compound semiconductor such as As is larger than the thermal expansion coefficient of the semiconductor substrate such as Si, the growth temperature of the compound semiconductor (for example, 400 to 700 ° C.) to the room temperature (25
When the temperature is lowered to about (° C.), a strong tensile stress is applied to the compound semiconductor layer, which causes a problem that the manufactured substrate warps concavely in the direction of the growth surface. Taking the substrate (hereinafter referred to as GaAs / Si substrate) in which a GaAs layer is epitaxially grown on a Si substrate as an example, the degree of warpage is, for example, a 3-inch substrate (Si substrate thickness of about 400 μm).
m, the thickness of the GaAs layer is about 3 μm, about 50 μm, and the 4-inch substrate (the thickness of the Si substrate is about 600 μm, Ga
The thickness of the As layer is about 3 μm) and is about 100 μm. Since an integrated circuit or the like is formed on a substrate, especially when forming a large-scale integrated circuit on a large-area substrate with the rapid progress of semiconductor integrated circuit technology as in today's world, Si and G
There is a strong demand to reduce the warp of the wafer due to the difference in thermal expansion coefficient from aAs and to secure a high degree of flatness on the substrate surface.

【0003】そこで、基板を平坦化する方法として、従
来、例えば、Si等の半導体基板の裏面に溝を形成した
後この半導体基板の表面にGaAs等の化合物半導体層
を成長させる方法(特開昭62−171112号公報参
照)や、Si等の半導体基板の裏面にシリコン酸化膜
(SiO)等の裏面膜をつけた後この半導体基板の表
面にGaAs等の化合物半導体層を成長させる方法(特
開昭62−196813号公報参照)などが考案されて
いる。
Therefore, as a conventional method for flattening a substrate, for example, a method of forming a groove on the back surface of a semiconductor substrate of Si or the like and then growing a compound semiconductor layer of GaAs or the like on the surface of this semiconductor substrate (Japanese Patent Laid-Open No. Sho 61-96). 62-171112) or a method of growing a compound semiconductor layer such as GaAs on the surface of a semiconductor substrate such as Si after forming a back surface film such as a silicon oxide film (SiO 2 ) on the back surface of the semiconductor substrate (see For example, see JP-A-62-196813).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法にはそれぞれ下記のような欠点がある。
まず、例えばSi基板の裏面に溝を形成する方法にあっ
ては、溝の存在によって基板の強度が低下するおそれが
あるほか、デバイス作製時には機械的な力を加えて平坦
化する必要があり、基板の反りの低減という効果の点で
も十分ではない。一方、例えばSi基板の裏面にSiO
膜を形成する方法にあっては、SiO膜の存在によ
って余分の応力が発生し基板がさらに反りやすくなるた
め、完成基板が平坦になるようにSiO膜の形成プロ
セス(温度と膜厚)をうまく制御する必要があるほか、
SiO膜の形成プロセス中におけるエッチング等によ
って膜厚精度に誤差が生じることから基板の反り低減と
いう効果が低下するおそれもある。
However, each of these conventional methods has the following drawbacks.
First, for example, in the method of forming a groove on the back surface of a Si substrate, the existence of the groove may reduce the strength of the substrate, and it is necessary to apply mechanical force to planarize the device when manufacturing it. It is not sufficient in terms of the effect of reducing the warp of the substrate. On the other hand, for example, on the back surface of the Si substrate, SiO
In the method of forming the two films, since the existence of the SiO 2 film causes extra stress and the substrate is more likely to warp, the process of forming the SiO 2 film (temperature and film thickness) so that the finished substrate becomes flat. ) Needs to be well controlled,
An error in the film thickness accuracy may occur due to etching or the like during the process of forming the SiO 2 film, which may reduce the effect of reducing the warp of the substrate.

【0005】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、基板強度の劣化や基板内応
力の増大、工程の追加などをもたらすことなく、基板の
反りを有効に低減しうる半導体基板の製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above problems of the prior art, and effectively warps the substrate without deteriorating the strength of the substrate, increasing the stress in the substrate, and adding steps. An object of the present invention is to provide a method for manufacturing a semiconductor substrate that can be reduced.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明は、半導体基板を凸状または凹状に加工する第
1工程と、前記半導体基板の表面上に当該半導体基板と
異なる種類の化合物半導体層を成長させる第2工程とを
有する。
To achieve the above object, the present invention provides a first step of processing a semiconductor substrate into a convex shape or a concave shape, and a compound of a kind different from that of the semiconductor substrate on the surface of the semiconductor substrate. A second step of growing a semiconductor layer.

【0007】好ましくは、前記第1工程は、目標厚さよ
りも厚めの半導体基板を用意する工程と、当該半導体基
板の一方の面をその中央部が良く削れるように研磨する
工程と、前記半導体基板の他方の面をその周辺部が良く
削れるように研磨する工程とを有している。
Preferably, in the first step, a step of preparing a semiconductor substrate having a thickness larger than a target thickness, a step of polishing one surface of the semiconductor substrate so that a central portion thereof is well shaved, and the semiconductor substrate And polishing the other surface so that the peripheral portion thereof can be shaved well.

【0008】前記半導体基板の加工形状は、前記化合物
半導体層の熱膨張係数が前記半導体基板よりも大きい場
合は凸状に加工し、また、前記化合物半導体層の熱膨張
係数が前記半導体基板よりも小さい場合は凹状に加工す
る。
The semiconductor substrate is processed into a convex shape when the compound semiconductor layer has a coefficient of thermal expansion larger than that of the semiconductor substrate, and the compound semiconductor layer has a coefficient of thermal expansion higher than that of the semiconductor substrate. If it is small, it is processed into a concave shape.

【0009】[0009]

【作用】本発明によれば、厚めの半導体基板の各面に対
し片面ずつそれぞれ順に中央部および周辺部が良く削れ
るように研磨することによって、球面状に反った所定の
厚さの半導体基板が得られる。そして、化合物半導体層
の熱膨張係数が半導体基板よりも大きいときには凸面を
表面とし、また、化合物半導体層の熱膨張係数が半導体
基板よりも小さいときは凹面を表面として、その表面上
に化合物半導体層を成長させるので、室温程度にまで温
度を下げると、前者の場合には熱膨張係数の差により凹
状になる応力が作用して凸状に反った半導体基板を元の
平らな状態に戻す力が働き、また、後者の場合には熱膨
張係数の差により凸状になる応力が作用して凹状に反っ
た半導体基板を元の平らな状態に戻す力が働き、いずれ
の場合においても最終的には平坦な基板が得られること
になる。
According to the present invention, a semiconductor substrate having a predetermined thickness that is curved in a spherical shape is obtained by polishing one surface of each thicker semiconductor substrate in order so that the central portion and the peripheral portion can be scraped well. can get. When the thermal expansion coefficient of the compound semiconductor layer is larger than that of the semiconductor substrate, the convex surface is used as the surface, and when the thermal expansion coefficient of the compound semiconductor layer is smaller than that of the semiconductor substrate, the concave surface is used as the surface, and the compound semiconductor layer is formed on the surface. Therefore, when the temperature is lowered to about room temperature, in the former case, the stress that makes the semiconductor substrate concave due to the difference in the thermal expansion coefficient acts, and the force to return the semiconductor substrate curved in a convex shape to the original flat state is exerted. In the latter case, the stress which makes the semiconductor substrate convex due to the difference in the coefficient of thermal expansion acts and the force to return the concave semiconductor substrate to the original flat state works. Will result in a flat substrate.

【0010】[0010]

【実施例】以下、本発明の方法の一実施例を添付した図
面を参照しながら説明する。図1(A)〜(D)と図2
(E)〜(G)は本実施例を説明するための基板の状態
図である。なお、本実施例では、半導体基板としてのS
i基板上に化合物半導体層としてGaAs層をエピタキ
シャル成長させて3インチのGaAs/Si基板を作製
する場合を例にとって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method of the present invention will be described below with reference to the accompanying drawings. 1A to 1D and FIG.
(E) ~ (G) is a state diagram of the substrate for explaining the present embodiment. In this embodiment, S as a semiconductor substrate is used.
An example will be described in which a 3 inch GaAs / Si substrate is manufactured by epitaxially growing a GaAs layer as a compound semiconductor layer on an i substrate.

【0011】まず、GaAs層を成長させるためのヘテ
ロエピタキシャル用のSi基板を加工する工程について
説明する。まず、図1(A)に示すように、研磨代を考
慮して目標厚さ(400μm)よりも厚め(600〜5
00μm)のヘテロエピタキシャル用Si基板1を用意
する。具体的には、周知の半導体製造技術に従って、チ
ョクラルスキー法(CZ法)などによりSi単結晶のイ
ンゴットを製造した後、その単結晶インゴットの両端を
除去し、外周を研削して所定の直径に整え、さらに所定
面に位置基準用のオリエンテーションフラットを入れ、
それから、ダイヤモンド内周刃で切断して(スライシン
グ)前記厚め(600〜500μm)のウェハの形に加
工する。
First, a process of processing a heteroepitaxial Si substrate for growing a GaAs layer will be described. First, as shown in FIG. 1A, in consideration of the polishing allowance, the thickness is thicker than the target thickness (400 μm) (600 to 5).
A Si epitaxial substrate 1 for heteroepitaxial growth is prepared. Specifically, according to a well-known semiconductor manufacturing technique, an ingot of a Si single crystal is manufactured by the Czochralski method (CZ method), etc., then both ends of the single crystal ingot are removed, and the outer periphery is ground to a predetermined diameter. Aligned with the orientation flat for position reference on the predetermined surface,
Then, it is cut (slicing) with a diamond inner peripheral blade to be processed into the above-mentioned thick wafer (600 to 500 μm).

【0012】次に、図1(B)に示すように、Si基板
1の裏面となる面2を研磨台3にラップしてラッピング
加工によりSi基板1の裏面2を研磨するが、本実施例
では、裏面2の反対側の面4(つまり表面となる面)
に、中央部が球面状に突出した張り付け用治具5を配置
し、この張り付け用治具5を介して相対的にSi基板1
を研磨台3に押し付けた状態において、Si基板1と研
磨台3とを相対運動させてSi基板1の裏面2を研磨す
る。このとき、Si基板1は力が加えられて張り付け用
治具5にその湾曲面に沿って反るように張り付けられ、
その結果裏面2の中央部が周辺部よりも突き出た形とな
るので、裏面2の中央部は周辺部に比べて良く削れるよ
うに研磨されることになる。張り付け用治具5の球面の
突出量aは後述するSi基板の反り量に対応させて40
〜60μmに設定するのが好ましい。この裏面研磨の結
果は図1(C)に示すとおりである。
Next, as shown in FIG. 1B, the back surface 2 of the Si substrate 1 is wrapped with a polishing table 3 and the back surface 2 of the Si substrate 1 is polished by lapping. Then, the surface 4 opposite to the back surface 2 (that is, the surface to be the front surface)
Is provided with a sticking jig 5 having a central portion protruding in a spherical shape, and the Si substrate 1 is relatively disposed through the sticking jig 5.
In the state in which is pressed against the polishing table 3, the Si substrate 1 and the polishing table 3 are relatively moved to polish the back surface 2 of the Si substrate 1. At this time, the Si substrate 1 is attached to the attachment jig 5 so as to be warped along its curved surface by applying a force,
As a result, the central portion of the back surface 2 is projected more than the peripheral portion, so that the central portion of the back surface 2 is polished so as to be scraped better than the peripheral portion. The protrusion amount a of the spherical surface of the sticking jig 5 is 40 in correspondence with the warp amount of the Si substrate described later.
It is preferably set to -60 μm. The result of this back surface polishing is as shown in FIG.

【0013】それから、図1(D)に示すように、今度
はSi基板1の表面4を研磨台3にラップしてラッピン
グ加工によりSi基板1の表面2を研磨する。その際、
本実施例では、先に研磨されたSi基板1の裏面2側
に、表面が平坦な張り付け用治具6を配置し、この張り
付け用治具6を介して相対的にSi基板1を研磨台3に
押し付けた状態において、Si基板1と研磨台3とを相
対運動させてSi基板1の表面4を研磨する。このと
き、Si基板1は力が加えられて張り付け用治具6に裏
面2が平らとなるように張り付けられ、その結果表面4
の周辺部が中央部よりも突き出た形となるので、表面4
の周辺部は中央部に比べて良く削れるように研磨される
ことになる。
Then, as shown in FIG. 1D, the surface 4 of the Si substrate 1 is wrapped with a polishing table 3 and the surface 2 of the Si substrate 1 is polished by lapping. that time,
In the present embodiment, a sticking jig 6 having a flat surface is arranged on the back surface 2 side of the previously polished Si substrate 1, and the Si substrate 1 is relatively polished via the sticking jig 6. The surface 4 of the Si substrate 1 is polished by moving the Si substrate 1 and the polishing table 3 relative to each other while being pressed against the substrate 3. At this time, the Si substrate 1 is applied with force so that the back surface 2 is attached flat to the attachment jig 6, and as a result, the surface 4 is attached.
Since the peripheral part of the is projected more than the central part, the surface 4
The peripheral portion of is polished so as to be scraped better than the central portion.

【0014】この表面研磨の結果は図2(E)に示すと
おりである。すなわち、以上の工程により、ヘテロエピ
タキシャル用のSi基板1(厚さ400μm)は、形状
が球面状で、表面の方向にウェハ中央部が周辺部よりも
約50μm(同図中の寸法b)持ち上がった凸状に加工
される。このようにSi基板1を凸状に加工するのは、
後で成長させるGaAs層の熱膨張係数(約6×10-6
/deg)がSi基板1の熱膨張係数(2.4×10-6/de
g)よりも大きいので、室温(25℃)程度にまで温度
を下げるとGaAs層の成長面の方向に凹状になるた
め、この凹状になる効果との相殺によって平坦なGaA
s/Si基板が得られるようにするためである。したが
って、加工されるSi基板1の反り量bは、平坦なSi
基板を使用したときのGaAs/Si基板の反り量に相
当する値に設定されることになる。
The result of this surface polishing is as shown in FIG. That is, by the above steps, the Si substrate 1 for heteroepitaxial growth (thickness 400 μm) has a spherical shape, and the wafer central portion is lifted in the direction of the surface by about 50 μm (dimension b in the figure) above the peripheral portion. It is processed into a convex shape. Processing the Si substrate 1 into a convex shape in this way is
Coefficient of thermal expansion of GaAs layer to be grown later (about 6 × 10 −6
/ deg) is the coefficient of thermal expansion of the Si substrate 1 (2.4 × 10 -6 / de
Since it is larger than g), when the temperature is lowered to about room temperature (25 ° C.), it becomes concave in the direction of the growth surface of the GaAs layer.
This is for obtaining the s / Si substrate. Therefore, the warp amount b of the Si substrate 1 to be processed is
It is set to a value corresponding to the amount of warpage of the GaAs / Si substrate when the substrate is used.

【0015】ヘテロエピタキシャル用のSi基板1が凸
状に加工されると、図2(F)に示すように、周知の半
導体製造技術を用いて、そのSi基板1の表面2に直接
またはバッファ層を介して、有機金属化合物を用いる気
相成長法(以下MOCVD法という)または分子線エピ
タキシャル法(以下MBE法という)によってSiと異
種のGaAs層7を成長させる。具体的には、例えば、
凸状に加工されたヘテロエピタキシャル用Si基板1を
GaAs層を成長させる装置内に入れて、まず約900
℃でSi基板1を熱処理して表面4を清浄した後、MO
CVD法の場合には400〜450℃、MBE法の場合
には150〜400℃の比較的低い温度で厚さ20nm
くらいのGaAsを堆積させ、成長を一旦中断してから
基板温度をGaAs層の成長温度である650〜750
℃に上げ2回目の成長を行わせて厚さ約3μmのGaA
s層7をSi基板1上に形成し、もってGaAs/Si
基板を作製する。
When the Si substrate 1 for heteroepitaxial processing is processed into a convex shape, as shown in FIG. 2F, a well-known semiconductor manufacturing technique is used to directly or on the surface 2 of the Si substrate 1. A GaAs layer 7 different from Si is grown by means of a vapor phase growth method (hereinafter referred to as MOCVD method) or a molecular beam epitaxial method (hereinafter referred to as MBE method) using an organometallic compound. Specifically, for example,
The hetero-epitaxial Si substrate 1 processed into a convex shape is put into an apparatus for growing a GaAs layer, and first about 900
After heat treating the Si substrate 1 at ℃ to clean the surface 4, MO
A thickness of 20 nm at a relatively low temperature of 400 to 450 ° C. for the CVD method and 150 to 400 ° C. for the MBE method.
About GaAs is deposited, the growth is temporarily stopped, and then the substrate temperature is set to the growth temperature of the GaAs layer of 650 to 750.
GaA with a thickness of about 3 μm
The s layer 7 is formed on the Si substrate 1 so that GaAs / Si
Make a substrate.

【0016】それから、この基板を室温(25℃)程度
にまで冷却すると、凸状に反っていたSi基板1は、前
記したGaAsとSi間の熱膨張係数の差に起因する凹
状になる効果と相殺して、つまり熱膨張係数の差により
凹状になる応力が作用して凸状に反ったSi基板1を平
坦に戻す力が働いて、図2(G)に示すように最終的に
平坦なGaAs/Si基板が得られることになる。
Then, when this substrate is cooled down to room temperature (25 ° C.), the convexly warped Si substrate 1 becomes concave due to the difference in thermal expansion coefficient between GaAs and Si. The force that cancels out, that is, the stress that becomes concave due to the difference in the coefficient of thermal expansion acts to return the Si substrate 1 that is warped in a convex shape to a flat surface, and finally becomes flat as shown in FIG. A GaAs / Si substrate will be obtained.

【0017】したがって、本実施例によれば、GaAs
/Si基板を有効に平坦化することができるようにな
り、各種のデバイスプロセスにおいて基板の反りに対す
る特別な注意や工夫(装置の変更等を含む)を必要とす
ることがなくなる。
Therefore, according to this embodiment, GaAs
It becomes possible to effectively flatten the / Si substrate, and it becomes unnecessary to take special precautions and ingenuity (including a change in the device, etc.) against the warp of the substrate in various device processes.

【0018】また、エピタキシャル用のSi基板1をあ
らかじめ凸状に加工するだけでよく、従来技術のように
Si基板の裏面に溝を形成したりするなどSi基板の裏
面や表面に余分な加工がないことから、基板強度を保つ
ことができるとともに、Si基板の裏面にSiO膜を
形成したりするなどSi基板の裏面に他の膜形成がない
ことから、基板内応力の増大がなく、平坦なGaAs/
Si基板の厚さをSiとGaAsとの相互関係で決まる
最大限まで厚くすることができる。つまり、平坦なGa
As/Si基板上のGaAsの厚みを、SiとGaAs
との応力関係から決まる最大の4μmまたはそれ以上の
厚みまで厚くすることができる。
Further, the Si substrate 1 for epitaxial use only needs to be processed into a convex shape in advance, and unnecessary processing is performed on the back surface or front surface of the Si substrate, such as forming grooves on the back surface of the Si substrate as in the prior art. Since there is no other film formed on the back surface of the Si substrate such as the formation of a SiO 2 film on the back surface of the Si substrate, there is no increase in the stress inside the substrate and there is no flatness. GaAs /
The thickness of the Si substrate can be increased to the maximum determined by the mutual relationship between Si and GaAs. That is, flat Ga
The thickness of GaAs on the As / Si substrate is
The thickness can be increased up to a maximum thickness of 4 μm or more determined from the stress relationship with

【0019】さらに、プロセスの容易性の点でも、従来
技術のようにSi基板の裏面のSiO膜の膜厚などを
制御するよりは、本実施例のようにSi基板1の反り量
が所定値となるようにSi基板1を加工するほうが容易
であり、上記したGaAs/Si基板の平坦化の効果と
相俟って、デバイスの歩留まりや信頼性の向上が図られ
る。
Further, in terms of process easiness, the amount of warp of the Si substrate 1 is set to a predetermined value as in the present embodiment rather than controlling the film thickness of the SiO 2 film on the back surface of the Si substrate as in the prior art. It is easier to process the Si substrate 1 to have a value, and in combination with the above-described flattening effect of the GaAs / Si substrate, the yield and reliability of the device can be improved.

【0020】なお、本実施例では、3インチのSi基板
を例にとって凸状に加工されたSi基板の反り量を50
μmとしたが、上記したように、加工されるSi基板1
の反り量は、平坦なSi基板を使用したときのGaAs
/Si基板の反り量に相当する値に設定される。例え
ば、4インチのSi基板の場合には100μm、5イン
チのSi基板の場合には150μmの反り量に加工する
とよい。
In this embodiment, the warp amount of the Si substrate processed into a convex shape is 50 by taking a 3-inch Si substrate as an example.
.mu.m, but the Si substrate 1 to be processed as described above
The amount of warpage of GaAs when using a flat Si substrate
/ Si substrate is set to a value corresponding to the amount of warp. For example, a 4-inch Si substrate may be processed to have a warp amount of 100 μm and a 5-inch Si substrate may be processed to have a warp amount of 150 μm.

【0021】また、本実施例では、Si基板上にGaA
s層を成長させる場合について説明したが、これに限定
されるわけではなく、Si基板上にInPやGaP、A
lGaAsなどの化合物半導体を成長させる場合にも適
用可能である。
Further, in this embodiment, GaA is formed on the Si substrate.
Although the case of growing the s layer has been described, the present invention is not limited to this, and InP, GaP, A may be formed on the Si substrate.
It is also applicable when growing a compound semiconductor such as 1GaAs.

【0022】[0022]

【発明の効果】本発明によれば、半導体基板上に化合物
半導体層を成長させたときの基板の反り量に相当する量
だけあらかじめ半導体基板を凸状または凹状に加工して
おき、その上に化合物半導体層を成長させるようにした
ので、基板を室温程度にまで冷却すると基板は平坦に戻
るようになり、基板の強度や応力など基板の特性を変え
ることなく、有効に基板を平坦化することができる。
According to the present invention, the semiconductor substrate is preliminarily processed into a convex shape or a concave shape by an amount corresponding to the amount of warpage of the substrate when the compound semiconductor layer is grown on the semiconductor substrate, and then the semiconductor substrate is processed into a convex shape or a concave shape. Since the compound semiconductor layer is grown, when the substrate is cooled down to room temperature, the substrate returns to a flat surface, and it is possible to effectively flatten the substrate without changing the characteristics of the substrate such as the strength and stress of the substrate. You can

【0023】また、あらかじめ半導体基板を加工してお
くだけでよいため、複雑なプロセス制御が不要であり、
比較的容易に平坦な基板を得ることができる。
Further, since it is only necessary to process the semiconductor substrate in advance, complicated process control is unnecessary,
A flat substrate can be obtained relatively easily.

【0024】さらに、基板内応力の増大がないことによ
り、半導体基板上に化合物半導体層を最大限まで厚く成
長させることができる。
Furthermore, since the stress in the substrate does not increase, the compound semiconductor layer can be grown to the maximum thickness on the semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施例を説明するための基板の状態図FIG. 1 is a state diagram of a substrate for explaining this embodiment.

【図2】 同じく本実施例を説明するための基板の状態
FIG. 2 is a state diagram of a substrate for explaining the present embodiment as well.

【符号の説明】[Explanation of symbols]

1…Si基板(半導体基板) 2…Si基板裏面 3…研磨台 4…Si基板表面 5、6…張り付け用治具 7…GaAs層(化合物半導体層) DESCRIPTION OF SYMBOLS 1 ... Si substrate (semiconductor substrate) 2 ... Si substrate back surface 3 ... Polishing table 4 ... Si substrate surface 5, 6 ... Jig 7 for bonding GaAs layer (compound semiconductor layer)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を凸状または凹状に加工する
第1工程と、 前記半導体基板の表面上に当該半導体基板と異なる種類
の化合物半導体層を成長させる第2工程と、 を有することを特徴とする半導体基板の製造方法。
1. A first step of processing a semiconductor substrate into a convex shape or a concave shape, and a second step of growing a compound semiconductor layer of a kind different from that of the semiconductor substrate on a surface of the semiconductor substrate. And a method for manufacturing a semiconductor substrate.
【請求項2】 前記第1工程は、目標厚さよりも厚めの
半導体基板を用意する工程と、当該半導体基板の一方の
面をその中央部が良く削れるように研磨する工程と、前
記半導体基板の他方の面をその周辺部が良く削れるよう
に研磨する工程とを有することを特徴とする請求項1記
載の半導体基板の製造方法。
2. The first step is a step of preparing a semiconductor substrate having a thickness larger than a target thickness, a step of polishing one surface of the semiconductor substrate so that a central portion thereof is well shaved, and a step of polishing the semiconductor substrate. 2. The method of manufacturing a semiconductor substrate according to claim 1, further comprising a step of polishing the other surface so that a peripheral portion thereof is well shaved.
【請求項3】 前記化合物半導体層の熱膨張係数が前記
半導体基板よりも大きい場合は前記半導体基板を凸状に
加工し、また、前記化合物半導体層の熱膨張係数が前記
半導体基板よりも小さい場合は前記半導体基板を凹状に
加工することを特徴とする請求項1または2記載の半導
体基板の製造方法。
3. When the thermal expansion coefficient of the compound semiconductor layer is larger than that of the semiconductor substrate, the semiconductor substrate is processed into a convex shape, and when the thermal expansion coefficient of the compound semiconductor layer is smaller than that of the semiconductor substrate. The method for manufacturing a semiconductor substrate according to claim 1, wherein the semiconductor substrate is processed into a concave shape.
JP4270794A 1994-03-14 1994-03-14 Manufacture of semiconductor substrate Withdrawn JPH07249573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270794A JPH07249573A (en) 1994-03-14 1994-03-14 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270794A JPH07249573A (en) 1994-03-14 1994-03-14 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH07249573A true JPH07249573A (en) 1995-09-26

Family

ID=12643548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270794A Withdrawn JPH07249573A (en) 1994-03-14 1994-03-14 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH07249573A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278523A (en) * 2005-03-28 2006-10-12 Dowa Mining Co Ltd Wafer and its manufacturing method, and semiconductor substrate and its manufacturing method
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008124151A (en) * 2006-11-09 2008-05-29 Namiki Precision Jewel Co Ltd Single crystal substrate and method of manufacturing nitride semiconductor single crystal
JP2009152548A (en) * 2007-12-24 2009-07-09 Samsung Electro-Mechanics Co Ltd Wafer for chemical vapor deposition and method for manufacturing the same
JP2010192485A (en) * 2009-02-16 2010-09-02 Nichia Corp Method of working nitride semiconductor substrate
JP2011233766A (en) * 2010-04-28 2011-11-17 Disco Abrasive Syst Ltd Method of processing hard substrate
JP2016076650A (en) * 2014-10-08 2016-05-12 トヨタ自動車株式会社 Semiconductor device manufacturing method
WO2018047595A1 (en) * 2016-09-07 2018-03-15 信越半導体株式会社 Method for manufacturing silicon epitaxial wafer and method for manufacturing semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278523A (en) * 2005-03-28 2006-10-12 Dowa Mining Co Ltd Wafer and its manufacturing method, and semiconductor substrate and its manufacturing method
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008124151A (en) * 2006-11-09 2008-05-29 Namiki Precision Jewel Co Ltd Single crystal substrate and method of manufacturing nitride semiconductor single crystal
JP2009152548A (en) * 2007-12-24 2009-07-09 Samsung Electro-Mechanics Co Ltd Wafer for chemical vapor deposition and method for manufacturing the same
JP2010192485A (en) * 2009-02-16 2010-09-02 Nichia Corp Method of working nitride semiconductor substrate
JP2011233766A (en) * 2010-04-28 2011-11-17 Disco Abrasive Syst Ltd Method of processing hard substrate
JP2016076650A (en) * 2014-10-08 2016-05-12 トヨタ自動車株式会社 Semiconductor device manufacturing method
WO2018047595A1 (en) * 2016-09-07 2018-03-15 信越半導体株式会社 Method for manufacturing silicon epitaxial wafer and method for manufacturing semiconductor device
JP2018041829A (en) * 2016-09-07 2018-03-15 信越半導体株式会社 Method for manufacturing silicon epitaxial wafer, and method for manufacturing semiconductor device
CN109690738A (en) * 2016-09-07 2019-04-26 信越半导体株式会社 The manufacturing method of epitaxial silicon wafer and the manufacturing method of semiconductor devices
KR20190045189A (en) * 2016-09-07 2019-05-02 신에쯔 한도타이 가부시키가이샤 Method of manufacturing silicon epitaxial wafer and method of manufacturing semiconductor device
US10734220B2 (en) 2016-09-07 2020-08-04 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon epitaxial wafer and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5340435A (en) Bonded wafer and method of manufacturing it
EP1130135B1 (en) Silicon carbide film and method for manufacturing the same
EP0444943B1 (en) A method of manufacturing a bonded wafer
JPH07249573A (en) Manufacture of semiconductor substrate
JP2557546B2 (en) Method for manufacturing semiconductor device
JP2642645B2 (en) Method of manufacturing semiconductor substrate and method of manufacturing semiconductor device
US20020124793A1 (en) Silicon carbide film and method for manufacturing the same
JPH0473930A (en) Substrate for heteroepitaxial growth
JPH03250615A (en) Manufacture of bonded wafer
JPS61225816A (en) Manufacture of compound semiconductor device
JPH04226031A (en) Manufacture of semiconductor wafer and semiconductor device
JPH03265153A (en) Dielectric isolation substrate, manufacture thereof and semiconductor integrated circuit device using same substrate
JP2563937B2 (en) Group III-V compound semiconductor crystal substrate
JPH0722122B2 (en) Method for manufacturing semiconductor substrate
JP2836551B2 (en) III-V compound semiconductor wafer
JP2862018B2 (en) Semiconductor substrate
US6599758B2 (en) Post-epitaxial thermal oxidation for reducing microsteps on polished semiconductor wafers
JPH05326683A (en) Manufacutre of soi substrate
JP2754734B2 (en) Composite semiconductor substrate
JP3936987B2 (en) Processing method of workpiece
JP3400085B2 (en) Method for forming compound semiconductor layer
JP2769072B2 (en) Method for manufacturing insulating layer separated substrate
JPH06208950A (en) Manufacture of compound semiconductor substrate
JPS61241911A (en) Compound semiconductor device
JPS62262471A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605