JPH09320792A - X-ray generator - Google Patents

X-ray generator

Info

Publication number
JPH09320792A
JPH09320792A JP8132408A JP13240896A JPH09320792A JP H09320792 A JPH09320792 A JP H09320792A JP 8132408 A JP8132408 A JP 8132408A JP 13240896 A JP13240896 A JP 13240896A JP H09320792 A JPH09320792 A JP H09320792A
Authority
JP
Japan
Prior art keywords
plasma
scattered
ray
ray generator
solid angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132408A
Other languages
Japanese (ja)
Inventor
Noriaki Kamitaka
典明 神高
Hiroyuki Kondo
洋行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8132408A priority Critical patent/JPH09320792A/en
Publication of JPH09320792A publication Critical patent/JPH09320792A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray generator using buffer gas for inhibiting scattering particles from a plasma X-ray source, capable of reducing, adhering and deposition of the scattering particles in convenient, relative to an X-ray extracting direction and capable of being used constantly for a long time as a result, even if plasma generation is long at a short time intervals. SOLUTION: An X-ray generator is constituted to irradiate a target member 401 in a pressure-reduced vacuum container 443 with an exciting energy beam 411, form a plasma 402, and extract and X-ray from the plasma 402 so that buffer gas is used to inhibit scattering particles to be radiated from the target member 401 and/or the plasma 402. In this case, the X-ray generator is provided with a scattering particle-inhibiting member 422 adjacent to or in the vicinity of a solid angle area 412, equivalent to a range in which the X-ray is to be extracted and a scattering particle dispersion inhibiting member 433, having a movable part 432 that can pass through the solid angle area 412.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線露光装置、X
線顕微鏡、X線分析装置などのX線装置に用いて好適な
X線発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray
The present invention relates to an X-ray generator suitable for use in an X-ray apparatus such as an X-ray microscope and an X-ray analyzer.

【0002】[0002]

【従来の技術】レーザー光(励起エネルギービームの一
例)を減圧された真空容器内に置かれた標的部材に集光
して照射すると、標的部材は急速にプラズマ化し、この
プラズマから非常に輝度の高いX線が輻射(放出)され
る(X線を発生する)ことが知られている(例えば、こ
のようなX線発生源はLPX:Laser-Plasma X-raysour
ce と呼ばれる)。
2. Description of the Related Art When a laser beam (an example of an excitation energy beam) is focused on a target member placed in a depressurized vacuum container and irradiated, the target member is rapidly turned into plasma, and the plasma emits a very bright light. It is known that high X-rays are radiated (emitted) (produce X-rays) (for example, such an X-ray source is LPX: Laser-Plasma X-raysour).
called ce).

【0003】X線の発生と共に、前記プラズマからは高
速の電子やイオン等の飛散粒子が、また前記標的部材か
らは部材材料の飛散粒子(例えば、ガス化した材料、イ
オン化した材料、材料小片など)が放出されて真空容器
内に飛散する(以下、これらをまとめて飛散粒子と呼
ぶ)。このような飛散粒子は、清浄光学面(例えば、X
線光学素子面)に衝突して、これらを破損したり、或い
は付着、堆積して機能や特性を低下させたり変化させる
ので、大きな問題であった。
With the generation of X-rays, high-speed scattered particles of electrons and ions from the plasma, and scattered particles of member material from the target member (for example, gasified material, ionized material, small pieces of material, etc.) ) Is released and scattered in the vacuum container (hereinafter, collectively referred to as scattered particles). Such scattered particles can form a clean optical surface (for example, X
This is a big problem because it collides with the surface of the linear optical element and damages them, or adheres and deposits to deteriorate or change the function and characteristics.

【0004】この問題点を解決するために従来の方法で
は、X線源と清浄光学面との間に、X線透過性の高い物
質(例えば、Be)からなる薄膜(以下、飛散粒子阻止
用薄膜またはX線取り出しフィルターと呼ぶ)を設置し
て遮蔽することにより、飛散粒子が清浄光学面に到達し
ないようにしていた。その他の方法としては、真空容器
内にX線に対する透過率の高い低原子番号のガス(例え
ば、Heガス)を充填することにより、或いは該ガスの
ガス流を形成することにより、飛散粒子にガス分子を衝
突させて飛散粒子の阻止を図っていた(特開昭63-29255
3 参照)。
In order to solve this problem, according to the conventional method, a thin film made of a substance having a high X-ray transmission property (for example, Be) (hereinafter referred to as scattered particle blocking) is provided between the X-ray source and the cleaning optical surface. A thin film or an X-ray extraction filter) was installed and shielded to prevent scattered particles from reaching the clean optical surface. As another method, a gas having a low atomic number having a high X-ray transmittance (for example, He gas) is filled in the vacuum container, or a gas flow of the gas is formed so that the scattered particles are gasified. The molecules were made to collide with each other to prevent scattered particles (Japanese Patent Laid-Open No. 63-29255).
See 3).

【0005】真空容器内にガスを充填した場合、プラズ
マや標的部材から飛び出した飛散粒子はガス分子との散
乱により、飛び出したときのエネルギーをやがて失い、
ガス分子の運動の中に混ざり込んでいく。そして真空容
器内の部材表面や壁面に付着するか、或いは、バッファ
ガスの導入だけでなく、排気も行っている場合には、真
空ポンプによりガス分子とともに排気される。
When a gas is filled in the vacuum container, the particles scattered from the plasma or the target member are scattered with the gas molecules and eventually lose the energy when they are ejected.
It mixes into the movement of gas molecules. Then, it adheres to the surface or wall surface of the member in the vacuum container, or, when not only introducing the buffer gas but also exhausting it, it is exhausted together with the gas molecules by the vacuum pump.

【0006】ところで、飛散粒子阻止用薄膜の設置によ
り、清浄光学面への飛散粒子の付着、堆積は防げるが、
そのかわり、飛散粒子阻止用薄膜上に飛散粒子が付着、
堆積するので、飛散粒子阻止用薄膜のX線透過率が次第
に低下する(X線取り出し方向における使用X線強度が
低下する)という問題点がある。また、真空容器内にX
線に対する透過率の高い低原子番号のガス(バッファガ
ス)を充填することにより、或いは該ガスのガス流を形
成することにより、飛散粒子の阻止を図る方法では、必
ずしも飛散粒子を有効に阻止できるわけではないという
問題点がある。
By the way, by installing a thin film for preventing scattered particles, it is possible to prevent the scattered particles from adhering to and depositing on the clean optical surface.
Instead, flying particles adhere to the flying particle blocking thin film,
Since they are deposited, there is a problem that the X-ray transmittance of the scattered particle blocking thin film gradually decreases (the X-ray intensity used in the X-ray extraction direction decreases). In addition, X in the vacuum container
In a method of preventing scattered particles by filling a low atomic number gas (buffer gas) having a high transmittance with respect to rays or by forming a gas flow of the gas, scattered particles can be effectively prevented. There is a problem that it does not mean.

【0007】例えば、標的部材がタンタルである場合
に、十分に排気された(圧力10Pa以下)真空容器内
では、飛散粒子は標的部材表面の法線方向に多く分布す
る。そして、真空容器内に飛散粒子阻止用のバッファガ
スを導入すると、飛散粒子が多く放出される方向につい
ては、ガス分子による散乱のために飛散粒子は減少する
が、散乱した飛散粒子はガス導入前には飛散粒子の放出
が少なかった方向にも飛散する。
For example, when the target member is tantalum, in a sufficiently evacuated vacuum container (pressure less than 10 Pa), many scattered particles are distributed in the direction normal to the surface of the target member. When a buffer gas for preventing scattered particles is introduced into the vacuum container, in the direction where many scattered particles are emitted, the scattered particles decrease due to scattering by gas molecules, but the scattered particles are scattered before the gas introduction. The scattered particles also scatter in the direction of less emission.

【0008】そのため、飛散粒子を阻止するためにバッ
ファガスを使用すると、飛散粒子の放出方向の分布が均
一化される。このことは、飛散粒子の放出が少ない方向
については、飛散粒子の放出が多い方向と比較してガス
導入の効果が小さいか、むしろ逆効果となることを示し
ている。X線の取り出しは、飛散粒子の放出が少ない方
向において行うのが一般的であり、飛散粒子の放出が少
ないX線の取り出し方向について、ガス導入の効果が小
さいか、むしろ逆効果となることは大きな問題点であ
る。
Therefore, when the buffer gas is used to prevent the scattered particles, the distribution of the scattered particles in the emission direction becomes uniform. This indicates that the effect of introducing gas is smaller in the direction in which the emission of scattered particles is smaller than that in the direction in which the emission of scattered particles is large, or is rather the opposite effect. Extraction of X-rays is generally performed in the direction in which the emission of scattered particles is small, and in the X-ray extraction direction in which the emission of scattered particles is small, the effect of introducing gas may be small or may be the opposite effect. This is a big problem.

【0009】特に、プラズマ近傍に飛散粒子の放出量の
方向分布を制御する飛散粒子制御部材であり、前記X線
を取り出す方向への飛散粒子の放出量を低減させる飛散
粒子制御部材を設ける場合に、X線の取り出し方向につ
いて、ガス導入の効果が小さいか、むしろ逆効果となる
ことは大きな問題点である。そこで、飛散粒子を阻止す
るためにバッファガスを使用する場合に発生する問題点
を解決すべく、取り出すX線が通過する立体角領域を遮
らないように該領域に隣接または近接して飛散粒子阻止
部材を配置することにより、飛散粒子を阻止すること
が、本願と同一出願人により提案されている(特願平7
−127600)。
Particularly, when a scattered particle control member for controlling the directional distribution of the scattered particle emission amount near the plasma and for reducing the emitted particle emission amount in the X-ray extraction direction is provided. In regard to the X-ray extraction direction, it is a big problem that the effect of introducing gas is small, or rather has the opposite effect. Therefore, in order to solve the problem that occurs when a buffer gas is used to block scattered particles, the scattered particle blocker is placed adjacent to or close to the solid angle region through which the extracted X-rays pass so as not to block it. It has been proposed by the same applicant as the present application that the scattered particles be prevented by disposing the member (Japanese Patent Application No.
-127600).

【0010】[0010]

【発明が解決しようとする課題】例えば、図6に示すよ
うに、取り出すX線が通過する立体角領域612を遮ら
ないように該領域612に隣接または近接して飛散粒子
阻止部材622を設けた従来のX線発生装置においてバ
ッファガスを導入した場合、プラズマ602の生成によ
り発生した飛散粒子のうち、部材622の内側に飛び込
んだものは、ガス分子との衝突によりエネルギーを失
い、部材622の内側を漂った後、部材622に付着す
ることで阻止される。
For example, as shown in FIG. 6, a scattering particle blocking member 622 is provided adjacent to or in close proximity to a solid angle region 612 through which X-rays to be extracted do not block. When a buffer gas is introduced in the conventional X-ray generator, among the scattered particles generated by the generation of the plasma 602, those flying inside the member 622 lose energy due to collision with gas molecules, and inside the member 622. After drifting, it is prevented by adhering to the member 622.

【0011】ここで、プラズマ602の生成の時間間隔
が長ければ、漂っている飛散粒子は、次のプラズマが生
成されるまでに拡散してしまうが、プラズマが短い時間
間隔で長時間にわたって発生すると、部材622内側の
飛散粒子は十分に拡散することができないので、部材6
22の内側にガス分子と共に漂っている飛散粒子の密度
が増大する。
Here, if the time interval of generation of the plasma 602 is long, the floating particles are diffused until the next plasma is generated, but if the plasma is generated at a short time interval for a long time. Since the scattered particles inside the member 622 cannot sufficiently diffuse, the member 6
The density of scattered particles floating with gas molecules inside 22 is increased.

【0012】その結果、X線取り出し窓(清浄光学面の
一例)641に到達・付着する飛散粒子は増加し、飛散
粒子の付着によりX線取り出し窓641のX線透過率が
低下するので、X線源として安定した利用ができないと
いう問題点がある。即ち、このようにバッファガスを真
空容器内に充填し、かつ、取り出すX線が通過する立体
角領域に隣接または近接して飛散粒子阻止部材を設けて
も、プラズマの生成が短い時間間隔で長時間にわたる場
合には、十分な飛散粒子の阻止効果が得られないという
問題点があった。
As a result, the number of scattered particles reaching and adhering to the X-ray extraction window (an example of a clean optical surface) 641 increases, and the X-ray transmittance of the X-ray extraction window 641 decreases due to the adhesion of the scattered particles. There is a problem that it cannot be used stably as a radiation source. That is, even if the vacuum container is filled with the buffer gas and the scattered particle blocking member is provided adjacent to or in close proximity to the solid angle region through which the X-ray to be extracted passes, the generation of plasma is long at short time intervals. There is a problem that a sufficient effect of preventing scattered particles cannot be obtained over the time.

【0013】本発明は、かかる問題点に鑑みてなされた
もので、プラズマX線源からの飛散粒子を阻止するため
にバッファガスを用いるX線発生装置であり、プラズマ
の生成が短い時間間隔で長時間にわたる場合にも、X線
の取り出し方向について不都合な飛散粒子の付着、堆積
を低減して、その結果、長時間安定して使用できるX線
発生装置を提供することを目的とする。
The present invention has been made in view of the above problems, and is an X-ray generator that uses a buffer gas to prevent scattered particles from a plasma X-ray source, and plasma is generated at short time intervals. It is an object of the present invention to provide an X-ray generator that can be used stably for a long period of time by reducing the adhesion and deposition of scattered particles that are unfavorable in the X-ray extraction direction even over a long period of time.

【0014】[0014]

【課題を解決する為の手段】そのため、本発明は第一に
「減圧された真空容器内の標的部材に励起エネルギービ
ームを照射してプラズマを形成させ、該プラズマからX
線を取り出すX線発生装置であり、前記標的部材及び/
又は前記プラズマから放出される飛散粒子を阻止するた
めにバッファガスを用いるX線発生装置において、前記
X線を取り出す範囲に相当する立体角領域に隣接または
近接する飛散粒子阻止部材を設け、かつ、該立体角領域
を通過可能な可動部を有する飛散粒子拡散・阻止部材を
設けたことを特徴とするX線発生装置(請求項1)」を
提供する。
Accordingly, the present invention first provides a method of forming a plasma by irradiating a target member in a decompressed vacuum vessel with an excitation energy beam to form a plasma,
An X-ray generator for extracting a line, the target member and / or
Alternatively, in an X-ray generator that uses a buffer gas to prevent scattered particles emitted from the plasma, a scattered particle blocking member is provided adjacent to or in proximity to a solid angle region corresponding to a range from which the X-rays are taken out, and An X-ray generator (claim 1), characterized in that a scattered particle diffusion / blocking member having a movable part capable of passing through the solid angle region is provided.

【0015】また、本発明は第二に「減圧された真空容
器内の標的部材に励起エネルギービームを照射してプラ
ズマを形成させ、該プラズマからX線を取り出すX線発
生装置であり、前記標的部材及び/又は前記プラズマか
ら放出される飛散粒子を阻止するためにバッファガスを
用いるX線発生装置において、前記励起エネルギービー
ムが通過する開口部と前記X線が通過する別の開口部を
有する部材であり、前記標的部材及び/又は前記プラズ
マから放出される飛散粒子を遮蔽する飛散粒子遮蔽部材
を前記標的部材及びプラズマの近傍に設け、かつ、前記
X線を取り出す範囲に相当する立体角領域に隣接または
近接する飛散粒子阻止部材を設け、さらに、該立体角領
域を通過可能な可動部を有する飛散粒子拡散・阻止部材
を設けたことを特徴とするX線発生装置(請求項2)」
を提供する。
A second aspect of the present invention is an X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container which has been decompressed to form plasma and extracting X-rays from the plasma. A member and / or an X-ray generator that uses a buffer gas to block scattered particles emitted from the plasma, wherein the member has an opening through which the excitation energy beam passes and another opening through which the X-rays pass. And a scattering particle shielding member for shielding scattering particles emitted from the target member and / or the plasma is provided in the vicinity of the target member and the plasma, and in a solid angle region corresponding to a range for extracting the X-rays. It is characterized in that a scattered particle blocking member is provided adjacent to or in the vicinity thereof, and further, a scattered particle diffusing / blocking member having a movable portion capable of passing through the solid angle region is provided. X-ray generator according to (Claim 2) "
I will provide a.

【0016】また、本発明は第三に「前記バッファガス
は、前記真空容器内が所定の圧力範囲となるように導
入、排出の制御がなされていることを特徴とする請求項
1または2記載のX線発生装置(請求項3)」を提供す
る。また、本発明は第四に「前記立体角領域内にバッフ
ァガスを導入し、かつ、該立体角領域内から飛散粒子と
ともにバッファガスを排出する機構をさらに設けたこと
を特徴とする請求項1〜3記載のX線発生装置(請求項
4)」を提供する。
The third aspect of the present invention is that "the buffer gas is controlled to be introduced and discharged so that the pressure inside the vacuum container is within a predetermined pressure range. X-ray generator (claim 3) ". A fourth aspect of the present invention is characterized in that a mechanism for introducing a buffer gas into the solid angle region and discharging the buffer gas together with scattered particles from the solid angle region is further provided. X-ray generator (claim 4).

【0017】また、本発明は第五に「前記標的部材及び
/又は前記プラズマから放出される飛散粒子の放出量の
方向分布を制御する飛散粒子制御部材であり、前記X線
を取り出す方向への飛散粒子の放出量を低減させる飛散
粒子制御部材をさらに設けたことを特徴とする請求項1
〜4記載のX線発生装置(請求項5)」を提供する。ま
た、本発明は第六に「前記飛散粒子阻止部材を冷却する
冷却手段をさらに設けたことを特徴とする請求項1〜5
記載のX線発生装置(請求項6)」を提供する。
Fifthly, the present invention relates to a "scattered particle control member for controlling the directional distribution of the amount of scattered particles emitted from the target member and / or the plasma, in the direction of extracting the X-rays. The scattered particle control member for reducing the emission amount of scattered particles is further provided.
X-ray generator according to claim 4 (claim 5). A sixth aspect of the present invention is that "cooling means for cooling the scattered particle blocking member is further provided.
An X-ray generator according to claim 6 is provided.

【0018】[0018]

【発明の実施の形態】本発明のプラズマX線源からの飛
散粒子を阻止するためにバッファガスを用いるX線発生
装置においては、前記X線を取り出す範囲に相当する立
体角領域に隣接または近接する飛散粒子阻止部材を設
け、かつ、該立体角領域を通過可能な可動部を有する部
材であり、飛散粒子を拡散及び/または阻止する飛散粒
子拡散・阻止部材を設けている(請求項1)。
BEST MODE FOR CARRYING OUT THE INVENTION In an X-ray generator that uses a buffer gas to prevent particles scattered from a plasma X-ray source according to the present invention, it is adjacent to or close to a solid angle region corresponding to the range for extracting the X-rays. And a scattering particle diffusion / blocking member for diffusing and / or blocking the scattering particles (claim 1). .

【0019】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、X線の取り出し方向につい
て、不都合な飛散粒子の付着、堆積(飛散粒子阻止用薄
膜や清浄光学面などへの付着、堆積)を低減できる。ま
た、本発明のプラズマX線源からの飛散粒子を阻止する
ためにバッファガスを用いるX線発生装置においては、
前記励起エネルギービームが通過する開口部と前記X線
が通過する別の開口部を有する部材であり、前記標的部
材及び/又は前記プラズマから放出される飛散粒子を遮
蔽する飛散粒子遮蔽部材を前記標的部材及びプラズマの
近傍に設け、かつ、前記X線を取り出す範囲に相当する
立体角領域に隣接または近接する飛散粒子阻止部材を設
け、さらに、該立体角領域を通過可能な可動部を有する
部材であり、飛散粒子を拡散及び/または阻止する飛散
粒子拡散・阻止部材を設けている(請求項2)。
Therefore, even when the plasma is generated at short time intervals for a long time, inconvenient scattered particles are deposited or deposited (adhered to the scattered particle blocking thin film, the clean optical surface, etc.) in the X-ray extraction direction. (Deposition) can be reduced. Further, in the X-ray generator using the buffer gas to prevent the scattered particles from the plasma X-ray source of the present invention,
The target is a member having an opening through which the excitation energy beam passes and another opening through which the X-rays pass, and the scattered particle shielding member for shielding scattered particles emitted from the target member and / or the plasma. A member having a movable part that is provided in the vicinity of the member and the plasma and that is adjacent to or close to the solid angle region corresponding to the range for extracting the X-rays, and that further has a movable portion that can pass through the solid angle region. Therefore, a scattered particle diffusion / blocking member for diffusing and / or blocking the scattered particles is provided (claim 2).

【0020】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、X線の取り出し方向につい
て、不都合な飛散粒子の付着、堆積(飛散粒子阻止用薄
膜や清浄光学面などへの付着、堆積)をさらに低減でき
る。ここで、前記従来の飛散粒子阻止部材の一例とし
て、X線を取り出す範囲に相当する立体角領域の切断面
に等しい(または略等しい)開孔を有する部材を該領域
に隣接または近接させて設けた場合を考える。
Therefore, even when the plasma is generated for a short period of time and for a long period of time, inconvenient scattered particles are deposited and deposited (adhered to a scattered particle blocking thin film, a clean optical surface, etc.) in the X-ray extraction direction. (Deposition) can be further reduced. Here, as an example of the conventional scattered particle blocking member, a member having an opening equal to (or approximately equal to) the cut surface of the solid angle region corresponding to the range for extracting X-rays is provided adjacent to or close to the region. Think about the case.

【0021】かかる飛散粒子阻止部材を立体角領域に隣
接させて設けても、立体角領域の切断面に等しい開孔に
達するX線には、なんら影響がなく、取り出されるX線
の量は変化しない。これに対して、立体角領域内に進入
しようとする飛散粒子は、飛散粒子阻止部材により多く
が阻止されるので、X線の取り出し方向について、不都
合な飛散粒子の付着、堆積を低減することができる。
Even if such a scattered particle blocking member is provided adjacent to the solid angle region, there is no effect on the X-rays reaching the opening equal to the cut surface of the solid angle region, and the amount of the extracted X-rays changes. do not do. On the other hand, most of the scattered particles that try to enter the solid angle region are blocked by the scattered particle blocking member, so that it is possible to reduce the inconvenient deposition and accumulation of the scattered particles in the X-ray extraction direction. it can.

【0022】このような効果をもたらす飛散粒子阻止部
材は、飛散粒子が立体角領域内に進入するのを阻止でき
る形状を有すればよく、開孔付きの板状の物に限定され
るわけではない。また、厳密には取り出すX線光量が低
下することになるが、X線を取り出す範囲に相当する立
体角領域内に飛散粒子阻止部材を設けても、前記の効果
が得られる。例えば、立体角領域内にあるX線の光路上
に非常に薄い板を光路に沿って設ける場合である。
The flying particle blocking member which brings about such an effect is only required to have a shape capable of blocking the flying particles from entering the solid angle region, and is not limited to a plate-shaped member having an aperture. Absent. Strictly speaking, the amount of X-ray light extracted decreases, but the above effect can be obtained even if the scattered particle blocking member is provided in the solid angle region corresponding to the range for extracting X-rays. For example, there is a case where a very thin plate is provided along the optical path on the optical path of X-rays in the solid angle region.

【0023】ところで、前述したように、バッファガス
を真空容器内に充填し、かつ、取り出すX線が通過する
立体角領域に隣接または近接して飛散粒子阻止部材を設
けても、プラズマの生成が短い時間間隔で長時間にわた
る場合には、十分な飛散粒子の阻止効果が得られないと
いう問題が発生する。そこで、本発明のX線発生装置に
おいては、立体角領域を通過可能な可動部を有する部材
であり、飛散粒子を拡散及び/または阻止する飛散粒子
拡散・阻止部材をさらに設けることで、この問題を解決
している。
By the way, as described above, even when the buffer gas is filled in the vacuum container and the scattered particle blocking member is provided adjacent to or in proximity to the solid angle region through which the X-ray to be extracted passes, plasma is not generated. If the time interval is short and the time is long, there is a problem that a sufficient effect of preventing scattered particles cannot be obtained. Therefore, in the X-ray generator of the present invention, by providing a scattered particle diffusion / prevention member that is a member having a movable portion that can pass through a solid angle region and that diffuses and / or prevents scattered particles, this problem is solved. Has been resolved.

【0024】図1に本発明のX線発生装置(一例)にか
かる各部材の配置を示す。図1に示すX線発生装置で
は、ガスが適度な圧力に充填された真空容器内にターゲ
ット材(標的部材の一例)101が配置され、プラズマ
102の発生位置の近傍には、励起エネルギービーム1
11が通過する開口部とX線が通過する別の開口部を有
する部材であり、ターゲット材101及び/又はプラズ
マ102から放出された飛散粒子を遮蔽する飛散粒子遮
蔽部材121が配置されている。
FIG. 1 shows the arrangement of each member according to the X-ray generator (one example) of the present invention. In the X-ray generator shown in FIG. 1, a target material (an example of a target member) 101 is placed in a vacuum container filled with gas at an appropriate pressure, and an excitation energy beam 1 is generated in the vicinity of a plasma generation position.
A scattered particle shielding member 121, which is a member having an opening through which 11 passes and another opening through which X-rays pass, and which shields scattered particles emitted from the target material 101 and / or the plasma 102, is arranged.

【0025】また、X線を取り出す範囲に相当する立体
角領域112に隣接または近接する飛散粒子阻止部材1
22が設けられ、さらに、該立体角領域を通過可能な可
動部132を有する部材であり、飛散粒子を拡散及び/
または阻止する飛散粒子拡散・阻止部材133が設けら
れている。ここで飛散粒子阻止部材122は、前記立体
角領域112内に配置されたX線取り出し窓(清浄光学
面の一例)123に飛散粒子が衝突、付着または堆積す
るのを防止するためのダクト状の部材であり、立体角領
域112及びX線取り出し窓123を取り囲んで設けら
れている。
Further, the scattered particle blocking member 1 adjacent to or close to the solid angle region 112 corresponding to the range for extracting X-rays.
22 is provided and further has a movable part 132 that can pass through the solid angle region, and diffuses and / or diffuses scattered particles.
Alternatively, a scattered particle diffusion / blocking member 133 for blocking is provided. Here, the scattered particle blocking member 122 has a duct shape for preventing scattered particles from colliding, adhering or accumulating on the X-ray extraction window (an example of a clean optical surface) 123 arranged in the solid angle region 112. It is a member and is provided so as to surround the solid angle region 112 and the X-ray extraction window 123.

【0026】また、飛散粒子拡散・阻止部材133は、
図2に示すような形状(羽根232及び軸231)を有
し、羽根(可動部の一例)132が軸131を回転軸と
して回転できるように構成されている。図1に示すX線
発生装置では、ターゲット材101及び/又はプラズマ
102から放出された飛散粒子の殆どが飛散粒子遮蔽部
材121により遮蔽される。
Further, the scattered particle diffusion / prevention member 133 is
The blade has a shape (blade 232 and shaft 231) as shown in FIG. 2, and the blade (an example of a movable portion) 132 is configured to be rotatable about the shaft 131 as a rotation axis. In the X-ray generator shown in FIG. 1, most of the scattered particles emitted from the target material 101 and / or the plasma 102 are shielded by the scattered particle shielding member 121.

【0027】遮蔽部材121の開口を通過して飛散粒子
阻止部材122の内側に進入した飛散粒子も、バッファ
ガス分子との散乱により進行方向を変化させながらエネ
ルギーを失い、やがてガス分子の運動の中に混ざり込ん
で、部材122の内側空間を漂う。そして、該空間を漂
うこの飛散粒子は、軸131のまわりに回転する羽根1
33に付着し(飛散粒子阻止効果)、或いは、飛散粒子
拡散・阻止部材133の運動によりかき出さる(飛散粒
子拡散効果)ので、阻止部材122の内側空間の飛散粒
子密度は低く保たれる。
The scattered particles that have passed through the opening of the shielding member 121 and have entered the inside of the scattered particle blocking member 122 lose their energy while changing their traveling directions due to scattering with the buffer gas molecules, and eventually in the movement of the gas molecules. And drifts in the inner space of the member 122. Then, the scattered particles floating in the space are the blades 1 rotating around the axis 131.
Since it adheres to 33 (scattering particle blocking effect) or is ejected by the motion of the scattering particle diffusing / blocking member 133 (scattering particle diffusing effect), the scattered particle density in the inner space of the blocking member 122 is kept low.

【0028】そして、かき出された飛散粒子は、阻止部
材122に吸着される。即ち、部材122、133の前
記作用により、或いは、部材121、122、133の
前記作用により、X線取り出し窓103に到達する飛散
粒子量は、これらの部材を設けない場合と比較して大き
く減少する。このように、本発明のX線発生装置によれ
ば、プラズマの生成が短い時間間隔で長時間にわたる場
合にも、X線の取り出し方向について不都合な飛散粒子
の付着、堆積を低減して、その結果、長時間安定して装
置を使用できる(請求項1、2)。
Then, the scattered particles thus scraped off are adsorbed to the blocking member 122. That is, the amount of scattered particles reaching the X-ray extraction window 103 due to the action of the members 122, 133 or the action of the members 121, 122, 133 is greatly reduced as compared with the case where these members are not provided. To do. As described above, according to the X-ray generator of the present invention, even when plasma is generated at short time intervals and for a long time, the adhesion and deposition of flying particles, which is inconvenient in the X-ray extraction direction, can be reduced, and As a result, the device can be used stably for a long time (claims 1 and 2).

【0029】本発明にかかる飛散粒子拡散・阻止部材1
33の可動部(例えば、羽根132)は、X線を取り出
す立体角領域112を通過するため、X線が発生してい
るときに可動部が該立体角領域112内にあると、X線
を遮って、X線の光量を低下させてしまう。そこで、X
線が発生しているときには、飛散粒子拡散・阻止部材1
33の可動部が該立体角領域112内に存在しないよう
に、可動部(例えば、羽根132)の動作(例えば、回
転)の周期を制御することが好ましい。
Scattered particle diffusion / prevention member 1 according to the present invention
Since the movable part of 33 (for example, the blade 132) passes through the solid angle region 112 for extracting the X-ray, if the movable part is in the solid angle region 112 when the X-ray is generated, the X-ray is emitted. It blocks and reduces the amount of X-ray light. So X
When lines are generated, scattered particle diffusion / prevention member 1
It is preferable to control the cycle of the operation (for example, rotation) of the movable portion (for example, the blade 132) so that the movable portion 33 does not exist in the solid angle region 112.

【0030】たとえば、部材133の可動部が該立体角
領域112を通過するのは、1回のプラズマの発生ごと
である必要はなく、飛散粒子阻止部材122の内側空間
における飛散粒子の密度が高くならないうちは、数回〜
数十回に一度でよい。なお、ある程度のX線光量の低下
を許容できる場合には、プラズマの発生時刻と部材13
3の可動(例えば、回転)周期に相関がなくてもよい。
これは、プラズマの発生時刻と部材133の可動周期に
相関がある場合には、常に同じ領域のX線が遮られてし
まう可能性があるからである。
For example, it is not necessary for the movable part of the member 133 to pass through the solid angle region 112 every time plasma is generated, and the density of scattered particles in the space inside the scattered particle blocking member 122 is high. Several times before it becomes
Only once every tens of times. If the decrease in the amount of X-ray light can be allowed to some extent, the plasma generation time and the member 13
The movable (eg, rotation) periods of 3 may not be correlated.
This is because, when there is a correlation between the plasma generation time and the movable period of the member 133, there is a possibility that X-rays in the same region will always be blocked.

【0031】X線露光装置など複数回のX線の照射が必
要な用途ではその影響はさらに小さくなる。本発明にか
かる飛散粒子拡散・阻止部材133の可動部(例えば、
羽根132)は、飛散粒子拡散・阻止効果を増大させる
ために、X線を取り出す立体角領域112のうち、でき
るだけ広い領域(空間)を通過できることが好ましく、
例えば、図3のような形状よりも図2のような形状が好
ましい。
In an application such as an X-ray exposure apparatus which requires irradiation of X-rays a plurality of times, the influence thereof is further reduced. The movable part of the scattered particle diffusion / blocking member 133 according to the present invention (for example,
It is preferable that the blades 132) can pass through a region (space) as wide as possible in the solid angle region 112 from which X-rays are extracted, in order to increase the effect of diffusing and preventing scattered particles.
For example, the shape shown in FIG. 2 is preferable to the shape shown in FIG.

【0032】取り出すX線の適切な光量が得られるよう
に、或いは、適切な飛散粒子阻止効果が得られるよう
に、本発明にかかるバッファガスは真空容器内が所定の
圧力範囲となるように導入、排出の制御がなされている
ことが好ましい(請求項3)。本発明にかかるバッファ
ガスは、利用する(取り出す)波長のX線に対する吸収
が少ないものが好ましく、例えば、ヘリウム、酸素、チ
ッ素、空気、アルゴン、クリプトンなどのガスのうちか
ら、利用するX線に対する吸収が少ないものを選択すれ
ばよい。
The buffer gas according to the present invention is introduced so that the inside of the vacuum container has a predetermined pressure range so that an appropriate amount of X-rays to be extracted or an appropriate effect of preventing scattered particles can be obtained. The discharge is preferably controlled (claim 3). The buffer gas according to the present invention is preferably one that absorbs a small amount of X-rays of a wavelength to be used (taken out), and for example, X-rays to be used among gases such as helium, oxygen, nitrogen, air, argon, and krypton. It is sufficient to select a material that absorbs less.

【0033】本発明のX線発生装置においては、X線を
取り出す立体角領域内にバッファガスを導入し、かつ、
該立体角領域内から飛散粒子とともにバッファガスを排
出する機構をさらに設けることが好ましい(請求項
4)。かかる構成にすると、バッファガスの導入により
X線を取り出す立体角領域内の飛散粒子を拡散させ、ま
た拡散させた飛散粒子とともにバッファガスを該領域内
から外側へ排出できるので、X線の取り出し方向につい
て、不都合な飛散粒子の付着、堆積をさらに低減でき
る。
In the X-ray generator of the present invention, the buffer gas is introduced into the solid angle region where X-rays are taken out, and
It is preferable to further provide a mechanism for discharging the buffer gas together with the scattered particles from within the solid angle region (claim 4). With this configuration, the scattered particles in the solid angle region where the X-rays are extracted by the introduction of the buffer gas can be diffused, and the buffer gas can be discharged to the outside from the region together with the diffused scattered particles. As for the above, it is possible to further reduce the inconvenient adhesion and deposition of scattered particles.

【0034】本発明のX線発生装置においては、標的部
材及び/又はプラズマから放出される飛散粒子の放出量
の方向分布を制御する飛散粒子制御部材であり、X線を
取り出す方向への飛散粒子の放出量を低減させる飛散粒
子制御部材をさらに設けると、、X線の取り出し方向に
おける飛散粒子阻止効果が増大するので好ましい(請求
項5)。
In the X-ray generator of the present invention, the scattered particle control member controls the directional distribution of the amount of scattered particles emitted from the target member and / or the plasma, and the scattered particles in the direction of extracting X-rays. It is preferable to further provide a scattered particle control member for reducing the amount of emitted particles because the scattered particle blocking effect in the X-ray extraction direction is increased (claim 5).

【0035】かかる飛散粒子制御部材に用いる材料とし
ては、例えば、タンタル、タングステン、ダイヤモン
ド、セラミック、ステンレスなどの高融点、又は高硬度
の材料が好ましい。これは、飛散粒子制御部材がプラズ
マに非常に近接した位置に配置されるので、プラズマか
ら飛来するイオンや電子の該部材表面への衝突による該
部材材料の放出を防止するためである。即ち、該部材材
料の放出があると飛散粒子と同様に不都合な付着、堆積
が生じるので、これを防止するのである。
As a material used for such a scattered particle control member, for example, a material having a high melting point or a high hardness such as tantalum, tungsten, diamond, ceramic, stainless steel is preferable. This is because the scattered particle control member is arranged at a position very close to the plasma, so that the emission of the member material due to collision of ions and electrons flying from the plasma with the member surface is prevented. That is, when the material of the member is released, the same inconvenient adhesion and deposition as the scattered particles occur, and this is prevented.

【0036】本発明にかかる飛散粒子阻止部材を冷却す
る冷却手段をさらに設けると、該部材が飛散粒子を吸着
しやすくなって、阻止効果が増大するので好ましい(請
求項6)。或いは、飛散粒子を吸着しやすいように、飛
散粒子阻止部材の表面を加工(例えば、つや消し加工)
することも好ましい。本発明にかかる標的部材の形状
は、巻き取り可能なテープ状が好ましいが、板状、バル
ク状、円柱状、または微粒子状でもよい。また、標的部
材の材料は、Ta,Wなどが好ましい。
It is preferable to further provide a cooling means for cooling the scattered particle blocking member according to the present invention, since the member easily adsorbs the scattered particles and the blocking effect is increased (claim 6). Alternatively, the surface of the scattered particle blocking member is processed (for example, frosted) so that the scattered particles can be easily adsorbed.
It is also preferable to do so. The shape of the target member according to the present invention is preferably a rollable tape shape, but may be a plate shape, a bulk shape, a column shape, or a fine particle shape. Further, the material of the target member is preferably Ta, W or the like.

【0037】以下、本発明を実施例により更に詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0038】[0038]

【実施例】図4に標的部材としてテープ状のタンタルを
用い、波長14nmのX線を取り出して利用する本実施
例のX線発生装置の概略部分構成図を示す。YAGレー
ザー光(励起エネルギービームの一例)411が、集光
レンズ445により集光されながら入射窓442を透過
して、真空容器443内に入射し、タンタルターゲット
(標的部材の一例)401の表面に集光される。
EXAMPLE FIG. 4 shows a schematic partial configuration diagram of an X-ray generator of this example in which tape-shaped tantalum is used as a target member and X-rays having a wavelength of 14 nm are extracted and used. The YAG laser light (an example of an excitation energy beam) 411 passes through the entrance window 442 while being condensed by the condenser lens 445, enters the vacuum container 443, and is incident on the surface of the tantalum target (an example of a target member) 401. Collected.

【0039】タンタルターゲット401は厚さ15μm
のテープ形状であり、テープ上の同じ位置にレーザー光
が繰り返し集光されることのないように、プラズマ発生
時には、駆動手段(例えば、モーター、不図示)により
リール403を回転させてタンタルテープを巻き取って
いる。タンタルテープの移動速度は、一つのプラズマが
生成されてから次のプラズマを生成するためのレーザー
光が入射するまでに、プラズマ発生によりタンタルテー
プに生ずる孔の直径分以上にテープが移動する速度であ
る。
The tantalum target 401 has a thickness of 15 μm.
When the plasma is generated, the reel 403 is rotated by a driving means (for example, a motor, not shown) so that the laser light is not repeatedly focused on the same position on the tape. It is winding up. The moving speed of the tantalum tape is the speed at which the tape moves more than the diameter of the holes generated in the tantalum tape due to the plasma generation, from the time when one plasma is generated until the laser light for generating the next plasma is incident. is there.

【0040】タンタルテープターゲット401上にYA
Gレーザーは45度の入射角で入射、集光され、生成し
たプラズマ402から発生したX線は、YAGレーザー
とは反対側の45度の方向に設けられたX線取り出し窓
(清浄光学面の一例)441からX線光学系へと導かれ
る。プラズマ402の近傍には、ターゲット401に入
射するYAGレーザー411と取り出すX線とがそれぞ
れ通過できる開口を有する飛散粒子遮蔽部材421が設
けられており、ターゲット401及び/又はプラズマ4
02から放出された飛散粒子の殆どがこの飛散粒子遮蔽
部材421により遮蔽される。
YA on the tantalum tape target 401
The G laser is incident and condensed at an incident angle of 45 degrees, and the X-ray generated from the generated plasma 402 is an X-ray extraction window (clean optical surface) provided in the direction of 45 degrees on the opposite side to the YAG laser. (Example) It is led from 441 to the X-ray optical system. In the vicinity of the plasma 402, a scattered particle shielding member 421 having openings through which the YAG laser 411 incident on the target 401 and the X-rays to be extracted can pass is provided, and the target 401 and / or the plasma 4 is provided.
Most of the scattered particles emitted from 02 are shielded by the scattered particle shielding member 421.

【0041】また、遮蔽部材421のX線取り出し用の
開口付近からX線取り出し窓付近にかけて、X線を取り
出す範囲に相当する立体角領域412に隣接または近接
する飛散粒子阻止部材422が設けられている。ここで
飛散粒子阻止部材422は、立体角領域412内に配置
されたX線取り出し窓441に飛散粒子が衝突、付着ま
たは堆積するのを防止するためのダクト状の部材であ
り、立体角領域412及びX線取り出し窓441を取り
囲んで設けられている。
Further, from the vicinity of the X-ray extraction window of the shielding member 421 to the vicinity of the X-ray extraction window, a scattered particle blocking member 422 is provided adjacent to or in proximity to the solid angle region 412 corresponding to the X-ray extraction range. There is. Here, the scattered particle blocking member 422 is a duct-shaped member for preventing the scattered particles from colliding with, adhering to, or accumulating on the X-ray extraction window 441 arranged in the solid angle region 412. And the X-ray extraction window 441.

【0042】真空容器443内にはバッファガスとして
Krガスが導入されると同時に排気されており、0.1 T
orrの圧力を保つように制御されている。Krガス
は、波長14nmのX線に対して同じ圧力ではHeと同
程度の透過率を有する。前記遮蔽部材421により遮蔽
されず、その開口を通過して飛散粒子阻止部材422の
内側に進入した飛散粒子も、バッファガス分子との散乱
により進行方向を変化させながらエネルギーを失い、や
がてガス分子の運動の中に混ざり込んで、部材422の
内側空間を漂う。
Kr gas as a buffer gas is introduced into the vacuum container 443 and is exhausted at the same time.
It is controlled to maintain the pressure of orr. Kr gas has the same transmittance as He at the same pressure for X-rays having a wavelength of 14 nm. The scattered particles, which are not shielded by the shielding member 421 and have passed through the opening and have entered the inside of the scattered particle blocking member 422, lose their energy while changing the traveling direction due to scattering with the buffer gas molecules, and eventually the gas molecules. It mixes into the movement and drifts inside the member 422.

【0043】そして、部材422の内側空間に隣接する
空間444には、立体角領域412を通過可能な羽根
(可動部の一例)432を有する部材であり、飛散粒子
を拡散及び/または阻止する飛散粒子拡散・阻止部材4
33が設けられている。部材433は図2に示すような
形状をしており、軸431のまわりに真空中で羽根43
2が回転する機構(不図示)を備えている。
A space 444 adjacent to the inner space of the member 422 is a member having vanes (an example of a movable part) 432 that can pass through the solid angle region 412, and scatters for scattering and / or blocking scattered particles. Particle diffusion / blocking member 4
33 are provided. The member 433 has a shape as shown in FIG.
2 has a mechanism (not shown) for rotating.

【0044】プラズマ402は繰り返し周波数10Hz
で発生しており、部材433の羽根432は軸431を
回転軸として1秒間に5回転する。部材433は2枚の
羽根432を有しており、一つのプラズマが生成されて
から次のプラズマが生成されるまでの間に、X線を取り
出す前記立体角領域412を羽根432が通過すること
になる。
Plasma 402 has a repetition frequency of 10 Hz
The blades 432 of the member 433 rotate 5 times per second with the shaft 431 as the rotation axis. The member 433 has two blades 432, and the blades 432 pass through the solid angle region 412 for extracting X-rays between the generation of one plasma and the generation of the next plasma. become.

【0045】ここで、YAGレーザー411の発振のタ
イミングは、部材433の羽根432の位置と相関を持
って制御されており、羽根432がX線を遮る位置(立
体角領域内)にある時にはプラズマを発生させないよう
に制御されている。ガス分子との散乱によりエネルギー
を失って部材422の内側空間に漂う飛散粒子は、軸4
31のまわりに回転する羽根432に付着し(飛散粒子
阻止効果)、或いは、回転する羽根432によりかき出
さる(飛散粒子拡散効果)ので、部材422の内側空間
の飛散粒子密度は低く保たれる。
Here, the oscillation timing of the YAG laser 411 is controlled in correlation with the position of the blade 432 of the member 433, and when the blade 432 is in the position of blocking the X-ray (in the solid angle region), the plasma is generated. Is controlled so as not to generate. Scattered particles that lose their energy due to scattering with gas molecules and float in the inner space of the member 422 are
The particles are attached to the blades 432 rotating around 31 (scattering particle blocking effect) or are scraped out by the rotating blades 432 (scattering particle diffusing effect), so that the scattering particle density in the inner space of the member 422 is kept low. .

【0046】部材433が設けられた空間444及び飛
散粒子阻止部材422の内側空間では、真空容器443
全体とは別にKrガスの導入と排気がなされているの
で、回転する羽根432によりかき出された飛散粒子は
速やかに拡散して阻止部材422に吸着する。そのた
め、X線取り出し窓441に到達する飛散粒子量は、著
しく減少する。
In the space 444 provided with the member 433 and the space inside the scattered particle blocking member 422, the vacuum container 443 is provided.
Since Kr gas is introduced and exhausted separately from the whole, the scattered particles scraped out by the rotating blade 432 are quickly diffused and adsorbed to the blocking member 422. Therefore, the amount of scattered particles reaching the X-ray extraction window 441 is significantly reduced.

【0047】このように、本実施例のX線発生装置によ
れば、プラズマの生成が短い時間間隔で長時間にわたる
場合にも、X線の取り出し方向について不都合な飛散粒
子の付着、堆積を低減して、その結果、長時間安定して
装置を使用できる。本実施例では、部材433を図2の
ような形状とし、1秒間に軸回りに5回転することとし
たが、その形状、運動の速度はこれに限るものではな
い。
As described above, according to the X-ray generator of the present embodiment, even when plasma is generated for a short period of time and for a long period of time, it is possible to reduce the attachment and deposition of scattered particles which are unfavorable in the X-ray extraction direction. As a result, the device can be used stably for a long time. In this embodiment, the member 433 is formed into a shape as shown in FIG. 2 and is rotated five times around the axis in one second, but the shape and the speed of movement are not limited to this.

【0048】また、羽根の数も一対(2枚)に限定され
るものではなく、図5に示すように、複数対の羽根を有
する飛散粒子拡散・阻止部材533により、各対の羽根
が位置する各空間の飛散粒子密度の低下を図ってもよ
い。
The number of blades is not limited to one (two), and as shown in FIG. 5, the scattered particle diffusion / prevention member 533 having a plurality of pairs of blades positions each pair of blades. The density of scattered particles in each space may be reduced.

【0049】[0049]

【発明の効果】以上、説明したように、本発明のX線発
生装置によれば、プラズマの生成が短い時間間隔で長時
間にわたる場合にも、X線の取り出し方向について不都
合な飛散粒子の付着、堆積を低減して、その結果、長時
間安定して装置を使用できる。
As described above, according to the X-ray generator of the present invention, even when the plasma is generated for a short time and for a long time, the adhesion of scattered particles, which is inconvenient in the X-ray extraction direction, is caused. Therefore, the deposition can be reduced, and as a result, the device can be used stably for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明のX線発生装置(一例)にかかる各
部材を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing each member of an X-ray generator (example) of the present invention.

【図2】は、本発明にかかる飛散粒子拡散・阻止部材の
一例を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing an example of a scattered particle diffusion / blocking member according to the present invention.

【図3】は、本発明にかかる飛散粒子拡散・阻止部材と
して好ましくない形状の例を示す概略斜視図である。
FIG. 3 is a schematic perspective view showing an example of an unfavorable shape as the scattered particle diffusion / prevention member according to the present invention.

【図4】は、実施例にかかるX線発生装置の概略構成図
である。
FIG. 4 is a schematic configuration diagram of an X-ray generator according to an embodiment.

【図5】は、別の実施例にかかるX線発生装置の概略構
成図である。
FIG. 5 is a schematic configuration diagram of an X-ray generator according to another embodiment.

【図6】は、従来のX線発生装置の概略構成図である。FIG. 6 is a schematic configuration diagram of a conventional X-ray generator.

【符号の説明】[Explanation of symbols]

101,401,501,601 標的部材 102,402,502,602 プラズマ 111,411,511,611 励起レーザー光(励
起エネルギービームの一例) 112,412,512,612 X線を取り出す範囲
に相当する立体角領域 121,421,521,621 飛散粒子遮蔽部材 122,422,522,622 飛散粒子阻止部材 131,231,331,431,531 軸(飛散粒
子拡散・阻止部材の構成要素の一例) 132,232,332,432,532 羽根(飛散
粒子拡散・阻止部材の可動部の一例) 133,433,533 飛散粒子拡散・阻止部材 123,441,541,641 X線取り出し窓(清
浄光学面の一例) 442,542,642 入射窓 443,543,643 真空容器 444,544 飛散粒子阻止部材の内側空間に隣接す
る空間 445,545,645 YAGレーザー集光レンズ 以 上
101, 401, 501, 601 Target member 102, 402, 502, 602 Plasma 111, 411, 511, 611 Excitation laser beam (an example of excitation energy beam) 112, 412, 512, 612 Solid equivalent to the range for extracting X-rays Corner area 121,421,521,621 Scattered particle blocking member 122,422,522,622 Scattered particle blocking member 131,231,331,431,531 Axis (an example of constituents of scattered particle diffusing / blocking member) 132,232 , 332, 432, 532 Blades (an example of movable part of scattered particle diffusion / blocking member) 133, 433, 533 Scattered particle diffusion / blocking member 123, 441, 541, 641 X-ray extraction window (an example of clean optical surface) 442 , 542, 642 Incident window 443, 543, 643 Vacuum container 444, 5 4 adjacent to the inner space of the scattering particles blocking member space 445,545,645 YAG laser condenser lens than on

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 減圧された真空容器内の標的部材に励起
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置であり、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
を阻止するためにバッファガスを用いるX線発生装置に
おいて、 前記X線を取り出す範囲に相当する立体角領域に隣接ま
たは近接する飛散粒子阻止部材を設け、かつ、該立体角
領域を通過可能な可動部を有する飛散粒子拡散・阻止部
材を設けたことを特徴とするX線発生装置。
1. An X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container, which is decompressed, to form plasma, and extracting X-rays from the plasma, wherein the target member and / or the plasma In an X-ray generator that uses a buffer gas to block emitted particles, a particle scattering member that is adjacent to or close to a solid angle region corresponding to a range for extracting the X-rays is provided, and the solid angle region is provided. An X-ray generator characterized in that a scattered particle diffusing / blocking member having a movable portion capable of passing through is provided.
【請求項2】 減圧された真空容器内の標的部材に励起
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置であり、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
を阻止するためにバッファガスを用いるX線発生装置に
おいて、 前記励起エネルギービームが通過する開口部と前記X線
が通過する別の開口部を有する部材であり、前記標的部
材及び/又は前記プラズマから放出される飛散粒子を遮
蔽する飛散粒子遮蔽部材を前記標的部材及びプラズマの
近傍に設け、かつ、前記X線を取り出す範囲に相当する
立体角領域に隣接または近接する飛散粒子阻止部材を設
け、さらに、該立体角領域を通過可能な可動部を有する
飛散粒子拡散・阻止部材を設けたことを特徴とするX線
発生装置。
2. An X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container that has been decompressed to form plasma, and extracting X-rays from the plasma, wherein the target member and / or the plasma An X-ray generator that uses a buffer gas to prevent emitted scattered particles, which is a member having an opening through which the excitation energy beam passes and another opening through which the X-rays pass, and the target member and / Or a scattered particle shielding member for shielding scattered particles emitted from the plasma is provided in the vicinity of the target member and the plasma, and the scattered particle is adjacent to or close to a solid angle region corresponding to the range for extracting the X-rays. An X-ray generation device, characterized in that a member is provided, and further, a scattered particle diffusion / prevention member having a movable portion capable of passing through the solid angle region is provided.
【請求項3】 前記バッファガスは、前記真空容器内が
所定の圧力範囲となるように導入、排出の制御がなされ
ていることを特徴とする請求項1または2記載のX線発
生装置。
3. The X-ray generator according to claim 1, wherein the buffer gas is controlled to be introduced and discharged so that the inside of the vacuum container has a predetermined pressure range.
【請求項4】 前記立体角領域内にバッファガスを導入
し、かつ、該立体角領域内から飛散粒子とともにバッフ
ァガスを排出する機構をさらに設けたことを特徴とする
請求項1〜3記載のX線発生装置。
4. The mechanism according to claim 1, further comprising a mechanism for introducing the buffer gas into the solid angle region and discharging the buffer gas together with the scattered particles from the solid angle region. X-ray generator.
【請求項5】 前記標的部材及び/又は前記プラズマか
ら放出される飛散粒子の放出量の方向分布を制御する飛
散粒子制御部材であり、前記X線を取り出す方向への飛
散粒子の放出量を低減させる飛散粒子制御部材をさらに
設けたことを特徴とする請求項1〜4記載のX線発生装
置。
5. A scattered particle control member for controlling the directional distribution of the emitted amount of scattered particles emitted from the target member and / or the plasma, and reducing the emitted amount of scattered particles in the X-ray extraction direction. The X-ray generator according to any one of claims 1 to 4, further comprising a scattered particle control member.
【請求項6】 前記飛散粒子阻止部材を冷却する冷却手
段をさらに設けたことを特徴とする請求項1〜5記載の
X線発生装置。
6. The X-ray generator according to claim 1, further comprising cooling means for cooling the scattered particle blocking member.
JP8132408A 1996-05-27 1996-05-27 X-ray generator Pending JPH09320792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132408A JPH09320792A (en) 1996-05-27 1996-05-27 X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132408A JPH09320792A (en) 1996-05-27 1996-05-27 X-ray generator

Publications (1)

Publication Number Publication Date
JPH09320792A true JPH09320792A (en) 1997-12-12

Family

ID=15080697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132408A Pending JPH09320792A (en) 1996-05-27 1996-05-27 X-ray generator

Country Status (1)

Country Link
JP (1) JPH09320792A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724004B2 (en) 2001-10-25 2004-04-20 National Institute Of Advanced Industrial Science And Technology Method and apparatus for elimination of high energy ion from EUV radiating device
US6867843B2 (en) 2001-07-05 2005-03-15 Canon Kabushiki Kaisha Debris removing system for use in X-ray light source
US7080563B2 (en) 2003-04-11 2006-07-25 Canon Kabushiki Kaisha Gas flow measurement apparatus and method for EVU light source
JP2007194590A (en) * 2005-11-23 2007-08-02 Asml Netherlands Bv Radiation system and lithography apparatus
US7332731B2 (en) 2005-12-06 2008-02-19 Asml Netherlands, B.V. Radiation system and lithographic apparatus
US7365345B2 (en) 2004-12-28 2008-04-29 Asml Netherlands B.V. Lithographic apparatus, radiation system and filter system
US7397056B2 (en) 2005-07-06 2008-07-08 Asml Netherlands B.V. Lithographic apparatus, contaminant trap, and device manufacturing method
US7426018B2 (en) 2004-12-28 2008-09-16 Asml Netherlands B.V. Lithographic apparatus, illumination system and filter system
US7442948B2 (en) 2006-05-15 2008-10-28 Asml Netherlands B.V. Contamination barrier and lithographic apparatus
US7453071B2 (en) 2006-03-29 2008-11-18 Asml Netherlands B.V. Contamination barrier and lithographic apparatus comprising same
US7468521B2 (en) 2005-12-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7485881B2 (en) 2004-12-29 2009-02-03 Asml Netherlands B.V. Lithographic apparatus, illumination system, filter system and method for cooling a support of such a filter system
US7697112B2 (en) 2005-03-23 2010-04-13 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
USRE43036E1 (en) 1998-02-19 2011-12-20 Asml Netherlands B.V. Filter for extreme ultraviolet lithography

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292553A (en) * 1987-05-25 1988-11-29 Agency Of Ind Science & Technol Plasma scattering prevention mechanism for x-ray generation apparatus
JPS646349A (en) * 1986-09-11 1989-01-10 Hoya Corp Laser plasma x-ray generator and x-ray ejection port opening/closing mechanism
JPH04129198A (en) * 1990-09-20 1992-04-30 Olympus Optical Co Ltd X-ray light source
JPH07254493A (en) * 1994-03-17 1995-10-03 Nikon Corp X-ray device
JPH0837095A (en) * 1994-07-26 1996-02-06 Nikon Corp X-ray generating device
JPH0883690A (en) * 1994-09-09 1996-03-26 Nikon Corp X-ray generator
JPH08321395A (en) * 1995-05-26 1996-12-03 Nikon Corp X-ray generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646349A (en) * 1986-09-11 1989-01-10 Hoya Corp Laser plasma x-ray generator and x-ray ejection port opening/closing mechanism
JPS63292553A (en) * 1987-05-25 1988-11-29 Agency Of Ind Science & Technol Plasma scattering prevention mechanism for x-ray generation apparatus
JPH04129198A (en) * 1990-09-20 1992-04-30 Olympus Optical Co Ltd X-ray light source
JPH07254493A (en) * 1994-03-17 1995-10-03 Nikon Corp X-ray device
JPH0837095A (en) * 1994-07-26 1996-02-06 Nikon Corp X-ray generating device
JPH0883690A (en) * 1994-09-09 1996-03-26 Nikon Corp X-ray generator
JPH08321395A (en) * 1995-05-26 1996-12-03 Nikon Corp X-ray generator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44120E1 (en) 1998-02-19 2013-04-02 Asml Netherlands B.V. Filter for extreme ultraviolet lithography
USRE43036E1 (en) 1998-02-19 2011-12-20 Asml Netherlands B.V. Filter for extreme ultraviolet lithography
US6867843B2 (en) 2001-07-05 2005-03-15 Canon Kabushiki Kaisha Debris removing system for use in X-ray light source
US6724004B2 (en) 2001-10-25 2004-04-20 National Institute Of Advanced Industrial Science And Technology Method and apparatus for elimination of high energy ion from EUV radiating device
US7080563B2 (en) 2003-04-11 2006-07-25 Canon Kabushiki Kaisha Gas flow measurement apparatus and method for EVU light source
US7365345B2 (en) 2004-12-28 2008-04-29 Asml Netherlands B.V. Lithographic apparatus, radiation system and filter system
US8018572B2 (en) 2004-12-28 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and radiation system
US7426018B2 (en) 2004-12-28 2008-09-16 Asml Netherlands B.V. Lithographic apparatus, illumination system and filter system
US7485881B2 (en) 2004-12-29 2009-02-03 Asml Netherlands B.V. Lithographic apparatus, illumination system, filter system and method for cooling a support of such a filter system
US8269179B2 (en) 2004-12-29 2012-09-18 Asml Netherlands B.V. Illumination system and filter system
US7697112B2 (en) 2005-03-23 2010-04-13 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7397056B2 (en) 2005-07-06 2008-07-08 Asml Netherlands B.V. Lithographic apparatus, contaminant trap, and device manufacturing method
US7612353B2 (en) 2005-07-06 2009-11-03 Asml Netherlands B.V. Lithographic apparatus, contaminant trap, and device manufacturing method
JP2007194590A (en) * 2005-11-23 2007-08-02 Asml Netherlands Bv Radiation system and lithography apparatus
US7332731B2 (en) 2005-12-06 2008-02-19 Asml Netherlands, B.V. Radiation system and lithographic apparatus
JP4799620B2 (en) * 2005-12-06 2011-10-26 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system and lithographic apparatus
US7468521B2 (en) 2005-12-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7453071B2 (en) 2006-03-29 2008-11-18 Asml Netherlands B.V. Contamination barrier and lithographic apparatus comprising same
US7442948B2 (en) 2006-05-15 2008-10-28 Asml Netherlands B.V. Contamination barrier and lithographic apparatus

Similar Documents

Publication Publication Date Title
KR102264762B1 (en) Plasma-based light source
JPH09320792A (en) X-ray generator
US8212228B2 (en) Extreme ultra violet light source apparatus
JP2021504763A (en) High-brightness LPP radiation source, radiation generation method, and debris reduction method
KR102649379B1 (en) Plasma light source generated by high-intensity laser
US6385290B1 (en) X-ray apparatus
US20090206279A1 (en) Method and Device for Removing Particles Generated by Means of a Radiation Source During Generation of Short-Wave Radiation
JP2000091096A (en) X-ray generator
JP3790814B2 (en) Method and apparatus for removing scattered matter in X-ray irradiation apparatus
JPH09320794A (en) X-ray generator
US8101930B2 (en) Method of increasing the operation lifetime of a collector optics arranged in an irradiation device
JP3666055B2 (en) X-ray generator and X-ray exposure apparatus
EP0105261A1 (en) Providing x-rays.
JPH09237695A (en) X-ray generating device
JPH08162287A (en) X-ray generating apparatus
WO2018034020A1 (en) Soft x-ray source, exposure apparatus, and microscope
JPH09245989A (en) X-ray generating device
JPH09148092A (en) X-ray generator
US20230400786A1 (en) Light source apparatus
JPH1055899A (en) X-ray generator
JPH10223395A (en) X-ray generator
JP3460130B2 (en) X-ray generator
JPH09161991A (en) X-ray generating device
JPH1187090A (en) X-ray generator
JPH09148093A (en) X-ray generating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411