JPH09320794A - X-ray generator - Google Patents
X-ray generatorInfo
- Publication number
- JPH09320794A JPH09320794A JP8132410A JP13241096A JPH09320794A JP H09320794 A JPH09320794 A JP H09320794A JP 8132410 A JP8132410 A JP 8132410A JP 13241096 A JP13241096 A JP 13241096A JP H09320794 A JPH09320794 A JP H09320794A
- Authority
- JP
- Japan
- Prior art keywords
- scattered
- plasma
- particles
- ray generator
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、X線露光装置、X
線顕微鏡、X線分析装置などのX線装置に用いて好適な
X線発生装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray
The present invention relates to an X-ray generator suitable for use in an X-ray apparatus such as an X-ray microscope and an X-ray analyzer.
【0002】[0002]
【従来の技術】レーザー光(励起エネルギービームの一
例)を減圧された真空容器内に置かれた標的部材に集光
して照射すると、標的部材は急速にプラズマ化し、この
プラズマから非常に輝度の高いX線が輻射(放出)され
る(X線を発生する)ことが知られている(例えば、こ
のようなX線発生源はLPX:Laser-Plasma X-raysour
ce と呼ばれる)。2. Description of the Related Art When a laser beam (an example of an excitation energy beam) is focused on a target member placed in a depressurized vacuum container and irradiated, the target member is rapidly turned into plasma, and the plasma emits a very bright light. It is known that high X-rays are radiated (emitted) (produce X-rays) (for example, such an X-ray source is LPX: Laser-Plasma X-raysour).
called ce).
【0003】X線の発生と共に、前記プラズマからは高
速の電子やイオン等の飛散粒子が、また前記標的部材か
らは部材材料の飛散粒子(例えば、ガス化した材料、イ
オン化した材料、材料小片など)が放出されて真空容器
内に飛散する(以下、これらをまとめて飛散粒子と呼
ぶ)。このような飛散粒子は、清浄光学面(例えば、X
線光学素子面)に衝突して、これらを破損したり、或い
は付着、堆積して機能や特性を低下させたり変化させる
ので、大きな問題であった。With the generation of X-rays, high-speed scattered particles of electrons and ions from the plasma, and scattered particles of member material from the target member (for example, gasified material, ionized material, small pieces of material, etc.) ) Is released and scattered in the vacuum container (hereinafter, collectively referred to as scattered particles). Such scattered particles can form a clean optical surface (for example, X
This is a big problem because it collides with the surface of the linear optical element and damages them, or adheres and deposits to deteriorate or change the function and characteristics.
【0004】この問題点を解決するために従来の方法で
は、X線源と清浄光学面との間に、X線透過性の高い物
質(例えば、Be)からなる薄膜(以下、飛散粒子阻止
用薄膜またはX線取り出しフィルターと呼ぶ)を設置し
て遮蔽することにより、飛散粒子が清浄光学面に到達し
ないようにしていた。その他の方法としては、真空容器
内にX線に対する透過率の高い低原子番号のガス(例え
ば、Heガス)を充填することにより、或いは該ガスの
ガス流を形成することにより、飛散粒子にガス分子を衝
突させて飛散粒子の阻止を図っていた(特開昭63-29255
3 参照)。In order to solve this problem, according to the conventional method, a thin film made of a substance having a high X-ray transmission property (for example, Be) (hereinafter referred to as scattered particle blocking) is provided between the X-ray source and the cleaning optical surface. A thin film or an X-ray extraction filter) was installed and shielded to prevent scattered particles from reaching the clean optical surface. As another method, a gas having a low atomic number having a high X-ray transmittance (for example, He gas) is filled in the vacuum container, or a gas flow of the gas is formed so that the scattered particles are gasified. The molecules were made to collide with each other to prevent scattered particles (Japanese Patent Laid-Open No. 63-29255).
See 3).
【0005】真空容器内にガスを充填した場合、プラズ
マや標的部材から飛び出した飛散粒子はガス分子との散
乱により、飛び出したときのエネルギーをやがて失い、
ガス分子の運動の中に混ざり込んでいく。そして真空容
器内の部材表面や壁面に付着するか、或いは、バッファ
ガスの導入だけでなく、排気も行っている場合には、真
空ポンプによりガス分子とともに排気される。When a gas is filled in the vacuum container, the particles scattered from the plasma or the target member are scattered with the gas molecules and eventually lose the energy when they are ejected.
It mixes into the movement of gas molecules. Then, it adheres to the surface or wall surface of the member in the vacuum container, or, when not only introducing the buffer gas but also exhausting it, it is exhausted together with the gas molecules by the vacuum pump.
【0006】ところで、飛散粒子阻止用薄膜の設置によ
り、清浄光学面への飛散粒子の付着、堆積は防げるが、
そのかわり、飛散粒子阻止用薄膜上に飛散粒子が付着、
堆積するので、飛散粒子阻止用薄膜のX線透過率が次第
に低下する(X線取り出し方向における使用X線強度が
低下する)という問題点がある。また、真空容器内にX
線に対する透過率の高い低原子番号のガス(バッファガ
ス)を充填することにより、或いは該ガスのガス流を形
成することにより、飛散粒子の阻止を図る方法では、必
ずしも飛散粒子を有効に阻止できるわけではないという
問題点がある。By the way, by installing a thin film for preventing scattered particles, it is possible to prevent the scattered particles from adhering to and depositing on the clean optical surface.
Instead, flying particles adhere to the flying particle blocking thin film,
Since they are deposited, there is a problem that the X-ray transmittance of the scattered particle blocking thin film gradually decreases (the X-ray intensity used in the X-ray extraction direction decreases). In addition, X in the vacuum container
In a method of preventing scattered particles by filling a low atomic number gas (buffer gas) having a high transmittance with respect to rays or by forming a gas flow of the gas, scattered particles can be effectively prevented. There is a problem that it does not mean.
【0007】例えば、標的部材がタンタルである場合
に、十分に排気された(圧力10Pa以下)真空容器内
では、飛散粒子は標的部材表面の法線方向に多く分布す
る。そして、真空容器内に飛散粒子阻止用のバッファガ
スを導入すると、飛散粒子が多く放出される方向につい
ては、ガス分子による散乱のために飛散粒子は減少する
が、散乱した飛散粒子はガス導入前には飛散粒子の放出
が少なかった方向にも飛散する。For example, when the target member is tantalum, in a sufficiently evacuated vacuum container (pressure less than 10 Pa), many scattered particles are distributed in the direction normal to the surface of the target member. When a buffer gas for preventing scattered particles is introduced into the vacuum container, in the direction where many scattered particles are emitted, the scattered particles decrease due to scattering by gas molecules, but the scattered particles are scattered before the gas introduction. The scattered particles also scatter in the direction of less emission.
【0008】そのため、飛散粒子を阻止するためにバッ
ファガスを使用すると、飛散粒子の放出方向の分布が均
一化される。このことは、飛散粒子の放出が少ない方向
については、飛散粒子の放出が多い方向と比較してガス
導入の効果が小さいか、むしろ逆効果となることを示し
ている。X線の取り出しは、飛散粒子の放出が少ない方
向において行うのが一般的であり、飛散粒子の放出が少
ないX線の取り出し方向について、ガス導入の効果が小
さいか、むしろ逆効果となることは大きな問題点であ
る。Therefore, when the buffer gas is used to prevent the scattered particles, the distribution of the scattered particles in the emission direction becomes uniform. This indicates that the effect of introducing gas is smaller in the direction in which the emission of scattered particles is smaller than that in the direction in which the emission of scattered particles is large, or is rather the opposite effect. Extraction of X-rays is generally performed in the direction in which the emission of scattered particles is small, and in the X-ray extraction direction in which the emission of scattered particles is small, the effect of introducing gas may be small or may be the opposite effect. This is a big problem.
【0009】特に、プラズマ近傍に飛散粒子の放出量の
方向分布を制御する飛散粒子制御部材であり、前記X線
を取り出す方向への飛散粒子の放出量を低減させる飛散
粒子制御部材を設ける場合に、X線の取り出し方向につ
いて、ガス導入の効果が小さいか、むしろ逆効果となる
ことは大きな問題点である。そこで、飛散粒子を阻止す
るためにバッファガスを使用する場合に発生する問題点
を解決すべく、取り出すX線が通過する立体角領域を遮
らないように該領域に隣接または近接して飛散粒子阻止
部材を配置することにより、飛散粒子を阻止すること
が、本願と同一出願人により提案されている(特願平7
−127600)。Particularly, when a scattered particle control member for controlling the directional distribution of the scattered particle emission amount near the plasma and for reducing the emitted particle emission amount in the X-ray extraction direction is provided. In regard to the X-ray extraction direction, it is a big problem that the effect of introducing gas is small, or rather has the opposite effect. Therefore, in order to solve the problem that occurs when a buffer gas is used to block scattered particles, the scattered particle blocker is placed adjacent to or close to the solid angle region through which the extracted X-rays pass so as not to block it. It has been proposed by the same applicant as the present application that the scattered particles be prevented by disposing the member (Japanese Patent Application No.
-127600).
【0010】[0010]
【発明が解決しようとする課題】例えば、図2に示すよ
うに、取り出すX線が通過する立体角領域212を遮ら
ないように該領域212に隣接または近接して飛散粒子
阻止部材202を設けた従来のX線発生装置においてバ
ッファガスを導入した場合を考える。プラズマ213の
生成により発生した飛散粒子のうち、部材202の内側
に飛び込んだものは、ガス分子との衝突によりエネルギ
ーを失い、部材202の内側を漂った後、部材202に
付着することで阻止される。For example, as shown in FIG. 2, a scattered particle blocking member 202 is provided adjacent to or close to a solid angle region 212 through which X-rays to be extracted do not block. Consider a case where a buffer gas is introduced in a conventional X-ray generator. Among the scattered particles generated by the generation of the plasma 213, the particles that have jumped into the inside of the member 202 lose energy due to collision with gas molecules, drift inside the member 202, and then are blocked by being attached to the member 202. It
【0011】ここで、プラズマ213の生成の時間間隔
が長ければ、漂っている飛散粒子は、次のプラズマが生
成されるまでに拡散して部材202に付着するが、プラ
ズマが短い時間間隔で長時間にわたって発生すると、部
材202内側の飛散粒子は十分に拡散することができな
いので、部材202の内側にガス分子と共に漂っている
飛散粒子の密度が増大する。Here, if the time interval for generating the plasma 213 is long, the floating particles that have drifted adhere to the member 202 by diffusion before the next plasma is generated, but the plasma is long for a short time interval. When generated over time, the scattered particles inside the member 202 cannot sufficiently diffuse, so that the density of the scattered particles floating with the gas molecules inside the member 202 increases.
【0012】その結果、清浄光学面240に到達・付着
する飛散粒子が増加するので、X線源として安定した利
用ができないという問題点がある。即ち、このようにバ
ッファガスを真空容器内に充填し、かつ、取り出すX線
が通過する立体角領域に隣接または近接して従来の飛散
粒子阻止部材を設けても、プラズマの生成が短い時間間
隔で長時間にわたる場合には、十分な飛散粒子の阻止効
果が得られないという問題点があった。As a result, scattered particles reaching and adhering to the clean optical surface 240 increase, so that there is a problem that the X-ray source cannot be used stably. That is, even if the conventional scattering particle blocking member is provided adjacent to or close to the solid angle region through which the X-ray to be extracted is filled with the buffer gas in the vacuum container as described above, the plasma generation is performed at a short time interval. However, there is a problem that a sufficient effect of preventing scattered particles cannot be obtained when the temperature is extended for a long time.
【0013】本発明は、かかる問題点に鑑みてなされた
もので、プラズマX線源からの飛散粒子を阻止するため
にバッファガスを用いるX線発生装置であり、プラズマ
の生成が短い時間間隔で長時間にわたる場合にも、X線
の取り出し方向(取り出すX線が通過する立体角領域)
について、或いは、励起エネルギービームの通過領域に
ついて、不都合な飛散粒子の付着、堆積(飛散粒子阻止
用薄膜や清浄光学面などへの付着、堆積)を低減して、
その結果、長時間安定して使用できるX線発生装置を提
供することを目的とする。The present invention has been made in view of the above problems, and is an X-ray generator that uses a buffer gas to prevent scattered particles from a plasma X-ray source, and plasma is generated at short time intervals. Extraction direction of X-rays (solid angle region through which X-rays pass) even for a long time
Or, in the passage area of the excitation energy beam, it is possible to reduce the adhesion and deposition of inconvenient flying particles (adhesion to the flying particle blocking thin film or the clean optical surface).
As a result, it is an object to provide an X-ray generator that can be used stably for a long time.
【0014】[0014]
【課題を解決する為の手段】そのため、本発明は第一に
「減圧された真空容器内の標的部材に励起エネルギービ
ームを照射してプラズマを形成させ、該プラズマからX
線を取り出すX線発生装置であり、前記標的部材及び/
又は前記プラズマから放出される飛散粒子を阻止するた
めにバッファガスを用いるX線発生装置において、前記
標的部材及び/又は前記プラズマから放出される飛散粒
子が前記X線を取り出す範囲に相当する立体角領域内に
進入するのを阻止する部材であり、該立体角領域内にあ
る飛散粒子が前記バッファガスにより拡散排除されやす
い形状及び/または空間を有する飛散粒子阻止部材を、
前記立体角領域に隣接または近接させて設けたことを特
徴とするX線発生装置(請求項1)」を提供する。Accordingly, the present invention first provides a method of forming a plasma by irradiating a target member in a decompressed vacuum vessel with an excitation energy beam to form a plasma,
An X-ray generator for extracting a line, the target member and / or
Alternatively, in an X-ray generator that uses a buffer gas to prevent scattered particles emitted from the plasma, a solid angle corresponding to a range in which the scattered particles emitted from the target member and / or the plasma extract the X-rays. A scattering particle blocking member which is a member for blocking entry into a region, and has a shape and / or a space in which scattered particles in the solid angle region are easily diffused and eliminated by the buffer gas,
There is provided an X-ray generator (claim 1), which is provided adjacent to or close to the solid angle region.
【0015】また、本発明は第二に「減圧された真空容
器内の標的部材に励起エネルギービームを照射してプラ
ズマを形成させ、該プラズマからX線を取り出すX線発
生装置であり、前記標的部材及び/又は前記プラズマか
ら放出される飛散粒子を阻止するためにバッファガスを
用いるX線発生装置において、前記励起エネルギービー
ムが通過する開口部と前記X線が通過する別の開口部を
有する部材であり、前記標的部材及び/又は前記プラズ
マから放出される飛散粒子を遮蔽する飛散粒子遮蔽部材
を前記標的部材及びプラズマの近傍に設け、かつ、前記
飛散粒子が前記X線を取り出す範囲に相当する立体角領
域内に進入するのを阻止する部材であり、該立体角領域
内にある飛散粒子が前記バッファガスにより拡散排除さ
れやすい形状及び/または空間を有する飛散粒子阻止部
材を、前記立体角領域に隣接または近接させて設けたこ
とを特徴とするX線発生装置(請求項2)」を提供す
る。A second aspect of the present invention is an X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container which has been decompressed to form plasma and extracting X-rays from the plasma. A member and / or an X-ray generator that uses a buffer gas to block scattered particles emitted from the plasma, wherein the member has an opening through which the excitation energy beam passes and another opening through which the X-rays pass. And a scattering particle shielding member for shielding scattering particles emitted from the target member and / or the plasma is provided in the vicinity of the target member and plasma, and the scattering particles correspond to a range for extracting the X-rays. A member that prevents entry into the solid angle region, and a shape in which scattered particles within the solid angle region are easily diffused and eliminated by the buffer gas, and Or scattering particles blocking member having a space, to provide an X-ray generator (claim 2) ", characterized in that provided by adjacent or close to the solid angle region.
【0016】また、本発明は第三に「減圧された真空容
器内の標的部材に励起エネルギービームを照射してプラ
ズマを形成させ、該プラズマからX線を取り出すX線発
生装置であり、前記標的部材及び/又は前記プラズマか
ら放出される飛散粒子を阻止するためにバッファガスを
用いるX線発生装置において、前記標的部材及び/又は
前記プラズマから放出される飛散粒子が前記励起エネル
ギービームが通過する領域内に進入するのを阻止する部
材であり、前記領域内にある飛散粒子が前記バッファガ
スにより拡散排除されやすい形状及び/または空間を有
する飛散粒子阻止部材を、前記領域に隣接または近接さ
せて設けたことを特徴とするX線発生装置(請求項
3)」を提供する。A third aspect of the present invention is an X-ray generator for irradiating an excitation energy beam to a target member in a depressurized vacuum container to form plasma and extracting X-rays from the plasma. In an X-ray generator using a buffer gas to block scattered particles emitted from a member and / or the plasma, a region through which the excited energy beam passes the scattered particles emitted from the target member and / or the plasma A member for preventing entry into the inside of the area, and a flying particle blocking member having a shape and / or space in which the flying particles in the area are easily diffused and eliminated by the buffer gas are provided adjacent to or in proximity to the area. An X-ray generator (claim 3) "is provided.
【0017】また、本発明は第四に「減圧された真空容
器内の標的部材に励起エネルギービームを照射してプラ
ズマを形成させ、該プラズマからX線を取り出すX線発
生装置であり、前記標的部材及び/又は前記プラズマか
ら放出される飛散粒子を阻止するためにバッファガスを
用いるX線発生装置において、前記励起エネルギービー
ムが通過する開口部と前記X線が通過する別の開口部を
有する部材であり、前記標的部材及び/又は前記プラズ
マから放出される飛散粒子を遮蔽する飛散粒子遮蔽部材
を前記標的部材及びプラズマの近傍に設け、かつ、前記
飛散粒子が前記励起エネルギービームが通過する領域内
に進入するのを阻止する部材であり、前記領域内にある
飛散粒子が前記バッファガスにより拡散排除されやすい
形状及び/または空間を有する飛散粒子阻止部材を、前
記領域に隣接または近接させて設けたことを特徴とする
X線発生装置(請求項4)」を提供する。A fourth aspect of the present invention is an X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container, which is depressurized to form plasma, and extracting X-rays from the plasma. A member and / or an X-ray generator that uses a buffer gas to block scattered particles emitted from the plasma, wherein the member has an opening through which the excitation energy beam passes and another opening through which the X-rays pass. A target particle and / or a scattering particle shielding member for shielding the scattering particles emitted from the plasma is provided in the vicinity of the target member and the plasma, and the scattering particles are within a region through which the excitation energy beam passes. And a shape for preventing scattered particles in the region from being easily diffused and eliminated by the buffer gas and / or Scattering particles blocking member having between, X-rays generator (claim 4), characterized in that provided by adjacent or close to the region "to provide.
【0018】また、本発明は第五に、「前記飛散粒子阻
止部材は、前記X線または前記励起エネルギービームの
通過方向に対する横方向または斜め横方向に長く延びた
複数の遮蔽部と該遮蔽部のそれぞれに設けられた開孔と
を有し、各開孔の大きさは前記立体角領域または前記励
起エネルギービームが通過する領域の切断面に略等し
く、前記複数の遮蔽部及び開孔は前記領域に隣接または
近接させて、かつ、前記X線または前記励起エネルギー
ビームの通過方向に互いに隔離されて設けられているこ
とを特徴とする請求項1〜4記載のX線発生装置(請求
項5)」を提供する。In a fifth aspect of the present invention, "the scattered particle blocking member has a plurality of shielding portions extending in a lateral direction or an oblique lateral direction with respect to a passing direction of the X-rays or the excitation energy beam, and the shielding portions. And a size of each opening is substantially equal to the cut surface of the solid angle region or the region through which the excitation energy beam passes, and the plurality of shielding portions and the holes are The X-ray generator according to any one of claims 1 to 4, wherein the X-ray generator is provided adjacent to or close to a region and isolated from each other in a passing direction of the X-ray or the excitation energy beam. )"I will provide a.
【0019】また、本発明は第六に「前記バッファガス
は、前記真空容器内が所定の圧力範囲となるように導
入、排出の制御がなされていることを特徴とする請求項
1〜5記載のX線発生装置(請求項6)」を提供する。
また、本発明は第七に「前記立体角領域内または前記励
起エネルギービームが通過する領域内にバッファガスを
導入し、かつ、該領域内から飛散粒子とともにバッファ
ガスを排出する機構をさらに設けたことを特徴とする請
求項1〜6記載のX線発生装置(請求項7)」を提供す
る。In a sixth aspect of the present invention, "the buffer gas is controlled to be introduced and discharged so that the pressure inside the vacuum container is within a predetermined pressure range. X-ray generator (claim 6) ".
Further, in the seventh aspect of the present invention, "a mechanism is further provided for introducing a buffer gas into the solid angle region or a region through which the excitation energy beam passes, and discharging the buffer gas together with scattered particles from within the region. An X-ray generator according to claims 1 to 6 (claim 7) "is provided.
【0020】また、本発明は第八に「前記標的部材及び
/又は前記プラズマから放出される飛散粒子の放出量の
方向分布を制御する飛散粒子制御部材であり、前記X線
を取り出す方向への飛散粒子の放出量を、或いは、前記
励起エネルギービームの通過領域への飛散粒子の放出量
を、或いは、その両方を低減させる飛散粒子制御部材を
さらに設けたことを特徴とする請求項1〜7記載のX線
発生装置(請求項8)」を提供する。Eighthly, the present invention relates to a "scattered particle control member for controlling the directional distribution of the amount of scattered particles emitted from the target member and / or the plasma, in the direction of extracting the X-rays. 8. A scattering particle control member for reducing the emission amount of the scattered particles, the emission amount of the scattered particles to the passage region of the excitation energy beam, or both, is further provided. An X-ray generator according to claim 8 is provided.
【0021】また、本発明は第九に「前記飛散粒子阻止
部材の表面には、少なくともその一部に、つや消し加工
が施されていることを特徴とする請求項1〜8記載のX
線発生装置(請求項9)」を提供する。また、本発明は
第十に「前記飛散粒子阻止部材は、少なくともその一部
に、波状加工が施されていることを特徴とする請求項1
〜8記載のX線発生装置(請求項10)」を提供する。The ninth aspect of the present invention is that, "at least a part of the surface of the scattered particle blocking member is matt-finished, and X is defined in claim 1-8.
Line generator (claim 9) ". A tenth aspect of the present invention is that "the scattering particle blocking member is corrugated at least at a part thereof.
X-ray generator according to claim 8).
【0022】また、本発明は第十一に「前記飛散粒子阻
止部材の表面には、少なくともその一部に、多孔質物質
が設けられていることを特徴とする請求項1〜8記載の
X線発生装置(請求項11)」を提供する。また、本発
明は第十二に「前記立体角領域または前記励起エネルギ
ービームが通過する領域の近傍に、或いは、前記飛散粒
子阻止部材と前記領域の間に、磁石、電磁石、または静
電吸着器をさらに設けたことを特徴とする請求項1〜1
1記載のX線発生装置(請求項12)」を提供する。The eleventh aspect of the present invention is that "a porous material is provided on at least a part of the surface of the scattered particle blocking member, and the X according to any one of claims 1 to 8 is provided. A line generator (claim 11) ". In addition, in a twelfth aspect of the present invention, "a magnet, an electromagnet, or an electrostatic adsorber is provided in the vicinity of the solid angle region or the region through which the excitation energy beam passes, or between the scattered particle blocking member and the region. 1. The method according to claim 1, further comprising:
The X-ray generator according to claim 1 is provided.
【0023】また、本発明は第十三に「前記飛散粒子阻
止部材を冷却する冷却手段をさらに設けたことを特徴と
する請求項1〜12記載のX線発生装置(請求項1
3)」を提供する。The thirteenth aspect of the present invention is an X-ray generator according to any one of claims 1 to 12, characterized in that "cooling means for cooling the scattered particle blocking member is further provided.
3) ”.
【0024】[0024]
【発明の実施の形態】本発明のプラズマX線源からの飛
散粒子を阻止するためにバッファガスを用いるX線発生
装置においては、前記飛散粒子がX線を取り出す範囲に
相当する立体角領域内に進入するのを阻止する部材であ
り、該立体角領域内にある飛散粒子が前記バッファガス
により拡散排除されやすい形状及び/または空間を有す
る飛散粒子阻止部材を、前記立体角領域に隣接または近
接させて設けている(請求項1)。BEST MODE FOR CARRYING OUT THE INVENTION In an X-ray generator that uses a buffer gas to prevent scattered particles from a plasma X-ray source according to the present invention, the scattered particles fall within a solid angle region corresponding to the range for extracting X-rays. A member for preventing entry into the solid angle region, and a scattered particle blocking member having a shape and / or a space in which the scattered particles in the solid angle region are easily diffused and eliminated by the buffer gas, is adjacent to or close to the solid angle region. It is provided (claim 1).
【0025】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、X線の取り出し方向(取り
出すX線が通過する立体角領域)について、不都合な飛
散粒子の付着、堆積(飛散粒子阻止用薄膜や清浄光学面
などへの付着、堆積)を低減できる。また、本発明のプ
ラズマX線源からの飛散粒子を阻止するためにバッファ
ガスを用いるX線発生装置においては、励起エネルギー
ビームが通過する開口部とX線が通過する別の開口部を
有する部材であり、前記飛散粒子を遮蔽する飛散粒子遮
蔽部材を標的部材及びプラズマの近傍に設け、かつ、前
記飛散粒子がX線を取り出す範囲に相当する立体角領域
内に進入するのを阻止する部材であり、該立体角領域内
にある飛散粒子が前記バッファガスにより拡散排除され
やすい形状及び/または空間を有する飛散粒子阻止部材
を、前記立体角領域に隣接または近接させて設けている
(請求項2)。Therefore, even when the plasma is generated for a short time at a long time, inconvenient scattering particles are attached and deposited (scattering particles are blocked) in the X-ray extraction direction (the solid angle region through which the extracted X-rays pass). Adhesion to a thin film for cleaning, a clean optical surface, etc.) can be reduced. Further, in the X-ray generator using the buffer gas for blocking the scattered particles from the plasma X-ray source of the present invention, a member having an opening through which the excitation energy beam passes and another opening through which the X-ray passes. In addition, a scattered particle shielding member that shields the scattered particles is provided in the vicinity of the target member and the plasma, and is a member that prevents the scattered particles from entering the solid angle region corresponding to the X-ray extraction range. A scattering particle blocking member having a shape and / or a space in which scattered particles in the solid angle region are easily diffused and eliminated by the buffer gas is provided adjacent to or close to the solid angle region (claim 2). ).
【0026】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、X線の取り出し方向につい
て、不都合な飛散粒子の付着、堆積(飛散粒子阻止用薄
膜や清浄光学面などへの付着、堆積)をさらに低減でき
る。また、本発明のプラズマX線源からの飛散粒子を阻
止するためにバッファガスを用いるX線発生装置におい
ては、前記飛散粒子が励起エネルギービームが通過する
領域内に進入するのを阻止する部材であり、前記領域内
にある飛散粒子が前記バッファガスにより拡散排除され
やすい形状及び/または空間を有する飛散粒子阻止部材
を、前記領域に隣接または近接させて設けている(請求
項3)。Therefore, even when plasma is generated for a short time and for a long time, inconvenient scattered particles are deposited or deposited (adhered to a scattered particle blocking thin film, a clean optical surface, etc.) in the X-ray extraction direction. (Deposition) can be further reduced. Further, in the X-ray generator using the buffer gas for blocking the scattered particles from the plasma X-ray source of the present invention, the member for preventing the scattered particles from entering the region through which the excitation energy beam passes. A scattered particle blocking member having a shape and / or a space in which scattered particles in the area are easily diffused and eliminated by the buffer gas is provided adjacent to or in proximity to the area (claim 3).
【0027】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、励起エネルギービームの通
過領域について、不都合な飛散粒子の付着、堆積(飛散
粒子阻止用薄膜や清浄光学面などへの付着、堆積)を低
減できる。また、本発明のプラズマX線源からの飛散粒
子を阻止するためにバッファガスを用いるX線発生装置
においては、励起エネルギービームが通過する開口部と
X線が通過する別の開口部を有する部材であり、前記飛
散粒子を遮蔽する飛散粒子遮蔽部材を標的部材及びプラ
ズマの近傍に設け、かつ、前記飛散粒子が前記励起エネ
ルギービームが通過する領域内に進入するのを阻止する
部材であり、前記領域内にある飛散粒子が前記バッファ
ガスにより拡散排除されやすい形状及び/または空間を
有する飛散粒子阻止部材を、前記領域に隣接または近接
させて設けている(請求項4)。Therefore, even when the plasma is generated for a short period of time and for a long period of time, inconvenient scattered particles are deposited or deposited (adhesion to the scattered particle blocking thin film or the clean optical surface) in the passage region of the excitation energy beam. , Deposition) can be reduced. Further, in the X-ray generator using the buffer gas for blocking the scattered particles from the plasma X-ray source of the present invention, a member having an opening through which the excitation energy beam passes and another opening through which the X-ray passes. Is, provided a scattering particle shielding member for shielding the scattered particles in the vicinity of the target member and plasma, and a member for preventing the scattered particles from entering the region where the excitation energy beam passes, A scattered particle blocking member having a shape and / or a space in which scattered particles in the region are easily diffused and eliminated by the buffer gas is provided adjacent to or in proximity to the region (claim 4).
【0028】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、励起エネルギービームの通
過領域について、不都合な飛散粒子の付着、堆積(飛散
粒子阻止用薄膜や清浄光学面などへの付着、堆積)をさ
らに低減できる。ここで、従来の飛散粒子阻止部材の一
例として、X線を取り出す範囲に相当する立体角領域の
切断面に等しい(または略等しい)開孔を有する部材を
該領域に隣接または近接させて設けた場合を考える。Therefore, even when the plasma is generated for a short period of time and for a long period of time, inconvenient scattered particles are deposited and deposited (attached to the scattering particle blocking thin film or the clean optical surface) in the passage region of the excitation energy beam. , Deposition) can be further reduced. Here, as an example of the conventional scattered particle blocking member, a member having an opening equal to (or approximately equal to) the cut surface of the solid angle region corresponding to the range for extracting X-rays is provided adjacent to or close to the region. Consider the case.
【0029】かかる飛散粒子阻止部材を立体角領域に隣
接させて設けても、立体角領域の切断面に等しい開孔に
達するX線には、なんら影響がなく、取り出されるX線
の量は変化しない。これに対して、立体角領域内に進入
しようとする飛散粒子は、飛散粒子阻止部材により多く
が阻止されるので、X線の取り出し方向について、不都
合な飛散粒子の付着、堆積を低減することができる。Even if such a scattered particle blocking member is provided adjacent to the solid angle region, there is no effect on the X-rays reaching the aperture equal to the cut surface of the solid angle region, and the amount of the extracted X-rays changes. do not do. On the other hand, most of the scattered particles that try to enter the solid angle region are blocked by the scattered particle blocking member, so that it is possible to reduce the inconvenient deposition and accumulation of the scattered particles in the X-ray extraction direction. it can.
【0030】このような効果をもたらす飛散粒子阻止部
材は、飛散粒子が立体角領域内に進入するのを阻止でき
る形状を有すればよく、開孔付きの板状の物に限定され
るわけではない。また、厳密には取り出すX線光量が低
下することになるが、X線を取り出す範囲に相当する立
体角領域内に飛散粒子阻止部材を設けても、前記の効果
が得られる。例えば、立体角領域内にあるX線の光路上
に非常に薄い板を光路に沿って設ける場合である。The flying particle blocking member which brings about such an effect is only required to have a shape capable of blocking the flying particles from entering the solid angle region, and is not limited to a plate-shaped member having an aperture. Absent. Strictly speaking, the amount of X-ray light extracted decreases, but the above effect can be obtained even if the scattered particle blocking member is provided in the solid angle region corresponding to the range for extracting X-rays. For example, there is a case where a very thin plate is provided along the optical path on the optical path of X-rays in the solid angle region.
【0031】ところで、前述したように、バッファガス
を真空容器内に充填し、かつ、取り出すX線が通過する
立体角領域に隣接または近接して従来の飛散粒子阻止部
材を設けても、プラズマの生成が短い時間間隔で長時間
にわたる場合には、十分な飛散粒子の阻止効果が得られ
ないという問題が発生する。そこで、本発明のX線発生
装置においては、飛散粒子阻止部材の形状、配置に特に
工夫をこらして、立体角領域内または励起エネルギービ
ーム通過領域内にある飛散粒子がバッファガスにより拡
散排除されやすい形状及び/または空間を有する飛散粒
子阻止部材を、前記領域に隣接または近接させて設ける
ことで、この問題を解決している。By the way, as described above, even if the conventional scattering particle blocking member is provided adjacent to or close to the solid angle region through which the X-ray to be extracted is filled with the buffer gas in the vacuum container and the extracted X-rays pass, When the generation is short time intervals and long time, there arises a problem that sufficient effect of preventing scattered particles cannot be obtained. Therefore, in the X-ray generator of the present invention, the scattered particles in the solid angle region or the excitation energy beam passage region are easily diffused and eliminated by the buffer gas by devising the shape and arrangement of the scattered particle blocking member. This problem is solved by providing a scattered particle blocking member having a shape and / or a space adjacent to or in proximity to the region.
【0032】即ち、本発明にかかる飛散粒子阻止部材
は、立体角領域内または励起エネルギービーム通過領域
内にある飛散粒子がバッファガスにより拡散排除されや
すい形状及び/または空間を有するので、バッファガス
により飛散粒子は効果的に散乱されて前記領域から拡散
排除される。そして、拡散排除された飛散粒子の多く
は、飛散粒子阻止部材に吸着される。That is, since the scattered particle blocking member according to the present invention has a shape and / or space in which the scattered particles in the solid angle region or the excitation energy beam passage region are easily diffused and eliminated by the buffer gas, Flying particles are effectively scattered and diffused out of the area. Most of the scattered particles that have been diffused and removed are adsorbed by the scattered particle blocking member.
【0033】そのため、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、X線の取り出し方向(取り
出すX線が通過する立体角領域)について、或いは、励
起エネルギービームの通過領域について、飛散粒子の付
着、堆積(飛散粒子阻止用薄膜や清浄光学面等への付
着、堆積)を低減できる。図1に本発明のX線発生装置
(一例)にかかる各部材の配置を示す。Therefore, even when the plasma is generated for a short time at a long time, scattered particles are generated in the X-ray extraction direction (the solid angle region through which the extracted X-rays pass) or in the excitation energy beam passage region. Adhesion and deposition (adhesion and deposition on a scattering particle blocking thin film, a clean optical surface, etc.) can be reduced. FIG. 1 shows the arrangement of each member according to the X-ray generator (one example) of the present invention.
【0034】図1に示すX線発生装置では、ガスが適度
な圧力に充填された真空容器内にターゲット材(標的部
材の一例)114が配置され、プラズマ113の発生位
置の近傍には、励起エネルギービーム111が通過する
開口部とX線が通過する別の開口部を有する部材であ
り、ターゲット材114及び/又はプラズマ113から
放出された飛散粒子を遮蔽する飛散粒子遮蔽部材101
が配置されている。In the X-ray generator shown in FIG. 1, a target material (an example of a target member) 114 is placed in a vacuum container filled with gas at an appropriate pressure, and an excitation is made near the plasma 113 generation position. A scattered particle shielding member 101 which is a member having an opening through which the energy beam 111 passes and another opening through which X-rays pass, and which shields scattered particles emitted from the target material 114 and / or the plasma 113.
Is arranged.
【0035】また、飛散粒子遮蔽部材101の開口(X
線取り出し用)からX線取り出し窓(清浄光学面の一
例)121に至る空間には、飛散粒子がX線を取り出す
範囲に相当する立体角領域112内に進入するのを阻止
する部材であり、該立体角領域112内にある飛散粒子
がバッファガスにより拡散排除されやすい形状及び/ま
たは空間を有する飛散粒子阻止部材(以下阻止部材と略
称する場合がある)103,104,105,106が
前記立体角領域112に隣接または近接させて設けられ
ている阻止部材103,104,105,106は、前
記立体角領域112に対する横方向または斜め横方向に
長く延びた遮蔽部と該遮蔽部に設けられた開孔とをそれ
ぞれ有し、各開孔の大きさは立体角領域112の切断面
に略等しい。Further, the opening (X
A space from the X-ray extraction window to the X-ray extraction window (an example of a clean optical surface) 121 is a member for preventing scattered particles from entering the solid angle region 112 corresponding to the X-ray extraction range. The scattered particle blocking member (hereinafter sometimes abbreviated as blocking member) 103, 104, 105, 106 having a shape and / or space in which the scattered particles in the solid angle region 112 are easily diffused and eliminated by the buffer gas is the solid body. The blocking members 103, 104, 105, 106 provided adjacent to or in close proximity to the corner area 112 are provided on the shield portion and the shield portion that extends long in the lateral direction or the oblique lateral direction with respect to the solid angle area 112. And the size of each opening is substantially equal to the cut surface of the solid angle region 112.
【0036】また、阻止部材103,104,105,
106は、それぞれの遮蔽部及び開孔が前記領域112
に隣接または近接させて、かつ、X線の通過方向に互い
に隔離されて設けられている。図1に示すように、各遮
蔽部は立体角領域112に対する横方向または斜め横方
向に長く延びており、また各遮蔽部間には広い空間がそ
れぞれ存在する。The blocking members 103, 104, 105,
106, the respective shields and apertures are in the region 112.
Are provided adjacent to or close to each other and separated from each other in the X-ray passing direction. As shown in FIG. 1, each shield extends long in the lateral direction or the oblique lateral direction with respect to the solid angle region 112, and a wide space exists between each shield.
【0037】そのため、プラズマ113から阻止部材1
03に至る空間A、阻止部材103と阻止部材104に
より挟まれた空間B、阻止部材104と阻止部材105
により挟まれた空間C、阻止部材105と阻止部材10
6により挟まれた空間D、阻止部材107と真空容器の
壁122により挟まれた空間Eそれぞれでは、X線を通
過させる各開孔を除くと、散乱した飛散粒子の出入りが
殆どない。Therefore, the blocking member 1 is removed from the plasma 113.
03 space 03, space B sandwiched by the blocking member 103 and blocking member 104, blocking member 104 and blocking member 105
Space C sandwiched by the, blocking member 105 and blocking member 10
In each of the space D sandwiched by 6 and the space E sandwiched by the blocking member 107 and the wall 122 of the vacuum container, except for each opening through which X-rays pass, scattered scattered particles hardly enter and leave.
【0038】また、阻止部材103,104,105,
106は、バッファガスにより飛散粒子が拡散排除され
やすい形状(長く延びた遮蔽部)及び空間(遮蔽部間の
広い空間)を有するので、立体角領域112内に進入し
てきた飛散粒子も、バッファガスにより効果的に散乱さ
れて立体角領域112から拡散排除される。そして、拡
散排除された飛散粒子は、阻止部材の長く延びた遮蔽部
に吸着される。The blocking members 103, 104, 105,
Since 106 has a shape (a long shielding portion) and a space (a wide space between the shielding portions) in which scattered particles are easily diffused and eliminated by the buffer gas, the scattered particles that have entered the solid angle region 112 are also buffer gas. Are effectively scattered by and diffused out of the solid angle region 112. Then, the scattered particles that have been diffused and eliminated are adsorbed by the elongated shielding portion of the blocking member.
【0039】ここで、本発明にかかる飛散粒子阻止部材
による飛散粒子低減効果を従来の飛散粒子阻止部材のそ
れと比較してみる。例えば、図2のような従来の飛散粒
子阻止部材と、図3のような本発明にかかる飛散粒子阻
止部材(一例)とでは、飛散粒子の低減効果に差を見る
ことができる。Now, the effect of reducing scattered particles by the scattered particle blocking member according to the present invention will be compared with that of the conventional scattered particle blocking member. For example, a difference can be seen in the effect of reducing scattered particles between the conventional scattered particle blocking member shown in FIG. 2 and the scattered particle blocking member according to the present invention (one example) shown in FIG.
【0040】ここでは、ターゲット材214、314に
タンタルテープ(厚さ15μm)を用い、バッファガス
としてクリプトンガスを真空容器内に0.1 Torr充填
し、エネルギーが1.5 JのYAGレーザーパルス光(λ
=1.06μm、励起エネルギービームの一例)211、3
11をタンタルテープ(厚さ15μm)214、314
の表面に集光して、1000回プラズマ213、313
を発生させた場合を考える。Here, a tantalum tape (thickness: 15 μm) is used as the target materials 214 and 314, krypton gas as a buffer gas is filled in a vacuum container at 0.1 Torr, and a YAG laser pulse light (λ) having an energy of 1.5 J is used.
= 1.06 μm, an example of excitation energy beam) 211, 3
11 is tantalum tape (thickness 15 μm) 214, 314
1000 times plasma 213, 313
Consider the case that occurs.
【0041】図2、3に示すように、ターゲット21
4、314表面の法線方向から50度の角度方向におい
て、プラズマ213、313から100mmの位置にそ
れぞれシリコンウエハ240、340を配置して飛散粒
子をその表面に付着、堆積させ、その飛散粒子の堆積量
をICP質量分析法により測定した。図2に示す従来の
飛散粒子阻止部材202の場合の付着量が30ngであ
ったのに対し、図3に示す本発明にかかる飛散粒子阻止
部材(一例)302の場合には7ngであり、明かに堆
積量に差がみられた。As shown in FIGS.
4, 314, the silicon wafers 240 and 340 are arranged at positions of 100 mm from the plasma 213 and 313 in an angle direction of 50 degrees from the normal direction of the surface, and the scattered particles are attached to and deposited on the surface, and the scattered particles The amount of deposition was measured by ICP mass spectrometry. In the case of the conventional scattered particle blocking member 202 shown in FIG. 2, the amount of adhesion was 30 ng, whereas in the case of the scattered particle blocking member (one example) 302 according to the present invention shown in FIG. 3, it was 7 ng. There was a difference in the amount deposited.
【0042】図2、3において、シリコンウェハ24
0、340上の付着領域は、どちらもφ25mmの円形
の領域であり、飛散粒子阻止部材が異なる他は、全く同
一の条件にて測定が行われた。なお、クリプトンガスを
充填しない場合の堆積量は、各場合とも前記値の100
倍を越えた。このように、バッファガスにより拡散され
る飛散粒子の拡散のしやすさが飛散粒子の低減効果に大
きな影響を与えることがわかる。2 and 3, the silicon wafer 24
The adhered areas on 0 and 340 were both circular areas with a diameter of 25 mm, and the measurement was performed under exactly the same conditions except that the scattered particle blocking member was different. The deposition amount when the krypton gas was not filled was 100, which is the above value in each case.
More than doubled. As described above, it is understood that the ease of diffusion of the scattered particles diffused by the buffer gas greatly affects the effect of reducing the scattered particles.
【0043】即ち、本発明にかかる飛散粒子阻止部材
は、バッファガスにより飛散粒子が拡散排除されやすい
形状(例えば、長く延びた遮蔽部)及び/または空間
(例えば、遮蔽部間の広い空間)を有するので、立体角
領域内に進入してきた飛散粒子も、バッファガスにより
効果的に散乱されて立体角領域から拡散排除される。そ
して、拡散排除された飛散粒子の多くは、阻止部材に吸
着される。That is, the scattering particle blocking member according to the present invention has a shape (for example, a long shielding portion) and / or a space (for example, a wide space between the shielding portions) in which the scattering particles are easily diffused and eliminated by the buffer gas. Therefore, the scattered particles that have entered the solid angle region are also effectively scattered by the buffer gas and diffused and excluded from the solid angle region. Most of the scattered particles that have been diffused and removed are adsorbed by the blocking member.
【0044】以上、請求項1、2にかかる構成にした場
合について説明したが、請求項3、4のような構成にし
た場合についても同様に、励起エネルギービームが通過
する領域に隣接または近接させて設けられた本発明にか
かる飛散粒子阻止部材によりビーム通過領域内に進入し
てきた飛散粒子も、バッファガスにより効果的に散乱さ
れて該領域から拡散排除される。そして、拡散排除され
た飛散粒子の多くは、阻止部材に吸着される。The case of the structure according to claims 1 and 2 has been described above. However, also in the case of the structure according to claims 3 and 4, similarly, the structure is arranged adjacent to or close to the region through which the excitation energy beam passes. The scattered particles that have entered the beam passage region are effectively scattered by the buffer gas and diffused and eliminated from the region by the scattered particle blocking member according to the present invention provided as above. Most of the scattered particles that have been diffused and removed are adsorbed by the blocking member.
【0045】従って、本発明にかかる飛散粒子阻止部材
を配置することにより、プラズマの生成が短い時間間隔
で長時間にわたる場合にも、前記立体角領域または励起
エネルギービーム通過領域において大きな飛散粒子低減
効果が得られ、その結果、長時間安定してX線発生装置
を使用できる。飛散粒子の前記低減効果を増大させる上
で、本発明にかかる飛散粒子阻止部材は、X線または励
起エネルギービームの通過方向に対する横方向または斜
め横方向に長く延びた複数の遮蔽部と該遮蔽部のそれぞ
れに設けられた開孔とを有し、各開孔の大きさは前記立
体角領域または前記励起エネルギービームの通過領域の
切断面に略等しく、前記複数の遮蔽部及び開孔は前記領
域に隣接または近接させて、かつ、前記X線または前記
励起エネルギービームの通過方向に互いに隔離されて設
けられていることが好ましい(請求項5)。Therefore, by disposing the scattered particle blocking member according to the present invention, a large scattering particle reducing effect can be obtained in the solid angle region or the excitation energy beam passage region even when the plasma is generated at short time intervals for a long time. As a result, the X-ray generator can be stably used for a long time. In order to increase the above-mentioned effect of reducing scattered particles, a scattered particle blocking member according to the present invention is provided with a plurality of shielding portions that extend long in a lateral direction or an oblique lateral direction with respect to the X-ray or excitation energy beam passage direction and the shielding portions. And the size of each opening is substantially equal to the cut surface of the solid angle region or the passage region of the excitation energy beam, and the plurality of shields and apertures are the regions. It is preferable that they are provided adjacent to or close to each other and separated from each other in the passage direction of the X-ray or the excitation energy beam (claim 5).
【0046】また、取り出すX線の適切な光量が得られ
るように、或いは、適切な飛散粒子阻止効果が得られる
ように、本発明にかかるバッファガスは真空容器内が所
定の圧力範囲となるように導入、排出の制御がなされて
いることが好ましい(請求項6)。本発明にかかるバッ
ファガスは、利用する(取り出す)波長のX線に対する
吸収が少ないものが好ましく、例えば、ヘリウム、酸
素、チッ素、空気、アルゴン、クリプトンなどのガスの
うちから、利用するX線に対する吸収が少ないものを選
択すればよい。Further, in order to obtain an appropriate amount of X-rays to be taken out or to obtain an appropriate scattering particle blocking effect, the buffer gas according to the present invention has a predetermined pressure range in the vacuum container. It is preferable that the introduction and the discharge are controlled (claim 6). The buffer gas according to the present invention is preferably one that absorbs a small amount of X-rays of a wavelength to be used (taken out), and for example, X-rays to be used among gases such as helium, oxygen, nitrogen, air, argon, and krypton. It is sufficient to select a material that absorbs less.
【0047】本発明のX線発生装置においては、前記立
体角領域内または前記励起エネルギービームが通過する
領域内にバッファガスを導入し、かつ、該領域内から飛
散粒子とともにバッファガスを排出する機構をさらに設
けることが好ましい(請求項7)。かかる構成にする
と、バッファガスの導入により、前記立体角領域内また
は前記励起エネルギービームの通過領域内に進入した飛
散粒子を拡散させ、また拡散させた飛散粒子とともにバ
ッファガスを該領域内から外側へ排出できるので、X線
の取り出し方向(取り出すX線が通過する立体角領域)
または前記励起エネルギービームの通過領域について、
不都合な飛散粒子の付着、堆積をさらに低減できる。In the X-ray generator of the present invention, a mechanism for introducing the buffer gas into the solid angle region or the region through which the excitation energy beam passes and discharging the buffer gas together with the scattered particles from the region. Is preferably provided (Claim 7). With such a configuration, by introducing the buffer gas, the scattered particles that have entered the solid angle region or the passage region of the excitation energy beam are diffused, and the buffer gas is diffused from the region to the outside together with the diffused scattered particles. Since it can be ejected, the X-ray extraction direction (solid angle region through which the X-rays pass)
Or for the passage area of the excitation energy beam,
It is possible to further reduce the adhesion and deposition of inconvenient scattered particles.
【0048】本発明のX線発生装置においては、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
の放出量の方向分布を制御する飛散粒子制御部材であ
り、前記X線を取り出す方向(取り出すX線が通過する
立体角領域)への飛散粒子の放出量を、或いは、前記励
起エネルギービームの通過領域への飛散粒子の放出量
を、或いは、その両方を低減させる飛散粒子制御部材を
さらに設けると、前記各領域における飛散粒子阻止効果
が増大するので好ましい(請求項8)。In the X-ray generator of the present invention, it is a scattered particle control member for controlling the directional distribution of the amount of scattered particles emitted from the target member and / or the plasma. A scattered particle control member for reducing the emission amount of scattered particles to a solid angle region through which the extracted X-rays pass, or the emission amount of scattered particles to the passage region of the excitation energy beam, or both of them. If provided, the effect of preventing scattered particles in each of the regions is increased, which is preferable (claim 8).
【0049】かかる飛散粒子制御部材に用いる材料とし
ては、例えば、タンタル、タングステン、ダイヤモン
ド、セラミック、ステンレスなどの高融点、又は高硬度
の材料が好ましい。これは、飛散粒子制御部材がプラズ
マに非常に近接した位置に配置されるので、プラズマか
ら飛来するイオンや電子の該部材表面への衝突による該
部材材料の放出を防止するためである。即ち、該部材材
料の放出があると飛散粒子と同様に不都合な付着、堆積
が生じるので、これを防止するのである。As the material used for the scattered particle control member, for example, a material having a high melting point or high hardness such as tantalum, tungsten, diamond, ceramics, stainless steel is preferable. This is because the scattered particle control member is arranged at a position very close to the plasma, so that the emission of the member material due to collision of ions and electrons flying from the plasma with the member surface is prevented. That is, when the material of the member is released, the same inconvenient adhesion and deposition as the scattered particles occur, and this is prevented.
【0050】拡散された飛散粒子が吸着されやすいよう
に、本発明にかかる飛散粒子阻止部材の表面には、少な
くともその一部に、つや消し加工が施されていることが
好ましい(請求項9)。同様に、また拡散された飛散粒
子を吸着する表面積を増大するために、本発明にかかる
飛散粒子阻止部材は、少なくともその一部に、波状加工
が施されていることが好ましい(請求項10)。It is preferable that at least a part of the surface of the scattered particle blocking member according to the present invention is frosted so that the scattered particles scattered can be easily adsorbed (claim 9). Similarly, in order to increase the surface area for adsorbing the dispersed flying particles, it is preferable that at least a part of the flying particle blocking member according to the present invention is corrugated (claim 10). .
【0051】同様に、本発明にかかる飛散粒子阻止部材
の表面には、少なくともその一部に、多孔質物質が設け
られていることが好ましい(請求項11)。また、本発
明のX線発生装置において、立体角領域または励起エネ
ルギービームが通過する領域の近傍に、或いは、飛散粒
子阻止部材と前記領域の間に、磁石、電磁石、または静
電吸着器をさらに設けると、磁性を有する飛散粒子が磁
石や電磁石に吸着され、またバッファガスとの衝突によ
りイオン化した飛散粒子が静電吸着器に吸着されて、前
記各領域における飛散粒子阻止効果が増大するので好ま
しい(請求項12)。Similarly, it is preferable that at least a part of the surface of the scattered particle blocking member according to the present invention is provided with a porous substance (claim 11). In the X-ray generator of the present invention, a magnet, an electromagnet, or an electrostatic adsorber may be further provided near the solid angle region or the region through which the excitation energy beam passes, or between the scattered particle blocking member and the region. When provided, the scattered particles having magnetism are adsorbed by the magnet or the electromagnet, and the scattered particles ionized by the collision with the buffer gas are adsorbed by the electrostatic adsorber, so that the scattered particle blocking effect in each of the regions is increased, which is preferable. (Claim 12).
【0052】本発明にかかる飛散粒子阻止部材を冷却す
る冷却手段をさらに設けると、該部材が飛散粒子を吸着
しやすくなって、阻止効果が増大するので好ましい(請
求項13)。本発明にかかる標的部材の形状は、巻き取
り可能なテープ状が好ましいが、板状、バルク状、円柱
状でもよい。また、標的部材の材料は、Ta,Wなどが
好ましい。It is preferable to further provide a cooling means for cooling the scattered particle blocking member according to the present invention, since the member easily adsorbs the scattered particles and the blocking effect is increased (claim 13). The shape of the target member according to the present invention is preferably a rollable tape shape, but may be a plate shape, a bulk shape, or a column shape. Further, the material of the target member is preferably Ta, W or the like.
【0053】以下、本発明を実施例により更に詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
【0054】[0054]
【実施例】図4に標的部材としてテープ状のタンタルを
用い、波長14nm付近のX線を取り出して利用する本
実施例のX線発生装置の概略部分構成図を示す。YAG
レーザー光(励起エネルギービームの一例)411が、
集光レンズ452により集光されながら入射窓423を
透過して、真空容器422内に入射し、タンタルターゲ
ット(標的部材の一例)414の表面に集光される。EXAMPLE FIG. 4 shows a schematic partial configuration diagram of an X-ray generator of the present example in which tape-shaped tantalum is used as a target member and X-rays around a wavelength of 14 nm are extracted and used. YAG
Laser light (an example of an excitation energy beam) 411
While being condensed by the condenser lens 452, it passes through the entrance window 423, enters the vacuum chamber 422, and is condensed on the surface of the tantalum target (an example of a target member) 414.
【0055】タンタルターゲット414は厚さ15μm
のテープ形状であり、テープ上の同じ位置にレーザー光
が繰り返し集光されることのないように、プラズマ発生
時には、駆動手段(例えば、モーター、不図示)により
リール451を回転させてタンタルテープを巻き取って
いる。タンタルテープの移動速度は、一つのプラズマが
生成されてから次のプラズマを生成するためのレーザー
光が入射するまでに、プラズマの発生によりタンタルテ
ープに生ずる孔の直径分以上にテープが移動する速度で
ある。The tantalum target 414 has a thickness of 15 μm.
When the plasma is generated, the reel 451 is rotated by a driving means (for example, a motor, not shown) so that the laser light is not repeatedly focused on the same position on the tape. It is winding up. The movement speed of the tantalum tape is the speed at which the tape moves more than the diameter of the hole generated in the tantalum tape due to the generation of plasma from the time when one plasma is generated until the laser light for generating the next plasma is incident. Is.
【0056】タンタルテープターゲット414上にYA
Gレーザー411は45度の入射角で入射、集光され、
生成したプラズマ413から発生したX線は、YAGレ
ーザー411とは反対側の45度の方向に設けられたX
線取り出し窓(清浄光学面の一例)421からX線光学
系へと導かれる。真空容器422内にはバッファガスと
してKrガスが導入されると同時に排気されており、0.
1 Torrの圧力を保つように制御されている。Krガ
スは、波長14nmのX線に対して同じ圧力ではHeと
同程度の透過率を有する。YA on the tantalum tape target 414
The G laser 411 is incident and condensed at an incident angle of 45 degrees,
The X-rays generated from the generated plasma 413 are X-rays provided in the direction of 45 degrees opposite to the YAG laser 411.
The light is guided from the line extraction window (an example of a clean optical surface) 421 to the X-ray optical system. Kr gas is introduced as a buffer gas into the vacuum container 422 and is exhausted at the same time.
It is controlled to maintain a pressure of 1 Torr. Kr gas has the same transmittance as He at the same pressure for X-rays having a wavelength of 14 nm.
【0057】プラズマ413の近傍には、ターゲット4
14に入射するYAGレーザー411と取り出すX線と
がそれぞれ通過できる開口を有する飛散粒子遮蔽部材4
01が設けられており、ターゲット414及び/又はプ
ラズマ413から放出された飛散粒子の殆どがこの飛散
粒子遮蔽部材401により遮蔽される。そのため、真空
容器内に拡散する飛散粒子量を低減し、X線取り出し窓
421に到達する飛散粒子を低減することができる。加
えて、飛散粒子による真空容器内の汚染を軽減すること
ができる。In the vicinity of the plasma 413, the target 4
Scattering particle shielding member 4 having openings through which the YAG laser 411 incident on 14 and the X-ray to be extracted can respectively pass.
01 is provided, and most of the scattered particles emitted from the target 414 and / or the plasma 413 are shielded by the scattered particle shielding member 401. Therefore, the amount of scattered particles diffused in the vacuum container can be reduced, and the scattered particles reaching the X-ray extraction window 421 can be reduced. In addition, it is possible to reduce contamination in the vacuum container due to scattered particles.
【0058】また、遮蔽部材401のX線取り出し用の
開口付近からX線取り出し窓421付近にかけて、X線
を取り出す範囲に相当する立体角領域412に隣接また
は近接する飛散粒子阻止部材402(構成部材403、
404、405、406、407を有する)が設けられ
ている。阻止部材402の各構成部材403,404,
405,406,407は、立体角領域412に対する
横方向または斜め横方向に長く延びた遮蔽部と該遮蔽部
に設けられた開孔とをそれぞれ有し、各開孔の大きさは
立体角領域412の切断面に略等しい。Further, from the vicinity of the X-ray extraction window of the shielding member 401 to the vicinity of the X-ray extraction window 421, the scattered particle blocking member 402 (constituent member) which is adjacent to or close to the solid angle region 412 corresponding to the X-ray extraction range. 403,
404, 405, 406, 407) are provided. Each component member 403, 404 of the blocking member 402,
Reference numerals 405, 406, and 407 each have a shielding portion that extends in a lateral direction or an oblique lateral direction with respect to the solid angle region 412 and an opening provided in the shielding portion, and the size of each opening is the solid angle region. 412 is approximately equal to the cut surface.
【0059】また、各構成部材403,404,40
5,406, 407は、それぞれの遮蔽部及び開孔が前
記領域412に隣接または近接させて、かつ、X線の通
過方向に互いに隔離されて設けられている。図4に示す
ように、阻止部材402の各構成部材403,404,
405,406, 407の遮蔽部は立体角領域412に
対する横方向または斜め横方向に長く延びている。Further, each constituent member 403, 404, 40
5, 406 and 407 are provided so that their respective shields and openings are adjacent to or close to the area 412 and are separated from each other in the X-ray passing direction. As shown in FIG. 4, the constituent members 403, 404,
The shielding portions 405, 406, and 407 extend long in the lateral direction or the oblique lateral direction with respect to the solid angle region 412.
【0060】そのため、阻止部材402は、前記遮蔽部
材401により遮蔽されずに、X線の取り出し方向に飛
び出した飛散粒子のうち、真空容器内に充填されたKr
ガス分子との散乱により、各構成部材403,404,
405,406, 407の開口を通過できない飛散粒子
を阻止することにより、X線取り出し窓421に到達す
る飛散粒子量を減少させる。Therefore, the blocking member 402 is not shielded by the shielding member 401, and among the particles scattered in the X-ray extraction direction, the Kr particles filled in the vacuum container.
Due to scattering with gas molecules, each constituent member 403, 404,
By blocking scattered particles that cannot pass through the openings 405, 406, and 407, the amount of scattered particles reaching the X-ray extraction window 421 is reduced.
【0061】また、横方向または斜め横方向に長く延び
た遮蔽部を有する阻止部材402の各構成部材403,
404,405,406, 407の間には広い空間がそ
れぞれ存在するので、立体角領域412内に進入してき
た飛散粒子もバッファガスにより効果的に散乱されて立
体角領域412から拡散排除される。そして、拡散排除
された飛散粒子の多くは、阻止部材402の長く延びた
遮蔽部に吸着される。Further, each constituent member 403 of the blocking member 402 having a shielding portion extending in the lateral direction or the oblique lateral direction,
Since there are wide spaces between 404, 405, 406, and 407, respectively, the scattered particles that have entered the solid angle region 412 are also effectively scattered by the buffer gas and diffused out of the solid angle region 412. Then, most of the scattered particles that have been diffused and removed are adsorbed by the long extending shield portion of the blocking member 402.
【0062】そのため、X線取り出し窓421に到達す
る飛散粒子を効率よく低減できる。バッファガスとして
用いるKrガスは、Heガスなどの質量数の小さい元素
のガスに比べると、飛散粒子を散乱させる効果がより大
きいので、前記拡散排除により飛散粒子を大きく低減で
きる。しかも、波長14nm付近のX線に対してはHe
ガスと同程度の高い透過率を有する。Therefore, scattered particles reaching the X-ray extraction window 421 can be efficiently reduced. The Kr gas used as the buffer gas has a greater effect of scattering the scattered particles than a gas of an element having a small mass number such as He gas, and thus the scattered particles can be greatly reduced by the diffusion exclusion. Moreover, for X-rays with a wavelength near 14 nm, He
It has a transmittance as high as that of gas.
【0063】その結果、本実施例のX線発生装置によれ
ば、X線取り出し窓を透過するX線の強度を長時間維持
することができ、X線源として安定して利用することが
できる。本実施例では、標的部材表面へのYAGレーザ
ーの入射角と、X線の取り出し角をいずれも45度とし
たが、この角度に限定されるものではない。また、標的
部材の材質をタンタルとしたが、これに限定されるもの
ではない。As a result, according to the X-ray generator of the present embodiment, the intensity of X-rays transmitted through the X-ray extraction window can be maintained for a long time and can be stably used as an X-ray source. . In this embodiment, the incident angle of the YAG laser on the surface of the target member and the X-ray extraction angle are both 45 degrees, but the angle is not limited to this angle. Although the material of the target member is tantalum, the material is not limited to this.
【0064】本実施例では、標的材の形状をテープ状と
したが、この形状に限るものではなく、板状、円柱状、
微粒子状などでもよい。本実施例ではKrガス圧力を0.
1 Torrとしたが、この圧力に限るものではない。即
ち、プラズマ413からX線取り出し窓421までの距
離により好ましい圧力は変化するが、本実施例における
プラズマ413からX線取り出し窓421までの距離
(約100mm)の場合には、0.01〜1Torr程度が
好ましい。In the present embodiment, the shape of the target material was a tape shape, but the shape is not limited to this shape, and a plate shape, a column shape,
It may be in the form of fine particles. In this embodiment, the Kr gas pressure is set to 0.
Although it is set to 1 Torr, it is not limited to this pressure. That is, the preferable pressure varies depending on the distance from the plasma 413 to the X-ray extraction window 421, but in the case of the distance from the plasma 413 to the X-ray extraction window 421 (about 100 mm) in this embodiment, about 0.01 to 1 Torr. preferable.
【0065】本実施例では、Krガスについて導入と排
気をおこなっているが、使用時間が短い場合には導入と
排気を止めて、圧力を保持してもよい。また、容器内に
導入するガスはKrに限定されるものではない。本実施
例では、阻止部材402内の各構成部材403,40
4,405,406, 407の間に存在する空間が各部
材の端部において真空容器内の空間とつながる開放形状
であったが、飛散粒子が拡散する十分な空間を確保した
上で、各構成部材間の空間が各部材の端部において真空
容器内の空間とつながらない閉じた形状の阻止部材50
2としてもよい(図5参照)。In this embodiment, the Kr gas is introduced and exhausted, but if the usage time is short, the introduction and exhaust may be stopped and the pressure may be maintained. Further, the gas introduced into the container is not limited to Kr. In this embodiment, the constituent members 403, 40 in the blocking member 402 are
The space existing between 4, 405, 406, and 407 was an open shape that connects to the space inside the vacuum container at the end of each member, but after ensuring a sufficient space for scattered particles to diffuse, A blocking member 50 having a closed shape in which the space between the members does not connect to the space inside the vacuum container at the end of each member.
It may be 2 (see FIG. 5).
【0066】このとき、ガスの導入口561を阻止部材
502の内部空間につなぎ、X線の入射する方向に対し
て逆方向にガスの流れを形成してもよい。本実施例で
は、部材402に冷却機構を設けてはいないが、吸着効
果を高めるために冷却機構をさらに取り付けてもよい。
その場合、真空容器とは熱的な接触をできるだけ小さく
することが好ましい。At this time, the gas inlet 561 may be connected to the internal space of the blocking member 502 to form a gas flow in the direction opposite to the X-ray incident direction. In this embodiment, the member 402 is not provided with a cooling mechanism, but a cooling mechanism may be further attached to enhance the adsorption effect.
In that case, it is preferable to make thermal contact with the vacuum container as small as possible.
【0067】本実施例では、飛散粒子の拡散と部材表面
への吸着により飛散粒子を減少させているが、図6に示
すように、飛散粒子阻止部材内部の空間に静電集塵装置
(静電吸着器)を配置してもよい。また、飛散粒子が磁
性を持っていると考えられる場合には、飛散粒子阻止部
材内部の空間に磁石または電磁石を配置してもよい。本
実施例では、X線取り出し窓に付着する飛散粒子を減少
させることを目的として飛散粒子阻止部材を配置した
が、同様な部材を、プラズマを形成するための励起エネ
ルギービーム導入窓、容器の窓付近に配置することによ
り、これらの部分に付着する飛散粒子量も低減すること
ができる。In the present embodiment, the scattered particles are reduced by diffusing the scattered particles and adsorbing them on the surface of the member. However, as shown in FIG. (Electroadsorber) may be arranged. When the scattered particles are considered to have magnetism, a magnet or electromagnet may be arranged in the space inside the scattered particle blocking member. In this embodiment, the scattered particle blocking member is arranged for the purpose of reducing the scattered particles adhering to the X-ray extraction window, but similar members are used as the excitation energy beam introduction window for forming plasma and the window of the container. By arranging them in the vicinity, it is possible to reduce the amount of scattered particles adhering to these portions.
【0068】[0068]
【発明の効果】以上、説明したように、本発明のプラズ
マX線源からの飛散粒子を阻止するためにバッファガス
を用いるX線発生装置によれば、プラズマの生成が短い
時間間隔で長時間にわたる場合にも、X線の取り出し方
向(取り出すX線が通過する立体角領域)について、或
いは、励起エネルギービームの通過領域について、不都
合な飛散粒子の付着、堆積(飛散粒子阻止用薄膜や清浄
光学面などへの付着、堆積)を低減して、その結果、長
時間安定して装置が使用できる。As described above, according to the X-ray generator of the present invention which uses the buffer gas to prevent the scattered particles from the plasma X-ray source, the plasma is generated for a long time at short time intervals. In the case that the X-ray is taken out, the inconvenient scattering particles are adhered and accumulated (the scattering particle blocking thin film and the cleaning optics) in the X-ray extraction direction (the solid angle region through which the extracted X-rays pass) or the excitation energy beam passage region. (Adhesion to surfaces, deposition) is reduced, and as a result, the device can be used stably for a long time.
【図1】は、本発明のX線発生装置(一例)にかかる各
部材を示す概略部分構成図である。FIG. 1 is a schematic partial configuration diagram showing each member of an X-ray generator (one example) of the present invention.
【図2】は、従来の飛散粒子阻止部材を用いたX線発生
装置にかかる飛散粒子量測定実験時の実験配置図であ
る。FIG. 2 is an experimental layout diagram during an experiment for measuring the amount of scattered particles in an X-ray generator using a conventional scattered particle blocking member.
【図3】は、本発明にかかる飛散粒子阻止部材を用いた
X線発生装置にかかる飛散粒子量測定実験時の実験配置
図である。FIG. 3 is an experimental layout diagram during an experiment for measuring the amount of scattered particles in the X-ray generator using the scattered particle blocking member according to the present invention.
【図4】は、実施例のX線発生装置の概略部分構成図で
ある。FIG. 4 is a schematic partial configuration diagram of an X-ray generator according to an embodiment.
【図5】は、本発明の一例であるX線発生装置の概略部
分構成図である。FIG. 5 is a schematic partial configuration diagram of an X-ray generator which is an example of the present invention.
【図6】は本発明の別の一例であるX線発生装置の概略
部分構成図である。FIG. 6 is a schematic partial configuration diagram of an X-ray generator which is another example of the present invention.
101,201,301,401,501,601 飛
散粒子遮蔽部材 202,302,402,502,602 飛散粒子阻
止部材 103,303,403 飛散粒子阻止部材の構成部材 104,304,404 飛散粒子阻止部材の構成部材 105,305,405 飛散粒子阻止部材の構成部材 106,306,406, 407 飛散粒子阻止部材の
構成部材 111,211,311,411,511,611 励
起レーザー光(励起エネルギービームの一例) 112,212,312,412,512,612 取
り出すX線が通過する立体角領域 113,213,313,413,513,613 プ
ラズマ 114,214,314,414,514,614 タ
ーゲット材(標的部材の一例) 121,421,521,621 X線取り出し窓 122,422,522,622 真空容器 423,523,623 励起レーザー光入射窓 240,340 シリコンウエハ 451,551,651 リール 452,552,652 集光レンズ 561,661 ガス導入口 662 静電集塵装置(または静電吸着器) 以 上101, 201, 301, 401, 501, 601 Scattered particle blocking member 202, 302, 402, 502, 602 Scattered particle blocking member 103, 303, 403 Scattered particle blocking member constituent member 104, 304, 404 Scattered particle blocking member Constituent members 105, 305, 405 Constituent members of scattered particle blocking member 106, 306, 406, 407 Constituent members of scattered particle blocking member 111, 211, 311, 411, 511, 611 Excitation laser light (an example of excitation energy beam) 112 , 212, 312, 412, 512, 612 Solid angle region through which X-rays to be extracted 113, 213, 313, 413, 513, 613 Plasma 114, 214, 314, 414, 514, 614 Target material (an example of target member) 121,421,521,621 X-ray Window 122, 422, 522, 622 Vacuum container 423, 523, 623 Excitation laser beam incident window 240, 340 Silicon wafer 451, 551, 651 Reel 452, 552, 652 Condensing lens 561, 661 Gas inlet 662 Electrostatic collector Dust device (or electrostatic chuck) or above
Claims (13)
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置であり、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
を阻止するためにバッファガスを用いるX線発生装置に
おいて、 前記標的部材及び/又は前記プラズマから放出される飛
散粒子が前記X線を取り出す範囲に相当する立体角領域
内に進入するのを阻止する部材であり、該立体角領域内
にある飛散粒子が前記バッファガスにより拡散排除され
やすい形状及び/または空間を有する飛散粒子阻止部材
を、前記立体角領域に隣接または近接させて設けたこと
を特徴とするX線発生装置。1. An X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container, which is decompressed, to form plasma, and extracting X-rays from the plasma, wherein the target member and / or the plasma In an X-ray generator that uses a buffer gas to block emitted particles, the particles emitted from the target member and / or the plasma enter into a solid angle region corresponding to a range for extracting the X-rays. Is a member for preventing the scattered particles, the scattered particles in the solid angle region has a shape and / or space that is easily diffused and eliminated by the buffer gas, and the scattered particle blocking member is adjacent to or close to the solid angle region. An X-ray generator characterized by being provided.
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置であり、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
を阻止するためにバッファガスを用いるX線発生装置に
おいて、 前記励起エネルギービームが通過する開口部と前記X線
が通過する別の開口部を有する部材であり、前記標的部
材及び/又は前記プラズマから放出される飛散粒子を遮
蔽する飛散粒子遮蔽部材を前記標的部材及びプラズマの
近傍に設け、かつ、前記飛散粒子が前記X線を取り出す
範囲に相当する立体角領域内に進入するのを阻止する部
材であり、該立体角領域内にある飛散粒子が前記バッフ
ァガスにより拡散排除されやすい形状及び/または空間
を有する飛散粒子阻止部材を、前記立体角領域に隣接ま
たは近接させて設けたことを特徴とするX線発生装置。2. An X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container that has been decompressed to form plasma, and extracting X-rays from the plasma, wherein the target member and / or the plasma An X-ray generator that uses a buffer gas to block emitted particles, which is a member having an opening through which the excitation energy beam passes and another opening through which the X-rays pass, and the target member and And / or a scattering particle shielding member for shielding scattering particles emitted from the plasma is provided in the vicinity of the target member and the plasma, and the scattering particles enter into a solid angle region corresponding to a range for extracting the X-rays. And a shape and / or a space in which the scattered particles in the solid angle region are easily diffused and eliminated by the buffer gas. The dispersed particles blocking member, X-rays generator being characterized in that disposed to be adjacent or proximate to the solid angle region.
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置であり、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
を阻止するためにバッファガスを用いるX線発生装置に
おいて、 前記標的部材及び/又は前記プラズマから放出される飛
散粒子が前記励起エネルギービームが通過する領域内に
進入するのを阻止する部材であり、前記領域内にある飛
散粒子が前記バッファガスにより拡散排除されやすい形
状及び/または空間を有する飛散粒子阻止部材を、前記
領域に隣接または近接させて設けたことを特徴とするX
線発生装置。3. An X-ray generator that irradiates an excitation energy beam to a target member in a vacuum container that has been decompressed to form plasma, and takes out X-rays from the plasma, wherein the target member and / or the plasma. In an X-ray generator that uses a buffer gas to block emitted particles, the particles emitted from the target member and / or the plasma are prevented from entering an area through which the excitation energy beam passes. And a scattering particle blocking member having a shape and / or a space in which scattered particles in the region are easily diffused and eliminated by the buffer gas, which is provided adjacent to or in proximity to the region.
Line generator.
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置であり、前記標
的部材及び/又は前記プラズマから放出される飛散粒子
を阻止するためにバッファガスを用いるX線発生装置に
おいて、 前記励起エネルギービームが通過する開口部と前記X線
が通過する別の開口部を有する部材であり、前記標的部
材及び/又は前記プラズマから放出される飛散粒子を遮
蔽する飛散粒子遮蔽部材を前記標的部材及びプラズマの
近傍に設け、かつ、前記飛散粒子が前記励起エネルギー
ビームが通過する領域内に進入するのを阻止する部材で
あり、前記領域内にある飛散粒子が前記バッファガスに
より拡散排除されやすい形状及び/または空間を有する
飛散粒子阻止部材を、前記領域に隣接または近接させて
設けたことを特徴とするX線発生装置。4. An X-ray generator for irradiating an excitation energy beam to a target member in a vacuum container, which has been decompressed, to form plasma, and extracting X-rays from the plasma. The target member and / or the plasma An X-ray generator that uses a buffer gas to prevent emitted scattered particles, which is a member having an opening through which the excitation energy beam passes and another opening through which the X-rays pass, and the target member and And / or a scattering particle shielding member for shielding scattering particles emitted from the plasma is provided in the vicinity of the target member and the plasma, and the scattering particles are prevented from entering the region through which the excitation energy beam passes. Particles that are members and have a shape and / or a space in which scattered particles in the region are easily diffused and eliminated by the buffer gas. The stop member, X-rays generator being characterized in that disposed to be adjacent or in proximity to the region.
は前記励起エネルギービームの通過方向に対する横方向
または斜め横方向に長く延びた複数の遮蔽部と該遮蔽部
のそれぞれに設けられた開孔とを有し、各開孔の大きさ
は前記立体角領域または前記励起エネルギービームが通
過する領域の切断面に略等しく、前記複数の遮蔽部及び
開孔は前記領域に隣接または近接させて、かつ、前記X
線または前記励起エネルギービームの通過方向に互いに
隔離されて設けられていることを特徴とする請求項1〜
4記載のX線発生装置。5. The scattered particle blocking member includes a plurality of shield portions extending in a lateral direction or an oblique lateral direction with respect to a passing direction of the X-rays or the excitation energy beam, and holes provided in each of the shield portions. And the size of each aperture is substantially equal to the cut surface of the solid angle region or the region through which the excitation energy beam passes, and the plurality of shields and apertures are adjacent or close to the region, And the above X
Lines or the direction of passage of the excitation energy beam, which are isolated from each other.
4. The X-ray generator according to 4.
所定の圧力範囲となるように導入、排出の制御がなされ
ていることを特徴とする請求項1〜5記載のX線発生装
置。6. The X-ray generator according to claim 1, wherein the buffer gas is controlled so as to be introduced and discharged so that the inside of the vacuum container has a predetermined pressure range.
ギービームが通過する領域内にバッファガスを導入し、
かつ、該領域内から飛散粒子とともにバッファガスを排
出する機構をさらに設けたことを特徴とする請求項1〜
6記載のX線発生装置。7. A buffer gas is introduced into the solid angle region or a region through which the excitation energy beam passes,
Further, a mechanism for discharging the buffer gas together with the scattered particles from the area is further provided.
The X-ray generator according to item 6.
ら放出される飛散粒子の放出量の方向分布を制御する飛
散粒子制御部材であり、前記X線を取り出す方向への飛
散粒子の放出量を、或いは、前記励起エネルギービーム
の通過領域への飛散粒子の放出量を、或いは、その両方
を低減させる飛散粒子制御部材をさらに設けたことを特
徴とする請求項1〜7記載のX線発生装置。8. A scattered particle control member for controlling the directional distribution of the amount of scattered particles emitted from the target member and / or the plasma, wherein the amount of scattered particles emitted in the X-ray extraction direction is Alternatively, the X-ray generator according to any one of claims 1 to 7, further comprising a scattered particle control member for reducing the emission amount of the scattered particles to the passage region of the excitation energy beam or both of them.
くともその一部につや消し加工が施されていることを特
徴とする請求項1〜8記載のX線発生装置。9. The X-ray generator according to claim 1, wherein at least a part of the surface of the scattered particle blocking member is matt processed.
その一部に、波状加工が施されていることを特徴とする
請求項1〜8記載のX線発生装置。10. The X-ray generator according to claim 1, wherein at least a part of the scattered particle blocking member is corrugated.
なくともその一部に、多孔質物質が設けられていること
を特徴とする請求項1〜8記載のX線発生装置。11. The X-ray generator according to claim 1, wherein a porous material is provided on at least a part of the surface of the scattered particle blocking member.
ギービームが通過する領域の近傍に、或いは、前記飛散
粒子阻止部材と前記領域の間に、磁石、電磁石、または
静電吸着器をさらに設けたことを特徴とする請求項1〜
11記載のX線発生装置。12. A magnet, an electromagnet, or an electrostatic adsorption device is further provided near the solid angle region or the region through which the excitation energy beam passes, or between the scattered particle blocking member and the region. Claim 1 characterized by
11. The X-ray generator according to item 11.
手段をさらに設けたことを特徴とする請求項1〜12記
載のX線発生装置。13. The X-ray generator according to claim 1, further comprising cooling means for cooling the scattered particle blocking member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8132410A JPH09320794A (en) | 1996-05-27 | 1996-05-27 | X-ray generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8132410A JPH09320794A (en) | 1996-05-27 | 1996-05-27 | X-ray generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09320794A true JPH09320794A (en) | 1997-12-12 |
Family
ID=15080743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8132410A Pending JPH09320794A (en) | 1996-05-27 | 1996-05-27 | X-ray generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09320794A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007180531A (en) * | 2005-12-08 | 2007-07-12 | Asml Netherlands Bv | Controlling flow through collector during cleaning |
JP2007194590A (en) * | 2005-11-23 | 2007-08-02 | Asml Netherlands Bv | Radiation system and lithography apparatus |
JP2008532231A (en) * | 2005-02-25 | 2008-08-14 | サイマー インコーポレイテッド | System for protecting internal components of an EUV light source from plasma generated debris |
JP2008270533A (en) * | 2007-04-20 | 2008-11-06 | Komatsu Ltd | Extreme ultraviolet light source apparatus |
JP2020535391A (en) * | 2017-08-30 | 2020-12-03 | ケーエルエー コーポレイション | High-intensity clean X-ray source for X-ray-based weighing |
JP2022530497A (en) * | 2019-04-26 | 2022-06-29 | アイエスティーイーキュー ビー.ヴィー. | High-intensity laser-generated plasma light source |
-
1996
- 1996-05-27 JP JP8132410A patent/JPH09320794A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008532231A (en) * | 2005-02-25 | 2008-08-14 | サイマー インコーポレイテッド | System for protecting internal components of an EUV light source from plasma generated debris |
JP2007194590A (en) * | 2005-11-23 | 2007-08-02 | Asml Netherlands Bv | Radiation system and lithography apparatus |
JP2007180531A (en) * | 2005-12-08 | 2007-07-12 | Asml Netherlands Bv | Controlling flow through collector during cleaning |
JP4610545B2 (en) * | 2005-12-08 | 2011-01-12 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and cleaning apparatus |
JP2008270533A (en) * | 2007-04-20 | 2008-11-06 | Komatsu Ltd | Extreme ultraviolet light source apparatus |
US8450706B2 (en) | 2007-04-20 | 2013-05-28 | Gigaphoton Inc. | Extreme ultraviolet light source apparatus |
JP2020535391A (en) * | 2017-08-30 | 2020-12-03 | ケーエルエー コーポレイション | High-intensity clean X-ray source for X-ray-based weighing |
JP2022530497A (en) * | 2019-04-26 | 2022-06-29 | アイエスティーイーキュー ビー.ヴィー. | High-intensity laser-generated plasma light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI664878B (en) | Devices for plasma generation and euv light sources | |
US8212228B2 (en) | Extreme ultra violet light source apparatus | |
US8076655B2 (en) | Method of cleaning optical surfaces of an irradiation unit in a two-step process | |
JP4222996B2 (en) | Lithographic apparatus with reduced contamination, device manufacturing method, and device manufactured thereby | |
US8173975B2 (en) | Method and device for removing particles generated by means of a radiation source during generation of short-wave radiation | |
JP2006319328A (en) | Method and device of suppressing debris in generation of short-wave radiation based on plasma | |
KR20020060587A (en) | Lithographic projection apparatus, device manufacturing method, and device manufactured thereby | |
US6385290B1 (en) | X-ray apparatus | |
JPH09320792A (en) | X-ray generator | |
JP2010103507A (en) | Method and apparatus for operating short wavelength radioactive source based on plasma | |
JPH09320794A (en) | X-ray generator | |
JP2010080409A (en) | Extreme ultraviolet light source device equipped with gas flow type spf | |
US8101930B2 (en) | Method of increasing the operation lifetime of a collector optics arranged in an irradiation device | |
Komori et al. | Ion damage analysis on EUV collector mirrors | |
JP3666055B2 (en) | X-ray generator and X-ray exposure apparatus | |
JP2004332115A (en) | Method for preventing adhesion of contaminating particle to surface of microcomponent, microcomponent storage device and thin layer deposition device | |
JPH09237695A (en) | X-ray generating device | |
Dickinson | The role of defects in the laser ablation of wide bandgap materials | |
WO2018034020A1 (en) | Soft x-ray source, exposure apparatus, and microscope | |
JPH08162287A (en) | X-ray generating apparatus | |
JPH09148092A (en) | X-ray generator | |
WO2024203834A1 (en) | Light source device and light-emitting unit | |
JPH09245989A (en) | X-ray generating device | |
JP3460130B2 (en) | X-ray generator | |
Bollanti et al. | Progress report on a 14.4-nm micro-exposure tool based on a laser-produced-plasma: debris mitigation system results and other issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051004 |